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1 Introduction

Let E = LP(R"),0 < p < oo. If g € L>(R"), then fg € E for all f € E. Conversely,
if a measurable function g satisfies that fg € E for all f € E(R™), then g € L>(R").
However, this property does not hold for £ = BMO(R™). Actually, log|z| is in
BMO(R), but sign(z)log|z| is not in BMO(R). The generalized Campanato space
L, (R") was introduced by Nakai and Yabuta [54] (1985) to characterize pointwise
multipliers on BMO(R™).

Twenty years later, the result in [54] was used by Lerner [26] (2005) to study
the class P(R™) of functions p(-) for which the Hardy-Littlewood maximal opera-
tor M is bounded on the Lebesgue spaces LP()(R") with variable exponent, and
positively solve a conjecture by Diening [13] saying that there are discontinuous
functions belonging to P(R"™). As the same application, using the pointwise mul-
tiplier for martingale BMO, Nakai and Sadasue [49] give a sufficient condition for
the boundedness of maximal operator on LP() on probability spaces. Note that we
cannot use the log-Holder continuity on probability spaces, because the probability
spaces have not topology in general. We also use the pointwise multipliers on BMO
to prove that the boundedness "M : BMO(Q) — BLO(Q)” is real improvement
of the boundedness "M : BMO(Q) — BMO(Q)”, where @ is a cube in R". The
function M f is bounded from below and we cannot construct easily a function in
BMO(Q) \ BLO(Q) which is bounded from below. See also [28, 51] (2011, 2017) for

other applications.
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Later, Nakai and Sawano [52] (2012) proved that £, 4(R") is the dual space of
the Hardy space HP)(R") with variable exponent. In general the predual is not
unique. See [43, 47] (2008, 2017) for another predual of £, ,(R™).

For the relation among Campanato, Morrey and Hélder (Lipschitz) spaces with
variable growth condition, see [41, 43, 44] (2006, 2008, 2010). For the boundedness of
singular and fractional integral operators and the convolution operator with the heat
kernel on £, 4(R"), see [44, 57] (2010, 2019). The characterization of b € L, ,(R")
by using the commutator [b,T'] or [b, I,] is in [1, 2, 3] (2018, 2019, 2020).

The organization of this paper is as follows. In Section 2 we give the definition
of the pointwise multipliers and a hisotry of the pointwise multipliers on BMO.
Then we state topics related to the pointwise multipliers on BMO with several basic
calculations from Section 3 to Section 8. The definition of generalized Campanato
spaces L, 4»(R") with variable growth condition is in Section 4. In Section 9 we give
proofs of the relation among Campanato, Morrey and Hélder (Lipschitz) spaces with
variable growth condition. From Section 10 to Section 13 we state some operators
on L, 4(R"), pointwise multiplies, singular integral operators and the convolution
with the heat kernel, and then an application to the Navier-Stokes equation. In
Sections 14 and 15 we state generalized fractional integral operators I, and commu-
tators [b, T and [b, I,] with b € £, 4(R"™). From Section 10 to Section 15 are subsets
of the paper [48].

2 Pointwise multipliers

let Q = (9, 1) be a complete o-finite measure space. We denote by L°(Q) the set
of all measurable functions from € to R or C. Then L°() is a linear space under
the usual sum and scalar multiplication. Let Ej, E» C L°(Q) be subspaces. We say
that a function g € L°(€2) is a pointwise multiplier from E; to Es, if the pointwise
multiplication fg is in E, for any f € F;. We denote by PWM(E}, E5) the set of
all pointwise multipliers from F; to E,. We abbreviate PWM(E, E) to PWM(E).

It is well known as Holder’s inequality that
179122y < IfllLev @19l os 0,
for 1/py = 1/p1 + 1/p3 with p; € (0,00], i = 1,2, 3. This shows that
PWM(LP(2), LP2(Q2)) D LP*(2).

Conversely, we can show the reverse inclusion by using the uniform boundedness



theorem or the closed graph theorem. That is,
PWM(LPH(Q), LP2(Q))) = LP*(Q). (2.1)

If p1 = py = p, then
PWM(LP(2)) = L=(Q). (2.2)

See Section 3, for the proof of (2.2) with Q = R". However,
PWM(BMO(R"™)) # L>(R"). (2.3)

In 1976 Stegenga [63] and Janson [21] gave the characterization of the pointwise
multipliers on BMO(Q) for Q = T and = T", respectively. After then the history

is the following:
e Nakai and Yabuta [54] (1985) for BMO(R™) and local BMO(R™).
e Yabuta [65] (1993) for weighted dyadic BMO on R™.
e Nakai [33] (1993) for Campanato spaces on R”".

e Nakai and Yabuta [55] (1997) and Nakai [35] (1997) for BMO and Campanato

spaces on spaces of homogeneous type (£, d, ).

e Lin and Da. Yang [29] (2014) for local BMO and local Campanato spaces on
RD spaces.

e Liu and Da. Yang [30] (2014) for BMO(R", 1) with the Gauss measure.

e Nakai and Sadasue [50] (2014) for martingale BMO and Campanato spaces on
probability spaces (2, F, P).

e Li, Nakai and Do. Yang [27] (2018) for RBMO(R", 1) with non-doubling mea-

sures.

3 Proof of PWM(LP(R")) = L=(R")
In this section we state a proof of the following theorem (see [31, 46]).
Theorem 3.1. Let 0 < p < oco. Then

PWM(LP(R™)) = L=(R"). (3.1)
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Proof. We first show that, if g € L>(R™), then ¢ € PWM(LP(R")) and

lgllewnm(re) = [lgllzee-

We may assume that g # 0. From the inequality || fg||z» < [|g]|r=|f|lzr, We get
g € PWM(LP(R")) and ||g|[pwwm(rr) < ||g]/z. Moreover, for any 1 € (0, g/z),
let A, = {x : |g(xz)| > n} and take a ball B, such that |A, N B,| > 0. Then
Xa,nB, € LP(R™) and nxa,nB, < |9/xa,nB,, which shows

lgx 4,08, L0

< < [lg[lpwaa(r).-
||XAnﬂBnHLP

Therefore, we have ||g||lpwwm(zr) = ||9]| Lo
There are two ways to prove PWM(LF(R")) C L>(R").
(i) Let g € PWM(LP(R™)). For j € N, let

0 (lzl = 7),
g95(x) = lg@) (|l <. [g(x)] <), (3.2)
J (lzl <4, lg(@)] < 4)-

Then g; € L>°(R"). By the first part of the proof we have | g;||pwnzry = ||g;]| Lo
For any f € LP(R"), fg € LP(R") and sup, ||fg;llzr < [[fgllz». From the uni-
form boundedness principle it follows that sup; lg;llpwam(Lry < oo, which implies
sup; ||gjl[z= < co. Therefore, we have g € L>(R").

(ii) Let ¢ € PWM(LP(R™)). Then it is easy to see that g is a closed operator.
Hence g is a bounded operator by the closed graph theorem. For j € N, let g; be as
in (3.2). Then g; € L>(R") and ||g;|lz~ = |g;llpwmcrr)y < ||lgllpwm(zr). Therefore,
we have g € L>(R"). O

4 Campanato spaces

For 2 € R™ and r € (0,00), let B(z,r) be a ball centered at = and radius r, or,

a cube centered at z and sidelength r. For a function f € L{ (R") and for a ball
(cube) B, let

f3=£f=]if(y)dy=%/3f(y)dy-

where |B| is the Lebesgue measure of B. In the following we use the symbol () for
the cube.



Definition 4.1. For p € [1,00) and A € [-n/p, 1], let £, (R") be the set of all

functions f such that the following functional is finite:

1/p
flessienr = s = (f 15 = foan)

where the supremum is taken over all balls B in R"™.

We regard £, \(R"™) as a space of functions modulo null-functions and constant
functions. Then ||f||z, ,®n) is a norm and thereby £, ,(R") is a Banach space. We
can define an equlvalent norm by using cubes () instead of balls B in Definition 4.1.

If p=1and X\ =0, then £,,(R") = BMO(R"). If p = 1 and A € (0,1], then
L, (R™) coincides with Lip,(R") modulo null-functions. By the John-Nirenberg
inequality [23] we conclude that, if A € [0, 1], then £, \(R") = £, \(R"™) with equiv-
alent norms for each p. If X € [—n/p,0), then £, ,(R") coincides with the Morrey

space L, »(R"™) modulo constant functions, which is defined by the norm

e AL

If A\ = —n/p, then L, ,(R") = LP(R™). For these relations, see 7, 23, 32, 59].

The generalized Campanato space £, 4(R") with variable growth condition is
defined as follows: For a variable growth function ¢ : R™ x (0,00) — (0,00) and a
ball B = B(z,r) we write ¢(B) = ¢(z, 7).

Definition 4.2. For p € [1,00) and ¢ : R" x (0,00) — (0, 00), let £, ,(R™) be the

set of all functions f such that the following functional is finite:

1/p
1y i) = 50~ (][ ) fB|de>7

where the supremum is taken over all balls B in R".

We regard L, ,(R™) as a space of functions modulo null-functions and constant
functions. Then [|f||z, ,&n) is a norm and thereby £, 4(R") is a Banach space. If
o(z,r) = r*, then L, ,(R") is the usual Campanato space £, ,(R"). For example,

let A() : R" — [—n/p, 1] be a continuous function and

0 on By,
p(x,r) =@ Az)={1 on B,
—n/p on Bs.

In this case, if f € £, ,(R"), then f is a BMO function on By, a Lipschitz function

on By and an L? function on Bs.
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In 1985 the generalized Campanato space £, 4(R") was introduced by Nakai and
Yabuta [54] to characterize pointwise multipliers on BMO(R").
For a function ¢ : R™ x (0, 00) — (0, 00), let

ou(x,7) —/ gb(:;‘,t) dt.

Then we have the following lemma:

Lemma 4.1 ([33, Lemma 3.1]). Let p € [1,00). Assume that ¢ : R" x (0,00) —
(0,00) satisfies the following properties:

1 o, s) 1 s
TS e SALif 5<os2 (4.1)
1 o(z,r) )
LS s i le-ylsr (42)
¢%”)§AJ%?”, ifr<s (4.3)
T n/p (o
/ M S A4Tn/p¢(x77a)7 (44)
0

where A; (i = 1,2,3,4) are positive constants independent of x,y € R" and r,s €
(0,00). Then fo(x) = du(a,|x — al) is in L,4(R") and ||fallz,, < C independently
of a € R™.

In the above theorem, if ¢ = 1, then f,(z) = —log |z — a] € BMO(R™).
In the rest of this section we give simple properties of the mean oscilation with

basic calculations. For a function f and a ball B, let

MO(f. B) = ]i 1 fal.

Then
0< 1/l 1S5l = f 17 = S+ ful = |7l < MO B),
B
and
Hf‘ - |f|B’ < ||f| - ‘fBH + ’|f|B - |fB|| <|f - fsl + MO(f, B).
That is,

MO(f], B) < 2MO(f. B).
If f and g are real valued, from the above inequality and the relations

_ftrg+lf—yl

_fHg—I1f—4|
2 - I

min(f, g) 5

max(f, g)



it follows that

lmax(f, g)llz, ., | min(f. 9)le, ., < 5 (||f||£p¢ +glle,.,) - (4.5)
For two balls By and B, if By C B», then
|fB, — [l < |f — fB.| < ;BQ:MO(f: By). (4.6)
By

Lemma 4.2. Let p € [1,00). Assume that ¢ : R™ x (0,00) — (0,00) satisfies (4.1).
Let f € L, 4(R™). Then there exists a positive constant C' such that, for a € R™ and
0<r<s<oo,

’fB’(a,r) - fB(u,,s)

< c( el dt) T (4.7)

Proof. If r < s < 2r, then by (4.6) we have

< 2"MO(f, B(a, s)) < 2"¢(a, s)|| |z, .,
N ( ” et

fB(a.r) - fB(a,,s)

dt) 1l (48

If 281 < s < 281y for some k € N, than, by the same calculation as (4.8), we have

fB(a,7‘) - fB(a,s)

k
< Z ‘fB(a,ijlr) - fB(a,2jr)
Jj=1

k+1 2y ok+1,
¢(a,t ¢
3 (/ T )dt> 151, = (/ - )dt> .

which shows (6.1). O

+ ’fB(a,zkr) — fB(ays)

5 Pointwise multipliers on BMO(R")

To consider the pointwise multipliers on BMO(R") we introduce a norm

I/ lemot@ny = I f[lBMo@n) + [fB0,1)]-

Then BMO*(R") = (BMO(R"), |- ll5anos(rn)) is @ Banach space not modulo constant

functions. We have the following theorem, whose proof will be given in Section 6.

Theorem 5.1 ([54] (1985)). Let
1
T,7) = , xeR" re(0,00). 5.1
é(.m) log(r + 1/r + |x|) v r€(0,00) (5-1)
Then PWM(BMO*(R")) = £ 4(R") N L®(R"). In this case, the operator norm of
g € PWM(BMO*(R™)) is comparable to |||z, ,zn) + [|9]l Lo @)
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Remark 5.1. Let ¢(r) = 1/log(1/r). Then PWM(BMO*(T")) = £ 4(T")NL®(T").
In this case we don’t need variable growth functions.
The following proposition is a special case of [54, Proposition 5.1], which gives

a sufficient condition for g € PWM(BMO?(R")).
Proposition 5.2 ([54] (1985)). Assume that a function g satisfies

& .
l9(z) = g(y)| < Tog(e/lz =)’ if lz—yl<1, (5.2)
Cs
|9(2) = goo| < Toale + 2]) (5.3)

for some constants Cy, Cy and g~ independent of x,y € R™. Then g is a pointwise
multiplier on BMO(R™).

Nowadays the conditions (5.2) and (5.3) are called the log-Holder conditions.
Note that, if p(z) satisfies (5.2), then ¢(z,7) = 7°@) satisfies (4.2). Diening [12] and
Crutz-Uribe et al. [11] proved that, if

1 < inf p(x) < sup p(z) < o (5.4)
z€R™ z€R™

and p(-) satisfies (5.2) and (5.3), then the Hardy-Littlewood maximal operator M
is bounded on LPO)(R™).

However, the continuity condition (5.2) and the existance of the limit g, =
lim;| 00 g(2) in (5.3) are not necessary for the boundedness of the operator M on
LPO(R™). Lerner [26] (2005) proved the following theorem by using Theorem 5.1.

Theorem 5.3 ([26] (2005)). Let p(-) be a real valued measurable function. If p(-) €
PWM(BMO#(R"™)), then there exists a positive constant a such that the Hardy-

Littlewood mazimal operator M is bounded on L*tPO)(R™).

Here we give critical examples of g € PWM(BMO(R™)) which don’t satisfies
the log-Holder conditions. In Theorem 5.1

! fi 11

—————  forsmall r
, log(1/r + |a ’
oanr) ~ | P TD

_ for 1 .

Tog(r = [al) or large r

Let a = 0. Then
1/e dt

max(0, . (0, [z]) — #.(0,1/e)) = / e Tloa(1/1) = XB(0.1/¢) () loglog(|z| ")
’ (5.5)

dt
tlog(t)

max(e,|x|)
max(0,~6.(0.el) + 6.(0,)) = [ = Xpop@) oglogls| (5.0



are in £y 4(R"™) by Lemma 4.1 and (4.5). Let

g1(z) = sin (XB(OJ/G)(.I‘) log log(|x|_1)) (5.7)
ga(x) = sin (XB(Oye)B(ZL') log log ’LD (5.8)

Then g; € L1 4(R") N L>*(R") = PWM(BMO*(R")) for i = 1,2. Note that g; is not
continuous and that limj,|_ g2(2) does not exist. The example (5.7) was given by
Janson [21] (1976) and Stegenga [63] (1976) on the Torus T", and the example (5.8)
by [54] on R".

FEZER (2008) proved the following theorem in her Master’s thesis.

Theorem 5.4 ([58]). If p(-) satisfies (5.4) and is a constant outside some ball B,
and if

1
sup T IS
a€R4, 0<r<1/2 1/log(1/r)

then the Hardy-Littlewood maximal operator M is bounded on LPC)(R™).

]{3 U= (/] < (5.9)

In the above theorem 1/p(-) is bounded. We can also conclude that 1/p(-) €
L1 4(R"™) for ¢ in (5.1). Thatis, 1/p(-) € PWM(BMO*(R")). Moreover, the following

theorem is known.

Theorem 5.5 ([14]). Let p(-) satisfy

1< inf p(z) < sup p(z) < co. (5.10)
TeR™ rER™

If1/p(-) satisfies the log-Hélder conditions (5.2) and (5.3), then the Hardy-Littlewood

mazimal operator M is bounded on LPU)(R™).

In the above theorem 1/p(-) is also in PWM(BMO?(R™)) by Proposition 5.2.

6 Proof of Theorem 5.1

First we note that, if g € PWM(BMO?(R")), then g is a closed operator, and then
g is a bounded operator by the closed graph theorem.

Nest we state several lemmas.

Lemma 6.1. Let f € BMO(R"). If B(a,r) C B(b,s), then

2s
< (/r %dt> | fllBmo- (6.1)

IBlar) — [B®.s)
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Proof. If r < s <2r and B(a,r) C B(b, s), then by (4.6) we have

2" 1
" — 0 < 2" = — —dt . 2
futar) ~ Firao| <2 lovo = oy ([ 10) lenior (62

If 2Fr < s < 28+l for some k € N, then take balls B; of radius 27r, j = 1,2,-- -k,
such that
B(a,r) =By C By C --- C By, C B(b,s).

Than, by the same calculation as (6.2), we have
k
<> |fon S
j=1
ok+1

k+1 2ir "1
S / —dt | [|fllsmo = / —dt | [[f|mo,
=1 27— 1yp t T t

which shows (6.1). O

fB(a,T) - fB(b,s) + ‘ka - fB(b,s)

Lemma 6.2. There exists a positive constant C such that, for all f € BMOE(]R")
and balls B(a,r),

[Fotan| < C(log(r +1/7 + D) )1 flssion (6.3)

Proof. First note that B(a,r), B(0,1) C B(0,7 + 1/r + |a|), since r + 1/r > 2. By

Lemma 6.1 we have

IBlar) — fB(O,l)‘ < ‘fB(u,,’r) — [BOr1/r1a| T ’fs 0,1) = JBO.r+1/r+]al)

2(r+1/r+lal) | 2(r+1/r+lal)
<(f i+ | I llsvio
T t 1

Lo
t
= (2 log(2(r + 1/r + |al)) + log(1/7) )Hf”BMO
S (tog(r+1/7+ [aD) )| fllsxio:
which shows (6.3). O

Let
h*(r) = max(1,logr), h.(r) = max(l, —logr), r>0.

Then h*(| - |), k(| - |) € BMO*(R") by (4.5) and ||h.(| - —a|) ||z < C for some

constant independent of a € R™. Moreover, we can easily check that

h*(lal) + h*(r) + hy(r) ~ log(r + 1/ + |al).
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Lemma 6.3. There exsits a positive constant ¢ such that, for any ball B(a,r),
][ 1 (|2)) dae > c(h*(|u|) n h*(r)), (6.4)
B(a,r)
][ hi(|z — al) dz > h.(r). (6.5)
B(a,r)

Proof. From the monotonicity of h* and h, it follows that

1
B () > = / B (|2]) 2 1 (Jal),
]{B(G,T) |B(a7r)| B(a,r)\B(0,|al)
1
h*(|z Z][ h(lz]) > =—— h*(|z|) Z h*(r/2) ~ h*(r),
]i(m (D2 f w2 gy (I2]) 2 B*(r/2) ~ b (1)

B(0,r)\B(0,r/2)

Foomle—ah=f ez n0)
B(a,r) B(0,7)

which show the conclusion. O

Lemma 6.4. If g € PWM(BMO*(R")), then g € L=(R") and, for some constant
C independent of g, ||gllr= < Cllgllpwmmmon-

Proof. For any ball B(a,r) with r < 1/2, let

0 (|x —a| >r)
h(z) = max(0, —log |z — a| +logr) = { log |z —a| +logr (|lz —a| <)

Then ||h|[gmo is independent of B(a,r) and |hpoq)| < C. Moreover, we have
|h(z)] > —log(r/2) + logr =log2 for =z € B(a,r/2).

Now, for ¢ € PWM(BMO*(R")), let o = (gh) (2. Then

/ Ighalz/ |gha|+/ o]
B(a,2r) B(a,r/2) B(a,2r)\B(a,r)
z/ (lgh — o] +|o])
Bla,r/2)

> [ glziog2[ gl
B(a,r/2) Bl(a,r/2)

and
][ lgl < ][ lgh — o] < [lghllpmor S ||9||PWM(BM01)~
B(a,r/2) B(a,2r)

Letting r — 0, we get [g(a)| < l9/lpwamesmor) a-e-a € R by Lebesgue’s differentia-
tion theorem. This shows that |g][z~ < [l9/lpwammon- O
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Lemma 6.5. Let f € BMO*(R") and g € L™(R"). Then fg € BMO*(R") if and
only if supg | f5|MO(g, B) < co. In this case

‘HngBMO —sup |f5IMO(g, B)’ < 2[| fllemoll gl roe- (6.6)

Proof.
MO(g, B) = 12O, B)| = | £ 1fa = (Fa)al = 1fol f 1o = o
< £ [(Fa = (fo)s) = (Flo — 9m)
(f = )9 = (F9)s = fngs)|

(= g +| £ (= fadg

f||BMO||q||L°°

1,
<][ (f - fBg‘ ‘ng_fBgB’
/
<2

which implies
supMO(fg,B) < oo < sup|fs|MO(g, B) < .
B B

In this case we have (6.6). O

Proof of Theorems 5.1. Let g € PWM(BMO*(R")) and f € BMO*(R"). Then fg €
BMO*(R") and || f9llgmor < [/ smos 19llpwar BMot)- By Lemma 6.4 we have g €
L>*(R™) and ||g||r~ < ”g”PWM(BMO” By Lemma 6.5 we have

S%P|fB|MO(Q7B) <|[fgllemo +2[|flIBmollgllz= S HfHBMO”||g||PWM(BMO”)' (6.7)
Take h*(] - |) or hy(| - —al) as f in (6.7). Then, by Lemma 6.3, we have

BS(UP) (h*(|a|) +h*(r) + h*(r))MO(g, B(a,1)) S ”gHPWM(BMoh)v
which shows g € Ly4(R") and |lgllz,, < ll9lpwa@mon, since h*(a]) + h*(r) +
hi(r) ~log(r +1/r +al) = 1/é(a, ).

Conversely, let g € £ 4(R") N L>(R"). For any f € BMO?(R"), by Lemma 6.2

we have
1

FEIBS B )||f||BMOu for any ball B,

and

MO(g, B
sup | /5|MO(g, B) < sup ”.f”BMO“¥ < I fllemozllglle, o-
B B ¢(B)
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By Lemma 6.5 we have fg € BMO*(R") and
1£9llssi01 < sup | £5IMO(g. B) + 2{fmollgllie < 1/ llsuior (gl + lgllz).

That is, g € PWM(BMOh(R")) and HgHPWM(BMO“) S ||9||£1,¢ + |9l e U

7 Proof of Theorem 5.3

In this section we prove Theorem 5.3 by Lerner’s idea in [26]. We use the following

theorems.

Theorem 7.1 (John and Nirenberg [23] (1961)). Let f € BMO(R") and Q a cube
i R™. Then, for A > 0,

:EEQ fﬁl': —f >)\ Secge_A)‘/”f”BMO7 71
Q
where A = (2"¢)7.
For the constant A = (2"¢)~!, see Grafakos [19, p. 160]

Theorem 7.2 (Coifman and Rochberg [9] (1980)). Let f € L .(R™) and M f < oo

a.e. Then log(Mf) € BMO(R™) and ||log(Mf)|lmo < Vn, where 4, > 1 depends

only on n.

We note that, if the operator M is bounded on Lp(')(R"), then M is also bounded
on L'PO)(R™) for any r > 1. Indeed, by Holder’s inequality,

r r rl L/
IMFllroer < IILFIY N pwer = IMIFIES S AT = £ oo

Next we recall the Muckenhoupt A, condition, 1 < p < co. A weight w satisfies
the A, condition (w € A4,), if

p—1
s, =sup (f ) (fu70) <o
Q Q Q

where the supremum is taken over all cubes ). Muckenhoupt proved that

/ Mfpw<e | |fPw,

R

for any f € LP(R™, w) if and only if w € A,. Moreover, the constant ¢ is depends

only on n, p and ||w]| 4,

Lemma 7.3. If || f|lgmo < (27€) 7L, then ||ef]|4, < 4.
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Proof. By Theorem 7.1,
[ <ior [l e Qiliw) - fol > 41| ax
Q 1

< ‘Q| _|_/ €|Q|6_A/\/HfHBMO d\ < 2|Q‘,
1

() () ) ()
cr(fre) = :

Take a cube )y with measure 1 and let

and

Il fllspoz = 1 fllBMmo + [ fq

Let f* be the non-increasing rearrangement on )y and f** = ¢! fot f*. We use

the following facts (see e.g. [5, p. 122 and p. 53]);

(M) (t) <3"f(@1), t>0, (7.2)

/ e = sp / (@) de, (7.3)

where the supremum is taken over all measurable sets E with |E| = t.

Proof of Theorem 5.3. For p(-) € PWM(BMO*(R")), take small ¢ > 0 and large
a > 0 such that 0 < 2 —ear — ep(+) < 1/2, and

12 — ea — ep()lpwmmmor) < (2%€)” Y +3n) 7"

Let g(-) =2 —e€(a+p(-)). Then 3/2 <2 —¢(-) < 2. We will show that the operator
M is bounded on L?>~9)(R™) = L<+P()(R™). Then the operator M is also bounded
on Lo+PC)(RM).

Let || f]|z2-ay = 1 and f > 0. Let f = f + xq,. Then log(Mf) >0 on Qy and

/Q ou(ar ) < /Q g1+ ) = [ log(1+ (MFY (1)) dt

1
?/o log(1+ 3" (1)) dt.

From
Sup/ |f1 < 201 fll n2-a0) X Qo ll Lz-atrr < 2,

|E|=tJ E
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it follows that f**(¢) < 2/t. Then

/Q log(M f) < /1 log(1+ 3" f**(1)) dt < /1 log(1+2 - 3" /1) di < 3n.

0 0 0

By Theorem 7.2 we have || log(M f)|lgro: < Ya + 3n. Then

- Q(')log(jwf)”BMOh < HQ(')HPWM(BMO“)” log(Mf)HBMO“ < (2%)71‘
By Lemma 7.3 we have ||(Mf)~%)| 4, < 4. Then

[ a0 < [ oo = [ oppan o s [fpeno,

n n n Rn

Since ¢(-) > 0, (M f)~90) < |f]790). Then
[tz < [ipanp o < [ s
n Rn Rn

This shows that the operator M is bounded on L?~90)(R™). O

8 Another application of Theorem 5.1

For a cube Q C R™, let BMO((Q) and BLO(Q) be the set of all functions f such

that the following functionals are finite, respectively.

1 lmoce) = sup][ -1l
PCQJpr

| fllBrow) = ?;‘;g][,)(f — inf /),

where the suprema are taken over all cubes P containing ().

Bennett, DeVore and Sharpley [6] (1981) proved that the Hardy-Littlewood max-
imal operator M is bounded on BMO(Q). Then Bennett [4] (1982) proved that the
operator M is bounded from BMO(Q) to BLO(Q). The latter seems to be improve-
ment upon the former, since BLO(Q) & BMO(Q). However, if

BMO(Q)N{f : f is bounded from below} = BLO(Q),

then the latter is only a corollary of the former, since M f > 0. Therefore, we need
to find a function in BMO(Q) \ BLO(Q) which is bounded from below. To do this,
we use the pointwise multiplier on BMO(Q). This idea is in [28].

We may assume that ) = [—1,1]". Let

f(z) = max(0, —log |z|]) and g(z)=sin (XB(OJ/S)(ZE) log 10g(|x|71)),
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where g is the same as ¢; in (5.7). Then f € BMO*(Q) and g € PWM(BMO*(Q)).

Hence |fg| € BMO(Q). We will show that |fg| ¢ BLO(Q). Choose 1 > 0 such
that

loglog(r, ') = (v/4)k, ke N.
Then r, (0 as k — o0o. If rgmia <7 < rgmis, m € N, then
(2m + 3/4)w < loglog(r~') < (2m + 1),
and then
sin(loglog(r 1)) >0, cos(loglog(r ') < 0
and
sin(log log(r)) + cos(loglog(r™')) < 0.
Letting h(r) = (—logr) sin(loglog(r~')), we have
B (r) = —lsin(log log(r1)) + log(r~') cos(log log(r 1)) IR
T rlog(r=1)

— —%<sin(log log(r—l)) + cos(log log(r‘l))) =0,
h//(r) = %(Sin(log log(rfl)) + COS(]Og log(r—1)>>

r

_ %(Cos(log log(r™")) — sin(log 1og(7“_1))> < ;71)) -

~ rlog(
r T8m+4 T8m+3

B (r) +

R (r) -

h(r) 0 | (V2/2)1og(1/rsmys)

Since h is concave in this interval,
1 ram+3 12

—/ (h — infh,) > —£ log(1/rgm+3) — 00 as  m — oo.
T8m+3 — T'8m+4 T8mt4 2 2

This shows that |fg| is not in BLO(Q).
For the martingale maximal function on probability spaces, the same application
is in [51].

9 Related function spaces

In this section, we state the relations between £, ,(R™) and other function spaces

with variable growth condition.



Definition 9.1. For 1 < p < oo and ¢ : R" x (0,00) — (0,00), the function spaces
[I; s(R") and L, 4(R") are the sets of all functions f such that

1Flles = 16l + 0] < oo,

1 ) 1/p
e, =swp = (f 1P ) <o

respectively.

We regard EEL s(R™) and L 4(R") as spaces of functions modulo null-functions.

Then these functionals are also norms and thereby these spaces are Banach spaces.
If ¢(B) = |B|~/? for all balls B, then

111z, = If1lze-

From the definition it follows that

11z, o < 2 F2per Fllzs = 2+ 00,D)F]2,,- (9.1)

Definition 9.2. For ¢ : R" x (0,00) — (0,00), the function spaces A4(R") and
A7 (R™) are the sets of all functions f such that

) Af(x) - £(5)
Ilas = S e~ o) T ol by — )
17 = s, +170)] < o

respectively.

We regard A;(R") as a space of functions defined at all x € R", and A,(R"™)
as a space of functions defined at all z € R™ modulo constant functions. Then
these functionals are also norms and thereby these spaces are Banach spaces. For
oz, r) =% 0 < a < 1, we denote A« (R") and A% (R™) by Lip,, (R") and Lip, (R™),
respectively. In this case,

1l = sup [f(x) = f(y)]

z,y€R", x#y |‘T - y|a

and || fll 5 = [[flluip, + 1 (O)].
If ¢(z,7) = min(r*, 1), 0 < o < 1, then

11l as ~ W f lleipg + 11 fllz=-

For two variable growth functions ¢; and ¢9, we write ¢ ~ ¢ if there exists a

positive constant C' such that

C~'¢1(B) < ¢o(B) < C¢(B) for all balls B.
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In this case, two function spaces defined by ¢; and by ¢» coincide with equivalent
norms.
We consider the conditions (4.1) and (4.2) on variable growth function ¢. We

also use the following conditions.

o(x,1r) < Ch(x,s), if r <s, (9.2)
Co(z,r) > é(x,s), if r <s, (9.3)

where C' is positive constant independent of z,y € R" and r,s € (0,00). The
conditions (4.1), (9.2) and (9.3) are called the doubling, almost increasingness and
almost decreasingness conditions, respectively. The condition (4.2) is introduced in
[33] and studied in [52] precisely. In this paper, we call it the nearness condition.

Note that (4.2) and (9.2) imply that there exists a positive constant C' such that,
for all z,y € R™ and r, s € (0, 00),

Pz, 7) < Co(y,s) if B(x,r) C B(y,s).
Then we have the following three theorems:

Theorem 9.1 ([43] (2008)). If ¢ satisfies (4.1), (4.2) and (9.2), then, for every
1 <p<oo, L,s(R") =Ly 4(R") and EEW(R") = Ehw(]R") with equivalent norms,

respectively.
The abave theorem was proved by using the John-Nirenberg inequality [23].

Theorem 9.2 ([41] (2006)). If ¢ satisfies (4.1), (4.2) and (9.2), and if there exists

a positive constant C' such that
T t
[ A< cotwn, ser e .00 0.0
O g

then, for every 1 < p < oo, each element in CE,’(#(R") can be regarded as a continuous
function, (that is, each element is equivalent to a continuous function modulo null-
functions) and L, s(R") = Ay(R™) and [,i’(ﬁ(]R") = Ai(R") with equivalent norms,
respectively. In particular, if ¢(z,r) =r*, 0 < o < 1, then, for every 1 < p < oo,
Ef), s(R") = Lip%(R") and L, 4(R") = Lip, (R") with equivalent norms, respectively.

Proof. Let f € L, 4(R"). For x,y € R" and r > 0, if r < |z — g/, then

B(x,r), By, |v —y|) C B(z,2|x —yl|), B(y,r) C Bly,|v —yl).



By Lemma 4.2 and inequalities (4.6) and (9.4) we have

’fB(m,r) - fB(y,r)

+ ’fﬁw,m,y‘) — I

4z y\ 2]

< (¢<z,4|.r —y)+ 0. 2l — yl) + 8(y, 20z = o)) e, o

< ‘fb’(zr - fB (z,2]z—yl) + )fB(mQ\zfy\) - fB(y,|zfy\)

By the doubling condition (4.1) we have

’fB(m,r) - fB(y,r)

< (0w lz =) + 6w, lx = 9 )1 £le, o

Letting r — 0, we have

1£@) = F@I S (0wl = o) + 0ly, ke = D) I le,., ae.v.,

which shows f € A4(R") and ||f||A¢ < HfHﬁp,(/,-
Conversely, let f € Ay(R"). For x,y € B(a,r), by the almost increasingness
(9.2) and the nearness condition (4.2) of ¢ we have

F@) = £l < (8l = o) + 0l lr = o)) 1]l
< (90w.7) +6(5.1)) 17, S é(a.) ..

1/p p 1/p
(7@ V=) ) < (][ y (]i ) =) dy) dx)

S oa )| fllag

which shows f € £, ,(R™) and ||f||5p¢ < HfH% OJ

Then

Theorem 9.3 ([41] (2006)). Let 1 < p < oco. If ¢ satisfies (4.1) and (4.2), and if

there exists a positive constant C' such that
/ ¢’ dt < Co(z,7), T ER™, 1€ (0,00), (9.5)
then, for f € L, ,(R"), the limit o(f) = lim fp(o,) ezists and
r—00

1fllzy o ~ I1f = (Pl

That is, the mapping f — f — o(f) is bijective and bicontinuous from L, s(R™)
(modulo constants) to Ly, ,(R™).
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Proof. Let f € L, 4(R"). By (9.4) and (4.7) we have

(0, 1)
t

dt -0 asr,s— oo with r < s.

’fB(O,r) - fB(O,s)

r

Hence, o(f) = lim, o fB(0, exists. By (4.6) we have that, for any a € R",

+ ‘fB(O,Zs) - U(f)‘

S 2%9(0,25)| flle,, + ’fB(O‘Qs) — O’(f)‘ —0 ass— oo.

‘fB(a,s) - U(f)‘ S ‘fB(a,s) - fB(0,2s)

Letting s — oo in (4.7), we have
> dla,t
nan = o0] £ [ XL dlsle,, S ot e, .
Then

1/p
(f ot ) ( |ffB(a,T)|p) + | fotan — o ()
Bla,r)

< d(a, T)llfllﬁw

This shows that f — o(f) is in L, 4(R") and
1f = o(Dllz,e SN Slle,,-
From (9.1) it follows that

1fllz,, = I1f = o(Dlle,, <20 = o(Hllz,,,-

¢(Oa7“)||f|hpﬁ¢ — 0 asr — oo. -

Conversely, let f € L, 4(R"). Then f € L, 4(R") and o(f) = 0, since |fp@o| <

These theorems are valid for spaces of homogeneous type, see [41, 43].

10 Pointwise multipliers on Campanato spaces
In this section, we investigate the pointwise multipliers on generalized Campanato
spaces EfL 5(R™).

Theorem 10.1 ([33] (1993)). Letp € [1,00). Assume that ¢ : R"x (0, 00) — (0, 00)

satisfies the same conditions as Lemma 4.1. Let

max(2,|z|,r) 0 t max(2,z|,r) /.. t
O*(z,1) = / (b(t ) dt, ®*(x,r) = / q)(? ) dt, (10.1)
1 T




and let ¢ = ¢/(D* + ©**). Then
PWM(L ,(R™)) = L,u(R") N L™(R")

and
lgllop ~ 11gll, n) + gl Loe ().
where ||g||lop is the operator norm of g € PWM(E;d)(]R")),

For ¢; (i = 1,2), we define ®; and ®;* by (10.1).

Theorem 10.2 ([35] (1997)). Let 1 < py < p1 < 00 and py + ps < p1p2. Assume
that ¢; (i =1,2) satisfy ( 1), (4.2), (9.2) and (4.4) with p = p;. Assume also that
P2 ) a1 gy < 4 928T) e, (10.2)
¢1(z, 1) ¢1(9€,7‘)
and that (P5+P5*)/pa < C((I>*{+<I)}‘*)/¢1. If p3 = ¢o/ (DT +DI*) is almost increasing,
then
PWM(L"

R L (R™)) = L6, (R") N L g, /6, (R")
and
lgllop ~ 119ll2s @) + 19112, 4, 0, &)

where ||g||lop is the operator norm of g € PVVM(Eh ((R™), EEQ 5 (R)).
In the above Ly 4,/4, (R™) is the Morrey space.

Proposition 10.3 ([35] (1997)). Suppose that ¢\ and ¢ satisfy the doubling con-
dition (4.1). Let ¢35 = o/ (P + P3*). If 1 < py < p1 < 00 and ps > pipa/(p1 — p2),
then

PWM(L?

P1,¢1

(R"), £;

P2, ¢2( )) ) ‘Ciz ¢>3( ) N me/m (Rn)

and

gllop < CUgllyy 0, +191L,, 0076,

Corollary 10.4 ([57] (2019)). Let 1 < ps < p; < o0 and 1/p4 = 1/p2 — 1/p1.
Suppose that ¢ satisfies the doubling condition (4.1) and that there exists a positive

where ||g||lop is the operator norm of g € PVVM(E?,1 1

constant Cy such that

/ qb(‘?” dt < Cy forallz € R, (10.3)
0

/ @ dt < Cyd(z,r) forallz € R and r > 1. (10.4)
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Let

Iff € L, (R, g € L5, ,(R") and o(f) = og) = 0, then fg € L}, ,(R"),
o(fg) =0 and
gl = Cliflles Nollgs - (10.5)

For example, we can take p; = py =4 and py = 2.

11 Singular integral operators

Let 0 < k < 1. We shall consider a singular integral operator 1" with kernel K on
R™ x R™\ {(z,z) : € R"} satisfying the following properties:

C

K(r,y)| < ——— for z+#vy, 11.1
| K (2, y)] p— (11.1)

(e y) — K ()| + K (.2) — Ky, 2)| < —2 (')

r,Yy)— 2 Y, r) — Y, 2)| =
|z —y[" \ |z -y
for |z —y| > 2|z — 2|,
(11.2)
K(fv,y)dy—/ K(y,xz)dy =0

/r;a:y<R r<|z—y|<R (113)

for 0 <r < R<ooand z € R",

where C' is a positive constant independent of z,y, z € R™.

For n > 0, let
Liw = [ K@i
[z—y|>n

Then T, f(x) is well defined for f € Cg,,,,(R"). We assume that, for all 1 < p < oo,
there exists positive constant C,, independently 7 > 0 such that,

1Ty flle < Gl fllee for  f € Oy (R),

and T),f converges to T'f in LP(R™) as n — 0. By this assumption, the operator
T can be extended as a continuous linear operator on LP(R™). We shall say the
operator T satisfying the above conditions is a singular integral operator of type k.

Now, to define 71" for functions f in Campanato spaces we first define the modified

version of T}, by

T = [ KD - KO0 —xop@)]d 11



If ¢ satisfies (4.1) and [~ “b(;’t) dt < oo, then we can show that the integral in the
definition above converges absolutely for each = and that Tn | converges in LP(B)
as 7 — 0 for each ball B. We denote the limit by T'f. If both T'f and T'f are well

defined, then the difference is a constant.

Theorem 11.1 ([44] (2010)). Let 0 < k < 1 and 1 < p < oo. Assume that ¢
satisfies (4.1) and that there exists a positive constant A such that, for all v € R"

and r € (0,00),
[0l

t1+n

dt < Agp(x,r). (11.5)

,
If T is a singular integral operator of type K, then T is bounded on L, sR") and on
ﬁi s(R™), that is, there exists a positive constants C such that

1Ty < Oy 1Tz, < CUS s

Moreover, if ¢ satisfies (4.2) and (9.2) also, then T is bounded on L 4(R™) and on
L5 (R
For example, ¢(x,7) = r*® with —n/p < irg A(x) < sup A(z) < 1 satisfies the
reR™

TER™
condition (11.5).

For Morrey spaces Ly, ,(R"™), we have the following.

Theorem 11.2 ([34] (1994)). Let 1 < p < oo. Assume that ¢ satisfies (4.1) and
that there exists a positive constant A such that, for all z € R™ and r € (0, 00),

/OO d)(?t) dt < Ag(z,r).

If T is a singular integral operator with kernel satisfying (11.1), and if T is bounded
on LP(R™), then T can be extended to a bounded operator on Ly, ,(R™).

For example, ¢(z,7) = r*® with —n/p < migﬂ{n AMz) < .Tsél]é?l A(z) < 0 satisfies the
above condition.

Next we state the boundedness of the Riesz transforms particularly, which are
singular integral operators of type 1. For f € Cg,, (R") the Riesz transforms of f
arc defined by

Rif(x) = lg%Rj’gf(x)7 j=1,...,n,

where

Ref@)=co [ B Up@)dy, e =T (’” 1) .

Re\B(ae) [T =yl
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Then it is known that, for all 1 < p < oo, there exists a positive constant C,

independently € > 0 such that,

[Rjefllr < Cpllfllzr for f € Cg,

comp

(R"),

and R;.f converges to R;f in LP(R") as ¢ — 0. That is, the operator R; can be
extended as a continuous linear operator on LP(R"). Hence, we can define a modified

Riesz transforms of f as
Rif(a) =lim Ry f(x), j=1,....n,

and

( -y (=g XB(OJ)(ZU))) ) dy.

|z — y[*! [yl

Rif(z) = Cn/

R™\ B(z,e)
We note that, if both R;f and ij are well defined on R", then R;f — ij is a

constant function. More precisely,

(=) (L — xBo.1)(Y))
‘y|n+1

Ryf(x) — Ry f(x) = e / £() dy.

n

Theorem 11.3 ([57] (2019)). Let 1 < p < oo. Assume that ¢ satisfies (4.1) and
that there exists a positive constant A such that, for all z € R™ and r € (0, 00),

T/TOC @'(«:J)

2
Assume also that there exists a growth function ¢ such that ¢ < ¢ and that ¢
satisfies (4.1), (4.2) and (9.5). If [ € LE)’(Z&(R") and o(f) = TILIEO IBos) = 0, then,
for each j = 1,2,...,n, R;f is well defined, o(R;f) = TIH&(RM)B(O’T) =0, and
Hij”Li,é < C’||f||£i’¢, where the constant C' is independent of f.

dt < Ag(z,r). (11.6)

Remark 11.1. From Theorem 11.3 we conclude that, under the assumption, if f €
EE)¢(R") and o(f) = lim fg,) =0, then R;R; [ is well defined and
’ 7—00 :

HRiijHgi@ < C||f|\[,;’¢, i,j=1,....,n

12 Convolution with the heat kernel

Let ) ,
L= n
ht(x) = We 4 for r€R s t e (0, OO) (121)

For f € Li (R"), let

loc

o(f) = lim fpop). (12.2)



Theorem 12.1 ([57] (2019)). Let 1 < ps < p; < 0o. Assume that ¢ satisfies (4.1)
and (11.6). Then there exists a positive constant C' such that, for allt € (0,00) and
f € Ly, s(RY),

e * flle,y 0 < CQUA PP £l
1(Vhe)  fllz,, o < CEY2(L 4= WrmBRB) £l

p1,0 —

where O(z,7) = (14r1/P271/PO™) o (1 1) Moreover, if there exists a positive constant
Cy such that, for all x € R", 1°° @ dt < Cy, then there exists a positive constant
C such that, for all t € (0,00) and f € L2 _(R"),

p2,$
Hht * f”gilﬁ < C(l -+ ti(l/pzil/pl)nﬂ)||f||L22'¢a

||(Vht)*f”£h 0 < Ct_1/2(1+t_(l/p2_l/p1)n/2)||f||£u K
P1, P2:@

Further, if lim sup [ @ dt =0, then o(f) = 0 implies o(hyxf) = o((Vhy)*xf) =

T—00 rERN
0.

Theorem 12.2 ([57] (2019)). Let 1 < py < p; < 0. Assume that ¢ satisfies (4.1)
and (11.6) and that there exists a positive constant Cy, such that, for all x € R",
[ ¥@h gt < €. Assume also that lim sup [ Y@ gt = 0. Let

0 r—00 pcRn

o) = {1/)(:1:,1“) r <1,

1/)(%7”)172/731 r> 1.
Then, for f € £f)27w(R”) with o(f) =0, then o(hy* f) = o((Vhy) * f) =0 and

||ht % f”Lilﬁ < C(l + t*(l/szl/Pl)n/Z)”f”LiQ'w’
[(Vhe) * fllgs | < CEH2Q4 Ot ) g,
1.9 2,

13 An application: The Cauchy problem for the
Navier-Stokes equation

The Navier-Stokes equation is expressed as

o+ (w-Vv—Av+Vp=0 inR"x[0,7T),
V-v=0 in R x [0,7). (13.1)

V)40 = 1o in R™,
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where v = (v1,...,v,) is a vector field representing velocity of the fluid, p is the

pressure, and

V-v= zn:ajz)j, v-V = Zn:zljaj, A= zn:af
J=1 Jj=1 j=1

It is known that the pair of solutions (v, p) satisfies the relation

p="Y RiR;(vivy),

ij=1

where the operators R; (j = 1,...,n) are the Riesz transforms (see [18, 24, 56]
for example). Therefore, to estimate the solutions in some function space we need
the properties of the Riesz transforms and pointwise multipliers (pointwise product

operators) on the function space. Namely, we need the following norm boundedness:

179l , < Clfllgs, llgllzs - (13.2)
1B fllgs , < Cllflls s (13.3)

for Campanato spaces Ei and £°  with variable growth condition.

4
To solve (13.1) we consider the following equations:

u(t) = e®ug + Gu(t),

Gu(t / Ve 92 Py @ u)(s) ds,

where P is the Helmholtz projection; P = (d;x + RjRy)1<jk<n. Then we also need
the estimate of the convolution with the heat kernel.
Using Theorems 11.3, 12.1, 12.2 and Corollary 10.4, we have the following the-

orem:

Theorem 13.1 ([57] (2019)). Let max(2,n) < p < 0o, ¢ : R" x (0,00) — (0, 00)

and

(1) = S 11

Assume that ¢ and 1) satisfy (4.1) and (11.6) and that

{¢(x,1") r<l,

/ ¢ dt<C’¢ for all x € R",

/ ¢ dt<C¢¢(x r) forallz € R" andr > 1,

lim sup ¢(x,r) =0.

T—00 rERM



Assume also that there exists a growth function 1[) such that v < 12', that I/NJ satisfies
(4.1), (4.2) and (9.5). Then, for all uy € (EEW(R”))” such that V - uy = 0 and
o(ug) = lim (ug) g0, = 0, there exist a positive constant T (depending only on the
T—00
norm of initial data) and a unique solution v € C([0,T); (E;(p(R"))") to (13.1).
For example, let p > max(2,n), a(-) : R* — (0,1), 5(-) : R* — [-n/p,0), and

let

‘ re@ o 0<r <1, re@ 0 <r <1,

(D({E,T) - {T’g(x), r> 1’ 7»/’(%7”) - 7"25(9”), r> 17
and o (x, ) = r2%+ where a(-), A(-) and 3, satisfy

0<1nfa( ) < sup afx) < 1,

z€R TERN
n/p < inf lx) < sup Bx) = By < 0.
z€eR™ zERM

Then ¢, v and 1/; satisfy the assumption in Theorem 13.1.

For other applications of generalized Campanato spaces, see [56, 57].

14 Generalized fractional integral operators on
generalized Morrey spaces

In this section we state the boundedness of generalized fractional integral operators
on generalized Morrey spaces. We also state on generalized fractional maximal

operators.
In this and the next sections, we use the symbols £"#)(R™) and L®#)(R")
instead of £, 4(R™) and L, 4(R"):

1 1/p
£l =50 s (1) = fol )

1 1/p
Il = sup (m f i - fB|de) ,

1 ) 1/p
11, = w05 (f i an)
||f||L<p.,w>—sup( ][If |”dy)

Note that £; ,(R") = LE9(R™) and L, ,(R") = LP#")(R").
We say that 6 is almost increasing (resp. almost decreasing) if there exists a

positive constant C' such that, for all x € R" and r, s € (0, 00),

O(x,r) < CO(x,s) (resp. CO(z,r) > 0(z,s)), ifr<s.
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In this and the next sections we consider the following classes of ¢:

Definition 14.1. Let G be the set of all functions ¢ : R™ x (0, 00) — (0, 00) such

n

that ¢ is almost decreasing and that r — ¢(x,7)r" is almost increasing. That is,

there exists a positive constant C' such that, for all € R and r, s € (0, 00),
Co(z,r) > p(x,s), @z, r)rm <Cp(z,s)s", ifr<s.

Definition 14.2. Let G be the set of all functions ¢ : R" x (0, 00) — (0, c0) such
that ¢ is almost increasing and that r — @(z,7)/r is almost decreasing. That is,

there exists a positive constant C' such that, for all z € R" and r, s € (0, 00),
p(z, 1) < Coplz,s), Co(z,r)/r>p(,s)/s. ifr<s.

If o € G or p € G, then ¢ satisfies the doubling condition (4.1).
First we state the boundedness of the Hardy-Littlewood maximal operator M.
It is defined by the following: For f € L (R"), let

loc
Mf(@) =swp f |y, 2 € R,
B>x J B
where the supremum is taken over all balls B containing z.

Theorem 14.1 ([45] (2014)). Let 1 < p < oo and ¢ € GI°°. Then the operator M
is bounded from LP#)(R™) to itself.

For a function p : R™ x (0,00) — (0,00), we consider generalized fractional

integral operators I, defined by
_ [ pl]z—yl)
Lf(x)= | ——————[(y)dy, (14.1)
no =yl
where we always assume that
1
T,
/ @ dt < oo for each x € R", (14.2)
0

and that there exist positive constants C, K; and Ky with K; < K3 such that, for
all z € R" and r > 0,

KQT'
t
swp pley<c [ 200
r<t<2r Kir t

dt. (14.3)

The assumption (14.2) is needed so that /,f is well defined for all f € Lg5,, (R™).
The condition (14.3) comes from [60, p. 664 (D).



If p(x,r) = r®, then I, is the usual fractional integral operator I,. It is known as
the Hardy-Littlewood-Sobolev theorem that I, is bounded from LP(R™) to LI(R"),
if « € (0,n), p,qg € (1,00) and —n/p +a = —n/q. If a(-) : R* — (0,n) and
p(z,r) =r*@ then I » is a generalized fractional integral operator I,(,) with variable

order defined by
f)
Too f(x) = dy.
w0 = [

The operator I, was introduced in [36, 37] (2000, 2001) with ¢ : (0, 00) — (0, 00) to
extend the Hardy-Littlewood-Sobolev theorem to Orlicz spaces.

Theorem 14.2 ([45] (2014)). Let 1 < p < g < 0o and p,¢ : R" x (0,00) — (0, 00).
Assume that p satisfies (14.2) and (14.3) and that ¢ is in G and satisfics

lim p(z,r) =00, lim p(z,r)=0. (14.4)

r—0 T—00

Assume also that there ewists a positive constant C' such that, for all x € R" and
r € (0,00),

r - ¢ o) ) t 1/p
/ @ dt (x,r)"/? +/ % dt < Co(x,r)1. (14.5)
0 r

Then 1, is bounded from L®#)(R") to L) (R™).

To prove the theorem above we use Hedberg’s method in [20] and the bounded-
ness of the Hardy-Littlewood maximal operator.

Next, we consider fractional maximal operators. For a function p : R x (0, 00) —
(0,00), let

M,f@) = supp(B) f 11wl dy. = € R (14.6)
B>z B

where the supremum is taken over all balls B containing x. We do not postulate the
condition (14.2) or (14.3) on the definition of M,. The operator M, was defined on
Orlicz spaces in [38] (2001), and studied by Sawano, Sugano and Tanaka [62] (2011)
on Morrey spaces in case of p : (0,00) — (0,00). If p(B) = |B|*/", then M, is the
usual fractional maximal operator M,. If p = 1, then M, is the Hardy-Littlewood
maximal operator M.

If p(z,r)/r™ < Cp(z,s)/s" for 0 < s <1 < 00, then

M,f(z) < CL|f|(z), =€R" (14.7)

Hence, the boundedness of M, follows from the boundedness of I,. For example,
the Hardy-Littlewood-Sobolev theorem yields that M, is bounded from LP(R") to
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Li(R™), if a € (0,n), p,q € (1,00) and —n/p + o = —n/q. However, for example, if
logle+1/r)" (0<r<1
Sy {orle 1/ )

(log(e + )7 (r=1),

then it turns out that the boundedness of M, is better than the boundedness of /,
by the following theorem. Actually, (14.5) cannot be replaced by (14.8), see [17,
Theorem 1.1].

p>1,v>0,

Theorem 14.3 ([1] (2018)). Let 1 < p < ¢ < 00 and p, ¢ : R™ x (0,00) — (0, 00).
Assume that o is in G and satisfies (14.4). Assume also that there exists a positive
constant Cy such that, for all x € R™ and r € (0,00),

plz, r)e(z, r)YP < Coplx, ). (14.8)
Then M, is bounded from L®¥)(R") to L@¥)(R").

For the boundedness of I, and M, on Orlicz-Morrey spaces, see [40, 42]. For the

boundedness of 1, on Campanato spaces, see [39, 16].

15 Commutators of integral operators with func-
tions in Campanato spaces

It is known that any Calderén-Zygmund operator 7" is bounded on LP(R™) for 1 <
p < oo. Let b € BMO(R™). In 1976 Coifman, Rochberg and Weiss [10] proved that
the commutator [b, 7] = b1 — T'b is bounded on LP(R™) (1 < p < 00), that is,

116, TV flle = (10T f = T O o < Cllbllsrso | £l v,

where C' is a positive constant independent of b and f. For the fractional integral
operator [,, Chanillo [8] proved the boundedness of [b, I,] in 1982. That is,

116, La] fll e < Clbllmroll £l e,

if o € (0,n), p,qg € (1,00) and —n/p + o = —n/q. These results were extended to
Morrey spaces by Di Fazio and Ragusa [15] in 1991.

In this section we state the boundedness of the commutators [b, 7] and [b, I,] on
generalized Morrey spaces with variable growth condition, where T is a Calderén-
Zygmund operator, I, is a generalized fractional integral operator and b is a function
in generalized Campanato spaces with variable growth condition.

First we recall the definition of Calderén-Zygmund operators following [64]. Let
2 be the set of all nonnegative nondecreasing functions w on (0,00) such that

1 w(t)



Definition 15.1 (standard kernel of type w). Let w € Q. A continuous function
K(x,y) on R" x R"\ {(z,z) € R*} is said to be a standard kernel of type w if the

following conditions are satisfied;

|K(x,y) for = #uy, (15.1)

| < ———
|z —y["

K (y.2) — K(z )] < —C w('y‘z')
|z —y[* \ |z -y

for 2|y —z| < |z —yl.

K (z,y) — K(z,2)

(15.2)

Definition 15.2 (Calderén-Zygmund operator). Let w € Q. A linear operator T
from S(R") to S'(R™) is said to be a Calderén-Zygmund operator of type w, if T"is
bounded on L?*(R") and there exists a standard kernel K of type w such that, for
f € Conp(R),

Tf(r)= [ K(z,y)f(y)dy, = ¢suppf. (15.3)

Rn
It is known by [64, Theorem 2.4] that any Calderén-Zygmund operator of type
w € 2 is bounded on LP(R") for 1 < p < oo.
This result was extended to generalized Morrey spaces L®#)(R") with variable
growth function ¢ by [34] as the following: Assume that ¢ € G and that there

exists a positive constant C' such that, for all z € R™ and r € (0, 00),

/00 SD(:?t) dt < Cop(z,r). (15.4)

For f € L) (R"), 1 < p < oo, we define T'f on each ball B by

Tf(r) = T(fxe8)(x) + / K(z.9)f(s)dy, =€ B. (15.5)

R"\2B

Then the first term in the right hand side is well defined, since fy.p € LP(R™), and
the integral of the second term converges absolutely. Moreover, T'f(x) is independent
of the choice of the ball containing z. By this definition we can show that 7" is a
bounded operator on L¥#)(R"™). For the definition of Tf, see also [53, Section 5]
and [61].

For functions f in Morrey spaces, we define [b, T]f on each ball B by

0.7V () = b T)( Fxam) (&) + / (b(x) — b)) K (2,9)f(4) dy, z € B. (15.6)

R"\2B

Then we have the following theorem.
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Theorem 15.1 ([1] (2018)). Let 1 < p < g < 0o and ¢, : R"* x (0,00) — (0, 00).
Assume that ¢ € G4 and ) € G, Let T be a Calderdn-Zygmund operator of type
weNandbe L (RY).

loc

(i) Assume that v satisfies (4.2), that p satisfies (15.4), that fol %g(l/t) dt < oo
and that there exists a positive constant Cy such that, for allz € R™ and r € (0, 00),
b, r)e(a, 1) < Copla, r) /. (15.7)

Ifb € LEV(RY), then [b,T)f in (15.6) is well defined for all f € L®#)(R™) and

there exists a positive constant C, independent of b and f, such that

116, T1f @ < ClIOl oo [ f [l o

(ii) Conversely, assume that ¢ satisfies (4.2) and that there exists a positive

constant Cy such that, for all x € R™ and r € (0,00),
Cotp(a, ), )P > p(a,r)'/. (15.8)
If T is a convolution type such that

Tf(x)=pov. | K(x-y)f(y)dy (15.9)
Rn
with homogeneous kernel K satisfying K(z) = |o| " K(z/|z]), [ K =0, K €
C®(S"™Y) and K # 0, and if [b,T] is bounded from L™ (R™) to L\@¥)(R"), then
be L0V (R™) and there exists a positive constant C, independent of b, such that

1bllcawr < CHIB, TN 000 20009
where ||[b, T)|| 1.ww)—s 1@ 05 the operator norm of [b, T from LP#)(R™) to L(@%)(R"™).
In the above theorem, if ¢ = 1 and o(z,7) = r™, then LI¥)(R") = BMO(R")
and L) (R") = LP(R"™) with p = ¢. This is Coifman, Rochberg and Weiss’s result

n [10]. If (z,7) =1, 0 < a < 1, and ¢(x,7r) = r", then LI¥)(R") = Lip, (R"),
LP9)(R") = LP(R™) and L@ (R") = LI(R") with —n/p + a = —n/q. That is,

116, T1f e S Wblluip 1 1] -

This is Janson’s result in [22, Lemma 12].

Example 15.1 ([1] (2018)). Let 1 < p < ¢ < oo and B(-), A(+) : R*" — (—o0, 0).
Assume that
0< inf B(z) <sup f(z)<1, 0<p,<1,
rER? zERN

—n < inf Mx) < sup A(z) <0, —n <A <O0.
zER™ zERM



Let

Bx) A@) 1
rP), rMe 0 <r <1,

xr,r) = plr,r) =
Y(z,7) {Tﬁ*’ plx,r) { o l<r<oo

Let T be a Calderén-Zygmund operator of type w € € with fol M dt < oo. If

B(+) is log-Holder continuous and

B(z)+Az)/p > AN=)/q, Bt A/p < A/q.

then ) and ¢ satisfy the assumption in Theorem 15.1 (i) and then the inequality

116, T f | ey < Clbl o [| £l Lo

holds. Conversely, if A(+) is log-Holder continuous and

Blx) + Ax)/p < Mz)/q,  Ba+A/p 2 Mg,

and if T is a convolution type with homogeneous kernel K satisfying K(x) =
2| " K (x/|z]), [gos K =0, K € C*(5"") and K # 0, then we have

16l zar < CII[b TN o) L@

We also consider the cases
w(x,r _ rﬂ(ac)(l/10g(e/7=))ﬁl(a:)7 0<r<l1,
7B (]og(ey-))ﬁ**7 1< < oo,
ete.

For the commutator [b, I,] we have the following theorem.

Theorem 15.2 ([1] (2018)). Let 1 < p < g < 00 and p, , v : R" x (0, 00) — (0, 00).
Assume that ¢ € G¥ and ) € G, Assume also that p satisfies (14.2) and (14.3).
Let p*(z,r) = [ @ dt and b € L .(R™).

(i) Assume that p, p* and ¢ satisfy (4.2), that ¢ satisfies (15.4) and that there
ezist positive constants €, C,, Cy, Cy and an exponent p € (p,q] such that, for all

z,y € R" andr,s € (0,0),

c, pla.r) o p@,s) e (15.10)
rTL*E STL*E
plz,r) — ply,s) a2 T)
A0 28D <6 ol e - ) S (15.11)
L1
zf§§—§2and\x—y|<r/2,
S
" p(a,t  p(w, t)p(z, t)'/P .
/ @dttp(rﬂ')”p—i—/ Pl )SOt(I’ ) dt < Cop(z, )P, (15.12)
0 r

(x,r)e(x, )P < Crp(x, ). (15.13)

2217



228

Ifb e LEV(R™), then [b,I,)f is well defined for all f € L®¥)(R") and there exists

a positive constant C, independent of b and f, such that

116, Lol fllpaer < Cllbll o [ Fllpoor-

(ii) Conwversely, assume that ¢ satisfies (4.2), that p(xz,r) =1r%, 0 < a <n, and
that
Coth(z,7)r® p(a, )P > o, )19, (15.14)

If [b, 1] is bounded from LW (R™) to L@ (R™), then b € LEY)(R™) and there

exists a positive constant C, independent of b, such that
”bHL(W’) < C||[b7 Ia]||L(rmp)HL(a,so),
where ||[b, Io]|| o) s 1.(ae) 15 the operator norm of [b, 1] from LP#)(R™) to L4¥)(R™).

In the above theorem, if p(z,7) =%, 0 < a < n, ¥ =1 and p(x,r) = r~", then
I, = I, LO9)(R") = BMO(R?), Le#)(R") = LP(R") and L@#)(R?) = LI(R).
This is Chanillo’s result in [8]. See also [25].

Example 15.2 ([1] (2018)). Let 1 < p < p < ¢ < oo and a(-), 5(-), () : R" —

(—00,00). Assume that

0 < inf a(x) < sup a(z) <n, 0< oo <n,

rER™ zER™
0< inf A(z) < sup Ba) <1, 0<B. <1,
zeR™ 2ER™
—n < inf Mz) < sup AMz) <0, —n <A\ <O0.
zeR™ zERN

Let

o) ,,,B(gc)7 7,>\(:zc)7 0<r<l,
pla,r) = { N (x,r) = { plr,r) =1,

o, o T 1 <r <o
If «(+) is Lipschitz continuous, 5(-) is log-Hélder continuous and

sup (a(z) + A(z)/p) <0,

rER™

a(z) + Mx)/p = M) /P, o+ A/p < A /D,
B(x) + AMx)/p = Mz)/a. Ba+ A/D < M/a,

then
16, Ll f Nl oy < CUbN cwn | f | o -
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Conversely, if A(+) is log-Holder continuous, « is constant and

a+B@) +Ax)/p<Ax)/q, a+ B+ A/p > N/g,

then
6/l cavy < Cl[b; La]l| L) L@ -

We also take the cases

@ (1/1log(e/r))m®, 0 <r <1,
oy = {170/ oue/) ,
r(log(er))®=, 1 <r < oo,

( ) r“(g”), 0<r<l,
x,7r) =
p e~ 1< r < oo,

ete.

To prove Theorems above we use the following three propositions and a corollary.
For f € Li.(R™), let

M f(x) = sup][ If(y) — f|dy, = €R™, (15.15)
where the supremum is taken over all balls B containing x.

Proposition 15.3 ([1] (2018)). Let p,n € (1,00), ¢ € G and ¢ € G™. Let
T be a Calderdn-Zygmund operator of type w. Assume that ¢ satisfies (4.2), that
© satisfies (15.4), tha tflwdt < oo and that foowdt < oo for
each © € R™ and r > 0. Then there exists a positive constant C' such that, for all

be LOVRY), fe LR and z € R,

M”[b,T]f(w)§C||b||g<1,¢><(Mw(Tf| )(@) "+ (M (| 1) (2 >)”") (15.16)

Proposition 15.4 ([1] (2018)). Let p,n € (1,00), ¢ € G%*° and ¥ € G™°. Assume
that p : R" x (0,00) — (0, 00) satisfies (14.2) and (14.3). Let p*(z,7) = [ ~ Itt dt.
Assume that p, p* and ) satisfy (4.2), that ¢ satisfies (15.4) and that there exist
positive constants €, C, such that (15.10) and (15.11) hold. Assume also that

/mwdt < o, /mw (/OO p(I,U)gau(x,u)l/p du)dt < 00,
' (15.17)

for each x € R™ and v > 0. Then there exists a positive constant C such that, for
allb € LAV(RY), f € LP9)(RY) and 2 € R",

MH([b, T, £)() < ClJbll o ((Mw(lfpfl")(fﬁ))l/“r(M<p*w>n(|f|”)(ﬂ«“))1/">~ (15.18)
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Proposition 15.5 ([1] (2018)). Let 1 < p < 0o and ¢ : R" x (0, 00) — (0,00). If ¢
satisfies the doubling condition (4.1), then, for f € LL (R"),

loc
£l crer < CIUMF fl poors (15.19)
where C' is a positive constant independent of f.
By Theorem 9.3 we have the following corollary.
Corollary 15.6 ([1] (2018)). Let 1 < p < 0o and ¢ : R"x (0,00) — (0,00). Assume

that p € G°° and that ¢ satisfies (15.4). For f € Li (R"™), if lim fg,) =0, then
r—00

”fHL(p,w) S C”AﬂfHL(p,w)a (1520)

where C' is a positive constant independent of f.

Then, using Propositions 15.3 and 15.4, Corollary 15.6 and the boundedness of
T, 1, and M, (Theorems 11.2, 14.2 and 14.3, respectively), we have

116, T1f | oo S AMH([, TIN | wor S I8l 1/ 1l oo,
116, L) f Il oo S N ([b, L) | ooy S Nl | 1] o

These shows Theorem 15.1 (i) and Theorem 15.2 (i). The parts (ii) in Theorems 15.1
and 15.2 are proved by Janson’s method in [22].
We also have the compactness of [b, T] and [b, I,] on LP¥)(R"), see [2, 3].
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