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1 Introduction

The AdS/CFT correspondence [2, 3] relates a theory of gravity in AdS space to a conformal
field theory on the boundary. One consequence of the correspondence is that bulk quantum
fields can be expressed as CFT operators. In the large N limit the bulk fields are free and
can be written as smeared CFT operators. The explicit construction, called the HKLL
(Hamilton, Kabat, Lifschytz, and Lowe) bulk reconstruction, was accomplished in a series
of papers [4–6]. In the simplest case a massive free scalar field operator Φ(Y ) is considered
in AdSd+1. The HKLL bulk reconstruction represents it in terms of the boundary CFT
primary of weight ∆, O(x), as

Φ(Y ) =
∫

ΣY
dxK(Y, x)O(x), (1.1)

where K(Y, x) is a smearing function, and the integration at the boundary should be
performed in a region ΣY space-like separated from the bulk point Y . We refer to [7–9] for
recent reviews. See also [10] for an alternative derivation based on Gel’fand-Graev-Radon
transforms. Later the reconstruction has been extended to higher spins as well [6, 11–15].
After having constructed the free case the next step is to study bulk interactions [16]. An
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elegant way to introduce interactions as well as to reproduce the bulk reconstruction for
free fields is the method based on space-like Green’s functions [5, 17].

In the original papers it was not explicitly stated that (1.1) holds only for ∆ > d− 1,
due to the convergence for the integral. This restriction is not essential for applications of
the AdS/CFT correspondence in the case of supersymmetric gauge theories, in particular
in the prime example of the N = 4 SUSY U(N) gauge theory in d = 4 dimensions, since the
conformal dimensions of physically relevant operators are typically (much) larger than this
lower bound ∆ > d− 1. See however [18] for some explicit examples for small ∆ primaries
in the AdS/CFT context. More importantly there exists an other family of models often
used in the AdS/CFT context, namely O(N) vector models and their holographic duals,
higher spin theories in the bulk [19, 20]. In the most interesting d = 3 case, the simplest
singlet operator has ∆ = 1 (d−2). Furthermore, its square, an operator which can be used
as a relevant deformation, has ∆ = 2 (d− 1). The HKLL formula (1.1) can not be used to
relate these singlet scalar operators in the free O(N) vector model to bulk operators.

It turned out [6] that for the special case ∆ = d− 1 the smearing function in Poincare
coordinates is supported on the intersection of the light-cone of the bulk point and the
boundary. In [21] the range of allowed ∆ values was extended down to ∆ > d/2 by analytic
continuation. While the bulk-boundary relation remains linear, the smearing kernel in (1.1)
is replaced by a suitable distribution.

In [1] we found, in some special cases mainly concentrating on the (simpler) case of
even AdS spaces, a generalized HKLL formula for ∆ values below the original lower bound
d − 1 by a direct derivation, without using analytic continuation. When we explicitly
evaluated the results of [21], we found that they precisely agree with the results of the
direct calculation in the range where they overlap. We also discussed the interesting special
cases ∆ = d − s, where s is a positive integer only limited by the requirement that the
conformal weight satisfies the unitarity bound ∆ ≥ (d − 2)/2 (equality holds for the free
scalar theory). In these integer ∆ cases the bulk operator Φ(Y ) is expressed in terms of
CFT operators living on Σ(0)

Y (boundary points light-like separated from Y ).
In this paper we carefully re-analyse the HKLL bulk reconstruction, both for the case

of even and odd AdS spaces (odd and even boundary manifolds), paying special attention
to the range of conformal dimensions where the construction is valid (not emphasized in
the original HKLL papers).

After a setup for the HKLL bulk reconstruction in section 2, we consider the case of
even and odd AdSd+1 (odd and even d) in sections 3 and 4, respectively and first recall the
very well-known HKLL bulk reconstruction [4, 5] for a massive free scalar boson field with
conformal weight ∆ > d− 1 in each section. The purpose of this review is to introduce our
notations and conventions, which will be needed later in the paper when we extend the
validity of the construction to smaller values of ∆. We then recall some pertinent results
from [1] in both sections 3 and 4 before discussing explicit reconstruction formulas for the
regions d−1 > ∆ > d−2 and d−2 > ∆ > d−3. Some detailed calculations and necessary
properties are summarized in several appendices. In addition, in appendices G and H, we
discuss the use of space-like Green’s functions in the bulk reconstruction. We demonstrate
that this alternative method correctly reproduces the same results but in the extended
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range also the singular part of the Green’s function, omitted in the original paper [5], has
to be included.

2 Setup for the HKLL bulk reconstruction in AdSd+1

The HKLL bulk reconstruction [4, 5] starts with a free scalar operator Φ(t, ρ, n) on the
d+ 1 dimensional global AdS spacetime, whose metric is given by

ds2 = R2dρ2 −R2 cosh2 ρ dt2 +R2 sinh2 ρ dnidni, (2.1)

where R is the AdS radius and Y = (t, ρ, ni) with n · n = 1 (or Y = (t, ρ,Ω)) are the
standard global coordinates of AdSd+1.

The value of Φ at the middle of the AdS, Yo = (0, 0, n), is expressed as (see appendix A)

Φ(Yo) = D(1) +D1(1), D(z) =
∞∑
n=0

dnz
n, D1(z) =

∞∑
n=0

d†nz
n, (2.2)

where dn and d†n are (rescaled) annihilation and creation operators, and ∆ is related to
the mass of the free scalar m as m2R2 = ∆(∆− d). On the other hand, using the BDHM
relation

O(x) = lim
ρ→∞

(sinh ρ)∆Φ(t̃, ρ, ñ), (2.3)

where O(x) is a CFT operator with conformal dimension ∆ at the AdS boundary x = (t̃, ñ)
with ñ · ñ = 1, we have

C(t̃) :=
∫

dΩ̃O(t̃, Ω̃) = e−i∆t̃B(−e−2it̃) + ei∆t̃B1(−e2it̃), (2.4)

B(z) :=
∞∑
n=0

bnz
n, B1(z) :=

∞∑
n=0

b†nz
n, (2.5)

and bn, b†n are related to dn, d†n as

bn := Ωd
Pn(1 + α)
Pn(d/2) dn, b†n := Ωd

Pn(1 + α)
Pn(d/2) d†n, (2.6)

where α := ∆− d/2, Pn(z) := Γ(z + n)/Γ(z) is the Pochhammer symbol, and Ωd = 2πd/2
Γ(d/2)

is the volume of the d dimensional unit sphere.
The HKLL bulk reconstruction goes as follows. First a relation between Φ(Yo) and

O(x) is derived, then Φ(Y ) is obtained using the AdS isometry g and associated unitary
operator U(g) as Φ(Y ) = U †(g)Φ(Yo)U(g), where Y = g−1Yo is a generic point in the AdS
space.

3 Bulk reconstruction for odd d

We first consider the bulk reconstruction for the odd d case.
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3.1 Results of the original HKLL bulk reconstruction

In papers by HKLL [4, 5], a relation between Φ(Yo) and O(x) has been derived for odd d
(see also appendix B)

Φ(Yo) = ξ

∫
Dx k0(t̃)Θ(π/2− t̃)Θ(t̃+ π/2)O(x), (3.1)

where

ξ := 1
πΩd

Γ(1− d/2)Γ(1 + α)
Γ(ν + 1) , k0(u) := (2 cosu)ν , ν := ∆− d, (3.2)

The convergence of the t̃ integral near t̃ = ±π/2 implies ν > −1. Thus the condition
∆ > d− 1 is (implicitly) assumed for the original HKLL bulk reconstruction.

A relation at a generic point Y = (t, ρ, n) was given as

Φ(Y ) = ξ

∫
Dx Iν(Y, x)T (Y, x)O(x), (3.3)

where

I(Y, x) = 2[cosh(ρ) cos(t− t̃)− (sinh ρ)niñi] T (Y, x) = Θ(T2 − t̃)Θ(t̃− T1), (3.4)

where T1 = t− ω, T2 = t+ ω with ω = arccos[(tanh ρ)n · ñ] and 0 < ω < π. Note that

lim
ρ,t→0

Iν(Y, x) = k0(t̃), lim
ρ,t→0

T (Y, x) = Θ(π/2− t̃)Θ(t̃+ π/2). (3.5)

3.2 Results of ref. [1] for smaller ∆

In our previous paper [1] we have derived (see appendix C)

Φ(Yo) = η

2Ωd
[C(π/2) + C(−π/2)] + ξ

∫
(sub)

dt̃ k0(t̃)C(t̃), (3.6)

where
η = Γ(1− d/2)Γ(1 + α)

Γ2(1 + ν/2) , (3.7)

and the subtracted integral is defined by∫
(sub)

dt̃ K(t̃)f(t̃) =
∫ 0

−π/2
dt̃K(t̃)

[
f(t̃)− f(−π/2)

]
+
∫ π/2

0
dt̃K(t̃)

[
f(t̃)− f(π/2)

]
, (3.8)

which converges for ν > −2 thanks to subtractions. Thus (3.6) is valid for ∆ > d− 2 and
it reduces to (3.1) for ∆ > d− 1.

For ∆ = d− s with an integer s, simple relations without integral have been given [1]:

Φ(Yo) = ξo

∏`
k=1

{
∂2

∂t2 + (2k − 1)2
}

∏2`
k=1(d− 2k)

C+(t)
∣∣
t=0, ξo := (−1) d−1

2

2Ωd
(3.9)

for ∆ = d− (2`+ 1), where C+(t) = C(t+ π
2 ) + C(t− π

2 ), and

Φ(Yo) = ξo

∏`
k=1

{
∂2

∂t2 + 4k2
}

∏2`+1
k=1 (d− 2k)

∂

∂t
C−(t)

∣∣
t=0 (3.10)

for ∆ = d− 2(`+ 1), where C−(0) = C(t+ π
2 )− C(t− π

2 ).
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In the previous paper we have not derived a formula for Φ(Y ) at a generic point Y for
the whole extended range. Results at the special points ∆ = d − 1 and d − 2 only were
given, which are as follows.

Φ(Y ) = ξo

∫
dΩ̃ 1
R(Y, x)

[
O(T1, Ω̃) +O(T2, Ω̃)

]
(3.11)

for ∆ = d− 1, where R(Y, x) =
√

cosh2 ρ− (n · ñ)2 sinh2 ρ, and

Φ(Y ) = ξ̃o

∫
dΩ̃

R2(Y, x)
[
Ȯ(T2, Ω̃)− Ȯ(T1, Ω̃)− cotω{O(T2, Ω̃) +O(T1, Ω̃)}

]
(3.12)

for ∆ = d− 2, where ξ̃o := (−1)
d−1

2
2(d−2)Ωd , and Ȯ(x) := ∂t̃O(t̃, ñ).

3.3 Bulk reconstruction for the extended range ∆ > d− 3 for odd d

In this subsection we derive a bulk reconstruction formula for a generic bulk point for
d− 1 ≥ ∆ > d− 3.

3.3.1 Formula at a generic point by partial integration

Since it is not easy to transform (3.6) to a generic bulk point by the AdS isometry, we take
a different strategy and we start from (3.3), which is first rewritten by partial integration as

Φ(Y ) = ηo(2 cosh ρ)ν
∫

dΩ̃
{
− 1

Γ(ν + 1)

∫ ω

−ω
dt̃ φ1(t̃)Ȯ(t+ t̃, Ω̃)

+K1(ν, ω)
[
O(T1, Ω̃) +O(T2, Ω̃)

]}
, (3.13)

where ηo := Γ(ν + 1)ξ = Γ(1−d/2)
πΩd Γ(1 + α),

φ1(u) =
∫ u

0
dv φ0(v), φ0(u) := (cosu− cosω)ν , K1(ν, ω) = φ1(ω)

Γ(ν + 1) . (3.14)

Since φ1(u) ∼ (ω − |u|)ν+1 at u ∼ ±ω, the t̃ integral is convergent for ν > −2.
Performing a second integration by parts, (3.13) becomes

Φ(Y ) = ηo(2 cosh ρ)ν
∫

dΩ̃
{ 1

Γ(ν + 1)

∫ ω

−ω
dt̃ φ2(t̃)Ö(t+ t̃, Ω̃)

+ K2(ν, ω)
[
Ȯ(T1, Ω̃)− Ȯ(T2, Ω̃)

]
+K1(ν, ω)

[
O(T1, Ω̃) +O(T2, Ω̃)

]}
, (3.15)

where

φ2(u) =
∫ u

0
dv(u− v)φ0(v), φ′2(u) = φ1(u), K2(ν, ω) = φ2(ω)

Γ(ν + 1) . (3.16)

The t̃ integral in this expression is convergent for ν > −3.
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Although we do not need to go further for later analysis, we can repeat the procedure
to obtain

Φ(Y ) = ηo(2 cosh ρ)ν
∫

dΩ̃
{

(−1)k
Γ(ν + 1)

∫ ω

−ω
dt̃ φk(t̃)O(k)(t+ t̃, Ω̃)

+
k∑
`=1

φ`(ω)
Γ(ν + 1)

[
O(`−1)(T1, Ω̃) + (−1)`−1O(`−1)(T2, Ω̃)

]}
(3.17)

for an arbitrary positive integer k, where

φ`(u) := 1
(`− 1)!

∫ u

0
dv (u− v)`−1φ0(v), O(`)(u, Ω̃) := ∂`

∂u`
O(u, Ω̃). (3.18)

The t̃ integral is convergent for ν > −(k + 1).

3.3.2 Analytic continuation of K1(ν, ω)

While the t̃ integral in (3.13) is convergent for ν > −2, we must show that K1(ν, ω) is
convergent for ν > −2. Using a limiting case of (3.663-1) in the table of integrals by
Gradshteyn and Ryzhik, K1(ν, ω) can be evaluated for ν > −1 as

K1(ν, ω) =
√
π2ν

(
sin ω2

)2ν+1 1
Γ(ν + 3/2)2F1

(1
2 ,

1
2; ν + 3

2; sin2 ω

2

)
. (3.19)

Since the Gamma function in the denominator of (3.19) regularizes the hypergeometric
function, (3.19) can be analytically continued to all ν. The integral part is convergent for
ν > −2 and therefore (3.13) provides the analytic extension of the bulk reconstruction to
the range ν > −2.

3.3.3 Analytic continuation of K2(ν, ω)

Since the t̃ integral in (3.15) is convergent for ν > −3 and we have already seen that
K1(ν, ω) is analytic for all ν, we now concentrate on the integral

K2(ν, ω) = ωK1(ν, ω)− J1(ν, ω), (3.20)

where
J1(ν, ω) := 1

Γ(ν + 1)

∫ ω

0
duu(cosu− cosω)ν , (3.21)

which, unfortunately, can not be found in integral tables.
In the absence of an explicit formula for (3.21) we have derived (see appendix F) a

recursion relation for J1(ν, ω), which can also be used for analytic continuation:

J1(ν, ω) = 1
sin2 ω

{
(ν + 2)2 J1(ν + 2, ω) + (2ν + 3) cosω J1(ν + 1, ω) + (1− cosω)ν+2

Γ(ν + 3)

}
.

(3.22)
The integrals related to the right hand side of (3.22) are convergent for ν > −2 and so
this relation can be used to extend the left hand side to ν > −2 too. After this extension
the right hand side will be defined to ν > −3 and it defines the left hand side also to
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ν > −3. In this way we can extend, step by step, J1(ν, ω) for all ν. Therefore, (3.20)
implies that K2(ν, ω) is analytic for all ν. Since the t̃ integral is convergent for ν > −3,
and K1,2(ν, ω) are analytic for all ν, Φ(Y ) in (3.15) provides the analytic extension of the
bulk reconstruction to the range ν > −3 (∆ > d− 3), as promised.

3.3.4 Comparisons with previous results

Since the starting formula in (3.3) is valid only for ν > −1, results (3.13) for ν > −2
and (3.15) for ν > −3 are not regarded as direct derivations but should be considered as
analytic continuations to ν > −2 and ν > −3. Therefore, it is useful to compare (3.13)
and (3.15) for special cases with previous results obtained without using analytic continu-
ation.

For this purpose, using the hypergeometric identities 2F1(a, b; c; z) = (1−z)−a2F1(a, c−
b; c; z/(z − 1)), we rewrite (3.19) as

K1(ν, ω) =
√
π2ν

(
sin ω

2
)2ν+1

cos ω2
1

Γ(ν + 3/2)2F1

(1
2 , ν + 1; ν + 3

2;− tan2 ω

2

)
, (3.23)

which gives
K1(−1, ω) = 1

sinω , K1(−2, ω) = − cosω
sin3 ω

. (3.24)

To start the recursion of J1(ν, ω) for a negative integer ν, we calculate

J1(0, ω) = ω2

2 , J1(1, ω) =
∫ ω

0
duu(cosu− cosω) = −ω

2

2 cosω + cosω + ω sinω − 1,
(3.25)

which, through the recursion (3.22), lead to

J1(−1, ω) = ω

sinω , J1(−2, ω) = 1
sin2 ω

− ω cosω
sin3 ω

. (3.26)

Thus, (3.20) leads to

K2(−1, ω) = 0, K2(−2, ω) = − 1
sin2 ω

. (3.27)

Using these, (3.13) for ν = −1 and (3.15) for ν = −2 reduce to

Φ(Y ) = ξo

∫
dΩ̃

R(Y, x)
[
O(T1, Ω̃) +O(T2, Ω̃)

]
, (3.28)

Φ(Y ) = ξ̃o

∫ dΩ
R2(Y, x)

{
[Ȯ(T2,Ω)− Ȯ(T1,Ω)]− cotω[O(T2,Ω) +O(T1,Ω)]

}
, (3.29)

which reproduce our previous results from the direct evaluation, (3.11) and (3.12).
By applying a (backward) partial integration to the integral in (3.13), we obtain

Φ(Y ) = ηo(2 cosh ρ)ν
∫

dΩ
{ 1

Γ(ν + 1)

∫ ω

0
duφ(u)[O(t+ u,Ω)−O(T2,Ω)] + 1

Γ(ν + 1)

×
∫ 0

−ω
duφ(u)[O(t+ u,Ω)−O(T1,Ω)] +K1(ν, ω)[O(T2,Ω) +O(T1,Ω)]

}
. (3.30)
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For the middle point Yo this reduces to (3.6), which was obtained by direct calculation for
∆ > d− 2.

The above results show that the analytic continuation and the direct calculation with-
out analytic continuation lead to the same formula (at least in these special cases) for the
extended range of ∆.

4 Bulk reconstruction for even d

We now consider a more difficult task, the extension of the bulk reconstruction for even d
to smaller ∆.

4.1 Results of the original HKLL bulk reconstruction

For the even d case, the result at the middle point has been obtained by HKLL [4, 5]:

Φ(Yo) = ξ̃

∫
DxT (Yo, x)Iν(Yo, x) ln[I(Yo, x)]O(x), ξ̃ :=

(
− 1
π

)d/2+1 Γ(1 + α)
Γ(ν + 1) . (4.1)

Using transformation properties under the AdS isometry g

U †(g)Φ(Yo)U(g) = Φ(g−1Yo), U †(g)O(x)U(g) = H∆(g−1, x)O(g−1x), (4.2)

Φ at a generic bulk point Y = g−1Yo becomes

Φ(Y ) = ξ̃

∫
Dy T (Yo, y)Iν(Yo, y) ln[I(Yo, y)]H∆(g−1, y)O(g−1y)

= ξ̃

∫
DxT (g−1Yo, x)Iν(g−1Yo, x) ln[I(g−1Yo, x)H(g, x)]O(x)

= ΦHKLL(Y ) + ξ̃Φ̂(g), (4.3)

where

ΦHKLL(Y ) = ξ̃

∫
DxT (Y, x)Iν(Y, x) ln[I(Y, x)]O(x), (4.4)

Φ̂(g) =
∫
DxT (g−1Yo, x)Iν(g−1Yo, x) ln[H(g, x)]O(x). (4.5)

In the above derivation we used results in appendix D ((D.7), (D.9), (D.14)) in the form

I(Yo, y)H(g−1, y) = I(g−1Yo, g
−1y), T (Yo, y) = T (g−1Yo, g

−1y), (4.6)

and

D(gx)Hd(g−1, gx) = Dx, H(g, x) = 1
H(g−1, gx) . (4.7)

It has been claimed in the HKLL papers [4, 5] that the bulk field at a generic point is
given by ΦHKLL(Y ), which is true if

Φ̂(g) ≡ 0 (4.8)

for all group elements g. Note that from the derivation it follows that Φ̂(g) only depends
on Y = g−1Yo. Although this was already discussed in appendix B of [5], an elementary
proof of (4.8) is presented in appendix E for the sake of completeness.
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4.2 Previous results for integer ∆ = d− s

In [1] we have derived results at the middle point for ∆ = d− s with a positive integer s,
which are summarized as

Φ(Yo) = (−1)d/2
πΩd

∏`
k=1

{
∂2

∂t2 + (2k − 1)2
}

∏2`
k=1(d− 2k)

∂

∂∆C+(t)

∣∣∣∣∣∣
t=0,∆=d−(2`+1)

, (4.9)

Φ(Yo) = (−1)d/2
πΩd

∏`
k=1

{
∂2

∂t2 + 4k2
}

∏2`+1
k=1 (d− 2k)

∂

∂t

∂

∂∆C−(t)

∣∣∣∣∣∣
t=0,∆=d−2(`+1)

. (4.10)

4.3 New results for smaller ∆

4.3.1 Bulk reconstruction at the middle point

For even d, the bulk reconstruction at the middle point Yo is given by

Φ(Yo) = ξ̃

∫
(sub)

dt̃ k1(t̃)C(t̃) + ξ̃ g′(ν)[C(π/2) + C(−π/2)]. (4.11)

where

k1(u) = (2 cosu)ν ln(2 cosu), g(ν) =
∫ π/2

0
du (2 cosu)ν = π

2
Γ(ν + 1)

Γ2(ν/2 + 1) . (4.12)

Details of the derivation are presented in appendix C.
The derivative of the identity (C.30) with respect to ν gives∫

(sub)
dt̃ k1(t̃)C(t̃) +

∫
(sub)

dt̃ k0(t̃)C∆(t̃)

+g′(ν)[C(π/2) + C(−π/2)] + g(ν)[C∆(π/2) + C∆(−π/2)] = 0, (4.13)

which leads to an alternative form of the bulk reconstruction as

Φ(Yo) = −ξ̃
∫

(sub)
dt̃ k0(t̃)C∆(t̃)− ξ̃g(ν)[C∆(π/2) + C∆(−π/2)], (4.14)

where we define
C∆(t) := ∂

∂∆C(t) (4.15)

4.3.2 Analytic continuation

As in the odd d case, analytic continuation is employed to obtain the bulk reconstruction
at a generic point Y also for even d. We start with the formula Φ(Y ) = ΦHKLL(Y ) in (4.4)
rewritten as

Φ(Y ) = η̃(2 cosh ρ)ν
∫

dΩ̃H(t, ω, Ω̃), η̃ :=
(
− 1
π

)d/2+1
Γ(1 + α), (4.16)

where
H(t, ω, Ω̃) := 1

Γ(ν + 1)

∫ ω

−ω
dt̃ g(t̃, ω)O(t̃+ t, Ω̃), (4.17)
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with g(u, ω) := (cosu− cosω)ν ln(cosu− cosω). A partial integration gives

H(t, ω, Ω̃) = − 1
Γ(ν + 1)

∫ ω

−ω
dt̃ g1(t̃, ω)Ȯ(t̃+ t, Ω̃) + P1(ν, ω)

[
O(T1, Ω̃) +O(T2, Ω̃)

]
,

(4.18)
where

g1(u, ω) :=
∫ u

0
dv g(v, ω), P1(ν, ω) := g1(ω, ω)

Γ(ν + 1) , (4.19)

The t̃ integral in (4.18) is convergent for ν > −2. Although the integral defining
P1(ν, ω) is convergent only for ν > −1, it can be analytically continued using the recursion
relation

P1(ν, ω) = 1
sin2 ω

{
(2ν + 3) cosωP1(ν + 1, ω) + (ν + 2)2P1(ν + 2, ω)

+2 cosωK1(ν + 1, ω) + (ν + 2)K1(ν + 2, ω)
}
− K1(ν, ω)

ν + 1 , (4.20)

which is derived in appendix F. The right hand side of the recursion relation is defined for
ν > −2 except a pole at ν = −1, whose residue is given by

−K1(−1, ω) = − 1
sinω . (4.21)

The recursion relation allows to extend P1(ν, ω) step by step to all ν but there will be poles
for all negative integer values of ν.

4.3.3 Comparison at the middle point for ∆ = d− 1

While the presence of poles at negative integer ν prevents us from extending Φ(Y ) to
ν = −1 by analytic continuation, we can proceed for the special case Y = Yo (the middle
point) starting from

Φ(Yo) = 2ν η̃
{
− 1

Γ(ν + 1)

∫ π
2

−π2
dt̃ g1

(
t̃,
π

2

)
Ċ(t̃) + P1

(
ν,
π

2

)[
C
(
π

2

)
+ C

(
−π2

)]}
.

(4.22)
We then explicitly evaluate the integral (convergent for ν > −1)

g1

(
π

2 ,
π

2

)
= ∂

∂ν
[2−νg(ν)] = π

2ν+1
Γ(ν + 1)

Γ2(ν/2 + 1) {− ln 2 + ψ(ν + 1)− ψ(ν/2 + 1)} , (4.23)

giving
P1

(
ν,
π

2

)
= π

2ν+1
1

Γ2(ν/2 + 1) {− ln 2 + ψ(ν + 1)− ψ(ν/2 + 1)} . (4.24)

Since the digamma function in (4.24) has a pole at ν = −1 we see that

P1

(
ν,
π

2

)
= − 1

ν + 1 +O(1). (4.25)

On the other hand, since C(t̃) in (2.4) is anti-periodic in t̃ with a period π for an odd integer
∆, we have

C
(
t+ π

2

)
+ C

(
t− π

2

)
= (ν + 1)

[
C∆

(
t+ π

2

)
+ C∆

(
t− π

2

)]
+O

(
(ν + 1)2

)
(4.26)
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near ∆ = d+ 1 for even d. Thus we conclude that Φ(Yo) is finite in the ν → −1 limit as

Φ(Yo) = (−1)d/2
πΩd

[
C∆

(
π

2

)
+ C∆

(
−π2

)]
, (4.27)

which reproduce the previous result in (4.9) for ` = 0, obtained by a different method
without analytic continuation.

4.3.4 An alternative expression at a generic point

We can avoid difficulties arising from poles of P1(ν, ω) by considering an alternative ex-
pression of Φ.

We start from the fact that for even d and ν > −1 (see (B.14))∫
Dx Iν(Y0, x)T (Yo, x)O(x) = 0, (4.28)

which can be transformed to a generic point by the isometry transformation as∫
Dx Iν(Y, x)T (Y, x)O(x) = 0. (4.29)

By taking its derivative with respect to ν and comparing to (4.4), we arrive at an alternative
expression (valid for ν > −1):

Φ(Y ) = −ξ̃
∫
Dx Iν(Y, x)T (Y, x)O∆(x), O∆(x) := ∂

∂∆O(x). (4.30)

Applying the partial integration to this alternative expression, H in (4.16) becomes

H(t, ω, Ω̃) = 1
Γ(ν + 1)

∫ ω

−ω
dt̃ φ1(t̃)Ȯ∆(t̃+ t, Ω̃)−K1(ν, ω)

[
O∆(T1, Ω̃) +O∆(T2, Ω̃)

]
.

(4.31)
Since the t̃ integral is convergent for ν > −2 and K1(ν, ω) is analytic for all ν, Φ(Y ) can
be analytically continued to ν > −2 as

Φ(Y ) = η̃(2 cos ρ)ν
∫

dΩ̃H(t, ω, Ω̃) (4.32)

with H(t, ω, Ω̃) in (4.31). In particular for ν = −1, we have

Φ(Y ) = (−1)d/2
πΩd

∫
dΩ̃ 1
R(Y, x)

[
O∆(T1, Ω̃) +O∆(T2, Ω̃)

]
. (4.33)

For Yo this agrees with (4.27), and thus with (4.9) for ` = 0.
For Yo, but for generic ν > −2 (4.32) reduces to

Φ(Yo) = −2ν ξ̃
∫

(sub)
dt̃ (cos(t̃))νC∆(t̃)− 2ν η̃K1(ν, π/2) [C∆(π/2) + C∆(−π/2)]

= −ξ̃
∫

(sub)
dt̃ k0(t̃)C∆(t̃)− ξ̃g(ν) [C∆(π/2) + C∆(−π/2)] , (4.34)

reproducing (4.14), which has been obtained without analytic continuation.
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A Fock space representation of the bulk and boundary fields

The construction of a massive bulk scalar field and the corresponding boundary field with
conformal weight ∆ > d/2 − 1 was reviewed in [1]. Here we recall some formulas which
will be used in this paper.

A free bulk scalar field Φ in terms of canonical creation and annihilation operators
A+
n`m and An`m is represented as

Φ(t, ρ,Ω) =
∑
n`m

√
NR
2νn`

{
un`(ρ)Y`m(Ω)An`m e−iνn`t + un`(ρ)Y`m(Ω)A†n`m eiνn`t

}
, (A.1)

where N is a normalization constant related to the free Lagrangian, R is the AdS radius,
νn` = ∆ + `+ 2n is the eigenfrequency, un`(ρ) is the radial wave function, and Y`m(Ω) are
hyper-spherical harmonics for the d− 1 dimensional sphere parametrized alternatively by
the angular variables Ω or by the d dimensional unit vector ni. Note that for simplicity we
are using real hyper-spherical harmonics.

The field at the middle point, (2.2), can be expressed with the rescaled Fock space
operator,

dn =
√
NR
2νn0

(−1)nPn(d/2)
n! Nn0

1√
Ωd
An00. (A.2)

The explicit value of the normalization constant Nn0 is not needed in our calculation.
The BDHM relation [22] gives the boundary field O(t̃, Ω̃) of conformal weight ∆ as

O(t̃, Ω̃) := lim
ρ→∞

(sinh ρ)∆ Φ(t̃, ρ, Ω̃) =
∑
n`m

√
NR
2νn`

{
e−iνn` t̃ Pn(1 + α)

n! Nn`Y`m(Ω̃)An`m

+eiνn` t̃ Pn(1 + α)
n! Nn`Y`m(Ω̃)A†n`m

}
. (A.3)

The integrated boundary field (2.4) is given in terms of bn, Fock space operators
rescaled differently from dn:

bn =
√
NR
2νn0

(−1)nPn(1 + α)
n! Nn0

√
ΩdAn00 = Ωd

Pn(1 + α)
Pn(d/2) dn. (A.4)
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B Reconstruction of the bulk field at the middle point

The relation (A.4) leads to the basic formula for bulk reconstruction:

D(w) = 1
2πiΩd

∮ dz
z
B(z)

∞∑
n=0

Pn(d/2)
Pn(1 + α)

(
w

z

)n
= 1

2πiΩd

∮ dz
z
B(z)2F1(1, d/2; 1 + α;w/z)

= 1
2πiΩd

∮ dz
z
B(wz)2F1(1, d/2; 1 + α; 1/z), (B.1)

which is valid for an arbitrary physical ∆ (except at 1 + α = 0). Starting with (B.1),
calculations go differently for odd and even d (even and odd AdS).

B.1 Odd d

For odd d we can evaluate the integral (B.1) using the hypergeometric function identity
(valid for odd d)

2F1

(
1, d2 ; 1 + α; 1

z

)
= 2αz

2− d 2F1

(
1, 1− α; 2− d

2 ; z
)

+
Γ(1− d

2)Γ(1 + α)
Γ(ν + 1)

(
−1
z

)− d2
(1−z)ν ,

(B.2)
where the first term is regular except for a cut starting at z = 1. Around the branch point
z = 1, its behavior is

regular + const. (1− z)ν . (B.3)

When calculating the integral of this first term in (B.1), we can shrink our contour so that
it becomes a very small circle around the branch point z = 1, and then, its contribution
vanishes for ν > −1 ( i.e. ∆ > d − 1), because the value of the integral gets smaller and
smaller as our integral contour gets smaller and smaller.

The second term has a cut starting already at z = 0. The contour can be shrunken so
that it becomes just the unit circle, since the singularity around the second branch point
z = 1 is an integrable one for ν > −1. After a change of integration variable z = −e−2iu,
the integral along the unit circle becomes

D(w) = 1
πΩd

Γ(1− d/2)Γ(1 + α)
Γ(ν + 1)

∫ π/2

−π/2
duB

(
−we−2iu

)
e−i∆u(2 cosu)ν . (B.4)

Thus we obtain

D(1) = ξ

∫ π/2

−π/2
du e−i∆uB

(
−e−2iu

)
[2 cos(u)]ν , (B.5)

where ξ is given by (3.2). If we repeat the whole calculation for D1, we have

D1(1) = ξ

∫ π/2

−π/2
du ei∆uB1

(
−e2iu

)
[2 cos(u)]ν . (B.6)

We can simply add the two contributions to arrive at (3.1).
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B.2 Even d

For even d our strategy is to make the calculation for generic, non-integer dimension d and
take the limit d→ even integer at the end of the calculation. The logic follows closely the
HKLL paper [5].

We will use again the hypergeometric identity (B.2), which is valid for d 6= even integer.
The first term on the right hand side satisfies the identity

2F1

(
1, 1− α; 2− d

2 ; z
)

=

1− d
2

ν
2F1(1, 1− α; 1− ν; 1− z) +

Γ
(
2− d

2

)
Γ(−ν)

Γ(1− α) zd/2−1(1− z)ν .
(B.7)

Here we have to require that ν 6= integer, but this restriction can be lifted soon. We will
again establish a relation between D and B (and between D1 and B1).

The starting point is again (B.1). Using the identity (B.2) we notice again that the
first term has no singularity inside the unit circle and has a cut starting at 1 and therefore
for this term the integration contour can be shrunk to a small circle going around z = 1.
Using the second hypergeometric identity (B.7) we see that the integral along this small
contour of radius r is of the order O(rν+1) and therefore for ν > −1 it vanishes in the limit
r → 0.

Thus we are left with the second term in (B.2) and the relation (B.1) becomes

D(w) = κ

2iΓ
(

1− d

2

)∮ dz
z
B(wz)

(
−1
z

)−d/2
(1− z)ν , κ := Γ(1 + α)

πΩdΓ(ν + 1) . (B.8)

Similarly

D1(w) = κ

2iΓ
(

1− d

2

)∮ dz
z
B1(wz)

(
−1
z

)−d/2
(1− z)ν . (B.9)

The above formulas are apparently divergent for even d because of the singular factor
Γ(1− d/2) but we can observe that the integrals∮ dz

z
B(wz)

(
−1
z

)−do/2
(1− z)ν ,

∮ dz
z
B1(wz)

(
−1
z

)−do/2
(1− z)ν (B.10)

vanish for even do. The reason is the same as above: in this case the integrand has no
singularity (or cut starting) at z = 0 and therefore the integration contour can again be
shrunk to a small circle around z = 1 and the integral vanishes for ν > −1.

Using this observation we can proceed as follows. We write d = do + ε and subtract
the vanishing integral from (B.8). Reducing the contour to the unit circle and using the
integration variable z = −e−2iu, (B.8) can be written as

D(w) = κΓ(1− d/2)
∫ π/2

−π/2
duB

(
−we−2iu

)
e−iu∆(2 cosu)ν

(
1− eiuε

)
(B.11)

and a similar expression for D1(w). Now the O(1/ε) prefactors are compensated by the
fact that the integrals are O(ε) and in the limit d→ do we get

D(w) = 2κ(−1)do/2
Γ(do/2)

∫ π/2

−π/2
duB

(
−we−2iu

)
e−iu∆(2 cosu)νo(−iu), νo := ∆−do (B.12)
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and
D1(w) = 2κ(−1)do/2

Γ(do/2)

∫ π/2

−π/2
duB

(
−we2iu

)
eiu∆(2 cosu)νo(iu). (B.13)

Using integration along the unit circle, the vanishing first integral in (B.10) can be written
as the identity

0 =
∫ π/2

−π/2
duB

(
−we−2iu

)
e−iu∆(2 cosu)νo . (B.14)

Since this is true for all ∆ for νo > −1, following HKLL [5], we take its derivative with
respect to ∆, which gives

0 =
∫ π/2

−π/2
duB

(
−we−2iu

)
e−iu∆(2 cosu)νo [ln(2 cosu)− iu]. (B.15)

Using this identity and putting w = 1 we obtain from (B.12)

D(1) = −2κ(−1)do/2
Γ(do/2)

∫ π/2

−π/2
duB

(
−e−2iu

)
e−iu∆(2 cosu)νo ln(2 cosu), (B.16)

and similarly

D1(1) = −2κ(−1)do/2
Γ(do/2)

∫ π/2

−π/2
duB1

(
−e2iu

)
eiu∆(2 cosu)νo ln(2 cosu). (B.17)

Now the two terms can be simply added and we get the final result (4.1), where we dropped
the subscript o from the dimension d, which is from now on an even integer again.

C Bulk reconstruction for ∆ > d− 2 (middle point)

In this appendix we give the details of the derivation of the bulk reconstruction formulas
for the middle point, both for the odd and even d cases, in the extended range ∆ > d− 2.
To begin with, we rewrite (B.1) by adding and subtracting B(w) under the integral as

D(w) = B(w)
2πiΩd

∮ dz
z

2F1

(
1, d2 ; 1 + α; 1

z

)
+ 1

2πiΩd

∮ dz
z

[B(wz)−B(w)] 2F1

(
1, d2 ; 1 + α; 1

z
z

)
. (C.1)

C.1 Odd d

For odd d, using (C.1), the manipulations in section B.1 remain valid for the extended
range ∆ > d− 2 (ν > −2) and we obtain

D(w) = B(w)
Ωd

+ ξ

∫ π/2

−π/2
du e−iu∆[2 cos(u)]ν{B(−we−2iu)−B(w)}, (C.2)

where singularities near u = ±π
2 of the integrand become integrable for ν > −2 thanks to

the subtraction of B(w).
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We then separate the integrated boundary field C(t) into positive/negative frequency
parts C+(t)/C−(t), which are given by the two terms of (2.4). Using these definitions, we
have the identity

e−i∆tB(e−2it) = e−i
∆π
2 C+(t− π/2) = ei

∆π
2 C+(t+ π/2). (C.3)

Thus (C.2) leads to

D(1) = 1
Ωd

e−
i∆π

2 C+(−π/2) + ξ

∫ 0

−π/2
du[2 cos(u)]ν{C+(u)− e−i(u+π/2)∆C+(−π/2)}

+ξ
∫ π/2

0
du[2 cos(u)]ν{C+(u)− e−i(u−π/2)∆C+(π/2)}. (C.4)

Next by adding and subtracting an integral proportional to k+ for the first integral and
k− for the second integral, where

k± = ξ

∫ π/2

0
du(2 cosu)ν [1− e±i∆(u−π/2)], (C.5)

which are convergent for ν > −2, we obtain

D(1) =
{ 1

Ωd
+ e

i∆π
2 k+ + e

−i∆π
2 k−

}
e−

i∆π
2 C+(−π/2)

+ ξ

∫ 0

−π/2
du[2 cosu]ν{C+(u)− C+(−π/2)}+ ξ

∫ π/2

0
du[2 cosu]ν{C+(u)− C+(π/2)}.

(C.6)

Analogously, repeating the calculation with D1 and C−, we have

ei∆tB1(e2it) = ei
∆π
2 C−(t− π/2) = e−i

∆π
2 C−(t+ π/2) (C.7)

and

D1(1) =
{ 1

Ωd
+e

i∆π
2 k++e

−i∆π
2 k−

}
e
i∆π

2 C−(−π/2)

+ξ
∫ 0

−π/2
du[2cosu]ν{C−(u)−C−(−π/2)}+ξ

∫ π/2

0
du[2cosu]ν{C−(u)−C−(π/2)}.

(C.8)

These results can be further simplified by using the following two identities.

C(t− π/2) + C(t+ π/2) = C+(t− π/2) + C−(t− π/2) + C+(t+ π/2) + C−(t+ π/2)

= 2 cos ∆π
2
{
e−

i∆π
2 C+(t− π/2) + e

i∆π
2 C−(t− π/2)

}
,

(C.9)

∫ π/2

0
du(2 cosu)A

{
cos Bπ2 − cosBu

}

= π

2 Γ(1 +A)
{

cos Bπ2
Γ2(1 +A/2) −

1
Γ(1 + A−B

2 )Γ(1 + A+B
2 )

} (C.10)
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for A > −2, B = A+ d, d = 3, 5, 7, · · · . Using the second identity we find

e
i∆π

2 k+ + e−
i∆π

2 k− = ξ

∫ π/2

0
du(2 cosu)∆−d

{
2 cos ∆π

2 − 2 cos ∆u
}

= 1
Ωd

{
η cos ∆π

2 − 1
}
.

(C.11)

Finally, adding D(1) and D1(1) we obtain the final result (3.6).

C.2 Even d

For the even d case by adding and subtracting a constant we rewrite the starting for-
mula (B.1) as

D(1) = B(1)
Ωd

+ 1
2πiΩd

∮ dz
z
Bo(z)(1− z) 2F1(1, d/2; 1 + α; 1/z) (C.12)

and similarly

D1(1) = B1(1)
Ωd

+ 1
2πiΩd

∮ dz
z
B1o(z)(1− z) 2F1(1, d/2; 1 + α; 1/z), (C.13)

where we introduced the formally holomorphic fields Bo(z), B1o(z) by

B̂(z) = B(z)−B(1) = (1− z)Bo(z), B̂1(z) = B1(z)−B1(1) = (1− z)B1o(z). (C.14)

We also introduce ∆o = ∆ + 1 and note that ∆o > d− 1.
Now we can copy the results of our calculation valid for the original range (∆ > d− 1)

with the following modifications: there is the extra constant term for both D(1) and D1(1),
the role of B(z) and B1(z) is played by Bo(z) and B1o(z), respectively, and we put ∆o in
place of ∆. We obtain

D(1) = B(1)
Ωd

+ κ

2iΓ(1− d/2)
∮ dz

z
Bo(z)

(
−1
z

)−d/2
(1− z)∆o−d (C.15)

and
D1(1) = B1(1)

Ωd
+ κ

2iΓ(1− d/2)
∮ dz

z
B1o(z)

(
−1
z

)−d/2
(1− z)∆o−d. (C.16)

At this point we still have to regularize the dimension as d = do + ε, where do is an even
integer. After carrying out the ε→ 0 limit and restoring B̂(z) and B̂1(z) we find

D(1) = B(1)
Ωd
− 2κ(−1)do/2

Γ(do/2)

∫ π/2

−π/2
du B̂

(
−e−2iu

)
e−iu∆(2 cosu)νo ln(2 cosu) (C.17)

and

D1(1) = B1(1)
Ωd

− 2κ(−1)do/2
Γ(do/2)

∫ π/2

−π/2
du B̂1

(
−e2iu

)
eiu∆(2 cosu)νo ln(2 cosu). (C.18)

There are also identities of the form∫ π/2

−π/2
du B̂

(
−e−2iu

)
e−iu∆(2 cosu)νo =

∫ π/2

−π/2
du B̂1

(
−e2iu

)
eiu∆(2 cosu)∆−do = 0.

(C.19)
From now on we drop the subscript from do and use the notation d for the dimension.
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The identities (C.19) take the form∫ π/2

−π/2
du k0(u)

{
C+(u)−B(1)e−iu∆

}
=
∫ π/2

−π/2
du k0(u)

{
C−(u)−B1(1)eiu∆

}
= 0, (C.20)

whereas D(1), D1(1) are given by

D(1) = B(1)
Ωd

+ ξ̃

∫ π/2

−π/2
du k1(u)

{
C+(u)−B(1)e−iu∆

}
, (C.21)

D1(1) = B1(1)
Ωd

+ ξ̃

∫ π/2

−π/2
du k1(u)

{
C−(u)−B1(1)eiu∆

}
. (C.22)

We recall that
ξ̃ = −2κ(−1)d/2

Γ(d/2) =
(
− 1
π

)1+d/2 Γ(1 + α)
Γ(ν + 1) . (C.23)

By adding and subtracting terms we can show that∫ π/2

−π/2
du ki(u)

{
C+(u)−B(1)e−iu∆

}
=
∫

(sub)
du ki(u)C+(u) + 2B(1)

∫ π/2

0
du ki(u)

(
cos π∆

2 − cosu∆
) (C.24)

and similarly∫ π/2

−π/2
du ki(u)

{
C−(u)−B1(1)eiu∆

}
=
∫

(sub)
du ki(u)C−(u) + 2B1(1)

∫ π/2

0
du ki(u)

(
cos π∆

2 − cosu∆
)
.

(C.25)

Adding the two identities written in this form we get∫
(sub)

du k0(u)C(u) + 2 [B(1) +B1(1)]
∫ π/2

0
du k0(u)

(
cos π∆

2 − cosu∆
)

= 0. (C.26)

The bulk field at the middle point is given by

Φ(Yo) = ξ̃

∫
(sub)

du k1(u)C(u)

+ [B(1) +B1(1)]
{ 1

Ωd
+ 2ξ̃

∫ π/2

0
du k1(u)

(
cos π∆

2 − cosu∆
)}

.

(C.27)

To calculate the remaining integrals we will use∫ π/2

0
du (2 cosu)A

(
cos ∆π

2 − cosu∆
)

= cos ∆π
2 g(A)− π

2
Γ(1 +A)

Γ
(
1 + A−∆

2

)
Γ
(
1 + A+∆

2

) ,
(C.28)

which leads to ∫ π/2

0
du k0(u)

(
cos ∆π

2 − cosu∆
)

= cos ∆π
2 g(ν), (C.29)
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since the second term does not contribute in this case. Thus the final form of the identity
becomes ∫

(sub)
du k0(u)C(u) + g(ν)

(
C(π/2) + C(−π/2)

)
= 0. (C.30)

Next we calculate∫ π/2

0
du k1(u)

(
cos ∆π

2 − cosu∆
)

= cos ∆π
2 g′(ν)

− π

2
∂

∂A

(
Γ(1 +A)

Γ
(
1 + A−∆

2

)
Γ
(
1 + A+∆

2

))∣∣∣∣∣
A=∆−d

.

(C.31)

For A = ∆− d− ε
1

Γ
(
1 + A−∆

2

) = εΓ(d/2)
2 (−1)d/2 +O(ε2) (C.32)

and so∫ π/2

0
du k1(u)

(
cos ∆π

2 − cosu∆
)

= cos ∆π
2 g′(ν) + π

4 (−1)d/2Γ(d/2) Γ(1 + ν)
Γ(1 + α) . (C.33)

Using this in (C.27) we see that the final result for the bulk field at the middle point
simplifies to (4.11).

D Symmetries

D.1 AdS isometry −→ boundary conformal transformation

Let us use coordinates (ρ, x) for a point Y in the AdS bulk and perform an AdS isometry
Y −→ gY ∼ (ρ̄, x̄). In the large ρ limit, we write

ρ̄ = ρ+ σ(g, x) + o(ρ), x̄ = gx+ o(ρ), (D.1)

where o(ρ) vanishes in the ρ→∞ limit and x −→ gx is the boundary conformal transfor-
mation. For the derivatives we have

∂ρ̄

∂ρ
= 1 + o(ρ), ∂ρ̄

∂xA
= ∂σ(g, x)

∂xA
+ o(ρ), ∂x̄A

∂ρ
= o(ρ), ∂x̄A

∂xB
= ∂(gx)A

∂xB
+ o(ρ),

(D.2)
which gives

MAdS
g (Y ) = Mbound

g (x) + o(ρ), (D.3)

where
MAdS
g (Y ) = det

(
∂(gY )
∂Y

)
, Mbound

g (x) = det
(
∂x̄

∂x

)
. (D.4)

The AdS line element squared and the line element at the boundary are given by

(ds2)AdS = R2dρ2 −R2 cosh2 ρdt2 +R2 sinh2 ρdnidni, (ds2)bound = −dt2 + dnidni,
(D.5)
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respectively. For large ρ, a relation between measure factors, square root of corresponding
metric determinants, is given by

γAdS(Y ) = Rd+1
(
eρ

2

)d
γbound(x). (D.6)

Since MAdS
g (Y )γAdS(gY ) = γAdS(Y ) for an AdS isometry g, in the ρ→∞ limit we obtain

Hd(g, x) = Jd(g, x)γ
bound(gx)
γbound(x) , H(g, x) := e−σ(g,x), J(g, x) := [Mbound

g (x)]1/d. (D.7)

From the group composition property J(gh, x) = J(g, hx)J(h, x) and a similar relation

H(gh, x) = H(g, hx)H(h, x), (D.8)

we have
J(g, x) = 1

J(g−1, gx) , H(g, x) = 1
H(g−1, gx) . (D.9)

If g is a boundary isometry (shift of the time coordinate t, rotation of ni), we have1

Jd(g, x)γ(gx) = γ(x), which leads to H(g, x) = 1.

D.2 BDHM formula

Let us reconsider the BDHM relation

O(x) = lim
ρ→∞

(sinh ρ)∆Φ(ρ, x). (D.10)

Using the Fock space transformation property of the bulk field, U(g)Φ(Y )U †(g) = Φ(gY ),
we find the transformation law

U(g)O(x)U †(g) = lim
ρ→∞

(sinh ρ)∆Φ(ρ̄, x̄) = lim
ρ→∞

(sinh ρ
sinh ρ̄

)∆
(sinh ρ̄)∆Φ(ρ̄, x̄)

= e−∆σ(g,x)O(gx) = H∆(g, x)O(gx).
(D.11)

D.3 Definition and properties of I(Y, x)

The AdS invariant S(Y1, Y ) for two bulk points Y1 and Y are given by

S(Y1, Y ) = cosh ρ1 cosh ρ cos(t1 − t)− sinh ρ1 sinh ρni1ni, (D.12)

which satisfies S(gY1, gY ) = S(Y1, Y ). Its bulk-boundary version is defined by2

I(Y1, x) = lim
ρ→∞

4e−ρS(Y1, Y ) = 2[cosh ρ1 cos(t1 − t)− sinh ρ1 n
i
1n

i]. (D.13)

Its transformation property is as follows.

I(gY1, gx) = lim
ρ̄→∞

4e−ρ̄S(gY1, gY ) = lim
ρ̄→∞

4e−ρ̄S(Y1, Y ) = H(g, x)I(Y1, x). (D.14)
1From now on we drop the superscript ‘bound’.
2In our usual coordinates I(Y, x) = 2[cosh ρ cos(t− t̃) − sinh ρniñi].
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D.4 Definition and properties of T (Y, x)

Let us recall that a bulk point Y of AdS space and a boundary point x can be connected with
a past directed light-like geodesic if t̃ = T1 with T1 := t−ω, where ω := arccos[(tanh ρ)n·ñ]
and 0 < ω < π. Similarly, Y and x can be connected with a future directed light-like
geodesic if t̃ = T2 with T2 := t + ω. Finally, Y and x can be connected with a space-like
geodesic if T1 < t̃ < T2.

The function T (Y, x), defined by T (Y, x) = Θ(T2− t̃)Θ(t̃−T1) is isometry invariant as
T (gY, gx) = T (Y, x), since the lightlike/spacelike nature of a curve in AdS space is isometry
invariant.

E Proof of Φ̂(g) ≡ 0

E.1 Transformation back

The transformation g appears in several places in the definition of Φ̂(g) but we can simplify
its expression by doing some steps backwards. Starting from the relation

I∆−d(g−1Yo, y) = I∆−d(Yo, gy)Hd−∆(g, y) = I∆−d(Yo, gy)J
d(g, y)γ(gy)
γ(y) H−∆(g, y), (E.1)

we write

Φ̂(g) =
∫

ddyγ(y)I∆−d(Yo, gy)J
d(g, y)γ(gy)
γ(y) H−∆(g, y)T (Yo, gy) ln[H(g, y)]O(y)(E.2)

=
∫

ddxγ(x)I∆−d(Yo, x)T (Yo, x)H∆(g−1, x) ln[H(g, g−1x)]O(g−1x) (E.3)

= −
∫
DxI∆−d(Yo, x)T (Yo, x) ln[H(g−1, x)]U †(g)O(x)U(g) (E.4)

= −U †(g)Ψ̂(g−1)U(g), (E.5)

where
Ψ̂(g) :=

∫
DxI∆−d(Yo, x)T (Yo, x) ln[H(g, x)]O(x). (E.6)

From the group property (D.8) satisfied by H(g, x) it follows that

Ψ̂(hg) = Ψ̂(g) +
∫
DxI∆−d(Yo, x)T (Yo, x) ln[H(h, gx)]O(x). (E.7)

Therefore if h is a boundary isometry (i.e. H(h, ∀y) = 1) then

Ψ̂(hg) = Ψ̂(g). (E.8)

E.2 The representation g = bΞE

In this subsection we will use the embedding coordinates for global AdS.

Xi = R sinh ρni (i = 1, . . . , d), X0 = R cosh ρ cos t, XD = −R cosh ρ sin t. (E.9)

– 21 –



J
H
E
P
0
5
(
2
0
2
3
)
0
3
4

The embedding coordinates satisfy −(X0)2− (XD)2 +XiXi = −R2 and transform linearly
under the AdS isometry SO(d, 2). The coordinates of the middle point (t = 0, ρ = 0) are

Yo : Xi = 0 (i = 1, . . . , d), X0 = R, XD = 0. (E.10)

For an arbitrary bulk point Y we will find a group element g = bΞE such that g−1Yo = Y .
In other words, we transform Y to Yo in three steps: EY = Y2, ΞY2 = Y1, bY1 = Yo.

The first step (E) is a constant shift of the t coordinate (SO(2) rotation in the (0, D)
plane) that brings t to zero. After this step we have

Y2 : Xi = R sinh ρni (i = 1, . . . , d), X0 = R cosh ρ, XD = 0. (E.11)

The next step (Ξ) is an SO(d) rotation in the (1, . . . , d) space that rotates the unit vector
ni so that it becomes parallel to the d axis. Then we have

Y1 : Xi = 0 (i = 1, . . . , d− 1), Xd = R sinh ρ, X0 = R cosh ρ, XD = 0. (E.12)

The last step (b) is a boost in the (0, d) plane by X̄d = Xd cosh β − X0 sinh β, X̄0 =
X0 cosh β −Xd sinh β, which makes X̄d = 0, X̄0 = R for β = ρ.

This representation is useful because both E and Ξ are boundary isometries and
by (E.8) we have

Ψ̂(g−1) = Ψ̂(E−1Ξ−1b−1) = Ψ̂(b−1). (E.13)

Hence the problem is reduced to the calculation of Ψ̂(b−1), where b−1 is the AdS isometry

X̄i = Xi, X̄d = Xd cosh β +X0 sinh β, X̄0 = X0 cosh β +Xd sinh β, X̄D = XD. (E.14)

Introducing polar coordinates θ, ω as nd = cos θ, ni = sin θmi(ω) (i = 1, . . . , d − 1),
where ω are d− 1 dimensional polar angles and mi is a d− 1 dimensional unit vector, the
transformation is given by

ω̄ = ω,



sinh ρ̄ sin θ̄ = sinh ρ sin θ
sinh ρ̄ cos θ̄ = sinh ρ cos θ cosh β + cosh ρ cos t sinh β
cosh ρ̄ cos t̄ = cosh ρ cos t cosh β + sinh ρ cos θ sinh β
cosh ρ̄ sin t̄ = cosh ρ sin t

(E.15)

Consistency of the first two transformations determines ρ̄:

sinh2 ρ̄ = sinh2 ρ sin2 θ + (sinh ρ cos θ cosh β + cosh ρ cos t sinh β)2. (E.16)

(Consistency of the second pair of transformations can also be used to determine ρ̄, but
this is equivalent.) We obtain ρ̄ = ρ+ σ in the ρ→∞ limit

e2σ = [cosh β + sinh β cos(t− θ)][cosh β + sinh β cos(t+ θ)]. (E.17)

Using the convergent power series

ln(1 + u) =
∞∑
k=1

(−1)k−1

k
uk, (E.18)
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we have
ln[H(b−1, x)] = ln e−σ = − ln[cosh β] +

∞∑
k=1

(− tanh β)k
k

Ek(t, θ), (E.19)

where
Ek(t, θ) = 1

2
[
cosk(t+ θ) + cosk(t− θ)

]
. (E.20)

The first few coefficients are

E1(t, θ) = cos θ cos t, E2(t, θ) = cos2 θ cos2 t+ sin2 θ sin2 t,

E3(t, θ) = cos3 θ cos3 t+ 3 cos θ cos t sin2 θ sin2 t. (E.21)

The final result is
Ψ̂(g−1) =

∞∑
k=1

(− tanh ρ)k
k

Ψ̂k, (E.22)

where
Ψ̂k =

∫
DxI∆−d(Yo, x)T (Yo, x)Ek(t, θ)O(x). (E.23)

E.3 Calculation of the first few terms

(A.3) gives the expansion of the boundary field:

O(t,Ω) =
∑
n`m

[
e−iνn`tBn`m + eiνn`tB†n`m

]
Y`m(Ω), (E.24)

where νn` = ∆ + ` + 2n, n = 0, 1, . . . , ` = 0, 1, . . . and Bn`m is the rescaled Fock space
operator

Bn`m =
√
NR
2νn`

Pn(1 + α)
n! Nn`An`m. (E.25)

Using the coordinate system Ω = (θ, ω) in the previous subsection and dΩ = sin2a θdθdω
with a = −1 + d/2, we can write the d dimensional spherical harmonics in terms of d− 1
dimensional ones and Gegenbauer polynomials as

Y`m(Ω) = Y`λm̃(θ, ω) = K`λm̃C
a+λ
`−λ (cos θ) sinλ θ Yλm̃(ω), (E.26)

where the multi-index m is decomposed as λ m̃, K`λm̃ are some normalization constants to
ensure orthonormality, and the orthogonality of Gegenbauer polynomial is given by∫ π

0
dθ sin2a θ Ca` (cos θ)Ca`′(cos θ) = µ`δ``′ . (E.27)

With this choice we have

O(t,Ω) =
∑
n`λm̃

K`λm̃

[
e−iνn`tBn`λm̃ + eiνn`tB†n`λm̃

]
Ca+λ
`−λ (cos θ) sinλ θ Yλm̃(ω). (E.28)

Putting this expansion into (E.23) we obtain

Ψ̂k =
∑
n`λm̃

K`λm̃

∫ π/2

−π/2
dt(2 cos t)∆−d

[
e−iνn`tBn`λm̃ + eiνn`tB†n`λm̃

]
×
∫ π

0
dθ sin2a θ Ca+λ

`−λ (cos θ) sinλ θEk(t, θ)
∫

dωYλm̃(ω).
(E.29)
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The last integral simply gives
√

Ωd−1δλ0δm̃0̃, where Ωd−1 is the d− 1 dimensional volume
element. The formula further simplifies with b̂n` = K`00̃

√
Ωd−1Bn`00̃ as

Ψ̂k =
∑
n`

∫ π/2

−π/2
dt(2 cos t)∆−d

[
e−iνn`tb̂n` + eiνn`tb̂†n`

] ∫ π

0
dθ sin2a θ Ca` (cos θ)Ek(t, θ).

(E.30)
We then write Ψ̂k = Ψ̂ann

k +
(
Ψ̂ann
k

)†
with

Ψ̂ann
k =

k∑
`=0

∮ dz
z

(−z)d/2(1− z)∆−dB`(z)Pk`(z), (E.31)

where z = −e−2it, and

µ`e
i`tPk`(z) :=

∫ π

0
dθ sin2a θ Ca` (cos θ)Ek(t, θ), B`(z) := µ`

2i

∞∑
n=0

b̂n`(−z)n. (E.32)

Note that Pk`(z) = 0 if k + ` is odd.
Let us calculate the first few terms. For this we need the Gegenbauer polynomials and

their inverse relations3 such as

C0(w) = 1, C1(w) = 2aw, C2(w) = a[2(a+ 1)w2 − 1], (E.33)

w = 1
2aC1(w), w2 = 1

2(a+ 1)

[1
a
C2(w) + 1

]
, (E.34)

to obtain

P11(z) = 1− z
4a , P22(z) = 1 + z2

4a(a+ 1) , P20(z) = 1
2 + a

4(a+ 1)

(
z + 1

z

)
. (E.35)

Using these results we see that

Ψ̂ann
1 = 1

4a

∮ dz
z

(−z)d/2(1− z)∆−dB1(z)(1− z) = 0, (E.36)

because the integrand is analytic inside the unit circle. Similarly

Ψ̂ann
2 =

∮ dz
z

(−z)d/2(1− z)∆−d
{
B2(z) 1 + z2

4a(a+ 1) +B0(z)
[1

2 + a

4(a+ 1)

(
z + 1

z

)]}
= 0,

(E.37)
since the 1/z pole coming from P20 is compensated by the factor 1

z (−z)d/2 for even integer
d > 2. In general, Pk`(z) cannot be more singular than z−a, as we will see.

E.4 General proof

Using

Ek(t, θ) = 1
2k

k∑
r=0

(
k

r

)
ei(2r−k)t cos(2r − k)θ, (E.38)

3From here on we drop the superscript a.
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Pk`(z) in (E.32) is evaluated as

Pk`(z) = 1
µ`

1
2k

k∑
r=0

(
k

r

)
ei(2r−k−`)t

∫ π

0
dθ cos(2r − k)θ sin2a θCa` (cos θ)

= 1
µ`

1
2k

k∑
r=0

(
k

r

)
(−z)

`+k
2 −rI

(2r−k)
` , (E.39)

where
I

(n)
` = 1

2

∫ π

−π
dθeinθ sin2a θCa` (cos θ). (E.40)

Since sin2a θCa` (cos θ) can be written as a Laurent polynomial in eiθ of maximal degree
2a+ `,

I
(n)
` = 0 for n > 2a+ `, (E.41)

which implies that Pk`(z) cannot be more singular than z−a as

Pk`(z) = 1
µ`

1
2k

j∑
n=−a

Θ(k − `+ 2n+ 1)
(

k

j − n

)
(−z)nI(`−2n)

` , j := k + `

2 . (E.42)

F Recursion relations

F.1 Recursion relation for J1(ν, ω)

Using the simple identity
d

du(cosu+ u sin u) = u cosu (F.1)

we can perform a partial integration in the definition of J1(ν, ω) as follows. Here we require
that ν > 1 so that all subsequent manipulations are well-defined.

J1(ν, ω) = 1
Γ(ν + 1)

∫ ω

0
du(u cosu− u cosω)(cosu− cosω)ν−1

= −cosω
ν

J1(ν − 1, ω)− (cosu− cosω)ν−1

Γ(ν + 1)

+ ν − 1
Γ(ν + 1)

∫ ω

0
du(cosu+ u sin u)(cosu− cosω)ν−2 sin u

= −cosω
ν

J1(ν − 1, ω)− (1− cosω)ν−1

Γ(ν + 1) + ν − 1
Γ(ν + 1)

∫ ω

0
du
{
u sin2 u(cosu− cosω)ν−2}

+ ν − 1
Γ(ν + 1)

∫ ω

0
du cosu(cosu− cosω)ν−2 sin u. (F.2)

In the next to last line the integral, using sin2 u = 1− cos2 u, can be represented as

Γ(ν − 1) sin2 ωJ1(ν − 2, ω)− Γ(ν + 1)J1(ν, ω)− 2 cosωΓ(ν)J1(ν − 1, ω) (F.3)

The integral in the last line can be done explicitly and gives

1
ν

(1− cosω)ν + cosω
ν − 1(1− cosω)ν−1. (F.4)

– 25 –



J
H
E
P
0
5
(
2
0
2
3
)
0
3
4

Putting everything together, after some simplifications we get

sin2 ωJ1(ν−2, ω) = ν2J1(ν, ω)+(2ν−1) cosωJ1(ν−1, ω)+ 1
Γ(ν + 1)(1−cosω)ν . (F.5)

Making the shift ν → ν + 2 (so that the result is now valid for ν > −1), we finally arrive
at the recursion (3.22).

F.2 Recursion relation for P1(ν, ω)

Using integration by parts we obtain

P1(ν, ω) = 1
Γ(ν + 1)

∫ ω

0
du (cosu− cosω)(cosu− cosω)ν−1 ln(cosu− cosω)

= −cosω
ν

P1(ν − 1, ω) +
∫ ω

0
du sin2 u

Γ(ν + 1)
{

(ν − 1)(cosu− cosω)ν−2 ln(cosu− cosω)

+ (cosu− cosω)ν−2
}
, (F.6)

and use the identity

sin2 u = sin2 ω − 2 cosω(cosu− cosω)− (cosu− cosω)2 (F.7)

to get

P1(ν, ω) = −cosω
ν

P1(ν − 1, ω) + sin2 ω

[
P1(ν − 2, ω)

ν
+ K1(ν − 2, ω)

ν(ν − 1)

]
− 2 cosω

ν
[(ν − 1)P1(ν − 1, ω) +K1(ν − 1, ω)]− (ν − 1)P1(ν, ω)−K1(ν, ω).

(F.8)

We here again assume ν > 1. After some rearrangements we obtain

sin2 ω P1(ν − 2, ω) = (2ν − 1) cosωP1(ν − 1, ω) + ν2P1(ν, ω)

+ 2 cosωK1(ν − 1, ω) + νK1(ν, ω)− sin2 ω

ν − 1K1(ν − 2, ω).
(F.9)

Finally we make the shift ν → ν + 2 (so that the recursion is valid for ν > −1) to
obtain (4.20).

G AdS Green’s functions

In this appendix we construct the space-like Green’s function in AdS space, which will be
useful (see appendix H) in an alternative method [5, 17] of the bulk reconstruction. Here,
for simplicity, we will restrict our considerations to the range ∆ > d− 2 only.

A Green’s function of the massive scalar wave equation satisfies

(D −m2)G(Y, Y ′) = 1√
|g|
δ(Y, Y ′), D := 1√

|g|
∂α(

√
|g|gαβ∂β), (G.1)
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where the Laplacian D acts on Y , and the mass is parametrized asm2 = ∆(∆−d) (from now
on we are using units where the AdS radius is unity). The metric gαβ (and its determinant
g and inverse gαβ) in Lorentzian AdS is encoded by the line element ds2 as

ds2 = (dρ)2 − cosh2 ρ (dt)2 + sinh2 ρ dnidni (G.2)

in global coordinates, or

ds2 = −(1 + y2)(dt)2 +
(
δij −

yiyj

1 + y2

)
dyidyj (G.3)

in flat coordinates, where yi = ni sinh ρ and y :=
√
yiyi = sinh ρ.

In the Green’s function method the AdS invariant (D.12)

σ(Y, Y ′) = cos(t− t′) cosh ρ cosh ρ′ − n · n′ sinh ρ sinh ρ′ (G.4)

will play an important role, where n, n′ are d-dimensional vectors. If we are looking for a σ-
dependent Green’s function G(Y, Y ′) = g(σ(Y, Y ′)), then g(σ) has to satisfy the differential
equation

(σ2 − 1)g′′(σ) +Dσg′(σ) + ∆(d−∆)g(σ) = 1√
|g|
δ(Y, Y ′). (G.5)

If Y ′ = Yo, we can take the more general ansatz in flat coordinates as G(Y, Yo) = H(t, y),
which should satisfy

−m2H(t, y)− 1
1 + y2∂

2
tH(t, y) + ∂i

[
yi

y

(
1 + y2)∂yH(t, y)

]
= δ(t)δ(y). (G.6)

The delta function normalization of this Green’s function becomes more transparent in
terms of its Fourier transform

H(ω, y) =
∫ ∞
−∞

dt eiωtH(t, y). (G.7)

We have to require

y >0 :
[

ω2

1 + y2 + ∆(d−∆)
]
H(ω, y) + ∂i

[
yi

y

(
1 + y2)∂yH(ω, y)

]
= 0,

y →0 : H(ω, y) ≈ − y2−d

(d− 2)Ωd
.

(G.8)

G.1 Hypergeometric σ-dependent solutions

A particular (properly normalized) solution of (G.5) is given by the hypergeometric solution
(see [23])

F (σ) = − Γ(∆)
2∆+1πd/2Γ(1 + α)

σ−∆
2F1

(∆
2 ,

∆ + 1
2 ; 1 + α; 1

σ2

)
, (G.9)

which is the scalar two-point correlation function in AdS space. This solution is singular
for σ → 1 and is properly normalized as

F (σ) ∼ d∗x−a, a = d− 1
2 , d∗ = − Γ(D/2)

(D − 2)(2π)D/2
(G.10)
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for x → 0 with σ = 1 + x. A solution of the homogeneous part of (G.5) can also be
given [24] in terms of a hypergeometric function:

J(σ) = 2F1

(∆
2 ,

d−∆
2 ; d+ 1

2 ; 1− σ2
)
. (G.11)

This solution is regular at σ = 1: J(1) = 1.
Although the solution of the problem is completely given [5, 17] (see also [25]) in terms

of these two special functions, it is nevertheless more transparent if we write the Green’s
function in an expanded form using the variable x = σ − 1. We take the ansatz

g(σ) = ψ(x) =
∞∑
n=0

dn+qx
n+q (G.12)

and expand the homogeneous part of the equation written as

x(x+ 2)ψ′′(x) +D(x+ 1)ψ′(x) + ∆(d−∆)ψ(x) = 0. (G.13)

The regular solution corresponds to the choice q = 0 and we write

J(σ) = h(x) =
∞∑
n=0

cnx
n, (G.14)

where the expansion coefficients are given recursively as

cn+1 = −(n+ ∆)(n+ d−∆)
(n+ 1)(2n+ d+ 1) cn n = 0, 1, . . . c0 = 1. (G.15)

The singular solution corresponds to q = −a and proper normalization requires d−a = d∗.
Higher coefficients are determined from the recursion

dn−a(n− a+ ∆)(n− a+ d−∆) + 2dn−a+1(n+ 1)(n+ 1− a) = 0, n = 0, 1, . . . . (G.16)

For even d (when a is half-integer), all higher dn−a coefficients are obtained recursively
from d−a = d∗. On the other hand, for odd d (when a is integer), we first determine
the coefficients d−a+1, . . . , d−1 from d−a using (G.16), which are all non-zero in the range
∆ > d − 2. Arriving at n = a − 1 in the recursion (G.16), we find a contradiction unless
∆ = d− 1. In this case it is consistent to put dn = 0, n = 0, 1, . . . .

For generic ∆ 6= d−1 and odd d, there is no singular solution within the ansatz (G.12).
We therefore take a different ansatz,

g(σ) = ψ̃(x) = ψ(x) + c ln xh(x), (G.17)

which satisfies (G.13) with the coefficients d−a, . . . , d−1 as before. Then the n = a − 1
equation leads to

c = d−1
d− 1(∆− 1)(∆− d+ 1), (G.18)
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and the higher coefficients can be calculated from the recursion

dn+1 = − 1
(n+ 1)(2n+ d+ 1)

{
(n+ ∆)(n+ d−∆)dn

+ c
[
cn(2n+ d) + cn+1(4n+ d+ 3)

]}
, n = 0, 1, . . .

(G.19)

(By convention) we fix d0 = 0 and the general σ-dependent solution is then given by

g(σ) + pJ(σ), (G.20)

where p is an arbitrary constant.

G.2 Feynman propagator

By analogy to the Minkowski case, we define the Feynman propagator in Lorentzian AdS
space as

G(σ) = Re
{
ig(σ + iε)

}
. (G.21)

G.2.1 Odd d

By using

Re {i(x+ iε)n} = 0, n ≥ 0,

Re
{ i

x+ iε

}
= πδ(x), Re

{ i

(x+ iε)k+1

}
= (−1)kπ

k! δ(k)(x),
(G.22)

we can write a contribution to the Feynman propagator coming from ψ(x) as

Gs(x) =
a−1∑
k=0

fkδ
(k)(x), fk = (−1)kπ

k! d−(k+1), k = 0, . . . , a− 1, (G.23)

where contributions from non-singular terms vanish. For later use we rewrite the recursion
relations in terms of the fk coefficients as

(k + 1−∆)(k + 1 + ∆− d)fk + (d− 2k − 1)fk−1 = 0, k = 1, . . . , a− 1, (G.24)

fa−1 = (−1)a
√
π

πd/22 d+3
2
, πc = (∆− 1)(∆− d+ 1)

d− 1 f0. (G.25)

Using the relation

ln(x+ iε)h(x+ iε) =
{

(iπ + ln |x|)h(x) x < 0
ln xh(x) x > 0 , (G.26)

we have
Re
[
i ln(x+ iε)h(x+ iε)

]
= −πh(x)Θ(−x). (G.27)

Thus the full Feynman propagator (for odd d in the Lorentzian AdS) becomes

G(σ) = Gs(x)− cπh(x)Θ(−x). (G.28)

In the next section we will need the space-like Green’s function, constructed as

g(Y, Y ′) = G(σ) + πcJ(σ) = Gs(x) + cπh(x)Θ(x). (G.29)

This Green’s function vanishes in the time-like region (σ < 1, equivalently, x < 0), since
Gs(x) = 0 for x 6= 0.
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G.2.2 Even d

In this case the expansion is in half-integer powers and the Feynman propagator is

G(σ) = Re {ig(σ + iε)} =
{

0 x > 0
−
√
|x|
∑∞
n=0 dn−ax

n−d/2 x < 0 (G.30)

Since the half-integer powers cannot be cancelled by adding a term of the form pJ(σ) we
conclude that there is no σ-dependent space-like Green’s function for even d.

H Green’s function method

The starting point here is the identity involving the Green’s function G(Y, Y ′) and a massive
free scalar field Φ(Y ):

∂µ
(√
−ggµν∂νG · Φ−

√
−ggµν∂νΦ · G

)
=
√
−g
(
DG · Φ−DΦ · G

)
=
√
−g
(
(D −m2)G · Φ− (D −m2)Φ · G

)
= δ(Y, Y ′)Φ(Y ).

(H.1)

Integrating the above relation with respect to Y and using Stokes’ theorem, we obtain

Φ(Y ′) =
∫

dDY ∂µXµ =
∮

dnµXµ, Xµ :=
√
−ggµν(∂νG · Φ− ∂νΦ · G), (H.2)

where the surface integral in (H.2) must include the bulk point Y ′ in its interior. We now
choose the space-like Green’s function G = G for Y ′ = Yo, and furthermore the surface is
chosen to be a cylinder with symmetry axis parallel to the t coordinate axis and radius
ρ = R. The top and bottom bases of the cylinder are at t = ±t1, where π

2 > t1 > to and
cos to = 1

coshR . The two bases of the cylinder at t = t1 and t = −t1 do not contribute to
the integral, since σ < 1 uniformly there and the space-like Green’s function G vanishes.
Therefore we can write

Φ(Yo) = coshR(sinhR)d−1
∫ t1

−t1
dt
∫

dΩ[∂ρG · Φ− ∂ρΦ · G]. (H.3)

Since G(Y, Yo) depends only on t and ρ, the angular integration leads to

Φ(Yo) = coshR(sinhR)d−1
∫ t1

−t1
dt[∂ρG(t, R) ·D(t, R)− ∂ρD(t, R) · G(t, R)], (H.4)

where D(t, ρ) :=
∫

dΩ Φ(t, ρ,Ω) is the S-wave part of the scalar field. For large R, it sat-
isfies the BDHM relation D(t, R) ≈ (sinhR)−∆C(t), where C(t) is the S-wave component
of the boundary conformal field. Thus the bulk reconstruction formula simplifies to

Φ(Yo) = lim
R→∞

(coshR)−ν
∫ t1

−t1
dtC(t)[∂ρG(t, R) + ∆G(t, R)]. (H.5)

Further simplification occurs for an odd d, because, as we have seen in appendix G, G
only depends on σ in this case. Therefore,

∂ρG(σ) = cos t sinhRG′(σ) ≈ σG′(σ) (H.6)
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for large R, and we can write

Φ(Yo) = lim
R→∞

(coshR)−ν
∫ t1

−t1
dtC(t)[σG′(σ) + ∆G(σ)]. (H.7)

Let us now separate the delta function and theta function parts of the representation
in (H.7) as

Φ(Yo) = lim
R→∞

(Φ0 + Φ1), (H.8)

where
Φ0 = (coshR)−ν

∫ t1

−t1
dtC(t)[σG′s(x) + ∆Gs(x) + πcδ(x)] (H.9)

with h(0) = J(1) = 1, and

Φ1 = πc(coshR)−ν
∫ to

−to
dtC(t)[σJ ′(σ) + ∆J(σ)]. (H.10)

The range of the t integral becomes [−to, to] due to Θ(x), and we introduce to = π
2 − εo,

where sin εo = 1/ coshR→ 0 for large R.
For technical reasons, we will now divide Φ1 into two parts, Φ1 = Φ1a + Φ1b, where

Φ1a = πc(coshR)−ν
∫ π/2−ε

−π/2+ε
dtC(t)[σJ ′(σ) + ∆J(σ)], (H.11)

and

Φ1b = πc(coshR)−ν
{∫ π/2−εo

π/2−ε
dtC(t)[σJ ′(σ) + ∆J(σ)]

+
∫ −π/2+ε

−π/2+εo
dtC(t)[σJ ′(σ) + ∆J(σ)]

}
.

(H.12)

Here ε is a small but fixed parameter, while εo tends to zero as R→∞. We will let ε→ 0
at the end of the calculation.

H.1 Calculation of Φ1a

As discussed in appendix I, J(σ) has a power-law behaviour for large σ if we restrict our
considerations to ∆ > d/2, which is relevant only for d = 3 with an odd d since ∆ > d− 2.
Using the asymptotics (see appendix I)

σJ ′(σ) + ∆J(σ) ≈ (ν + ∆)Goσν (H.13)

for σ > sin ε coshR→∞, we have

Φ1a ≈ πcGo(2α)(coshR)−ν
∫ π/2−ε

−π/2+ε
dt C(t)(cos t coshR)ν = 2νξ

∫ π/2−ε

−π/2+ε
dt C(t)(cos t)ν .

(H.14)
In the following we will continue the calculation for the cases: A ν > −1, B ν = −1,
C −1 > ν > −2, separately. For the simplest case,

A Φ1a ≈ ξ
∫ π/2

−π/2
dt C(t)(2 cos t)ν , (H.15)
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since the integral is convergent for ε→ 0 in this range, while B Φ1a = 0, since ξ vanishes
in this spacial case. In the most complicated case we use a partial integration and obtain

C Φ1a = −2νξ
∫ π/2−ε

−π/2+ε
dt Ċ(t)g1(t) + 2νξ

[
C(π/2− ε) + C(−π/2 + ε)

]
g1(π/2− ε)

≈ −2νξ
∫ π/2

−π/2
dt Ċ(t)g1(t) + 2νξC+(ε)

∫ π/2

ε
du(sin u)ν ,

(H.16)

where g1(t) is the primitive function

g1(t) =
∫ t

0
du(cosu)ν . (H.17)

The last integral can be evaluated as (see appendix I)∫ π/2

ε
du(sin u)ν =

∫ π/2

ε
du[(sin u)ν−uν ]+ 1

ν + 1

(
π

2

)ν+1
− εν+1

ν + 1 ≈ g̃1−
εν+1

ν + 1 . (H.18)

Putting elements of this calculation together, we finally obtain

Φ1a = ξ

∫
(sub)

dt (2 cos t)ν C(t) + η

2Ωd
C+(ε)− 2νξC+(ε) ε

ν+1

ν + 1 , (H.19)

where the first term is written in terms of the subtracted integral, defined in (3.8), by
reversing the partial integration.

H.2 Calculation of Φ1b

As a first step, we simplify Φ1b as follows:

Φ1b ≈ πcC+(0)(coshR)−ν
∫ M

1

dσ√
(coshR)2 − σ2

[
σJ ′(σ) + ∆J(σ)

]
, (H.20)

where the upper limit M = sin ε coshR is large. Next using
1√

1− σ2

(coshR)2

− 1 ≤ 1
cos ε − 1 = O(ε2) (H.21)

we can further approximate Φ1b as

Φ1b ≈ πcC+(ε)(coshR)−(ν+1)F(sin ε coshR), F(M) :=
∫ M

1
dσ
[
σJ ′(σ) + ∆J(σ)

]
.

(H.22)
Using the asymptotic formula J(σ) ≈ Goσν again, we obtain

F ′(M) ≈ (ν + ∆)GoMν −→ F(M) ≈ 2αGo
ν + 1M

ν+1 + const. , (H.23)

with which Φ1b is evaluated case by case as before. In the first case the constant term is
subleading and we obtain

A Φ1b ≈
2νξ
ν + 1(sin ε)ν+1C+(ε)→ 0, (H.24)
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while B Φ1b ≈ 0 (c = 0) for the next case. For the last case, the constant term
dominates and the Mν+1 contribution is subleading, so that we obtain

C Φ1b ≈
2νξ
ν + 1(sin ε)ν+1C+(0) + πcC+(0)(coshR)−(ν+1)F(∞), (H.25)

where the results in appendix I give

F(∞) = −1 + (∆− 1)
∫ ∞

1
dσJ(σ) = −1− d− 1

ν + 1 . (H.26)

We can now add up the contributions Φ1a and Φ1b and find

A Φ1 = ξ

∫ π/2

−π/2
dtC(t)(2 cos t)ν , (H.27)

B Φ1 = 0, (H.28)

C Φ1 = ξ

∫
(sub)

dtC(t)(2 cos t)ν + η

2Ωd
C+(0) + πcC+(0)F(∞)(coshR)−(ν+1). (H.29)

H.3 Calculation of Φ0

Using the delta function identity xδ(k)(x) = −kδ(k−1)(x), Φ0 can be rewritten as

Φ0 = (coshR)−ν
∫ t1

−t1
dt C(t)

{
fa−1δ

(a)(x) +
a−1∑
k=1

[fk−1 + (∆− k − 1)fk]δ(k)(x)

+ [(∆− 1)f0 + πc]δ(x)
}
.

(H.30)

Using the relations

∫ t1

0
dtC(t)δ(k)(x) = (−1)k

[( d
dσ

)k C(t)√
(coshR)2−σ2

]∣∣∣∣∣
t=to,σ=1

,
dt
dσ =− 1√

(coshR)2−σ2

(H.31)
and∫ 0

−t1
dtC(t)δ(k)(x) = (−1)k

[( d
dσ

)k C(t)√
(coshR)2−σ2

]∣∣∣∣∣
t=−to,σ=1

,
dt
dσ = 1√

(coshR)2−σ2

(H.32)
we can evaluate (H.30) term by term. Starting with k = 0, the sum of the delta function
integrals (H.31) and (H.32) give

(k = 0) C(to) + C(−to)
sinhR , (H.33)

(k = 1) C ′(to)− C ′(−to)
sinh2R

− C(to) + C(−to)
sinh3R

, (H.34)

(k = 2) C ′′(to) + C ′′(−to)
sinh3R

− 3[C ′(to)− C ′(−to)]
sinh4R

+ C(to) + C(−to)
sinh3R

+ 3[C(to) + C(−to)]
sinh5R

,

(H.35)
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and so on. We see that the leading contribution is given by (H.33) and all higher contri-
butions are subleading (of order (sinhR)−(k+1)). After this simplification, we find

Φ0 ≈ (coshR)−(ν+1)C+(0)[(∆− 1)f0 + πc], (H.36)

which, using the results in appendix I, gives

A lim
R→∞

Φ0 = 0, (H.37)

B c = 0 (∆− 1)f0 = (−1)a
2Ωd

Φ0 = (−1)a
2Ωd

C+(0), (H.38)

C Φ0 ≈ (coshR)−(ν+1)C+(0)cπ
{

1 + d− 1
ν + 1

}
. (H.39)

The final result of the bulk reconstruction by the Green’s function method is given as

A Φ(Yo) = ξ

∫ π/2

−π/2
dt C(t)(2 cos t)ν = (3.1),

B Φ(Yo) = (−1)a
2Ωd

C+(0) = (3.9) [for ` = 0],

C Φ(Yo) = ξ

∫
(sub)

dt C(t)(2 cos t)ν + η

2Ωd
C+(0) = (3.6).

(H.40)

These Green’s function results are in complete agreement with those in the main text
obtained by different methods, as shown in the last equalities.

I Useful relations

In this appendix we list some results which will be used in the Green’s function method.

• From the asymptotics of hypergeometric functions we see that for large argument σ

J(σ) ≈ Goσν , (I.1)

which is valid for ∆ > d/2 only. Since we consider the range ∆ > d− 2 in this paper,
this restriction is only relevant for d = 3. The coefficient in (I.1) is given by

Go = 2∆−1 Γ(D/2)Γ(α)√
π Γ(∆) . (I.2)

• The integral of the hypergeometric solution J(σ) can be calculated with the help of
the following two hypergeometric identities:

(1− z)a+b−c
2F1(a, b; c; z) = 2F1(c− a, c− b; c; z), (I.3)

2F1(a, b; c; z) = c− 1
(a− 1)(b− 1)

d
dz 2F1(a− 1, b− 1; c− 1; z). (I.4)

With the substitution σ =
√

1 + z the integral is calculated to be∫ ∞
1

dσJ(σ) = 1
2

∫ ∞
0

dz√
1 + z

2F1

(∆
2 ,

d−∆
2 ; d+ 1

2 ;−z
)

= − d− 1
(ν + 1)(∆− 1) . (I.5)
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• For the parameter range ν > −2, ν 6= −1 the constant g̃1 given below is well-defined
and is given by

g̃1 =
∫ π/2

0
du[(sin u)ν − uν ] + 1

ν + 1

(
π

2

)ν+1
=
√
π

2
Γ
(

1+ν
2

)
Γ(1 + ν/2) . (I.6)

• From the recursion (G.24) and (G.25), we can calculate the value of the coefficients

f0 = 2−d Γ(∆− 1)(−1)a
√
π

Γ
(
d−1

2

)
Γ(ν + 2)πd/2

, πc = 2−d Γ(∆)(−1)a
√
π

2πd/2Γ(D/2)Γ(ν + 1)
. (I.7)

• Using the above result, we have

πcGo(2∆− d) = 2νξ. (I.8)
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