
175

CHARACTERIZATION OF SOME FUNCTION SPACES 
BY SQUARE FUNCTIONS 

SHUICHI SATO KANAZAWA UNIVERSITY 

1. INTRODUCTION 

This is a survey paper. I would like to state some recent results 
in harmonic analysis related to characterization of function spaces by 
square functions. The results include the following. 

(1) Characterization of LP spaces, 1 < p < oo, by Littlewood-Paley 
functions; 

(2) Characterization of Sobolev spaces by Littlewood-Paley func
tions; 

(3) Characterization of H 1 Sobolev spaces by square functions of 
Lusin area integral type; 

(4) Characterization of Hardy spaces HP on homogeneous groups 
by Littlewood-Paley functions, where O < p :::; 1. 

2. MAPPING PROPERTIES OF LITTLEWOOD-PALEY OPERATORS ON 

LP SPACES 

Let 'ljJ be a function in L 1 (Rn) such that 

(2.1) { 'lj} (x) dx = 0. 
} If€_n 

We consider the Littlewood-Paley function on Rn defined by 

(2.2) 

where 'lj}t (x) = t - n'lj}(t - 1x) . The following result is well-known. 

Theorem A. Let 'ljJ E L 1(Rn) be as in (2.1). W e assume that 

(2.3) l'lj} (.r) I :::; C(l + lxl)-n-c, 

(2.4) { l'lj} (x - y) - 'lj} (x) I dx:::; CIYIC for ally E Rn, 
} If€_n 
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with some positive constants C, c. Then .9'1j; in (2.2) is bounded on 
LP(IB.n) for all p E (1, oo): 

(2.5) llg'lj; (J)llp ~ Cpllfllp, 
where 

II.flip= 11.fllLP = (in l.f(x)IP dx) l/p 

This is a result of Benedek, Calderon and Panzone [2]. 
Let 

m(l) = 100 

l~ (tl)l2 ~t. 

Then mis a homogeneous function of degree 0. Here the Fourier trans
form is defined as 

n 

(x,~) = I: xk~k-

By the Plancherel theorem, one can see that .9'1j; is bounded on L2 (IB.n ) 
if and only if m E L00 (IB.n). 

Let 
t 

Pt(x) = Cn (lxl2 + t2)(n+l)/2 
be the Poisson kernel on the upper half space IB.n x (0, oo) (see [40]) 
and Q(.r) = [(8/ ot)Pt(.r)]t=l · Then, we can see that the function Q 
satisfies t he conditions (2.1), (2.3) and (2.4). Thus by Theorem A .9Q 
is bounded on LJ'(IB.n) for allp E (1,oo). 

Let H(x ) = sgn(.r)X[-1,i](x) = X[o,1i(x) - X[-1,0](.r) on IB. (the Haar 
function), where XE denotes the characteristic function of a set E and 
sgn(x) the signum function. Then .9H(f ) is the Marcinkiewicz integral 

( {oo dt) 1/2 
µ(f)(x) = Jo IF(x + t) + F(x - t) - 2F(x)l 2 t3 , 

where F(x) = J~T, f(y) dy. We can easily see that Theorem A also 
implies that .9r-r is bounded on LJ'(IB.), 1 < p < oo. 

We recall a theorem of Hormander [15] to see results about the re
verse inequality of (2.5). Let m E L00 (IB.n) and define 

(2.6) Tm(J ) (.r) = i,, m(~)f (~) e21ri(xi) d( 

We say that mis a Fourier multiplier for LP and write m E MP if there 
exists a constant C > 0 such that 
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for all .f E L2 n LP. Then Hormander's result in [15] can be stated as 
follows ( see [5] for relevant results). 

Theorem B. Let m be a bounded function on ]Rn. Suppose that m is 
homogeneous of degree O and that m E MP for all p E (1, oo). Suppose 
further that m is continuous and does not va:nish on sn-1 = {.r, E ]Rn : 

lxl = 1}. Then, m-1 belongs to MP for every p E (1, oo) . 
The idea of the proof comes from a Banach algebra technique re

lated to Wiener-Levy theorem on absolutely convergent Fourier series . 
Applying Theorem B, we can deduce the following (see [15, Theorem 
3.8]). 

Theorem C. Suppose that g'I/J is bounded on LP for every p E (1, oo) . 
Let m(() = Jt l?,L,(t() 12 dt/t. Suppose that m is continuous and strictly 
positive on sn- 1 . Then we have 

11.tllp ~ cp llg'I/J(.f) lip, 
and hence llfllP ~ llg'I/J (.f)llp, .f E LP, for all p E (1, oo), where II.flip~ 
llg'I/J (.f) IIP means that 

c, llfllP ~ llg'I/J(.f)I IP ~ c2ll.fllP 
with positive constants c1 , c2 independent of .f. 

We also consider a discrete parameter version of g'I/J: 

(2.7) 

We recall the non-degeneracy conditions 

(2.8) 

(2.9) 

sup l?,L, (t()I > 0 for all ( =/= O; 
t>O 

sup l?,L, (2k () I > 0 for all ( =/= 0, 
kEZ 

where Z denotes the set of integers. Obviously, (2.9) implies (2.8). 
We recall the weight class AP of Muckenhoupt. A weight w belongs 

to Ap, l < p < oo, if 

s~p (£ w(x) d.r,) (£ w(.r,)-1/(p-l) dx) p-l < 00 , 

where £ f(y) dy = 
1
!

1 
i f(y) dy 

and the supremum is taken over all balls Bin ]Rn (see [13]). 
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The weighted Lebesgue space L~(JRn) with a weight w is defined to 
be the class of all the measurable functions f on ]Rn such that 

Let 

llfllr,w = (in lf(x)I Pw(x) dx) l / p < 00. 

Bf('l/J ) = r l'l/J (x) I lx lf dx, 
} lxl>l 

Du('l/J ) = ( r l'l/J (.r) 1u dx) l/u 
} lxl<l 

Then the following two theorems are known ( see [29]). 

Theorem 2.1. Suppose that 

(1) B f('l/J ) < oo for some E > O; 
(2) Dn('l/J ) < oo for some u > l; 
(3) H,µ E L 1 (lRn) , where H,µ (x) = suplYl2:lxl l'l/J (y)I; 
( 4) the non-degeneracy condition (2.8) holds. 

Then llf llp,w ~ llg,µ(.f) llr,w, f E Lf,), for all p E (1, oo) and w E Ap. 

Theorem 2.2. We assume that 

(1) B f('l/J ) < oo for some E > O; 
(2) 11/'i(l) I :::; Clll -c\' for all l E lRn \ {O} with some 6 > O; 
(3) H,µ E L1 (JRn); 
(4) the non-degeneracy condition (2.9) holds. 

Then 11.f llr,w ~ 116,µ (.f) llr,w, .f E Lf,J, for all p E (1, oo) and w E AP. 

The inequality llg,µ (.f) llp,w :::; cll.f llp,w in Theorem 2.1 was established 
in [21] without the assumption (4). We easily see that Theorem A 
follows from Theorem 2.1. Also, see [34] for related results with non
isotropic dilations. 

3. CHARACTERIZATION OF THE WEIGHTED SOBOLEV SPACES BY 

LITTLEWOOD-PALEY FUNCTIONS OF MARCINKIEWICZ TYPE 

Recall the function of Marcinkiewicz: 

( t)O dt) , ;2 
µ(.f)( x ) = Jo IF(x + t) + F(x - t) - 2F(x)l 2 t3 , 

F(.r) = 1x f(y) dy. 

J. Marcinkiewicz [17] introduced this square function in 1938 in the 
setting of periodic functions on the torus. Zygmund [45] gave proofs of 
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results conjectured in [17]. The non-periodic analogue was established 
by Waterman [44]. 

If 2/3 < p < oo, then it is known that 

where HP denotes the Hardy sp~e and S0 (JRn) is the subspace of S(JRn) 
consisting of functions f with f vanishing outside a compact set not 
containing the origin ( see [22]), where S(JRn) denotes the Schwartz class 
of rapidly decreasing smooth functions. 

The equivalence 11µ(.f) IIP ~ 11.f llHP can be rephrased as 

llv(.f)IIP ~ llf'IIHP, .f E So(lR), 

where 

( rxi dt) 1;2 
(3.1) v(.f)(x) = lo IJ(.r + t) + .f(x - t) - 2f(x)l 2 t3 

This may be used to characterize Sobolev spaces. 
We give the definition of the Sobolev space W °',P (JRn). Let 1 < p < 

oo, a> 0. We say that f E W°',P(JRn) if .f E V(JRn) and f = J0 (g) = 
Ka * g for some g E LP (lRn), where K a denotes the Bessel potential 
whose Fourier transform is given by 

Ka(l) = (1 + 41r2 ltl2)-°'12 

(see [39, Chap. V]). The norm is defined to be 

11.fllv,a = llgl lLP with f = l a(g). 

Let n?: 2. Let 0 <a< 2. R. Alabern, J. Maten and J. Verdera [1] 
(2012) considered 

Va(f)(x) = ( r oo l.t(x) _ J f(y) dyl2 tl!~a) 1/2' 
lo h~A · 

where B(x, t) is a ball in ]Rn having center x and radius t. The article 
[1] proved the following. 

Theorem D. Let 1 < p < oo . Then, the two statements in the 
.following are equivalent: 

( 1) f belongs to W1 ,P (lRn), 
(2) f E V(JRn) and Vi (.f) E V(lRn). 

Furthermore, 

ll.fllv,1 ~ llfllv + IIV1(.f)llp• 
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Since the expression f B .f makes sense in general metric measure 
spaces, this result may be used to define Sobolev spaces analogous to 
W 1,P(Rn) in metric measure spaces. 

Let 1 < p < oo, a > 0 and w E AP. Since it is known that 
IJ°'(g)I :::::; CM(g), where M denotes the Hardy-Littlewood maximal 
operator defined by 

M(f)(.r) = sup r IJ(y)I dy, 
t>O JB(x ,t) 

we have J °' (g) E L~) if g E L~). The weighted So bolev space vV;~,P (Rn) 
is defined as the collection of all the functions .f E ~(Rn) for which 
we have f = J °' (g) for some g E ~(Rn). Since such g is uniquely 
determined, the norm is defined to be 11.f llp,a,,w = ll.9llp,w· 

We can apply Theorems 2.1 , 2.2 in characterizing the weighted Sobolev 
spaces wi,P(Rn) by square functions related to the Marcinkiewicz func
tion including V°'(f) and its discrete analogue 

( 
oo 2 ) 1/ 2 

L J.t(x) - i k .f (y) dyl 2-2k°' ' 
k=-oo B(x,2 ) 

a> 0. 

For a > 0, we define function spaces JV(°' (Rn). If 0 < a < 1, 
M°'(Rn) is the collection of functions <I> which are compactly supported, 
bounded on Rn and satisfy JJRn <I>(x) dx = 1. When a ~ 1, we say 
<I> E JV(°' (Rn) if <I> further satisfies that 

(3.2) 
{ <I>(x)x'Y dx = 0, x'Y = x{1 ... x~n, for all I with 1 :::::; 1,1 :::::; [a], }]Rn 

where [a] denotes the largest integer not exceeding a and 1 = ( 11 , ... , ,n), 
r j E Z, r j ~ 0, is a multi-index and 1, 1 = 11 +· · -+rn· Let <I> E M°'(Rn) 
and define 

(3.3) ( 
{oo dt ) 1;2 

G°'(.f)(x) = Jo l.f(x) - <I>t * .f(x)l2 t1+2°' , a> 0, 

( 
oo ) 1/2 

(3.4) E°'(.f)(x) = k~oo l.f(x) - <l>2k * .f(x)l2 2-2k°' , a> 0. 

We note that 

F = IE(~, l)IXB(o,1) EM°', 0 <a< 2, 

and that if <I> = F, then G°'(f) = V°'(f). The following results are 
known (see [29]). 
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Theorem 3.1. Suppose that l < p < oc, w E AP and O < a < n. 
Let Ga be as in (3.3). Then f E wi,P(JRn) if and only if f E L'fv and 
Ga(!) E Lfv; also, 

11.fllp,a,w::: 11.fllp,w + IIGa(.f)llp,w· 

Theorem 3.2. Let l < p < oo, w E AP and O < a < n. Let Ea be as 
in (3.4). Th en f E wi,P(JRn) if and only if J E L'fv and Ea(!) E L'fv; 
furthermore, 

lllllp,a,w '.::: lllllp,w + IIEa(J) llp,w· 

We can find some relevant results in [14, 26]. Also , a characterization 
of W~•P (JRn) by a square function with <}) E M 1 is given in [28]. 

We write 

f(x + t) + f(x - t) - 2.f(x) = 2 { (J(x - ty) - f(x)) dO"(y), Jso 
where s0 = { -1, 1} and O" is a measure on s0 such that O"( { -1}) = 1/2, 
O"( {1}) = 1/2. According to this observation we generalize v in (3.1) 
to higher dimensions. Let n ~ 2 and 

( 

2 ), ~ 

D°'(.f)(x) = rX) Ir°' r (f(x - ty) - f( x)) dO"(y)I dt ' lo J sn -1 t 

where dO" is the Lebesgue uniform measure on sn-l normalized as 
f sn- 1 dO" = l. 

Let O <a< 2 and Sa(.f) = D°'(Ia.f): 

where Ia is the Riesz potential operator defined by 

Then the following result is known. 

Theorem E. Let l < p < oo, n ~ 2. Then for f E S(JRn) we have 

IIS1(.f)llp::: 11.fllw 
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This result of P. Hajlasz-Z. Liu [14] may be used to characterize the 
Sobolev space W1 ,P (JRn). 

We can give an alternative proof of Theorem E. We recall the Bochner
Riesz mean of order f3 on ]Rn defined by 

S~(J)(x) = { J(~)(l - R-21~12)13 e21ri(x,f,) d( 
l1fl<R 

Define a Littlewood-Paley operator <Yf3 , Re(/3) > 0, by 

( ( xi 2 dR) 1;2 
<T13 (j)(x) = lo jR(8/8R)siu)(.r)I R 

= (loo 1-2/3 ( si(.f)(x) - si-1(.f)(x)) 12 d:) 1;2 

Then we have a pointwise equivalence of CY13 (j) and Sc,. (!). 

Theorem 3.3. Let 0 <a< 2) f3 =a+ n/2. Then 

<Y13 (.f)(x) ~ Dc,_(lc,_f)(x), f E So(lRn). 

When 0 < a < 1, this is due to Kaneko-Sunouchi [16] in 1985. The 
range of a is extended to (0, 2) by [30]. 

We can apply Theorem 3.3 with a = 1 and a property of <Yf3 with 
f3 = 1 + n/2 to give an alternative proof of Theorem E (see [30]). 

4. CHARACTERIZATION OF H 1 SOBOLEV SPACES BY SQUARE 

FUNCTIONS OF LUSIN AREA INTEGRAL TYPE 

We define H 1 Sobolev space WJ1 (JRn ), where H 1 is the Hardy space. 
We say that f E WJ1(lRn) if f E H 1 (lRn) and f = Jc,.(h) =Kc,_* h for 
some h E H 1 (JRn). Define 

ll.fllw; 1 = llhllH1 , f = Jc,. (h), 

where II · IIH1 denotes the norm in H 1 (see [11]). 
Let 

( 4.1) 

where <I> E Jv(c,., 0 < a < n. We consider a Lusin area integral of 
Marcinkiewicz type: 

(1001 dt) 1/
2 

sv;(<> )(.f)(x) = lv,ic,_) * .f(x - tz)l2 dz -
0 B(0,1) t 

= ( roo r lv,ic,_) * J( z)l2 dz en dt) 1/2 

h JB~~ t 
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Also, define 

( l oo 1 dt) 1/
2 

Un(.f)(x) = l.f(x - tz) - <I>t * .f(x - tz)l 2 dz C 2°'-
. 0 B (0,1 ) t 

(1 00 1 dt) 1/
2 = l.f (z) - <I>t * .f(z ) 12 dz c2n-n_ 

0 B~A t 

Then 

UnU) = s1f;(a) (La.f), .f E So(lRn). 
The H 1 Sobolev space can be characterized by Un. 

Theorem 4.1. Suppose that n/2 < a< n) <I> E JV(°' and 

Th en the following two statements are equivalent: 

(1) f E WJh (JRn) J 

(2) f E H 1 (lRn) and Un(.f) E L1 (lRn). 
Further, we have ll.fllw;;1 ::: ll.fllH1 + IIUn(.f)lli-

In Theorem 4.1, the hypothesis a > n/2 is optimal in the sense that 
if O < a < n/2, the estimate 

does not hold. 
The weighted H 1 Sobolev space W~, (JRn) is defined as follows. Let 

w E A 1 and set w 

H! = {f EL~ : f* EL~}, llfllH2, = llf*ll1,w, 

where .f*(.r) = supt>O l'Pt * .f(x)I with <p E S(JRn) satisfying f cpdx = l. 
The space W~h (JRn) is the family of functions .f E H; (JRn) such that 

.f = ln(h) for ;ome h E H!(JRn ). We define 11.fllw;, = llhllH,~,· 
We confine our attention to the one dimensional case and we have 

the following result. 

Theorem 4.2. Suppose that w E A1 . Then the following two state
ments are equivalent: 

(1) .f E Wk, (JR), 
(2) .f E H1;/lR) and v(.f) E LUJR), where v is as in (3.1). 

Furthermore, ll.fllw1 1 ::: ll.fllH,1 + llv(.f) 111,w• 
lfw 
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Theorems 4.1 and 4.2 can be found in [33]. 
Let 

( 
{ d ) i / 2 

'D 0:(.f)(x) = })Rn IIn(f )(x - Y) - In(f)(x)l2 1Yln:2n 

It has been observed that the square function S1c,.,i (!) is closely related 
to 'Dn(f) (see [37] and also [6]). We recall the following results for 'Dn. 

Theorem F. Let 0 < a < 1 and p0 = 2n/(n + 2a). Suppose that 
Po > l. Then 

(1) 'Dn is bounded on V(IB.n) if Po < p < oo (E.M. Stein [38]}; 
(2) 'Da is of weak type (Po , Po) (C. Fefferman [10]}. 

In [35], this is generalized by considering analogues of 'Dn with frac
tional integrals of mixed homogeneity in place of the Riesz potentials 
of Euclidean structure. 

5. SKETCH OF PROOF OF THEOREM 3.1 

Let 0 < a < n, cI> E Mn and define 

( ( :-0 dt ) i/2 
Tn(f)(x) = Jo IIn(f)(x) - cI>t * In(f)(x) l2 t 1+2a 

Since 1/J(nl(x) = Ln(x) - cI> * La(x) with cI> EM'\ it is easy to see that 
11/J(nl (x)I ~ Clxl-n+n for lxl ~ 1 and 11/J(nl (x)I ~ Clxl-n+n-[a]-l for 
lxl ~ 1. By these estimates, the conditions (1), (2) and (3) of Theorem 
2.1 hold for 'ljJ(a) . Also, 

~(() = (21rl(l)-°'(1 - <!)(() ) 

satisfies the non-degeneracy condition (4) of Theorem 2.1 , since<!)(<!;) ➔ 
0 as 1(1 ➔ oo by the Riemann-Lebesgue lemma. Further, since 

l~(()I ~ Cl(1-a+[nJ+1, 

---we have 'ljJ(a) (0) = 0. We see that Tn(f) = g'l/Jc"l (.f). Thus by Theorem 
2.1 

IITn(.f) llp,w = ll.9'ljJ(a) (.f) llp,w ::: 11.f llp,w· 
Using this and the observation 

we have 

IIGaU)llp,w '.::: IILnfllp,w· 
We can derived Theorem 3.1 from this. 
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6. SKETCH OF PROOF OF THEOREM 4.1 

Theorem 4.1 follows from the next result. 

Theorem 6.1. Let 1/J(a) be de.fined as in (4.1) with <I> as in Theorem 
4.1. Then 

IISv,caJ(.f)ll1 ~ ll.fllH1 , f E So(IRn). 

We need the following Hormander condition in proving Theorem 6.1. 

Lemma 6.2. Let 1/J (rx) be as in Th eorem 6.1. Th en 

{ [ { 11/Jia\x - y - tz) - 1/Jia\x - tz ) 12 dz dt] 112 dx s; C, 
}lxl>2IYI } Bo x (O,oo) t 
with a constant C independent of y E ]Rn, where B 0 = B ( 0, 1). 

By Lemma 6.2 and a result of [13] for vector valued singular integrals 
we have IISv,caJ (.f) 111 s; Cll.fllH1. 

The reverse inequality can be deduced from the following result. 

Lemma 6.3. If f E So(IRn) and g E BMO(IRn), then we have 

l.ln f(x)g(x) dxl s; CllgllBMO .ln Sv,(a) (f)(x) dx. 

From Lemma 6.3 and duality of H 1 and BMO we see that ll.fllH1 s; 
CIISv,(a) (f) 111 • 

The proof of Theorem 3.1 is based on the estimates I lgv,c"'l (.f) I lp,w ~ 
11.f llp,w· If llgv,c"'l (.f) Iii ~ 11.f llH,, then we would be able to characterize 
WJ}t by Ga. We do not know at present if the estimate IIJIIH1 s; 
Cllgv,c"'i (.f)ll1 holds or not. 

7. SKETCH OF PROOF OF THEOREM 4.2 

The proof of Theorem 4.2 is based on the following result. 

Lemma 7.1. Let w E A 1 • Then we have 

llµ(J)lli,w ~ IIJIIH,~,, f E So(IR). 

Define 

go(f)(x) = (100 
l(o/ox)u(x, t)l 2tdt) 

112
' 

where u(x , t) denotes the Poisson integral of .f: u(x , t) = Pt* f(x): 
P(~) = e- 21rlt:I. Let R(~) = 21ri~e- 21rlt:I. Then g0(J) = gR(J) and we 
have 

(7.1) 11.fllH,1 s; Cllgo(J)ll1,w, f E So(IR). 
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This can be seen from the following ( the unweighted case is in [11 , 43]). 

Remark 7.2. Let ?jJ E £ 1 (JRn ). We say ?jJ E 'B if 

( 1) ~ E C00 (lRn \ { 0}) ; 
(2) SUPt> O l~(tf) I > 0 for all f -j O; 
(3) ?jJ E C1 (JRn), Ok'tp E £ 1 (JRn), 1 S: k S: n, where Ok = 8/axk; 
( 4) l~(f) I S: Clflc for some E > O; 
(5) la'Y~(f)I ::; c'Y,T1e1 -T outside a neighborhood of the origin for 

all multi-indices 'Y and T > 0, where f} 'Y = ar 0]2 ••• &J,n' 'Y = 
b1, 'Y2, ... , 'Yn)-

Let O < p s; 1, w E A1 and 't/J E 'B. Then we have 

(7.2) 

for f E S0 (JRn) with a positive constant Gp independent off. This is 
proved in [33]. See also [31], [32] for related results. 

By applying (7.2) on JR1 with ?jJ = R we have (7.1). 
Also, it is known that the pointwise relation 

(7.3) go(!) S: C µ(!), f E So(lR), 

holds (see [22]). Combining (7.1) and (7.3), we have 

II.film,, s: Cllµ(.f) lli,w-
To get the reverse inequality, recall that µ(.f) = qH(.f), 

H(x ) = X[-1,oi(x) - X[o,1i(x). 

We can show that 

( roo dt) 1/2 IYll/2 
Jo IHt(x - y) - Ht(x)l 2 T S: C lxl312 for 2IYI < lxl. 

Using this and a result for vector valued singular integrals , we can prove 
the reverse inequality: 

This can be also shown by applying the pointwise relation between 
g3 and µ (see [22]) and the H! - L~ boundedness of g3 with w E A1 , 

which can be found in [18], where 

( 
l )l~ 

g;(.f)(x)= ff ( It 1) lv7u(y,t)l2dydt 
JE.x (O,oo) t + X - Y 
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8. CHARACTERIZATION OF HARDY SPACES ON HOMOGENEOUS 

GROUPS BY LITTLEWOOD-PALEY FUNCTIONS 

Let ]Rn be the n dimensional Euclidean space as before. Here we 
assume that n ~ 2. We also consider ]Rn as a homogeneous group lHI 
equipped with multiplication given by polynomial mappings. We have 
a dilation family { Ath>o on lRn of the form 

where real numbers a,1 , ... , an satisfy 1 = a,1 S: a,2 S: · · · S: an. We 
assume that each At is an automorphism of the group structure (see 
[12], [42] and [19, Section 2 of Chapter l]). The homogeneous nilpotent 
Lie group structure of lHI has the following properties: 

(1) Lebesgue measure is a bi-invariant Haar measure; 
(2) we have (x1 , ... , xn) as the canonical coordinates; 
(3) the group law obeys the Hausdorff-Campbell formula as a nilpo-

tent Lie group; 
(4) the identity is the origin O and x-1 = -x; 
(5) (ax) (f3x) =ax+ f3x for x E lHI, a, f3 E JR; 
(6) At(xy) = (Atx)(Aty) for x , y E lHI, t > O; 
(7) if z = xy, then Zk = Pk(x, y), where Pi(x, y) = x1 + y1 and 

Pk(x, y) = xk + Yk + Rk(x, y) for k ~ 2 with a polynomial 
Rk(x, y) depending only on x ,, ... , Xk-1, y,, ... , Yk-1, which can 
be written as 

~ c(k)xiy.J 
~ I,J"' . 

IJlc,tO,IJl c,tO,a(I)+a(J)=ak 

Here, I = ( i 1 , i 2 , ... , in) E (Nor with N0 denoting the set of 
non-negative integers and 

also, J E (Nor. 

We have a norm function p(x) which is homogeneous of degree one 
with respect to the dilation At; so we have p(Atx) = tp(x) fort > 0 
and x E lHI. We may assume the following: 

(8) pis continuous on ]Rn and smooth in lHI \ {O}; 
(9) p(x + y) s; p(x) + p(y) and p(xy) s; c0 (p(x) + p(y)) for some 

constant c0 ~ 1 and p(x- 1) = p(x); 
(10) p(x) s; 1 if and only if lxl ::; 1 and if~= {x E lHI: p(x) = 1} 

and sn-l = {x E ]Rn: lxl = 1}, then~= sn-l_ 
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(11) there are positive constants Cj, ak, f3k, l :::; j :::; 4, 1 :::; k :::; 2, 
such that 

C1 lxl 01 :::; p(.r) :::; c2lxl 02 if p(x) ~ 1, 

c31xl 131 :::; p(x) :::; c41x1 132 if p(x) :::; 1. 

We recall the Heisenberg group IHI1 as an example of a homogeneous 
group. Define the multiplication 

(x ,, x2, x3) (y, , Y2 , y3) = (x, + y,, X2 + Y2 , X3 + y3 + (x, Y2 - X2Y1 )/2), 

(.r1 , X2, X3), (Y1, Y2, y3) E IR3 • Then this defines a group law for the 
Heisenberg group IHI1 with the underlying manifold IR3 , where the dila
tion At(x1 ,x2,x3) = (tx 1,tx2 ,t2x3) is an automorphism ({At} satisfies 
(6)). 

We define the Littlewood-Paley g function on IHI by 

(8.1) ( (XJ dt) i/2 
g,p(f)(x) = lo If* Cf?t(x)l2 ~, , 

where .f ES', cp ES satisfying f llll cpdx = 0 and cpt(x) = r -Ycp(At1x) 
with --y = a, + · · · + an. Here S' denotes the space of tempered distri
butions and S the Schwartz space, which are the same as those in the 
Euclidean case (see [40]). The convolution F * G on IHI is defined by 

F * G(x) = l F(xy- 1 )G(y) dy = l F(y)G(y- 1x) dy. 

See [9] and [7, 8, 24, 27, 42] for the study of Littlewood-Paley opera
tors and singular integrals, respectively, on LP spaces on homogeneous 
groups, 1 :::; p < oo. Also, see [23, 34] and [25, Section 7] for results in 
harmonic analysis with non-isotropic dilations. 

In this section we give a characterization of Hardy spaces HP, 0 < 
p :::; 1, on IHI in terms of the Littlewood-Paley g functions. We first 
recall related results in the Euclidean case. Let vPl, .e, = 1, 2, ... , M, 
be functions in S(IRn) which satisfy the non-degeneracy condition 

(8.2) 

for some positive constant c, where '.J( cpUl) denotes the Fourier trans
form. In [43] the following result for the Euclidean structure can be 
found. 
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Theorem G. Let 0 < p s; 1. Let rp(f) E S(IB.n) with JJRn rp(f) dx = 0, 
£ = 1, 2, ... , M. Suppose that the condition (8.2) holds. Then 

M 

cpll.fllHP s; L llgcpcii (.f) IIP s; Cpll.fllHP 

for J E HP (IB.n), where gcpcii (.f) is defined similarly to ( 8.1) with the 
Euclidean structure (see (2.2)). 

See [11] for the Hardy space HP (IB.n). Analogous results for LP spaces, 
1 < p < oo, can be found in [2], [15] and [29]. 

Let e.i = ( e\·j), e~j), ... , eW)), 1 ::; j s; n, eyi) = 1 and e~) = 0 if k i= j. 
Define 

X.1.f(x) = [dd f(x(t e.1)) ] , 
,t t:=0 

Y_jf(x) = [ :tf( (te.i)x)] t ==O. 

Then Xj and Y_j are called the left-invariant and right-invariant deriva
tives, respectively. 

Let J = (i1 , i2 , ... , in) E (N0 )n. Higher order differential operators 
XI and yI are defined as 

xr = xi1 xi2 xin yr = y / 1 y;i2 yin 
I 2···n, I2···n· 

Then III is called the order of XI and yI and a(I) the homogeneous 
degree for them. 

Let 

(8.3) 

be a polynomial on IB_n. We may also consider P(x) as a polynomial 
on H. The degree of the polynomial Pis max{III : CJ i= 0}. Also, the 
homogeneous degree of P is defined to be max{ a(I) : CJ i= 0}. 

Let ~ = {a(I) : I E (Not}. We denote by '.Pa the space of all 
polynomials P in (8.3) with a(I) s; a for all J. 

Let 
ll<I>ll(N) = sup (1 + p(x)iN+I)('r+I)IYr<I>(x)I 

IIl :S N,xEIH[ 

(see [12, p. 35]). Define 

E N= {<I> ES: ll<I>ll(N) s; 1}. 

Let 

M(N)(.f)(x) = sup{sup If * <I>t(x)I: <I> E BN}-
t > O 
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We define the Hardy space HP on lHI for p E ( 0, 1] as 

HP= {f ES': IIJIIHP = IIM(Np)(f)IIP < oo}, 
with sufficiently large NP- The number 

NP = min { N E N0 : N ~ min{ a E ~ : a > ,y(p-1 - 1)}} 

can be taken as NP. If~ = N0 , then NP = [,y(p- 1 - 1)] + 1 (see 
[12, Chap. 2]). See [11] for the definition of HP spaces in the case of 
Euclidean structure. 

To generalize Theorem G to the case of homogeneous groups, we 
recall the fact that the condition (8.2) implies the existence of functions 
77(1), ... , 77(M) E S(JRn) such that each supp '.r( 77(£)) is a compact set not 
containing the origin and such that 

(8.4) t t)O r.p? ) * 77?) ~t = c5 in S', 
£=, lo 

where c5 denotes the Dirac delta function. 
We employ an analogue of (8.4) as a non-degeneracy condition for 

r_p( 1), ... , r_p(M ) on lHI and we can prove the following result analogous to 
Theorem G. 

Theorem 8.1. Let O < p ~ 1. There exists d E ~ having the following 
property. Suppose that { r_p(£) E S : 1 ~ f ~ M} is a family of .functions 
such that ( 1) and ( 2) below hold: 

(1) 

.I r_p(£) dx = 0, for f = 1, 2, ... , M; 

(2) there exist .functions 77(£) ES, 1 ~ f ~ M, satisfying that 

M 100 dt M JB dt 
'"""' rn(£) * r/£) - = lim '"""' rn(£) * r, (£) - = O 
~ rt ·it t O ~ rt ·it t 

0 €-+ ' 
£=1 B-+oo £=1 € 

in S' 

and that 

.I 77(£) P d_,r; = 0 for all P E '.Pd, 1 < f < M. 

Then 
M 

(8.5) cpllfllHP ~ L ll9cpC£J (f)IIP ~ CPIIJIIHP for f E HP 
£=1 

with positive constants Cp and Gp independent off, where 9cp(£) is as in 
( 8 .1) and HP is the Hardy space on lHI. 
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Consider a stratified group lHI with a natural dilation and let h be 
the heat kernel on lHI (see [12]). We define ¢U) E S, j = 1, 2, ... , by 

q;Ul(x) = [(8/at)-j h(x, t)L=l = (-L)_jh(x, 1), 

where L is the sub-Laplacian of lHI. We have the following result as an 
application of Theorem 8.1. 

Corollary 8.2. Let .f E HP, 0 < p :::; 1. Then we have 

cpl l.fllHP:::; 119,t,cn(.f)IIP:::; Cpll.fllHP 
for any j ~ 1, with some positive constants cp, Gp independent of .f. 

This is almost Theorem 7.28 of [12]; in [12] the first inequality is 
proved under the condition that .f E S' vanishes weakly at infinity and 
9,t,ui(.f) E LP. 

We recall the Lusin area integral on the homogeneous group lHI de
fined by 

Scp(.f)(x) = ( r)O r lf*1Pt(Y)l 2r 'Y- 1 dydt) 112 

Jo Jp(x- 1 y) <t 

Then, results analogous to Theorem 8.1 were proved for Scp(.f) in [12] 
(see [12, Theorem 7.11 and Corollary 7.22]), but the characterization by 
the Littlewood-Paley function was shown only for special Littlewood
Paley functions 9,t,Ci l coming from the heat kernel. 

As in the case of the Euclidean structure of Theorem G, the first 
inequality of (8.5) is more difficult for us to prove than the second one; 
the second inequality may be shown by applying a theory of vector
valued singular integrals. 

In [31] an alternative proof of the first inequality of the conclusion 
of Theorem G is given by applying the Peetre maximal function F;/R 
of [20] defined by ' 

** ( ) IF(x - Y)I 
FN,R .r = sup ( RI l)N' 

yEJR.n 1 + y 

Here we would like to give some comments on the application of the 
Peetre maximal function in proving the first inequality of Theorem G. 
When :J'( rpC£)) each has a compact support not containing the origin, 
then we can prove that inequality much more easily by applying the 
Peetre maximal function. A reason for this is the availability of the 
trick similar to the one in the proof of Bernstein's inequality for the 
estimates of the derivatives of trigonometric polynomials. 

The proof of [31] is expected to extend to some other situations. 
Indeed, it has been applied to characterize parabolic Hardy spaces of 
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Calder6n-Torchinsky [3, 4] by Littlewood-Paley functions (see [32]). 
See also [33] for related results on weighted Hardy spaces. 

The methods of [31] can be also applied to characterize Hardy spaces 
on the homogeneous groups by certain Littlewood-Paley functions (The
orem 8.1). In proving the theorem we apply the Peetre maximal func
tion on lHI defined by 

** IF(xy-1)1 IF(y)I 
(8.6) FN,R(.r) = sup ( R ( ))N = sup ( R ( _1 ))N" 

yElHI 1 + p Y yE lHI 1 + p Y X 

and use the following lemma. 

Lemma 8.3. Let N = ,/r, r > 0, 0 < 6:::; 1. Let f, cp ES. Then we 
have 

n 

(f * 'Pt)~,t- 1 (.r) :::; crc5-N M(lf * 'Ptn 1 /r (.r) + Crc5 2)1 * (Xjcp )t)~,t-1 (.r) 
j=l 

for all t > 0, where M denotes the Hardy-Littlewood maximal operator 
on lHI defined by 

M(.f)(x) = supr'Y r lf(y)I dy. 
t>O J p(y- 1x )<t 

See [36] for the details. 

REFERENCES 

[1] R. Alabern, J. Mateu and J. Verdera, A new characterization of Sobolev spaces 
on !Rn, Math. Ann. 354 (2012), 589- 626. 

[2] A. Benedek, A. P. Calderon and R. Panzone, Convolution operators on Banach 
space valued functions, Proc. Nat. Acad. Sci. U. S. A. 48 (1962) , 356- 365. 

[3] A. P. Calderon and A. Torchinsky, Parabolic maximal functions associated with 
a distribution, Advances in Math. 16 (1975) , 1-64. 

[4] A. P. Calderon and A. Torchinsky, Parabolic maximal functions associated with 
a distribution. II, Advances in Math. 24 (1977), 101-171. 

[5] A. P. Calderon and A. Zygmund, Algebras of certain singular operators, Amer. 
J. Math. 78 (1956) , 310- 320. 

[6] F. Dai, J. Liu, D. Yang and W. Yuan, Littlewood-Paley characterizations of 
fractional Sobolev spaces via averages on balls, arXiv: 1511.07598. 

[7] Y. Ding and S. Sato, Singular integrals on product homogeneous groups, Integr. 
Equ. Oper. Theory 76 (2013), 55-79. 

[8] Y. Ding and S. Sato, Maximal singular integrals on product homogeneous 
groups, Studia Math. 222 (2014), 41- 49. 

[9] Y. Ding and S. Sato, Littlewood-Paley functions on homogeneous groups, Fo
rum Math. 28 (2016) , 43- 55. 

[10] C. Fefferman, Inequalities for strongly singular convolution operators, Acta 
Math. 124 (1970), 9- 36. 



193

[11] C. Fefferrnan and E. M. Stein, HP spaces of several variables, Acta Math. 129 
(1972), 137- 193. 

[12] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Prince
ton Univ. Press, Princeton, N.J. 1982. 

[13] J. Garcia-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and 
Related Topics, North-Holland, Arnsterdarn, New York, Oxford, 1985. 

[14] P. Hajlasz and Z. Liu, A Marcinkiewicz integral type characterization of the 
Sobolev space, Publ. Mat. 61 (2017), 83- 104. 

[15] L. Hormander, Estimates for translation invariant operators in LP spaces, Acta 
Math. 104 (1960), 93- 139. 

[16] M. Kaneko and G. Sunouchi, On the Littlewood-Paley and Marcinkiewicz func
tions in higher dimensions, Tohoku Math. J. 37 (1985), 343- 365. 

[17] J. Marcinkiewicz, Sur quelues integrales de type de Dini, Annales de la Societe 
Polonaise 17 (1938) , 42- 50. 

[18] B. Muckenhoupt and R. L. Wheeden, Norm inequalities for the Littlewood
Paley function g";.., Trans . Arner. Math. Soc. 191 (1974), 95- 111. 

[19] A. Nagel and E. M. Stein, Lectures on Pseudo-Differential Operators, Mathe
matical Notes 24, Princeton University Press, Princeton, NJ, 1979. 

[20] J. Peetre, On spaces of Triebel-Lizorkin type, Ark. Mat. 13 (1975), 123- 130. 
[21] S. Sato, Remarks on square functions in the Littlewood-Paley theory, Bull. 

Austral. Math. Soc. 58 (1998), 199- 211. 
[22] S. Sato, Multiparameter Marcinkiewicz integrals and a resonance the

orem, Bull. Fae. Ed. Kanazawa Univ. Natur. Sci. 48 (1999), 1- 21. 
(http ://hdl.handle.net/2297 /25017) 

[23] S. Sato, Nonisotropic dilations and the method of rotations with weight, Proc. 
Arner. Math. Soc. 140 (2012), 2791- 2801. 

[24] S. Sato, Estimates for singular integrals on homogeneous groups, .J. Math. 
Anal . Appl. 400 (2013), 311- 330. 

[25] S. Sato, Boundedness of Littlewood-Paley operators, RIMS Kokyuroku 
Bessatsu 49 (2014), 75- 101, Research Institute for Mathematical Sciences, 
Kyoto University. 

[26] S. Sato, Littlewood-Paley operators and Sobolev spaces, Illinois J. Math. 58 
(2014), 1025- 1039. 

[27] S. Sato, Weighted weak type (1,1) estimates for singular integrals with non
isotropic homogeneity, Ark. Mat. 54 (2016) , 157- 180. 

[28] S. Sato, Square functions related to integral of Marcinkiewicz and Sobolev 
spaces, Linear and onlinear Analysis 2(2) (2016) , Special Issue on ISBFS2015, 
237- 252. 

[29] S. Sato, Littlewood-Paley equivalence and homogeneous Fourier multipliers, 
Integr. Equ. Oper. Theory 87 (2017), 15- 44. 

[30] S. Sato, Spherical square functions of Marcinkiewicz type with Riesz potentials, 
Arch. Math. 108( 4) (2017), 415- 426. 

[31] S. Sato, Vector valued inequalities and Littlewood-Paley operators on Hardy 
spaces, Hokkaido Math. J. 48 (2019), 61- 84, arXiv:1608.08059v2 [math.CA]. 

[32] S. Sato, Characterization of parabolic Hardy spaces by Littlewood-Paley func
tions, Results Math 73 (2018), 106. https://doi.org/10.1007 /s00025-018-0867-
9, arXiv:1607.03645v2 [math.CA]. 



194

[33] S. Sato, Characterization of H 1 Sobolev spaces by square functions 
of Marcinkiewicz type, J Fourier Anal Appl 25 (2019), 842- 873, 
https://doi.org/10.1007 /s00041-018-9618-2. 

[34] S. Sato, Bonndedness of Littlewood-Paley operators relative to non-isotropic 
dilations, Czech Math. J. 69 (2019) , 337-351. 

[35] S. Sato, Weak type estimates for functions of Marcinkiewicz type with fractional 
integrals of mixed homogeneity, Math. Scand. 125(1) (2019), 135- 162. 

[36] S. Sato, Hardy spaces on homogeneous groups and Littlewood-Paley 
functions, Quart. J. Math. Published:25 January 2020, haz049, 1- 26, 
https://doi.org/10.1093/qmath/haz049, Oxford University Press. 

[37] S. Sato, F. Wang, D. Yang and W. Yuan, Generalized Littlewood-Paley char
acterizations of fractional Sobolev spaces, Communications in Contemporary 
Mathematics 20(7) (2018), 1750077 (48 pages). 

[38] E. M. Stein, The characterization of functions arising as potentials, Bull. Amer. 
Math. Soc. 67 (1961) , 102- 104. 

[39] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, 
Princeton Univ. Press, 1970. 

[40] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean 
Spaces, Princeton Univ. Press, 1971. 

[41] J. -0. Stromberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in 
Math. 1381, Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo 
Hong Kong, 1989. 

[42] T. Tao, The weak-type (1, 1) of LlogL homogeneous convolution operator, In
diana Univ. Math . .T. 48 (1999) , 1547- 1584. 

[43] A. Uchiyama, Characterization of HP(JR.n) in terms of generalized Littlewood
Paley g-functions, Studia Math. 81 (1985), 135- 158. 

[44] D. Waterman, On an integral of Marcinkiewicz, Trans. Amer. Math. Soc. 91 
(1959), 129- 138. 

[45] A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 58 (1944), 170-
204. 

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, KANAZAWA UNI
VERSITY, KANAZAWA 920-1192, JAPAN 

E-mail address: shui chi ©kenroku. kanazawa -u. ac . j p 


