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We study decuplet baryons from meson–baryon interactions in lattice quantum chromo-
dynamics (QCD), in particular, � and � baryons from P-wave I = 3/2 Nπ and I = 0 �K̄
interactions, respectively. Interaction potentials are calculated in the HAL QCD method
using 3-quark-type source operators at mπ ≈ 410 MeV and mK ≈ 635 MeV, where � as
well as � baryons are stable. We use the conventional stochastic estimate of all-to-all prop-
agators combined with the all-mode averaging to reduce statistical fluctuations. We have
found that the �K̄ system has a weaker attraction than the Nπ system while the bind-
ing energy from the threshold is larger for � than �. This suggests that an inequality
mN + mπ − m� < m� + mK̄ − m� comes mainly from a smaller spatial size of a �K̄ bound
state due to a larger reduced mass, rather than its interaction. Root-mean-square distances
of bound states in both systems are small, indicating that � and � are tightly bound states
and thus can be regarded qualitatively as composite states of three quarks. Results of bind-
ing energies agree with those obtained from temporal two-point functions within large sys-
tematic errors, which arise dominantly from the lattice artifact at short distances.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Introduction
Most hadrons have been understood well in the quark model, while exceptions, called exotic
hadrons, were found in various experiments recently [1]. Exploring properties or internal struc-
tures of such exotic hadrons using quantum chromodynamics (QCD) is one of the biggest issues
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in hadron physics. Since exotic hadrons typically appear as resonances due to nonperturbative
QCD interactions, theoretical studies from first-principles lattice QCD are mandatory.

Properties of hadron resonances such as masses and decay rates are evaluated from hadron
scatterings. The conventional method to analyze hadron scatterings in lattice QCD is the finite-
volume method [2,3], which relates energies on finite volume(s) to scattering amplitudes on the
infinite volume. An alternative method is the HAL QCD method [4–6], in which we extract in-
teraction potentials directly in lattice QCD and then obtain scattering amplitudes from poten-
tials by solving the Schorödinger equations in the infinite volume. This method is particularly
advantageous to study systems involving baryons [7].

As a first step toward understandings of exotic hadrons including pentaquarks, we focus our
attention on decuplet baryons, spin 3/2 baryons symmetric under quark flavor exchanges, since
all decuplet baryons except � appear as resonances. There are studies on decay properties of
the process � → Nπ by extracting the transfer matrix elements in lattice QCD [8,9], and there
are also several studies on the Nπ scatterings for the � baryon in the finite-volume method at
the lighter quark masses [10–14], where signals of the � as a resonance are observed.

In this paper, as a first analysis for decuplet baryons in the HAL QCD method, we investi-
gate the question of why � appears as a stable particle below the �K̄ threshold while others
such as � become resonances. Historically, the decuplet baryons have been studied from the
three-quark state picture in flavor SU(3) symmetry. They belong to a ten-dimensional repre-
sentation with similar masses and the mass splittings can also be explained by the Gell-Mann–
Okubo mass formula. In this picture, the difference between � and � seems to be explained by
the quark mass (mq) dependence of the meson and baryon thresholds; the pseudoscalar me-
son masses are proportional to

√
mq while the baryon masses linearly depend on mq. On the

other hand, the difference between � and � becomes more nontrivial once we investigate these
states from the scattering theory with meson–baryon degrees of freedom (dof). This approach,
however, could have a broader utility since it can handle a bound state and a resonance on
equal footing and applications to exotic hadrons are possible. We thus re-examine the decuplet
baryons from the aspects of meson–baryon dof by first-principles lattice QCD calculations
in this study. To this end, we extract the �K̄ potential for � and the Nπ potential for � in
the HAL QCD method, and make a comparison between them. To reduce huge computa-
tional costs required for these scattering channels, we employ heavier quark masses, where u,
d quark masses are chosen at the value close to the s quark mass with slightly broken SU(3)
flavor symmetry. While both � and � appear as stable particles in this setup, an inequality
mN + mπ − m� < m� + mK̄ − m� still holds as seen in previous lattice QCD results [15], and
we can investigate the rephrased question, “what is the physical origin which brings this hier-
archy?” As we will show later, the HAL QCD method is particularly useful for this purpose,
since it can directly extract the interaction potentials and distinguish two possible origins of the
hierarchy, one from the difference in interactions and another from difference in kinematics.

This paper is organized as follows. In Section 2, we briefly review the HAL QCD method
in meson–baryon systems. We define Nπ and �K̄ three-point correlation functions and their
radial/spherical decompositions in Section 3, and show simulation details in Section 4. In Sec-
tion 5, we present potentials for Nπ and �K̄, explain the fitting procedure of the potentials,
and show numerical results of observables such as scattering phase shifts, binding energies, and
root-mean-square distances. Section 6 is devoted to a conclusion of this paper. Some technical
details and additional contents related to our study are discussed in appendices.
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2. HAL QCD method in meson–baryon systems
We define a meson–baryon potential Uαβ(r, r

′
) in the HAL QCD method [4,5] as∫

d3r′ Uαβ (r, r′)	W
β (r′) =

(
k2

2μ
− H0

)
	W

α (r), (1)

where W is a total energy, k is a relative momentum in the center-of-mass frame, α, β are in-
dices for upper spin components, μ is a reduced mass, and H0 is a free Hamiltonian. The total

energy W is related to k as W =
√

k2 + m2
M +

√
k2 + m2

B, where mM and mB are meson and

baryon masses, respectively. An equal-time Nambu-Bethe-Salpeter (NBS) wave function 	W
α (r)

is defined by

	W
α (r) = 〈0|M(r, 0)Bα(0, 0)|MB;W 〉 , (2)

where |0〉 is a vacuum state in QCD, M(x, t) and Bα(x, t) are meson and baryon operators at
spacetime (x, t), respectively, and |MB; W〉 is a meson–baryon state with energy W. The po-
tential Uαβ(r, r

′
) in Eq. (1) is energy-independent and nonlocal. Once the potential Uαβ(r, r

′
)

is obtained, we can extract an S-matrix for the meson–baryon scattering by solving the corre-
sponding Schrödinger equation.

In our study, we employ the time-dependent HAL QCD method [6], an improved version of
the original HAL QCD method, to extract potentials in lattice QCD. In this method, we first
define an R-correlator as

Rα(r, t) ≡ Fα(r, t)
CM (t)CB(t)

, (3)

where CM(t) and CB(t) are two-point correlation functions for the meson and baryon, respec-
tively, and F is an n-point correlation function (n > 2) of the meson–baryon system, which is
given by

Fα(r, t) = 〈
0|M(r + x, t + t0)Bα(x, t + t0) J̄MB(t0)|0〉 , (4)

where J̄MB(t0) is the source operator at timeslice t0, which creates meson–baryon states with
the quantum numbers of interest from the vacuum. The R-correlator can be decomposed into
contributions from elastic and inelastic states as

Rα(r, t) =
∑

n

An	
Wn
α (r) e−�Wnt + (inelastic contributions), (5)

where Wn is the energy of the nth eigenstates, An is a coefficient independent of r and α, and
�Wn = Wn − mM − mB is an energy difference from the threshold. Eq. (1) implies that each
term in the elastic part, An	

Wn
α (r)e−�Wnt, satisfies(

k2
n

2μ
− H0

)
An	

Wn
α (r)e−�Wnt =

∫
d3r′ Uαβ (r, r′)An	

Wn
β (r′)e−�Wnt, (6)

where k2
n/2μ can be expressed in terms of �Wn as

k2
n

2μ
= P (�Wn)

(�Wn/M + 1)2
, (7)

with M = mM + mB and

P (�Wn) = �Wn + μ + M
2μM

(�Wn)2 + 1
2μM

(�Wn)3 + 1
8μM2

(�Wn)4. (8)

We thus express k2
n by an expansion in terms of �Wn as

k2
n

2μ
= �Wn + 1 + 3δ2

8μ
(�Wn)2 + M2δ2

8μ

∞∑
k=3

(k + 1)
(−�Wn

M

)k

≡
∞∑

k=1

C(k)
mM ,mB

(�Wn)k, (9)
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where δ = (mM − mB)/M. Rewriting �Wn in this series in terms of time derivatives and summing
over n in Eq. (6), we obtain[ ∞∑

k=1

C(k)
mM ,mB

(
− ∂

∂t

)k

− H0

]
Rα(r, t) 


∫
d3r′ Uαβ (r, r′)Rβ (r′, t) (10)

for a large enough t to suppress inelastic contributions.
Applying the Okubo–Marshak expansion [16] to meson–baryon systems, the leading order

(LO) term of Uαβ(r, r
′
) in the derivative expansion is given by

Uαβ (r, r′) 
 V LO(r)δαβδ(3)(r − r′), (11)

where VLO(r) can be extracted from Rα(r, t) for any α as

V LO(r) 
 1
Rα(r, t)

[ ∞∑
k=1

C(k)
mM ,mB

(
− ∂

∂t

)k

− H0

]
Rα(r, t). (12)

We truncate an infinite summation over k by k ≤ 2 for Nπ and k ≤ 3 for �K̄, respectively, since
remaining higher-order contributions are negligibly small.1

3. Correlation functions with single-baryon source operators
In order to investigate interactions of P-wave I = 3/2 Nπ and I = 0 �K̄ systems in the HAL
QCD method at low energies, we use the following three-point correlation functions:

F Nπ
α, jz (r, t) =

〈
0
∣∣π+(r + x, t)pα(x, t) �̄++

jz (t0)
∣∣0〉 , (13)

F �K̄
α, jz (r, t) =

〈
0
∣∣∣ 1√

2
(K−(r + x, t)�0

α(x, t) − K̄0(r + x, t)�−
α (x, t)) �̄−

jz (t0)
∣∣∣0〉 , (14)

where sink operators are defined by

π+(x) = −id̄ (x)γ5u(x), K̄0(x) = −id̄ (x)γ5s(x), K−(x) = iū(x)γ5s(x), (15)

pα(x) = εabcua,α(x)
(
u T

b (x)Cγ5dc(x)
)

, (16)

�0
α(x) = εabcsa,α(x)(s T

b (x)Cγ5uc(x)), �−
α (x) = εabcsa,α(x)(s T

b (x)Cγ5dc(x)). (17)

Since we expect bound decuplet baryons to appear below thresholds, we employ three-quark-
type decuplet baryon operators at the source, where the explicit forms are given by

D+ 3
2
(t0) =

∑
z

εabc(qT
b (z, t0)�+qc(z, t0))qa,0(z, t0),

D+ 1
2
(t0) = 1√

3

∑
z

εabc[
√

2(qT
b (z, t0)�zqc(z, t0))qa,0(z, t0) + (qT

b (z, t0)�+qc(z, t0))qa,1(z, t0)],

D− 1
2
(t0) = 1√

3

∑
z

εabc[
√

2(qT
b (z, t0)�zqc(z, t0))qa,1(z, t0) + (qT

b (z, t0)�−qc(z, t0))qa,0(z, t0)],

D− 3
2
(t0) =

∑
z

εabc
(
qT

b (z, t0)�−qc(z, t0)
)

qa,1(z, t0), (18)

1There is an alternative method to derive potentials without the expansion in �W by using at most
the third time derivatives, which is explained in Appendix B. We have confirmed that this exact one
gives no significant differences from our results for Nπ and �K̄ potentials, showing that higher-order
contributions are indeed small.
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with �± = 1
2C(γ2 ± iγ1) and �z = −i√

2
Cγ3, and q = (u, s) for D = (�++, �−), respectively. Indeed

each operator in Eq. (18) couples to a spin-3/2 particle with a different z component of the spin,
since they belong to an Hg irreducible representation of the cubic group OD

h . A summation over
z selects zero total momentum states.

To obtain NBS wave functions with JP = 3/2+, we project Fα, jz (r, t) onto the same component
in the Hg representation of D̄ jz (t0). Using Clebsch–Gordan coefficients, projected three-point
correlation functions can be described as(

F↑,+ 3
2
(r, t)

F↓,+ 3
2
(r, t)

)
= f+ 3

2
(r, t)

(
Y1,+1(r̂)

0

)
,

(
F↑,+ 1

2
(r, t)

F↓,+ 1
2
(r, t)

)
= f+ 1

2
(r, t)

⎛
⎝
√

2
3Y1,0(r̂)√

1
3Y1,+1(r̂)

⎞
⎠,

(
F↑,− 1

2
(r, t)

F↓,− 1
2
(r, t)

)
= f− 1

2
(r, t)

⎛
⎝
√

1
3Y1,−1(r̂)√
2
3Y1,0(r̂)

⎞
⎠,

(
F↑,− 3

2
(r, t)

F↓,− 3
2
(r, t)

)
= f− 3

2
(r, t)

(
0

Y1,−1(r̂)

)
, (19)

where Yl,m(r̂) is the spherical harmonics and f jz (r, t) is a factor that depends only on r = |r| and
t. We extract f jz (r, t) using a projection to (l = 1, m), defined on a discrete space as

f jz (r, t) =
∑

r′∈{r′|r′=r} Y ∗
1m(r̂′)Fα, jz (r

′, t)∑
r′∈{r′|r′=r} Y ∗

1,m(r̂′)Y1m(r̂′)
(20)

with corresponding (m, α) for each jz. For jz = ±1/2, we can derive f jz (r, t) in two ways by
setting either (m, α) = (0, ↑) or (1, ↓) for jz = +1/2 and either (m, α) = (0, ↓) or ( − 1, ↑) for jz
= −1/2, respectively. In this paper, we take an average over the factors calculated from the two
choices.

Applying Eq. (19) to Eq. (3) and Eq. (12), we obtain

V LO(r) 
 1
R jz (r, t)

[ ∞∑
k=1

C(k)
mM ,mB

(
− ∂

∂t

)k

+ 1
2μ

(
1
r

∂2

∂r2
r − l (l + 1)

r2

)]
R jz (r, t), (21)

with the angular momentum l = 1 and

R jz (r, t) = f jz (r, t)
CM (t)CB(t)

. (22)

In this study, we use this equation to extract the LO potentials. Since f jz (r, t) for any jz gives
the same LO potential thanks to a rotation symmetry, we take an average over jz to increase
statistics. Furthermore, a charge conjugation symmetry provides relations among f jz (r, t) as

f+ 3
2
(r, t) = − f ∗

− 3
2
(r, t), f+ 1

2
(r, t) = − f ∗

− 1
2
(r, t), (23)

so that an average of f jz (r, t) over jz is guaranteed to be purely imaginary, and we therefore
ignore its real part.

4. Simulation details
In our numerical calculations, we employ (2+1)-flavor gauge configurations generated by the
PACS-CS Collaboration with the improved Iwasaki gauge action and the O(a)-improved Wil-
son quark action at β = 1.90 on a 323 × 64 lattice [15], which corresponds to 0.0907 (13) fm
for the lattice spacing. Hopping parameters of the ensemble in our calculations are κu = κd =
0.13754 and κs = 0.13640. A periodic boundary condition is imposed in all spacetime direc-
tions. We use 450 configurations with 16 sources at different time slices on each configuration,
and average forward and backward propagations to increase statistics. Statistical errors are es-
timated by the jackknife method with a binsize of 45 configurations.
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Fig. 1. Quark contraction diagram corresponding to Eq. (13) (left) and the first term in Eq. (14) (right). A
circle with a two-way arrow across three lines indicates permutations of quark contractions among them.
All-to-all propagators are represented by red lines, whereas point-to-all propagators are represented by
black lines.

We employ a smeared quark source with an exponential smearing function [17], which is given
by

SA,B (x) =

⎧⎪⎨
⎪⎩

Ae−B|x| (|x| < L−1
2

)
1 (|x| = 0)
0

(|x| ≥ L−1
2

) (24)

in the lattice unit, where we take (A, B) = (1.2, 0.17) for light quarks and (A, B) = (1.2, 0.25) for
the strange quark. We also apply the same smearing to quarks at the sink with (A, B) = (1.0,
1/0.7) to reduce singular behaviors of potentials at short distances [18]. Details of singular
behaviors and associated issues for its fitting are explained in Appendix A.

We show quark contraction diagrams corresponding to Eq. (13) and the first term of Eq. (14)
in Fig. 1 (left) and Fig. 1 (right), respectively. The second term of Eq. (14) is obtained from the
first one by replacing u with d, and thus gives a contribution identical to the first one with mu

= md. The spatial coordinate z at the source is summed over so that source operators have zero
momentum. In this case, quark propagators represented by red lines in this figure are all-to-all
propagators. We use the conventional stochastic technique to estimate them approximately, to-
gether with dilutions [19] for color/spinor/time components and the s2 (even/odd) dilution [20]
for the position z.

For the spatial coordinate x at the sink, the calculation is performed with fixed x, so that
quark propagators represented by black lines are obtained by point-to-all propagators which
requires smaller numerical cost. In order to increase the statistics using translational invariance,
we calculate at 64 different spatial points given by x + �x with �x = (0, 0, 0), (0, 0, 8), ···, (24,
24, 24). As a method which keeps this computational cost moderate, we employ the truncated
solver method [21] combined with covariant-approximation averaging [22], namely an all-mode
averaging (AMA) without low modes. For the specific value of x, we choose it randomly for
each gauge configuration to keep the exact covariance of the AMA, which might be broken by
round-off errors. See Appendix C in Ref. [22].

Meson two-point correlation functions are calculated using all-to-all propagators, where the
one-end trick [23,24] is employed. Baryon two-point correlation functions are calculated using
point-to-all propagators. Also, in both the meson and baryon two-point functions, we employ
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Table 1. Hadron masses in MeV estimated by fitting two-point functions. The second row shows temporal
fitting ranges in the lattice unit.

hadron π K N � � �

mass 411.2(1.7) 635.1(1.5) 1217.2(4.7) 1505.3(4.5) 1522.9(7.8) 1847.0(6.5)
fit range [10,30] [10,30] [7,20] [7,20] [6,15] [6,20]

Fig. 2. The LO potentials of the Nπ system at t = 8–10 (left) and the �K̄ system at t = 8–11 (right). The
Laplacian terms are calculated in fourth-order accuracies.

smearing to quarks at the source and the sink with the function given in Eq. (24). Masses of
single hadrons obtained from them in this setup are listed in Table 1. Since the � and � masses
lie below the Nπ and �K̄ threshold energies, respectively, they appear as bound states in this
setup.

5. P-wave Nπ and �K̄ interactions
5.1. Potentials
In Fig. 2, we present LO potentials for P-wave Nπ at t = 8–10 and �K̄ at t = 8–11, where effec-
tive masses of � and � reach plateaux, respectively. We do not observe significant t-dependence
of potentials, indicating that inelastic contributions as well as effects of higher-order terms in
the derivative expansion of the potential are well under control.

Both potentials have very strong attractions at short distances, which can be responsible for
producing bound states corresponding to � and �. We also observe that the attraction of the
Nπ potential is deeper than that of the �K̄ by a few thousand MeV at short distances.

Both potentials have similar shapes at middle and long distances, where meson–baryon in-
teractions may be dominated by one-meson exchanges. One possibility is that the Nπ system
exchanges a ρ meson while the �K̄ system exchanges a ρ meson or an octet part of φ/ω, where
the masses of these vector mesons almost degenerate in our lattice setup near the SU(3) flavor
symmetric point (mρ /mφ ≈ 0.80) [15].2 If this is a relevant picture, two potentials at middle
and long distances remain to be similar even at the physical point, since the mass difference of
vector mesons is not so large at the physical point (mρ /mφ ≈ 0.75).

2Note that this discussion is only qualitative because even the Compton wave length of the lightest pion
is 0.5 fm in this setup.
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Although both potentials go to zero within errors at long distances, interaction ranges are
longer than one-half of the box size, L/2 ≈ 1.45 fm. We therefore carefully check possible finite-
volume effects on observables as will be explained below.

5.2. Systematic uncertainties of the potentials and fitting results
We estimate systematic uncertainties in our analysis as follows.

Finite-volume effects are estimated by using two types of fit functions: one is a simple three
Gaussians as

V 3G(r) = a0e−(r/a1 )2 + a2e−(r/a3 )2 + a4e−(r/a5 )2
, (25)

where we assume that a1 < a3 < a5, and the other is a three Gaussians with its six mirror
images [25] as

V 3G
P (r) = V 3G(r) +

∑
n

V 3G(r + Ln), (26)

where n ∈ {(0, 0, ±1), (0, ±1, 0), ( ± 1, 0, 0)}. We then employ only V3G(r) in both cases for the
Schrödinger equations to be solved.

We estimate effects of the LO truncation for nonlocalities, by employing potentials at different
t, from t = 8 to 10 for Nπ and from t = 8 to 11 for �K̄, since t dependences of potentials are
mainly caused by the truncation of the derivative expansion.

Finite lattice spacing effects are estimated by two approaches. In the first approach, we eval-
uate the difference between the Laplacian term in Eq. (12) calculated with second- and fourth-
order accuracies, whose explicit forms are given by

(∇2R(r))2nd =
∑

i=x̂,ŷ,ẑ

R(r + ai) − 2R(r) + R(r − ai)
a2

,

(∇2R(r))4th =
∑

i=x̂,ŷ,ẑ

−R(r + 2ai) + 16R(r + ai) − 30R(r) + 16R(r − ai) − R(r − 2ai)
12a2

.(27)

In the second approach, we estimate the uncertainty from the difference between fits with and
without data at r = a. For the fit including data at r = a, we find that modification for fit
functions is necessary. In fact, if we naively fit with Eqs. (25), (26), the fit results fail to reproduce
the original data point at r = a, probably because potentials with a strong attraction at short
distances and a nonmonotonic behavior at middle distances are too complicated to be fitted by
three Gaussians. Similar difficulties appear also for other functions such as four Gaussians or
two Gaussians plus one Yukawa potential. To avoid this difficulty, we employ an interpolation
combined with the usual fitting in the following way. First, we fit potentials excluding data
at r = a,

√
2a. Then we perform a quadratic interpolation using original data at r = a,

√
2a

and the fit result at r = (
√

3a + 2a)/2. For calculations of observables, we use a combination
of fit results in

[
(
√

3a + 2a)/2, ∞
)

and the interpolation in
(
0, (

√
3a + 2a)/2

]
. While only a

continuity is guaranteed but a smoothness is not at r = (
√

3a + 2a)/2 in this method, we do
not find any serious nonsmoothness in the results.

In summary, for potentials at a given t, there are 2 × 2 × 2 = 8 combinations of fitting
schemes, which are listed in Table 2.

Central values of physical observables are calculated from Fit 2 at t = 9 for Nπ and at t =
10 for �K̄. Fit parameters are listed in Table 3, where χ2/dof = 4.5 for Nπ and χ2/dof = 36.0
for �K̄, where we employ uncorrelated fit. This large χ2/dof comes mostly from deviations
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Table 2. A list of combinations of fit functions and potential data to estimate
systematic uncertainties.

fit potential data at r = a accuracy of ∇2

Fit 1 V3G(r) not included 2nd order
Fit 2 V3G(r) not included 4th order
Fit 3 V3G(r) included 2nd order
Fit 4 V3G(r) included 4th order
Fit 5 V 3G

P (r) not included 2nd order
Fit 6 V 3G

P (r) not included 4th order
Fit 7 V 3G

P (r) included 2nd order
Fit 8 V 3G

P (r) included 4th order

Table 3. Fit parameters {an} for potential data in Fit 2 at t = 9 for Nπ and at t = 10 for �K̄, used to
calculate central values of observables.

system a0 [MeV] a1 [fm] a2 [MeV] a3 [fm] a4 [MeV] a5 [fm]

Nπ − 13 311.7(46.2) 0.24(0.00) 693.8(197.9) 0.56(0.08) − 615.3(217.7) 1.08(0.14)
�K̄ − 9651.8(12.1) 0.24(0.00) 462.0(67.7) 0.60(0.04) − 427.9(72.4) 1.25(0.10)

Fig. 3. Fit results for Nπ (left) and �K̄ (right). Dark (light) blue bands show statistical errors (statistical
and systematic errors added in quadrature), where systematic errors are estimated from other fitting
schemes and t dependences. Red crosses represent original potential data.

between fit results and original data at short distances, which have small statistical errors and
large systematic uncertainties, even though most problematic data at r = a are excluded for
this Fit 2. Systematic errors are estimated from results in other fitting schemes and at other
timeslices.

Fig. 3 presents original data by red crosses and fitting results by blue bands. The dark blue
bands correspond to statistical errors in Fit 2 at t = 9 for Nπ and at t = 10 for �K̄, whereas light
blue bands show statistical and systematic errors added in quadrature, where the latter error
is estimated from other fitting schemes and t dependences. Note that systematic uncertainties
at short distances, mainly caused by finite lattice spacing effects, are much larger than those at
long distances caused by finite-volume effects.

Fig. 4 shows the fitted potential with a centrifugal term for Nπ (left) and �K̄ (right). Both
have an attractive pocket with a depth of about 3 GeV at r ≈ 0.2 fm, a barrier with a height
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