Multidisciplinary ; Rapid Review ; Open Access Journal

Received 23 May 2023, accepted 23 July 2023, date of publication 28 August 2023, date of current version 5 September 2023. *Digital Object Identifier* 10.1109/ACCESS.2023.3308916

RESEARCH ARTICLE

Japanese Event Factuality Analysis in the Era of BERT

HIROTAKA KAMEKO^{®1}, YUGO MURAWAKI^{®2}, SUGURU MATSUYOSHI^{®3}, AND SHINSUKE MORI^{®1}

¹Academic Center for Computing and Media Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
 ²Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
 ³Graduate School of Bionics, Computer and Media Sciences, Tokyo University of Technology, Hachioji, Tokyo 192-0982, Japan

Corresponding author: Hirotaka Kameko (kameko@i.kyoto-u.ac.jp)

This work was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant 18K11427 and Grant 19K20341.

ABSTRACT Recognizing event factuality is a crucial factor for understanding and generating texts with abundant references to possible and counterfactual events. Because event factuality is signaled by modality expressions, identifying modality expression is also an important task. The question then is how to solve these interconnected tasks. On the one hand, while neural networks facilitate multi-task learning by means of parameter sharing among related tasks, the recently introduced pre-training/fine-tuning paradigm might be powerful enough for the model to be able to learn one task without indirect signals from another. On the other hand, ever-increasing model sizes make it practically difficult to run multiple task-specific fine-tuned models at inference time so that parameter sharing can be seen as an effective way to reduce the model's size. Through experiments, we found: (1) BERT-CRF outperformed non-neural models and BiLSTM-CRF; (2) BERT-CRF did neither benefit from nor was negatively impacted by multi-task learning, indicating the practical viability of BERT-CRF combined with multi-task learning.

INDEX TERMS Event factuality, modality, sequence labeling, neural networks, multi-task learning.

I. INTRODUCTION

Identifying the factuality of an event mention is an important task in natural language processing (NLP), with a wide range of potential applications such as information extraction, recognizing textual entailment, reasoning and natural language understanding [1], [2], [3], [4], [5], [6]. Here we work on a recently published corpus on *shogi* (Japanese chess) commentaries in Japanese [7] to develop a system of event factuality analysis although the proposed method can readily be ported to other corpora following the same design principle. As an extensive-form game, *shogi* allows a computer to ground most event mentions in a game tree. Yet it is complex enough for its commentaries to exhibit a rich variety of factual statuses, for example, a possibility (Ex. (1)) and a counterfactual (Ex. (2)) (event mentions are marked with underlines):

- (1) <u>居飛車</u>を採用するかもしれない White may use static rook strategy
- (2) <u>ゴキゲン中飛車との予測は外れた</u>
 The prediction that white would use <u>cheerful central</u> rook strategy turned out to be false

Given these, we expect event factuality analysis to help automatic generation of human-like commentaries, among other applications.

The design principle this corpus adopts is to decompose event factuality analysis into a combination of several subtasks. Event mentions need to be detected to begin with. To assign factual statuses to them, we need to identify words and phrases that convey factuality information, which are a subset of *modality expressions*. Identifying grammaticalized verbs can be a useful filtering step because due to semantic bleaching, they are unsuitable for further factuality analysis. We also notice that event mentions have a substantial overlap with named entities (NEs) specially designed for the *shogi* domain [8]. The divide-and-rule strategy is useful for

The associate editor coordinating the review of this manuscript and approving it for publication was Amjad Ali.

Layer																								
T Word	先手	は	美濃	囲い	が	崩れ	T	い	る	の	で	、	飛車	交換	は	後手	Ø	得	に	な	9	そう	だ	0
<u>퇴</u> gloss	black	TOP	Mino	castle	NOM	break	h	ave F	P	bee	cause	,	rook	change	TOP	white	's	good	to	be	b	e likely	to	
NE	Tu-B	0	Ca-B	Ca-I	0	Ao-B	0	0	0	0	0	0	Mn-B	Mn-I	0	Tu-B	0	Ee-B	0	Ao-B	0	0	0	0
Modality	0	0	0	0	0	MEn-B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	MEa-B	0	0
Event class	0	0	0	EVe	0	EVe	0	EVf	0	0	0	0	0	EVi	0	0	0	0	0	EVe	0	0	0	0
Factuality	0	0	0	FNc	0	FPc	0	0	0	0	0	0	0	0	0	0	0	0	0	FPr	0	0	0	0
		Ca	a-B ▲	Ca-	NE I	tags O +			•					Fac FNc	tua	lity t O	ag F	s Pc ↑		0	••			

TABLE 1. The annotation layers of the *shogi* commentary corpus and the task definition. The glosses are not included in the corpus but added only for readers.

崩れ

が

囲い

美濃

corpus construction as well because it facilitates speedy and consistent annotation.

Encoder

The question, then, is how to solve the closely related but different subtasks as a whole. Since manually writing rules to connect them [9] is daunting, it is desirable to make a computer automatically learn their relationships from data. While each subtask can be straightforwardly formalized as sequence labeling, how best to exploit dependencies among subtasks remains unknown. The creators of the annotated corpus only reported preliminary experiments where they independently tackled each subtask using a non-neural sequence labeling tool [7].

One apparently promising approach is multi-task learning. Unlike taggers supplied with hand-crafted features, neural networks have the ability of flexible knowledge sharing among related subtasks, which has proven to be effective in natural language analysis [10], [11]. For sequence labeling, knowledge sharing can be done by building subtask-specific taggers on top of a shared text encoder. The shared encoder transforms the input sentence into a sequence of vector representations, and each tagger uses them to predict labels. By sharing the encoder, the taggers implicitly exploit inter-task dependencies.

The situation has changed with the introduction of the powerful pre-training/fine-tuning paradigm [12], however. It has been shown that Transformer-based models pre-trained on a huge raw corpus outperform existing neural models with large margins and tend to retain good performance even if a small amount of training data are given for the target task. This raises the possibility that pre-trained models are powerful enough to overshadow indirect signals from related subtasks.

From a practical point of view, it is non-negligible that pre-trained models are huge in size, with their success driving a race to build even larger models. If the model is fine-tuned separately for each subtask, we end up running multiple variants of a huge model at inference time. For this reason, we observe that huge pre-trained models give a new significance to multi-task learning: an effective way to reduce the model's size when we have multiple related tasks.

We conducted experiments to identify NEs, modality expressions, event classes, and event factuality, either separately or jointly. We found that BERT-CRF consistently outperformed non-neural models and BiLSTM-CRF, reconfirming the power of pre-training. Multi-task learning brought neither increase nor decrease in performance for BERT-CRF. Thus we conclude that BERT-CRF with multi-task learning is a practical solution.

II. TASK DESIGN

As shown in Table 1, we adopt the task design proposed by Matsuyoshi et al. [7]. We assume that the input sentence is segmented into words. Our task is to perform sequence tagging for the following four layers:

A. NAMED ENTITIES

21 NE types are defined for the *shogi* domain [8]. With the BIO tagging scheme [13], each word is given one of 43 (= $21 \times 2 + 1$) tags. Note that many NEs happen to be event mentions. For example, moves (**Mn**) and defensive formations (**Ca**) are likely to be events.

B. MODALITY EXPRESSIONS

8 types are defined for words and multi-word expressions that express factuality and other kinds of modalities. With the same BIO tagging scheme, they are mapped to 17 tags. **MEn** and **MEa** in Table 1 indicate that the target events are counterfactual and possibly factual, respectively. As an agglutinative

TABLE 2. Corpus specifications.

	#Sentences	#Words	#NEs	#Modality Exps	#Class Tags	#Factuality Tags
Wikipedia (raw)	25,074,606	712,048,970	-	-	-	-
shogi (annotated)	2,041	34,188	10,287	1,622	5,014	3,092

TABLE 3. Feature templates for sparse. xn denotes the word in the current position while posn refers to the corresponding part-of-speech tag.

 $x_{n-2}, x_{n-1}, x_n, x_{n+1}, x_{n+2},$

 $(x_{n-2}, x_{n-1}), (x_{n-1}, x_n), (x_n, x_{n+1}), (x_{n+1}, x_{n+2}),$

 $(x_{n-2}, x_{n-1}, x_n), (x_{n-1}, x_n, x_{n+1}), (x_n, x_{n+1}, x_{n+2}),$

 pos_{n-2} , pos_{n-1} , pos_n , pos_{n+1} , pos_{n+2} ,

 $(pos_{n-2}, pos_{n-1}), (pos_{n-1}, pos_n), (pos_n, pos_{n+1}), (pos_{n+1}, pos_{n+2}),$

 $(pos_{n-2}, pos_{n-1}, pos_n), (pos_{n-1}, pos_n, pos_{n+1}), (pos_n, pos_{n+1}, pos_{n+2})$

TABLE 4. Hyper-parameters for BiLSTM-CRF.

Dimension of word embeddings	128
Number of BiLSTM layers	1
Dimension of the LSTM hidden layer	128
Dropout rate	0.25
Initial learning rate	0.001
Mini-batch size	20
Number of epochs	100

TABLE 5. Hyper-parameters for BERT-CRF.

Pre-training step							
Dimension of word embeddings	768						
Number of Transformer layers	12						
Dimension of the hidden layer	768						
Number of self-attention heads	12						
Dropout rate	0.1						
Initial learning rate	0.0001						
Mini-batch size	16						
Number of epochs	30						
Fine-tuning step							
Dropout rate	0.25						
Initial learning rate	0.00002						
Mini-batch size	20						
Number of epochs	100						

language, Japanese often uses complex sequences of function words as modality expressions. There are also some predicates that quantify the degree of factuality of their arguments, and hence modality expressions can simultaneously be event mentions ("break" in this example). For ease of annotation, modality expressions are not explicitly linked to the corresponding event mentions, not to mention their scopes.

C. EVENT CLASSES

One of 8 tags is assigned to the head word of an event mention and the **O** tag to other words. The purpose of this layer is to distinguish factuality-bearing event mentions (e.g., **EVe**) from others. For example, grammaticalized verbs that do not warrant factuality statuses are given **EVf** tags.

D. EVENT FACTUALITY

One of 6 tags, such as **FNc** (certain–) and **FPr** (probable+), is assigned to the head word of a factuality-bearing event mention while other words are given **O** tags.

III. PROPOSED METHOD

Fig. 1 shows an overview of the proposed neural network model. To solve the four related subtasks introduced in

TABLE 6. Model performance on the four subtasks. Best scores are
marked in bold.

Layer	Model	F1	Prec.	Recl.
	Linear CRF	0.874	0.894	0.856
	PWNER	0.877	0.902	0.854
NE	BiLSTM-CRF	0.871	0.902	0.843
INE	+multi	0.865	0.892	0.839
	BERT-CRF	0.901	0.898	0.903
	+multi	0.891	0.885	0.897
	Linear CRF	0.751	0.769	0.734
	PWNER	0.774	0.844	0.716
	BiLSTM-CRF	0.776	0.825	0.733
Modelity	+multi	0.770	0.806	0.737
Wiodanty	+MEF	0.765	0.819	0.718
	BERT-CRF	0.828	0.829	0.828
	+multi	0.812	0.831	0.795
	+MEF	0.823	0.827	0.819
	Linear CRF	0.636	0.691	0.589
	PWNER	0.738	0.786	0.696
	BiLSTM-CRF	0.710	0.758	0.669
Event class	+multi	0.695	0.757	0.642
L'vent class	+MEF	0.692	0.755	0.640
	BERT-CRF	0.810	0.804	0.817
	+multi	0.809	0.811	0.807
	+MEF	0.807	0.810	0.805
	Linear CRF	0.554	0.598	0.517
	PWNER	0.728	0.793	0.674
	BiLSTM-CRF	0.667	0.779	0.587
Factuality	+multi	0.675	0.773	0.603
racidanty	+MEF	0.677	0.788	0.596
	BERT-CRF	0.807	0.834	0.795
	+multi	0.811	0.840	0.795
	+MEF	0.814	0.824	0.815

Section II, we adopt multi-task learning that enables parameter sharing. We build task-specific CRF taggers on top of a shared encoder.

The input word sequence, x_1, x_2, \dots, x_N , is converted into a sequence of word embeddings, e_1, e_2, \dots, e_N , using a lookup table. The vector sequence is fed into the encoder to obtain h_1, h_2, \dots, h_N , or vector representations of the input sequence.

For the encoder, we test (1) BiLSTM and (2) BERT. BiLSTM is a combination of a forward LSTM and a backward LSTM. LSTM [14] is a powerful extension to recurrent neural networks and is capable of capturing long-distance dependencies. Combining two LSTM units, BiLSTM makes use of both left and right contexts. For brevity, let LSTM_f be the blackbox forward LSTM. At time *t*, it takes e_t and its previous output \vec{h}_{t-1} as input and outputs \vec{h}_t . The backward LSTM is defined in an analogous way. Combining

TABLE 7. Tag-wise statistics of the performances on NEs. Linear, LSTM, and BERT refer to Linear CRF, BiLSTM-CRF, and BERT-CRF, respectively.

Tag	Freq.	Model	F1	Prec.	Recl
		Linear	0.998	0.998	0.998
		PWNER	0.998	0.998	0.999
_		LSTM	0.996	0.996	0.997
Tu	1664	+multi	0.996	0.995	0.997
		BERT	0.993	0.998	0.990
		+multi	0.996	0.996	0.997
		Linear	0.983	0.988	0.978
		PWNER	0.997	0.996	0.998
		LSTM	0.995	0.996	0.995
Ро	1465	+multi	0.995	0.994	0.997
		BERT	0.995	0.993	0.998
		+multi	0.995	0.992	0.997
		Linear	0.987	0.984	0.990
		PWNER	0.981	0.978	0.984
Pi		LSTM	0.983	0.983	0.983
	1817	+multi	0.981	0.976	0.986
		BERT	0.979	0.978	0.981
		+multi	0.982	0.978	0.987
Ps		Linear	0.787	0.851	0.764
		PWNER	0.543	0.602	0.528
	20	LSTM	0.706	0.778	0.694
	30	+multi	0.636	0.733	0.592
		BERT	0.759	0.769	0.815
		+multi	0.772	0.826	0.759
		Linear	0.995	1.000	0.990
	151	PWNER	0.983	0.995	0.973
м.		LSTM	0.992	0.989	0.995
NIC	151	+multi	0.992	0.990	0.995
		BERT	0.992	0.988	0.995
		+multi	0.989	1.000	0.978
		Linear	0.628	0.738	0.570
		PWNER	0.558	0.691	0.480
Ma	124	LSTM	0.540	0.590	0.509
MII	124	+multi	0.542	0.639	0.488
		BERT	0.611	0.612	0.633
		+multi	0.533	0.589	0.512
		Linear	0.312	0.387	0.281
		PWNER	0.259	0.467	0.196
Ма	70	LSTM	0.315	0.630	0.237
ме	70	+multi	0.276	0.422	0.233
		BERT	0.416	0.459	0.416
		+multi	0.265	0.350	0.231

Tag	Freq.	Model	F1	Prec.	Recl						
		Linear	0.903	0.927	0.883						
		PWNER	0.734	0.889	0.679						
c.	= (LSTM	0.781	0.905	0.726						
St	30	+multi	0.587	0.695	0.592						
		BERT	0.799	0.819	0.814						
		+multi	0.810	0.876	0.797						
-		Linear	0.907	0.919	0.925						
		PWNER	0.787	0.892	0.780						
Ca	20	LSTM	0.713	0.760	0.740						
	39	+multi	0.813	0.883	0.817						
		BERT	0.847	0.861	0.908						
		+multi	0.685	0.746	0.712						
		Linear	0.406	0.560	0.415						
Ev		PWNER	0.320	0.510	0.285						
	76	LSTM	0.454	0.577	0.489						
	70	+multi	0.295	0.463	0.333						
		BERT	0.524	0.587	0.562						
		+multi	0.419	0.569	0.421						
		Linear	0.416	0.505	0.361						
		PWNER	0.298	0.419	0.236						
Ee	153	LSTM	0.468	0.532	0.431						
LC	155	+multi	0.431	0.494	0.395						
		BERT	0.507	0.520	0.516						
		+multi	0.435	0.416	0.473						
		Linear	0.794	0.897	0.741						
	83	PWNER	0.771	0.883	0.704						
Re		LSTM	0.818	0.911	0.763						
	00	+multi	0.753	0.808	0.715						
		BERT	0.822	0.823	0.831						
		+multi	0.769	0.768	0.789						
		Linear	0.571	0.630	0.550						
		PWNER	0.520	0.543	0.512						
Ph	44	LSTM	0.544	0.602	0.508						
		+multi	0.518	0.569	0.508						
		BERT	0.685	0.684	0.697						
		+multi	0.524	0.590	0.492						
		Linear	0.627	0.694	0.595						
		PWNER	0.415	0.588	0.345						
Pa	53	LSTM	0.545	0.613	0.526						
14		+multi	0.515	0.625	0.464						
								BERT	0.608	0.675	0.574
		+multi	0.543	0.672	0.508						

Tag Freq. Model FI Prec. Recl Pq Linear 0.415 0.500 0.370 PWNER 0.347 0.450 0.330 FWNER 0.327 0.426 0.343 Hu 0.125 0.125 0.125 0.125 BERT 0.511 0.552 0.552 +multi 0.425 0.542 0.385 Hu 0.425 0.521 0.878 PWNER 0.802 0.931 0.873 LSTM 0.888 0.919 0.860 +multi 0.920 0.933 0.920 MER 0.940 0.944 0.930 0.920 MER 0.923 0.926 0.928 0.925 Fumiti 0.884 0.903 0.920 0.928 0.925 LSTM 0.926 0.928 0.925 0.928 0.925 Ac LSTM 0.926 0.894 0.911 +multi						
Heat Linear PWNER 0.347 0.347 0.450 0.340 0.360 0.340 0.360 0.340 0.360 0.340 0.360 0.340 0.360 0.340 0.360 0.340 0.360 0.340 0.360 0.340 0.360 0.343 0.340 0.342 0.351 0.352 0.552 0.552 0.554 0.552 0.552 0.550 0.554 0.552 0.554 0.572 0.554 0.573 0.555 0.572 0.579 0.579 0.555 0.577 0.579 0.579 0.571 0.579 0.571 0.579 0.571 0.579 0.557 0.579 0.579 0.579 0.571 0.788 0.781 0.734 0.734 0.734 Ar 1.552 0.557 0.579 0.579 0.571 0.759 </th <th>Tag</th> <th>Freq.</th> <th>Model</th> <th>F1</th> <th>Prec.</th> <th>Recl</th>	Tag	Freq.	Model	F1	Prec.	Recl
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Linear	0.415	0.500	0.370
Pq 15 LSTM +multi 0.125 0.125 0.125 0.125 0.52 0.521 0.552 0.552 0.552 Hu 0.425 0.542 0.385 Jimear 0.899 0.921 0.878 Hu 0.425 0.542 0.385 Hu 0.899 0.921 0.878 PWNER 0.902 0.933 0.873 Hu 0.888 0.919 0.860 +multi 0.884 0.915 0.836 Hu 0.922 0.930 0.920 Jimear 0.898 0.894 0.903 PWNER 0.923 0.914 0.932 Jimear 0.897 0.894 0.901 Humli 0.902 0.894 0.901 Humli 0.926 0.8928 0.925 Hu 0.927 0.894 0.901 Humli 0.897 0.894 0.901 Humli 0.890 0.914 0.702 BERT 0.805 0.840			PWNER	0.347	0.450	0.308
Iq 13 +multi 0.125 0.351 0.052 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.556 0.557 0.579 0.560 0.914 0.932 0.944 0.93	Da	15	LSTM	0.372	0.426	0.343
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	rq	15	+multi	0.125	0.125	0.125
+multi 0.425 0.542 0.385 Linear 0.899 0.921 0.878 PWNER 0.902 0.933 0.873 LSTM 0.888 0.919 0.860 +multi 0.884 0.915 0.856 +multi 0.884 0.915 0.856 +multi 0.884 0.902 0.920 EBERT 0.940 0.944 0.932 Jamper Construction 0.925 0.9250 0.925 JSTM 0.926 0.925 0.9258 0.9252 JSTM 0.926 0.9254 0.9250 0.9258 0.9250 JSTM 0.927 0.894 0.901			BERT	0.531	0.552	0.552
Harrow 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,			+multi	0.425	0.542	0.385
HuPwn Pm Hi0.900 LSTM0.933 0.8880.919 0.880 0.8880.915 0.856 0.856 0.856 0.9230.856 0.930 0.92300.920 0.9300.925 0.930 0.9320TiPimer0.988 0.9230.941 0.9250.932 0.9230.914 0.932TiPimer0.988 0.9230.923 0.9230.914 0.932FiUSM PmMER0.926 0.9280.925 0.9250.926 0.928AcLSTM PERT0.906 0.9060.899 0.914AcPiter PERT PMER0.906 0.90750.815 0.835AcLinear PERT PMER0.830 0.8730.885 0.846AcPiter PERT PERT PERT0.737 0.8130.702 0.833ApLinear PERT PERT PERT PERT PERT PERT PERT 0.3250.434 0.4370ApLinear PERT PERT PERT PERT PERT PERT PERT 0.3350.531 0.280ApLinear PERT PERT PERT PERT PERT PERT PERT PERT 0.5510.571 0.571ApLinear PERT			Linear	0.899	0.921	0.878
Hu 900 LSTM 0.888 0.919 0.860 +multi 0.884 0.919 0.860 BERT 0.940 0.944 0.926 -multi 0.925 0.930 0.920 -multi 0.925 0.930 0.920 Jama PWNER 0.923 0.914 0.932 999 Fumali 0.927 0.928 0.925 Humiti 0.927 0.894 0.903 BERT 0.902 0.894 0.901 Humiti 0.926 0.925 0.925 0.925 Ass 0.902 0.894 0.902 0.894 0.902 BERT 0.902 0.894 0.901 0.902 0.894 0.902 Ass D.907 0.815 D.571 0.805 0.775 0.815 LSTM 0.905 0.805 0.775 0.815 0.844 0.679 BERT 0.805 0.770 0.873 0.885 <			PWNER	0.902	0.933	0.873
Hu 0.80 +multi 0.848 0.915 0.856 BERT 0.940 0.930 0.920 +multi 0.925 0.930 0.920 File 0.878 0.884 0.915 0.876 PWNER 0.925 0.930 0.920 Jamuar 0.88 0.894 0.931 PWNER 0.926 0.928 0.925 BERT 0.902 0.926 0.928 0.921 +multi 0.906 0.899 0.914 0.325 0.844 0.902 BERT 0.902 0.897 0.894 0.911	Hu	900	LSTM	0.888	0.919	0.860
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	m	200	+multi	0.884	0.915	0.856
+multi 0.925 0.930 0.920 Linear 0.898 0.894 0.903 PWNER 0.923 0.914 0.932 LSTM 0.926 0.928 0.923 +multi 0.897 0.894 0.903 HERT 0.020 0.894 0.902 BERT 0.020 0.894 0.902 BERT 0.902 0.894 0.902 Average Himear 0.781 0.786 MWNER 0.805 0.775 0.815 Linear 0.781 0.785 0.845 BERT 0.805 0.813 0.702 BERT 0.805 0.813 0.702 BERT 0.855 0.844 0.679 Hulti 0.737 0.873 0.885 Hulti 0.855 0.846 0.887 Hulti 0.865 0.460 0.297 Hulti 0.351 0.280 0.516 Hulti 0.			BERT	0.940	0.944	0.936
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			+multi	0.925	0.930	0.920
Fit PWNER bit 0.926 0.928 0.9228 0.928 0.9228 0.928 0.9224 0.928 0.9224 0.928 0.9224 0.928 0.9224 0.928 0.9224 0.928 0.9224 0.928 0.9224 0.928 0.9224 0.928 0.9254 0.928 0.9264 0.928 0.9264 0.928 0.9264 0.928 0.9264 0.928 0.9264 0.928 0.9264 0.928 0.9264 0.928 0.9264 0.928 0.9284 0.928			Linear	0.898	0.894	0.903
Ti 399 LSTM 0.926 0.928 0.922 +multi 0.897 0.884 0.902 BERT 0.902 0.894 0.901 +multi 0.906 0.899 0.914 +multi 0.906 0.899 0.914 +multi 0.906 0.899 0.914 Ac 1425 Einear 0.778 0.786 BERT 0.781 0.778 0.786 0.778 Ac 1425 BERT 0.752 0.844 0.679 +multi 0.752 0.844 0.679 0.815 Linear 0.325 0.470 0.272 BERT 0.865 0.840 0.877 HUR 0.379 0.590 0.291 LSTM 0.325 0.415 0.297 Hurti 0.420 0.623 0.615 HERT 0.622 0.623 0.621 Hurti 0.544 0.553 0.580			PWNER	0.923	0.914	0.932
Image 557 +multi BERT 0.902 0.894 0.901 +multi 0.906 0.899 0.914 +multi 0.906 0.899 0.914 Ac 1425 Linear 0.781 0.778 0.785 Ac 1425 STM 0.752 0.844 0.619 Hunti 0.753 0.813 0.702 0.841 0.702 BERT 0.879 0.873 0.885 0.865 0.846 0.871 BERT 0.379 0.815 0.900 0.272 0.844 0.630 0.516 Ap HMER 0.379 0.599 0.299 1.571 0.325 0.445 0.260 HAP HMIT 0.325 0.445 0.620 0.621 0.621 0.621 0.621 0.511 0.280 0.621 Ap HMER 0.344 0.553 0.531 0.280 0.571 0.781 0.785 0.781 0.785 0.781 0.785 <th>ті</th> <th>399</th> <th>LSTM</th> <th>0.926</th> <th>0.928</th> <th>0.925</th>	ті	399	LSTM	0.926	0.928	0.925
BERT 0.902 0.894 0.911 +multi 0.906 0.899 0.914 0.907 0.899 0.914 0.778 0.786 PWNER 0.805 0.795 0.815 0.781 0.778 0.786 Ac 1425 LSTM 0.752 0.844 0.679 0.815 Huntli 0.733 0.813 0.702 BERT 0.879 0.875 BERT 0.865 0.846 0.887 - 0.873 0.885 +multi 0.855 0.846 0.887 0.885 - 0.873 0.885 Ap FWNER 0.379 0.599 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.485 0.266 BERT 0.320 0.445 0.531 0.280 0.411 0.340 0.531 0.280 0.411 0.551 0.579 0.579 0.579 0.579 0.579 0.579 0.579 0.		577	+multi	0.897	0.894	0.902
+multi 0.906 0.899 0.914 Linear 0.781 0.778 0.778 0.778 PWNER 0.805 0.778 0.778 0.778 PWNER 0.805 0.778 0.786 JESTM 0.752 0.844 0.679 +multi 0.752 0.844 0.679 +multi 0.732 0.844 0.865 +multi 0.865 0.846 0.887 Linear 0.325 0.400 0.272 PWNER 0.379 0.599 0.299 LSTM 0.325 0.415 0.297 Hamilt 0.422 0.623 0.662 +multi 0.544 0.550 0.571 Ao 316 Finear 0.363 0.531 0.280 Humit 0.417 0.543 0.550 0.579 Ao S16 Finear 0.363 0.511 0.280 Humit 0.544 0.550 0.579			BERT	0.902	0.894	0.911
Ac 1425 Linear PWNER 0.78 0.778 0.875 Ac 1425 F 0.805 0.775 0.815 Humli 0.753 0.813 0.702 BERT 0.879 0.813 0.702 Humli 0.855 0.844 0.679 Humli 0.855 0.846 0.887 Humli 0.855 0.846 0.887 Humli 0.852 0.440 0.279 PWNER 0.325 0.415 0.297 Humli 0.340 0.485 0.266 Humli 0.340 0.485 0.266 Humli 0.340 0.511 0.280 Ao 158 0.531 0.280 Humli 0.445 0.530 0.511 Ao 158 0.550 0.579 Humli 0.552 0.557 0.579 Humli 0.552 0.579 0.718 BERT 0.559 0.550			+multi	0.906	0.899	0.914
Ac 1425 PWNER LSTM +multi 0.752 0.844 0.679 BERT 0.879 0.873 0.813 0.702 BERT 0.879 0.873 0.885 +multi 0.865 0.846 0.887 Ac Difference 0.325 0.440 0.679 Ap PWNER 0.379 0.825 0.460 0.887 Ap PWNER 0.370 0.599 0.299 Hinear 0.325 0.415 0.297 +multi 0.444 0.630 0.516 BERT 0.622 0.662 0.623 Ao D351 0.280 0.421 +multi 0.444 0.530 0.391 Ato D475 0.580 0.516 HERT 0.550 0.557 0.579 Hemari 0.551 0.788 0.738 Ato D550 0.557 0.579 Hemari 0.551 0.578 0.773		1425	Linear	0.781	0.778	0.786
Ac 1425 LSTM +multi 0.752 0.844 0.679 bERT 0.879 0.873 0.885 +multi 0.865 0.846 0.887 HERT 0.865 0.846 0.887 -multi 0.865 0.440 0.272 PWNER 0.379 0.599 0.299 LSTM 0.325 0.415 0.297 +multi 0.340 0.325 0.485 0.269 BERT 0.322 0.623 0.662 0.662 Hemuti 0.544 0.550 0.570 0.579 Ao 316 EST 0.525 0.550 0.579 Hutti 0.417 0.543 0.530 0.341 Ab 0.559 0.550 0.579 0.579 Hutti 0.417 0.543 0.530 0.341 Ab 0.559 0.550 0.579 0.579 Hutti 0.417 0.543 0.737 PWNER			PWNER	0.805	0.795	0.815
And +imulti 0.753 0.813 0.702 BERT 0.879 0.873 0.885 +multi 0.865 0.846 0.887 Ap Hinear 0.325 0.490 0.272 PWNER 0.379 0.885 0.846 0.887 Linear 0.325 0.410 0.272 PWNER 0.379 0.599 0.299 HIT 0.325 0.415 0.207 HMIT 0.325 0.415 0.297 HMIT 0.340 0.485 0.296 HIT 0.320 0.531 0.280 Ao 316 Einear 0.363 0.531 0.280 HIT 0.445 0.550 0.550 0.579 3.799 HIT 0.475 0.580 0.421 1.485 0.486 BERT 0.559 0.550 0.579 5.799 HMUR 0.551 0.579 5.718 718 LSTM	Ac		LSTM	0.752	0.844	0.679
BERT 0.879 0.873 0.885 +multi 0.865 0.846 0.887 0.865 0.846 0.887 0.865 0.846 0.887 Ap 97 0.325 0.490 0.272 PWNER 0.379 0.599 0.299 LSTM 0.325 0.415 0.297 +multi 0.340 0.485 0.296 BERT 0.622 0.623 0.662 +multi 0.544 0.553 0.391 Linear 0.363 0.531 0.280 PWNER 0.454 0.553 0.391 LSTM 0.475 0.580 0.421 Hentli 0.417 0.543 0.530 Hutti 0.475 0.550 0.579 Hentli 0.552 0.557 0.579 Hutti 0.554 0.789 0.718 Ot 1.220 PWNER 0.751 0.789 Hutti 0.749 0.773			+multi	0.753	0.813	0.702
+multi 0.865 0.846 0.887 Linear 0.325 0.490 0.272 PWNER 0.325 0.490 0.272 LSTM 0.325 0.415 0.297 LSTM 0.324 0.6485 0.266 BERT 0.622 0.623 0.662 +multi 0.544 0.630 0.516 Ap MWNER 0.434 0.530 0.531 Ap HImear 0.363 0.531 0.280 PWNER 0.454 0.550 0.570 1.570 Hutti 0.417 0.543 0.538 0.421 Hutti 0.559 0.550 0.570 1.579 Hutti 0.552 0.579 0.579 0.718 LSTM 0.749 0.718 0.737 0.729 Qt 1.320 Hutti 0.736 0.758 0.761 0.751 Ot 1.320 Hutti 0.749 0.771 0.729 1			BERT	0.879	0.873	0.885
Ap 1370 PWNER 0.379 0.379 0.299 0.399 0.299 0.299 Ap 2375 HSTM 0.325 0.415 0.297 Hundi 0.340 0.485 0.296 BERT 0.622 0.623 0.662 +multi 0.544 0.531 0.280 Ao 116 1177 0.531 0.280 Hunear 0.363 0.531 0.280 Hundi 0.475 0.550 0.579 Hundi 0.475 0.550 0.579 Hundi 0.475 0.550 0.579 Hundi 0.552 0.557 0.579 Hundi 0.552 0.557 0.579 Hundi 0.552 0.557 0.579 Hundi 0.551 0.789 0.781 Hundi 0.552 0.557 0.579 Hundi 0.578 0.781 0.718 Hundi 0.552 0.571 0.719 Hundi 0.749 0.771			+multi	0.865	0.846	0.887
Ap PWNER HST 0.379 0.325 0.479 0.325 0.479 0.325 0.299 0.475 0.299 0.475 Am 0.325 0.415 0.297 0.325 0.415 0.297 Humiti 0.320 0.415 0.297 0.415 0.297 Humiti 0.427 0.622 0.623 0.662 Humiti 0.544 0.530 0.511 Ao Alf 0.544 0.553 0.391 Humiti 0.417 0.543 0.543 0.348 BERT 0.559 0.559 0.559 0.579 Humiti 0.417 0.543 0.550 0.579 Humiti 0.552 0.557 0.579 0.718 Ct 1.320 PWNER 0.716 0.738 0.718 Humiti 0.749 0.718 0.718 0.719 0.729 Humiti 0.736 0.738 0.718 0.718 0.718 0.718 0.718 0.718 0.718 0.728 <			Linear	0.325	0.490	0.272
Ap 87 LSTM +multi 0.325 0.415 0.297			PWNER	0.379	0.599	0.299
Her uniti 0.340 0.485 0.296 BERT 0.622 0.623 0.624 +multi 0.544 0.630 0.516 Linear 0.333 0.531 0.280 PWNER 0.454 0.553 0.391 Ao 316 Linear 0.475 0.580 0.421 +multi 0.417 0.553 0.391 0.348 BERT 0.559 0.550 0.579 +multi 0.552 0.550 0.579 +multi 0.552 0.550 0.579 Hinear 0.738 0.780 0.718 Qt 1320 Linear 0.738 0.780 0.718 BERT 0.710 0.731 0.729 +multi 0.736 0.778 0.719 Ot 1320 BERT 0.761 0.778 0.779 0.781 Hutti 0.781 0.7791 0.802 +multi 0.751 0.818 <th>An</th> <th>87</th> <th>LSTM</th> <th>0.325</th> <th>0.415</th> <th>0.297</th>	An	87	LSTM	0.325	0.415	0.297
BERT 0.622 0.623 0.662 +multi 0.544 0.530 0.516 0.84 0.630 0.516 0.800 PWNER 0.454 0.531 0.280 PWNER 0.454 0.553 0.391 LSTM 0.475 0.580 0.421 +multi 0.417 0.543 0.531 +multi 0.417 0.543 0.530 +multi 0.417 0.543 0.348 BERT 0.559 0.557 0.579 +multi 0.552 0.557 0.579 VER 0.749 0.789 0.718 REST 0.754 0.780 0.729 +multi 0.736 0.738 0.709 HEST 0.749 0.778 0.719 +multi 0.736 0.778 0.716 HEST 0.761 0.771 0.729 +multi 0.781 0.751 0.818	· -r		+multi	0.340	0.485	0.296
+multi 0.544 0.630 0.516 Linear 0.363 0.531 0.280 PWNER 0.454 0.531 0.280 LSTM 0.475 0.580 0.421 +multi 0.475 0.580 0.421 +multi 0.475 0.550 0.579 +multi 0.552 0.557 0.579 +multi 0.521 0.557 0.579 PWNER 0.751 0.789 0.718 LSTM 0.751 0.789 0.718 LSTM 0.749 0.730 0.729 +multi 0.736 0.788 0.718 BERT 0.791 0.709 +multi 0.781 0.779 0.7071 0.729 +multi 0.781 0.771 0.720 +multi 0.781 0.751 0.818			BERT	0.622	0.623	0.662
Ao 316 Ao			+multi	0.544	0.630	0.516
Ao 316 HVNER 0.434 0.533 0.391 LSTM 0.475 0.580 0.421 +multi 0.475 0.580 0.421 hvmlti 0.559 0.550 0.579 +multi 0.552 0.557 0.579 Linear 0.758 0.780 0.737 PWNER 0.751 0.789 0.718 LSTM 0.749 0.773 0.729 +multi 0.736 0.758 0.701 BERT 0.790 1.0720 +multi 0.781 0.751 0.818			Linear	0.363	0.531	0.280
Ao 316 LSIM 0.475 0.580 0.421 +multi 0.471 0.453 0.348 BERT 0.559 0.550 0.579 +multi 0.552 0.557 0.579 +multi 0.558 0.780 0.737 PWNER 0.751 0.780 0.729 Human 0.758 0.780 0.729 +multi 0.741 0.738 0.710 BERT 0.760 0.731 0.729 +multi 0.736 0.716 0.716 BERT 0.760 0.771 0.802 +multi 0.736 0.716 0.818			PWNER	0.454	0.553	0.391
+multi 0.417 0.543 0.548 BERT 0.559 0.559 0.559 +multi 0.552 0.557 0.579 Linear 0.758 0.780 0.718 PWNER 0.741 0.749 0.737 Handi 0.749 0.773 0.729 +multi 0.736 0.758 0.716 BERT 0.740 0.791 0.802 +multi 0.781 0.771 0.818	Ao	316	LSIM	0.475	0.580	0.421
BERI 0.539 0.530 0.579 +multi 0.552 0.557 0.579 Display Linear 0.788 0.780 0.787 PWNER 0.751 0.789 0.718 0.789 0.718 LISTM 0.749 0.713 0.729 +multi 0.736 0.788 0.718 BERT 0.749 0.713 0.729 +multi 0.736 0.781 0.719 0.822 +multi 0.736 0.781 0.771 0.729 +multi 0.781 0.751 0.818			+multi	0.417	0.543	0.348
Huiti 0.532 0.537 0.579 Linear 0.758 0.780 0.737 PWNER 0.751 0.789 0.718 LSTM 0.749 0.773 0.729 Hmulti 0.736 0.716 0.716 BERT 0.796 0.719 0.802 Hmulti 0.736 0.716 0.818			BERI	0.559	0.550	0.579
Linear 0.758 0.780 0.731 Ot 1320 PWNER 0.751 0.789 0.718 Humbi 0.749 0.713 0.729 - Humbi 0.736 0.758 0.716 0.729 Humbi 0.736 0.758 0.716 0.729 Humbi 0.736 0.758 0.716 0.802 Humbi 0.781 0.751 0.818			+multi	0.552	0.557	0.579
Ot 1320 FWNEK LSTM 0.749 0.773 0.729 +multi 0.736 0.716 0.736 0.716 BERT 0.796 0.791 0.802 +multi 0.781 0.751 0.818			Linear	0.758	0.780	0.737
Ot 1320 LS1M 0.749 0.773 0.729 +multi 0.736 0.758 0.716 BERT 0.796 0.791 0.802 +multi 0.781 0.751 0.818			PWNER	0.751	0.789	0.718
+mutt 0.736 0.738 0.716 BERT 0.796 0.791 0.802 +multi 0.781 0.751 0.818	Ot	1320	LSIM	0.749	0.775	0.729
BEKI 0.790 0.791 0.802 +multi 0.781 0.751 0.818			+muiti PEDT	0.750	0.758	0.716
+111111 0.781 0.751 0.818			DEKI	0.790	0.791	0.602
			+muiu	0.781	0.751	0.818

the two, BiLSTM computes h_t as follows:

$$\begin{aligned} \boldsymbol{h}_{t} &= \boldsymbol{h}_{t} \oplus \boldsymbol{h}_{t} \\ &= \mathrm{LSTM}_{\mathrm{f}}(\boldsymbol{e}_{t}, \overrightarrow{\boldsymbol{h}}_{t-1}) \oplus \mathrm{LSTM}_{\mathrm{b}}(\boldsymbol{e}_{t}, \overleftarrow{\boldsymbol{h}}_{t+1}), \quad (1) \end{aligned}$$

where \oplus is the vector concatenation operation.

BERT (Bidirectional Encoder Representations from Transformers) [12] is a modern pre-trained language representation model known for achieving state-of-the-art performance for a wide range of tasks. Since BERT is pre-trained on a large raw corpus, we expect it to complement small annotated data.¹

For each subtask $m \in M$, the task-specific CRF [16] takes h_1, h_2, \ldots, h_N as the input and produces tagging decisions $y_m = y_{m,1}, y_{m,2}, \cdots, y_{m,N}$. h_t is first linearly transformed into $o_{m,t}$, whose dimension equals the number of tag types.

$$\boldsymbol{o}_{m,t} = \operatorname{softmax}(\boldsymbol{W}_m \boldsymbol{h}_t + \boldsymbol{b}_m) \tag{2}$$

 o_m is then used to calculate the probability of y_m :

$$p(\mathbf{y}_{m}|\mathbf{o}_{m}, \mathbf{T}_{m}) = \frac{\prod_{t=1}^{N+1} \exp(\mathbf{o}_{m,t}^{y_{m,t}} + \mathbf{T}_{m}^{y_{m,t-1},y_{m,t}})}{\sum_{\mathbf{y}_{m}' \in \mathbf{Y}_{m}} \prod_{t=1}^{N+1} \exp(\mathbf{o}_{m,t}^{y_{m,t}'} + \mathbf{T}_{m}^{y_{m,t-1}',y_{m,t}'})}, \quad (3)$$

¹In preliminary experiments, we also tested transfer learning from the latest version of the BCCWJ modality corpus [15]. It was a balanced corpus covering multiple domains. Although it was annotated with event class and factuality tags that were fully compatible with those of Matsuyoshi et al. [7], no annotation was available for modality expressions. We found no significant improvement with transfer learning, however. where $\sigma_{m,t}^{y_{m,t}} \in \mathbb{R}$ is the score for the output tag $y_{m,t}$ according to σ_m , and $T_m^{y_{m,t-1},y_{m,t}} \in \mathbb{R}$ is the score of transition from $y_{m,t-1}$ to $y_{m,t}$. At t = 0, the special token BOS (beginning of sentence) is assigned to $y_{m,t}$. Similarly, the special token EOS (end of sentence) is assigned to $y_{m,N+1}$.

Let D_m be the training data for task *m*. The task-specific objective function is defined as

$$\mathrm{NLL}_{m} = -\sum_{D_{m}} \log p(\mathbf{y}_{m} | \boldsymbol{o}_{m}, \boldsymbol{T}_{m}). \tag{4}$$

Finally, we define the objective function as a weighted sum of the task-specific objective functions:

$$\mathrm{NLL} = \sum_{m \in M} \alpha_m \mathrm{NLL}_m, \tag{5}$$

where $\alpha_m \geq 0$ and $\sum_{m \in M} \alpha_m = 1$. Here we employ the multiple gradient descent algorithm (MGDA) [17], and α_m is automatically tuned at each backward step.

IV. EVALUATION

A. EXPERIMENTAL SETTINGS

Table 2 summarizes the corpus specifications. We used Japanese Wikipedia for pre-training and the *shogi* commentary corpus [7], [8] for evaluation. We used automatic word segmentation by KyTea [18] for the former and gold standard word segmentation for the latter.

The *shogi* commentary corpus was annotated with event factuality and other linguistic phenomena. For evaluation, the dataset was partitioned into ten roughly equal-sized subsets. Out of these subsets, eight were employed for training,

Tag	Freq.	Model	F1	Prec.	Recl	Tag	Freq.	Model	F1	Prec.	Recl	
		Linear	0.130	0.140	0.129			Linear	0.100	0.167	0.071	
		PWNER	0.000	0.000	0.000			PWNER	0.022	0.050	0.014	
		ISTM	0.155	0.283	0.115			ISTM	0.156	0.250	0.110	
		±multi	0.155	0.083	0.040			+multi	0.183	0.230	0.132	
MEy	49	IMEE	0.004	0.005	0.040	EVa	39	IMEE	0.150	0.317	0.152	
		PEDT	0.090	0.235	0.050			PEDT	0.150	0.520	0.117	
		DERI	0.190	0.220	0.179			DERI	0.500	0.501	0.241	
		+multi	0.069	0.150	0.050			+multi	0.329	0.560	0.237	
		+MEF	0.075	0.093	0.070			+MEF	0.424	0.503	0.433	
		Linear	0.557	0.676	0.476			Linear	0.034	0.131	0.023	
		PWNER	0.607	0.726	0.525			PWNER	0.288	0.657	0.202	
		LSTM	0.613	0.674	0.568			LSTM	0.314	0.570	0.237	
MEa	224	+multi	0.625	0.681	0.582	EVa	111	+multi	0.283	0.452	0.219	
willa	224	+MEF	0.656	0.757	0.585	Lid	111	+MEF	0.219	0.384	0.173	
		BERT	0.693	0.673	0.720			BERT	0.583	0.703	0.587	
		+multi	0.692	0.717	0.676			+multi	0.606	0.643	0.629	
		+MEF	0.686	0.696	0.688			+MEF	0.668	0.688	0.687	
		Linear	0.648	0.588	0.729			Linear	0.164	0.500	0.102	
		PWNER	0.604	0.635	0.581			PWNER	0.361	0.549	0.271	
		LSTM	0.602	0.671	0.559			LSTM	0.427	0.533	0.361	
	1.50	+multi	0.565	0.588	0.551		202	+multi	0.427	0.480	0.392	
ME0	158	+MEF	0.590	0.616	0.572	EVI	/0/	+MEF	0.426	0.484	0.390	
		BERT	0.708	0.702	0.721			BERT	0.616	0.618	0.623	
		+multi	0.658	0.640	0.687			+multi	0.612	0.646	0.606	
		+MEF	0.713	0.675	0.765			+MEF	0.562	0.681	0.548	
		Linear	0.817	0.889	0.770			Linear	0.095	0.071	0.143	
	PWNER	0.413	0.556	0 344			PWNER	0.000	0.000	0.000		
		LSTM	0.672	0 778	0.622			LSTM	0.500	0.500	0.500	
		+multi	0.706	0.778	0.659			+multi	0.429	0.429	0.429	
MEm 21	+MEE	0.649	0.778	0.581	EVp	7	+MEE	0.571	0.571	0.571		
	BERT	0.854	0.944	0.826			BERT	0.667	0.643	0.714		
	⊥multi	0.758	0.833	0.733			⊥multi	0.286	0.286	0.286		
		+MEE	0.743	0.833	0.715			+MEE	0.280	0.200	0.429	
		Lincor	0.745	0.691	0.713			Lincer	0.000	0.000	0.429	
		DWNED	0.729	0.001	0.797			DWNED	0.000	0.000	0.000	
	ISTM	0.791	0.832	0.747			ISTM	0.000	0.000	0.000		
		LOIN	0.800	0.830	0.795			Loiwi	0.000	0.000	0.000	
MEn	269	MEE	0.757	0.054	0.773	EVs	4	MEE	0.000	0.000	0.000	
		PEDT	0.700	0.815	0.751			+MEF DEDT	0.000	0.000	0.000	
		DERI	0.800	0.870	0.001			DEKI	0.000	0.000	0.000	
		+muiu	0.800	0.895	0.840			+mulu	0.000	0.000	0.000	
		+IVIEF	0.802	0.880	0.852			+NIEF	0.000	0.000	0.000	
		Linear	0.905	0.900	0.912			Linear	0.686	0.671	0.703	
		PWNER	0.928	0.930	0.927			PWNER	0.805	0.795	0.815	
		LSIM	0.913	0.926	0.903			LSIM	0.757	0.791	0.730	
MEp	692	+multi	0.913	0.909	0.918	EVe	3092	+multi	0.745	0.813	0.690	
•		+MEF	0.904	0.907	0.903			+MEF	0.739	0.804	0.080	
		BERI	0.941	0.935	0.948			BERT	0.862	0.858	0.873	
		+multi	0.936	0.935	0.938			+multi	0.863	0.864	0.870	
		+MEF	0.941	0.935	0.947			+MEF	0.858	0.855	0.872	
		Linear	0.383	0.680	0.305			Linear	0.639	0.765	0.568	
		PWNER	0.662	0.867	0.557			PWNER	0.717	0.843	0.631	
		LSTM	0.628	0.757	0.562			LSTM	0.709	0.770	0.670	
MEf	59	+multi	0.617	0.783	0.566	EVc	293	+multi	0.720	0.785	0.681	
		+MEF	0.622	0.818	0.536	_ • •	370	+MEF	0.704	0.759	0.666	
		BERT	0.618	0.746	0.570			BERT	0.708	0.742	0.689	
	+multi	0.560	0.775	0.498			+multi	0.700	0.730	0.682		
	+MEF	0.666	0.792	0.597			+MEF	0.732	0.794	0.698		
		Linear	0.646	0.768	0.573			Linear	0.769	0.853	0.701	
		PWNER	0.547	0.706	0.454			PWNER	0.802	0.863	0.750	
		LSTM	0.624	0.807	0.526			LSTM	0.803	0.815	0.795	
MFb	150	+multi	0.635	0.739	0.569	FVf	761	+multi	0.784	0.816	0.757	
MEn 150	+MEF	0.581	0.777	0.490	LIVI	701	+MEF	0.801	0.833	0.773		
	BERT	0.812	0.809	0.830			BERT	0.858	0.843	0.878		
		+multi	0.689	0.695	0.703			+multi	0.848	0.843	0.855	
	+MEF	0.720	0.698	0.752			+MFF	0.854	0.840	0.862		

TABLE 8. Tag-wise statistics of the performances on modality expressions (left), event classes (center), and event factuality (right). Linear, LSTM, and BERT refer to Linear CRF, BiLSTM-CRF, and BERT-CRF, respectively.

Free Proof Provide	Tag	Freq.	Model	F1	Prec.	Recl		
Free Pr			Linear	0.600	0.603	0.600		
$ \begin{array}{c} {} {\rm FPc} {\rm \ \ } \begin{array}{c} {\rm 2645} \\ {\rm \ } {\rm \ \ \ } {\rm \ \ } {\rm \ } {\rm \ } {\rm \ \ } {\rm \ \ } {\rm \ } {\rm \$			PWNER	0.777	0.805	0.751		
FPc 2645 +multi +MEF 0.729 0.805 0.671 BERT 0.851 0.869 0.843 +multi 0.853 0.873 0.846 +MEF 0.728 0.814 0.661 BERT 0.851 0.869 0.843 +multi 0.853 0.873 0.846 +MEF 0.854 0.860 0.333 0.030 PWNER 0.297 0.564 0.201 Linear 0.051 0.442 0.219 +multi 0.531 0.602 0.542 +multi 0.531 0.602 0.542 +multi 0.540 0.571 0.535 JMEF 0.540 0.571 0.535 JMEF 0.540 0.571 0.535 JMEF 0.207 0.550 0.242 PWNER 0.207 0.550 0.242 BERT 0.514 0.675 0.443 +mult 0.228 0.356 <			LSTM	0.720	0.813	0.653		
FPc 2643 +MEF 0.728 0.814 0.661 BERT 0.851 0.869 0.843 +MEF 0.851 0.869 0.843 +MEF 0.851 0.869 0.843 -WEF 0.854 0.860 0.860 Linear 0.054 0.333 0.030 PWNER 0.297 0.564 0.204 LSTM 0.287 0.442 0.219 +MEF 0.326 0.492 0.250 BERT 0.531 0.602 0.551 +MEF 0.573 0.581 0.585 +MEF 0.517 0.555 + FNs 1.5TM 0.244 0.400 0.189 +MEF 0.290 0.500 0.241 0.160 +MEF 0.290 0.500 0.241 0.400 BERT 0.517 0.243 0.244 0.407 Hufi 0.287 0.433 0.244 0.243 <	ED-	2645	+multi	0.729	0.805	0.671		
BERT +multi 0.851 0.853 0.869 0.843 0.846 0.860 0.843 0.860 +MEF 0.853 0.873 0.846 +MEF 0.854 0.860 0.860 Linear 0.054 0.333 0.030 PWNER 0.297 0.442 0.219 +multi 0.313 0.602 0.544 +MEF 0.326 0.492 0.250 BERT 0.531 0.602 0.542 +multi 0.540 0.571 0.535 +multi 0.540 0.571 0.535 +multi 0.242 0.400 0.160 PWNER 0.465 0.667 0.373 Linear 0.000 0.000 0.200 PWNER 0.466 0.720 0.541 +multi 0.227 0.433 0.244 +MEF 0.280 0.517 0.275 Linear 0.000 0.000 0.000 +MEF 0.288 0.517 0.274	FPC	2045	+MEF	0.728	0.814	0.661		
+multi 0.853 0.873 0.846 +MEF 0.854 0.860 0.860 Linear 0.054 0.333 0.030 PWNER 0.297 0.564 0.201 LISTM 0.287 0.442 0.213 +multi 0.313 0.475 0.243 +MEF 0.326 0.492 0.250 BERT 0.531 0.602 0.542 +MEF 0.573 0.585 0.860 FPN 35 +MEF 0.500 0.000 JUNE 0.465 0.667 0.373 Linear 0.000 0.000 0.000 BERT 0.511 0.675 0.443 +multi 0.287 0.433 0.244 +MEF 0.300 0.200 0.517 FNc 140 +multi 0.237 0.550 0.242 FNr 140 +multi 0.237 0.566 0.709 HER 0.616			BERT	0.851	0.869	0.843		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			+multi	0.853	0.873	0.846		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			+MEF	0.854	0.860	0.860		
Free First Firs			Linear	0.054	0.333	0.030		
$ \begin{array}{c} {\rm FPr} \\ {\rm FPr} \\ {\rm Pr} \\ {\rm 233} \\ \begin{array}{c} {\rm Linear} \\ {\rm FWE} \\ {\rm rhuli} \\ {\rm 0.313} \\ {\rm 0.475} \\ {\rm 0.475} \\ {\rm 0.326} \\ {\rm 0.492} \\ {\rm 0.250} \\ {\rm 0.573} \\ {\rm 0.573} \\ {\rm 0.573} \\ {\rm 0.573} \\ {\rm 0.581} \\ {\rm 0.581} \\ {\rm 0.571} \\ {\rm 0.581} \\ {\rm 0.581} \\ {\rm 0.573} \\ {\rm 0.581} \\ {\rm 0.581} \\ {\rm 0.581} \\ {\rm 0.573} \\ {\rm 0.581} \\ {\rm 0.581} \\ {\rm 0.581} \\ {\rm 0.573} \\ {\rm 0.581} \\ {\rm 0.511} \\ {\rm 0.571} \\ {\rm 0.511} \\ {\rm 0.571} \\ {\rm 0.581} \\ {\rm 0.511} \\ {\rm 0.571} \\ {\rm 0.511} \\ {\rm 0.571} \\ {\rm 0.571} \\ {\rm 0.511} \\ {\rm 0.571} \\ {\rm 0.571} \\ {\rm 0.511} \\ {\rm 0.571} \\ {\rm 0.571} \\ {\rm 0.511} \\ {\rm 0.571} \\ {\rm 0.571} \\ {\rm 0.511} \\ {\rm 0.571} \\ {\rm 0.571} \\ {\rm 0.511} \\ {\rm 0.571} \\ {\rm 0.571} \\ {\rm 0.511} \\ {\rm $			PWNER	0.297	0.564	0.204		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			LSTM	0.287	0.442	0.219		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ED.	222	+multi	0.313	0.475	0.243		
FNc 140 ERT +multi +multi 0.540 0.531 0.531 0.602 0.571 0.532 0.581 FPs 35 +MEF +MEF 0.500 0.000 0.000 PWNER 0.465 0.667 0.373 LSTM 0.244 0.400 0.189 +multi 0.207 0.350 0.160 +MEF 0.200 0.500 0.210 BERT 0.514 0.675 0.443 +MEF 0.606 0.720 0.547 LSTM 0.287 0.433 0.244 +MEF 0.606 0.720 0.547 LSTM 0.227 0.446 0.212 #MEF 0.327 0.550 0.242 LSTM 0.272 0.446 0.212 #MEF 0.289 0.600 0.000 HMEF 0.289 0.600 0.201 #MEF 0.327 0.500 0.245 LSTM 0.000 0.000 0.000 HMEF 0.0	FPT	255	+MEF	0.326	0.492	0.250		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			BERT	0.531	0.602	0.542		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			+multi	0.540	0.571	0.535		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			+MEF	0.573	0.581	0.585		
$ Fns \ \ \ \ \ \ \ \ \ \ \ \ \ $			Linear	0.000	0.000	0.000		
FPs 35 +multi +multi 0.207 0.350 0.350 0.189 0.350 +MEF 0.297 0.350 0.160 +MEF 0.290 0.500 0.210 BERT 0.514 0.675 0.443 +multi 0.287 0.333 0.244 +multi 0.287 0.433 0.244 +multi 0.287 0.433 0.244 +multi 0.287 0.433 0.244 +multi 0.227 0.446 0.212 FNc 140 +multi 0.227 0.446 0.212 FNr 140 +multi 0.225 0.550 0.279 +MEF 0.598 0.669 0.668 0.584 +MEF 0.500 0.000 0.000 0.000 FNr 34 +MEF 0.000 0.000 0.000 FWF 0.100 0.125 0.100 0.125 FNr 34 -MEF 0.000 0.000 0.000			PWNER	0.465	0.667	0.373		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			LSTM	0.244	0.400	0.189		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	FPs	25	+multi	0.207	0.350	0.160		
FNr 34 EBRT +multi +MEF 0.614 0.606 0.720 0.433 0.244 0.247 FNr 140 +MEF 0.606 0.720 0.547 FNr 140 +MEF 0.605 0.242 0.037 FNr 140 +MEF 0.205 0.245 LSTM 0.272 0.446 0.212 +MUII 0.235 0.356 0.179 +MEF 0.289 0.600 0.001 +MEF 0.289 0.600 0.000 +MEF 0.000 0.000 0.000 LSTM 0.000 0.000 0.000 LSTM 0.000 0.000 0.000 LSTM 0.000 0.000 0.000 LSTM 0.000 0.000 0.000 +MEF 0.100 0.125 0.100 +MEF 0.000 0.000 0.000 +MEF 0.000 0.000 0.000 +MEF 0.000 0.000 0.000		35	+MEF	0.290	0.500	0.210		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			BERT	0.514	0.675	0.443		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			+multi	0.287	0.433	0.244		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			+MEF	0.606	0.720	0.547		
$ FNc \ \ \ \ \ \ \ \ \ \ \ \ \ $			Linear	0.059	0.242	0.037		
$ FNc \ \ \ \ \ \ \ \ \ \ \ \ \ $			PWNER	0.327	0.550	0.245		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			LSTM	0.272	0.446	0.212		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ENI-	140	+multi	0.235	0.356	0.179		
${\rm FNr} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$	FINC	140	+MEF	0.289	0.517	0.207		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			BERT	0.573	0.626	0.570		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			+multi	0.616	0.658	0.584		
$ FNr \begin{array}{c ccccccccccccccccccccccccccccccccccc$			+MEF	0.598	0.609	0.636		
$ FNr 34 \begin{array}{c} {\sf PWNER} \\ {\sf LSTM} \\ {\sf 0.000} \\ {\sf 0.150} \\ {\sf -multi} \\ {\sf 0.149} \\ {\sf 0.128} \\ {\sf 0.100} \\ {\sf 0.125} \\ {\sf 0.100} \\ {\sf 0.125} \\ {\sf 0.100} \\ {\sf 0.000} \\$			Linear	0.000	0.000	0.000		
$ \begin{array}{c c} FNr & 34 & {\color{red}{l}} & LSTM & 0.000 & 0.000 & 0.000 \\ {\color{red}{+multi}} & 0.000 & 0.000 & 0.000 \\ {\color{red}{+MEF}} & 0.000 & 0.000 & 0.000 \\ {\color{red}{+multi}} & 0.149 & 0.150 \\ {\color{red}{+multi}} & 0.149 & 0.283 & 0.125 \\ {\color{red}{+multi}} & 0.100 & 0.120 & 0.000 \\ {\color{red}{+multi}} & 0.000 & 0.000 \\ {\color{red}{+multi}} & 0.000 & 0.0$			PWNER	0.000	0.000	0.000		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			LSTM	0.000	0.000	0.000		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ENI	24	+multi	0.000	0.000	0.000		
$FNs \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.181	34	+MEF	0.000	0.000	0.000		
+multi 0.149 0.283 0.125 +MEF 0.100 0.125 0.100 Linear 0.000 0.000 0.000 PWNER 0.000 0.000 0.000 FNs 4 +MEF 0.333 0.333 0.333 BERT 0.000 0.000 0.000 0.000 +MEF 0.333 0.333 0.333 0.333 BERT 0.000 0.000 0.000 0.000 +MEF 0.000 0.000 0.000 0.000			BERT	0.137	0.190	0.150		
+MEF 0.100 0.125 0.100 Linear 0.000 0.000 0.000 PWNER 0.000 0.000 0.000 LISTM 0.000 0.000 0.000 +multi 0.000 0.000 0.000 +MEF 0.333 0.333 0.333 BERT 0.000 0.000 0.000 +multi 0.000 0.000 0.000 +MEF 0.000 0.000 0.000			+multi	0.149	0.283	0.125		
$FNs \begin{array}{c} \mbox{Linear} & 0.000 & 0.000 & 0.000 \\ \mbox{PWNER} & 0.000 & 0.000 & 0.000 \\ \mbox{LSTM} & 0.000 & 0.000 & 0.000 \\ \mbox{+multi} & 0.000 & 0.000 & 0.000 \\ \mbox{+MEF} & 0.333 & 0.333 \\ \mbox{BERT} & 0.000 & 0.000 & 0.000 \\ \mbox{+multi} & 0.000 & 0.000 & 0.000 \\ \mbox{+MEF} & 0.000 & 0.000 & 0.000 \end{array}$			+MEF	0.100	0.125	0.100		
${\rm FNs} ~~4 ~~ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Linear	0.000	0.000	0.000		
$ \begin{array}{c} FNs \end{array} \begin{array}{c} {\color{red} \textbf{LSTM}} & 0.000 & 0.000 & 0.000 \\ {\color{red} \textbf{+multi}} & 0.000 & 0.000 & 0.000 \\ {\color{red} \textbf{+MEF}} & 0.033 & 0.333 & 0.333 \\ {\color{red} \textbf{BERT}} & 0.000 & 0.000 & 0.000 \\ {\color{red} \textbf{+multi}} & 0.000 & 0.000 & 0.000 \\ {\color{red} \textbf{+MEF}} & 0.000 & 0.000 & 0.000 \end{array} $			PWNER	0.000	0.000	0.000		
FNs 4 +multi +MEF 0.000 0.333 0.300 0.333 0.300 0.000 0.000 0.000 +multi 0.000 0.000 0.000 0.000 +multi 0.000 0.000 0.000 0.000 +MEF 0.000 0.000 0.000 0.000			LSTM	0.000	0.000	0.000		
+MEF 0.333 0.333 0.333 BERT 0.000 0.000 0.000 0.000 +multi 0.000 0.000 0.000 0.000 +MEF 0.000 0.000 0.000 0.000	FNs	۵	+multi	0.000	0.000	0.000		
BERT 0.000 0.000 0.000 +multi 0.000 0.000 0.000 +MEF 0.000 0.000 0.000	1145	4	+MEF	0.333	0.333	0.333		
+multi 0.000 0.000 0.000 +MEF 0.000 0.000 0.000			BERT	0.000	0.000	0.000		
+MEF 0.000 0.000 0.000					+multi	0.000	0.000	0.000
			+MEF	0.000	0.000	0.000		

one for development, and the remaining one for evaluation. Hyper-parameters were tuned using the development set. This procedure was repeated ten times, with a distinct subset chosen for evaluation in each run. We averaged micro F-1 scores of the ten outcomes.

B. MODELS

As a baseline non-neural model, we used **Linear CRF**, a CRF model with sparse hand-crafted features. It directly outputs tags for each of the four subtasks. As shown in Table 3, the features used were word and POS *n*-grams ($n \le 3$) taking into account three words on the both sides as well as the target word itself. We used KyTea [18] to obtain POS tags. We also tested **PWNER**² an off-the-shelf non-neural

sequence labeling tool. **PWNER** was used by the creators of the annotated corpus to provide initial evaluations [7].

For the proposed neural network-based method, we tested **BiLSTM-CRF** and **BERT-CRF**. Their sentence encoders were BiLSTM and BERT, respectively. The models with multi-task learning (+**multi**) were compared against the models without it (unmarked). In the absence of multi-task learning, we obtained fine-tuned BERT models for individual subtasks, leading to practical challenges in their simultaneous execution. We also tested multi-task learning focusing on modality expressions, event classes, and event factuality (+**MEF**), or in other words, excluding named entity recognition.

In the pre-training step for BERT, we first segmented sentences to word sequences with KyTea [18] and then split each word into subwords by WordPiece [19], with the vocabulary size of 32,000. We used Adam [20] as the optimization algorithm.

²http://www.lsta.media.kyoto-u.ac.jp/resource/tool/PWNER/home-e. html

The details of network configurations are shown in Tables 4 and 5. For the **BiLSTM-CRF** model, 64×2 dimensional vectors are fed into a CRF layer for each task because the outputs of the forward and backward LSTMs are concatenated into one. For **BERT-CRF**, 768 dimensional vectors are fed into a CRF layer for each. In both models, dropout [21] was applied to each layer.

C. RESULTS AND DISCUSSION

The main results are shown in Table 6. Overall, **BERT-CRF** performed the best. It consistently beat **BiLSTM-CRF** with large margins. Non-neural **PWNER** worked surprisingly well, especially for event classes and event factuality.

Multi-task learning (+**multi**) yielded no clear gains or losses. **BERT-CRF+multi** performed relatively poorly for NE. As indicated by Table 2, the number of NE tags were much larger than the numbers of event-related tags. These motivated us to try **+MEF**, but it brought no consistent changes either.

For further analyses, we calculated tag-wise statistics. For the detailed description of tag types, please refer to Mori et al. [8] and Matsuyoshi et al. [7]. Tables 7 and 8 show the results of the four subtasks. In these tables, "Freq." indicates the number of instances for each tag type in the corpus. Most noticeable is that the frequencies are skewed toward some tag types. **BERT-CRF** performed relatively well for low-frequency tags, demonstrating the effectiveness of pre-training. Again, we observed no clear trend for the effect of **+multi**.

As we discussed in Section I, multi-task learning, or more precisely, parameter sharing among subtasks, has a practical advantage in computational efficiency because running multiple variants of fine-tuned BERT at inference time can be prohibitively expensive. The absence of any performance gain or decline due to multi-task learning leads us to the conclusion that **BERT-CRF** combined with multi-task learning stands as the pragmatic selection for event factuality analysis.

V. CONCLUSION

We proposed a deep neural network model for Japanese event factuality analysis. We combined pre-training, multi-task learning, and other techniques to achieve high performance for this important task. We reconfirmed that pre-training was highly effective in enhancing accuracy. While multi-task learning does not improve accuracy, it saves us from running multiple variants of huge fine-tuned models. Our experiments led us to conclude that BERT-CRF combined with multi-task learning represents the practical choice for performing event factuality analysis.

Although our experiments employed a *shogi* (Japanese chess) commentary corpus, the proposed method is applicable to other domains if the task is designed in a similar way. In the future, we will apply the proposed approach to other domains, possibly with knowledge transfer from the *shogi* domain. We would also like to use event factuality

REFERENCES

- R. Saurí and J. Pustejovsky, "Are you sure that this happened? Assessing the factuality degree of events in text," *Comput. Linguistics*, vol. 38, no. 2, pp. 261–299, Jun. 2012.
- [2] M.-C. de Marneffe, C. D. Manning, and C. Potts, "Did it happen? The pragmatic complexity of veridicality assessment," *Comput. Linguistics*, vol. 38, no. 2, pp. 301–333, Jun. 2012.
- [3] A. Lotan, A. Stern, and I. Dagan, "TruthTeller: Annotating predicate truth," in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics, Human Lang. Technol., Atlanta, Georgia, 2013, pp. 752–757.
- [4] K. Lee, Y. Artzi, Y. Choi, and L. Zettlemoyer, "Event detection and factuality assessment with non-expert supervision," in *Proc. Conf. Empirical Methods Natural Lang. Process.*, Lisbon, Portugal, 2015, pp. 1643–1648.
- [5] G. Stanovsky, J. Eckle-Kohler, Y. Puzikov, I. Dagan, and I. Gurevych, "Integrating deep linguistic features in factuality prediction over unified datasets," in *Proc. 55th Annu. Meeting Assoc. Comput. Linguistics*, Vancouver, BC, Canada, 2017, pp. 352–357.
- [6] R. Rudinger, A. S. White, and B. Van Durme, "Neural models of factuality," in *Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics, Human Lang. Technol.*, New Orleans, Louisiana, 2018, pp. 731–744.
- [7] S. Matsuyoshi, H. Kameko, Y. Murawaki, and S. Mori, "Annotating modality expressions and event factuality for a Japanese chess commentary corpus," in *Proc. 11th Int. Conf. Lang. Resour. Eval.*, K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, T. Tokunaga, Eds. Miyazaki, Japan, May 2018, pp. 2475–2481.
- [8] S. Mori, J. Richardson, A. Ushiku, T. Sasada, H. Kameko, and Y. Tsuruoka, "A Japanese chess commentary corpus," in *Proc. 10th Int. Conf. Lang. Resour. Eval.*, Portoroz, Slovenia, 2016, pp. 1415–1420.
- [9] Y. Kamioka, K. Narita, J. Mizuno, M. Kanno, and K. Inui, "Semantic annotation of Japanese functional expressions and its impact on factuality analysis," in *Proc. 9th Linguistic Annotation Workshop*, Denver, CO, USA, 2015, pp. 52–61.
- [10] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, "Natural language processing (almost) from scratch," *J. Mach. Learn. Res.*, vol. 12 pp. 2493–2537, Aug. 2011.
- [11] A. Søgaard and Y. Goldberg, "Deep multi-task learning with low level tasks supervised at lower layers," in *Proc. 54th Annu. Meeting Assoc. Comput. Linguistics*, Berlin, Germany, 2016, pp. 231–235.
- [12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT: Pretraining of deep bidirectional transformers for language understanding," in *Proc. Annu. Conf. North Amer. Chapter Assoc. Comput. Linguistics, Human Lang. Technol.*, Minneapolis, Minnesota, 2019, pp. 4171–4186.
- [13] T. K. Sang and F. De Meulder, "Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition," in *Proc. 7th Conf. Natural Lang. Learn. HLT-NAACL*, 2003, pp. 142–147. [Online]. Available: https://ifarm.nl/erikt/papers/
- [14] S. Hochreiter and J. Schmidhuber, "Long short-term memory," *Neural Comput.*, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.
- [15] S. Matsuyoshi, M. Eguchi, C. Sao, K. Murakami, K. Inui, and Y. Matsumoto, "Annotating event mentions in text with modality, focus, and source information," in *Proc. 7th Int. Conf. Lang. Resour. Eval.*, Valletta, Malta, 2010, pp. 1456–1463.
- [16] J. Lafferty, A. McCallum, and F. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data," in *Proc. 18th Int. Conf. Mach. Learn.* San Francisco, CA, USA: Morgan Kaufmann, 2001, pp. 282–289.
- [17] O. Sener and V. Koltun, "Multi-task learning as multi-objective optimization," in *Proc. Adv. Neural Inf. Process. Syst.*, vol. 31. Long Beach, CA, USA: Curran Associates, 2018, pp. 525–536. [Online]. Available: https://www.proceedings.com/39083.html
- [18] G. Neubig, Y. Nakata, and S. Mori, "Pointwise prediction for robust, adaptable Japanese morphological analysis," in *Proc. 49th Annu. Meeting Assoc. Comput. Linguistics, Human Lang. Technol.*, Portland, OR, USA, Jun. 2011, pp. 529–533.

- [19] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, and J. Klingner, "Google's neural machine translation system: Bridging the gap between human and machine translation," 2016, arXiv:1609.08144.
- [20] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," 2014, arXiv:1412.6980.
- [21] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," *J. Mach. Learn. Res.*, vol. 15, no. 1, pp. 1929–1958, 2014.

SUGURU MATSUYOSHI received the B.S. degree in mathematics and the M.S. and Ph.D. degrees in informatics from Kyoto University, Kyoto, Japan, in 2003, 2005, and 2008, respectively. Then, he was an Assistant Professor with the Nara Institute of Science and Technology, University of Yamanashi, and the University of Electro-Communications. Since 2021, he has been a Lecturer with the Graduate School of Bionics, Computer and Media Sciences, Tokyo University

of Technology. His research interests include computational linguistics and natural language processing. He is a member of Information Processing Society of Japan and the Association for Natural Language Processing.

HIROTAKA KAMEKO received the B.E., M.E., and Ph.D. degrees from the University of Tokyo, in 2013, 2015, and 2018, respectively. He is currently an Assistant Professor with the Academic Center for Computing and Media Studies, Kyoto University. His research interests include natural language processing and game AI. He is a member of IPSJ and ANLP.

YUGO MURAWAKI received the B.S., M.S., and Ph.D. degrees from Kyoto University, in 2006, 2008, and 2011, respectively. From 2013 to 2015, he was an Assistant Professor with the Graduate School and the Faculty of Information Science and Electrical Engineering, Kyushu University. In 2016, he re-joined the Graduate School of Informatics, Kyoto University, as an Assistant Professor. Subsequently, he was a Senior Lecturer, in 2020, and further ascended to the role of an

Associate Professor, in 2023, where he currently holds his position. His research interests include natural language processing and computational linguistics. He is a member of the Association for Natural Language Processing and the Information Processing Society of Japan.

SHINSUKE MORI received the B.S., M.S., and Ph.D. degrees in electrical engineering from Kyoto University, Kyoto, Japan, in 1993, 1995, and 1998, respectively. Then, he joined the Tokyo Research Laboratory of International Business Machines Company Ltd., (IBM). Since 2007, he has been an Associate Professor with the Academic Center for Computing and Media Studies, Kyoto University. He is currently a Professor. His research interests include computational linguistics and natural lan-

guage processing. He received the IPSJ Yamashita SIG Research Award, in 1997, the IPSJ Best Paper Award, in 2010 and 2013, and the 58th OHM Technology Award from Promotion Foundation for Electrical Science and Engineering, in 2010. He is a member of the Information Processing Society of Japan, the Association for Natural Language Processing, the Database Society of Japan, and the Association for Computational Linguistics.