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SUMMARY

An increase in ethnic diversity in genetic studies has the potential to provide un-
precedented insights into how genetic variations influence human phenotypes. In
this study, we conducted a quantitative trait locus (QTL) analysis of 121 metabo-
lites measured using gas chromatography-mass spectrometry with plasma sam-
ples from 4,888 Japanese individuals. We found 60metabolite-gene associations,
of which 13 have not been previously reported. Meta-analyses with another Jap-
anese and a European study identified six and two additional unreported loci,
respectively. Genetic variants influencing metabolite levels were more enriched
in protein-coding regions than in the regulatory regions while being associated
with the risk of various diseases. Finally, we identified a signature of strong nega-
tive selection for uric acid (bS = �1.53, p = 6.2 3 10�18). Our study expanded the
knowledge of genetic influences on human bloodmetabolites, providing valuable
insights into their physiological, pathological, and selective properties.

INTRODUCTION

Genome-wide quantitative trait locus (QTL) analysis of metabolites (mQTL) in the European population

(EUR) has identified hundreds of common to rare genetic variants associated with human blood metab-

olites.1–10 These studies have provided heritability estimates of multiple metabolites, insights into the

biochemical pathways, and downstream functional implications of disease-associated variants. However,

an imbalance in the study population remains a significant limitation of these studies. As in most

genome-wide association studies (GWASs), most of such studies target EURs.11 This imbalance limits

our understanding of the genetic influence on metabolites for two reasons. One reason is that the anal-

ysis of complex traits generally strongly depends on genetic architecture.12,13 The other reason is that

metabolite levels are affected by environmental factors such as diet, lifestyle, and physical activity, which

are often different among ethnicities. The comparison of QTL profiles among multiple ethnicities and the

meta-analysis across populations will lead to a better understanding of genetic influences on human

blood metabolites. Recent large-scale GWAS of lipids has indicated that a study comprising multiple an-

cestries could detect candidate genes or variants more efficiently than a study comprising single

ancestry.14

Furthermore, studies on non-EURs enable us to understand the downstream effects of genetic variants

associated with diseases or other traits identified in those populations. Although some studies have

focused on non-EURs, such as the Latino,15 Middle Eastern,16 African American,17 and Japanese,18,19

they employed a relatively small number of participants. There is still an unmet need for large-scale studies

focusing on non-EURs.

Previous studies have identified thousands of metabolite-disease associations to date20; however, their

relationship to fitness has not been explored. If the level of a metabolite is beneficial or detrimental to

adaptation, the allele of the genetic variants influencing the metabolite level should be under selection

pressure. We can infer such natural selection signatures by uncovering the genetic impacts on metabolites.

Overall, analyzing genetic influences onmetabolites in the Japanese population has the potential to obtain

unprecedented physiological, pathological, and selective insights into them. With these goals in mind, we

conducted a GWAS of the blood levels of 121 metabolites quantified by gas chromatography-mass spec-

trometry (GC-MS) in a Japanese community-based cohort.
iScience 26, 105738, January 20, 2023 ª 2022 The Author(s).
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RESULTS

Identification of 60 pairs of 46 genes and 44 metabolites

We performed a genetic association analysis of 121 metabolites in 4,888 healthy individuals enrolled in the

Nagahama Prospective Genome Cohort for the Comprehensive Human Bioscience (the Nagahama

study).21 We identified 8,905 genetic variants associated with the blood levels of 44 metabolites

(p < 4.1 3 10�10). The values of the genomic control lambda (l GC) varied between 0.99 and 1.05 in all me-

tabolites (Table S1). For eachmetabolite, associated variants located within 500 kb weremerged as a single

genetic locus (defined as mQTL), and one gene was assigned to each locus (see STARMethods). In total, 46

genes were assigned, of which ten showed an association with two or more metabolites. CPS1 was asso-

ciated with four metabolites, PPM1K and DPEP1 with three, and the remaining seven genes with two me-

tabolites. On the other hand, 13 out of the 44 metabolites were associated with two or more genes. Uric

acid, glycine, and 3-hydroxyisovaleric acid showed association with three genes, and the other ten were

associated with two genes. Altogether, we identified 60 gene-metabolite pairs (Table 1, Figures S1–S10).

For each of the 60 mQTLs, we searched for the putative causal variant which altered the amino acid or

expression level of the assigned gene and found it at 43 loci (Table S2). Among the 43 variants, six changed

the amino acid and expression levels, 16 changed the amino acid but not the expression levels, and the

other 21 altered the expression levels only.

Of the 60 gene-metabolite pairs, 13 pairs consisting of 11 genes and ten metabolites were not reported

(Figure S11). Among the 11 genes, SOD3 was not reported to be associated with metabolites (Figure S11,

orange). The remaining ten genes have been reported for their association with other metabolites but not

with those identified in this study (Figure S11, green/cyan-colored). Two out of the ten genes, namely ACP1

and DCXR, were associated with ribulose levels for which no QTLs have been shown (Figure S11 in green).

Second, to explore additional variants independently influencing the metabolite levels, we performed a

conditional analysis on the variant showing the strongest association (referred to as a lead variant) at

each mQTL. We identified 15 such variants for eight metabolites (p < 4.1 3 10�10) (Table S3, Fig-

ure S12–S21). We assigned a gene to each of those variants and found that five genes had two or more var-

iants associated with five metabolites (Table S3, shown in bold). The sum of the allele dosage of the lead

and additional variants that increased the level of a metabolite increased the level of that metabolite (Fig-

ure S22). The proportion of variance explained by the lead and additional variants was greater than 10% in

four metabolites (3-aminoisobutyric acid, fucose, mannose, and proline) (Table S1).
Fourteen gene-metabolite pairs were localized in known biochemical pathways

Of the 60 gene-metabolite pairs, 14 were mapped to known biochemical pathways (Table S4). The DCXR-

ribulose pair, the only pair newly identified in this study, was on the pentose and glucuronate interconver-

sion pathway. DCXR is an enzyme which reduces xylulose to xylitol in the multiple biochemical reactions

toward ribulose on that pathway. Rs60208666 is located 497-bp upstream of the transcription initiation

site of DCXR and is predicted to be in the promoter region.22 The G allele of rs60208666, which was re-

ported to increase the expression level of DCXR,23 decreased ribulose level (beta = �0.51).
Comparison and the multi-population analysis with the EUR

To clarify the genetic background of different association signals between the European and Japanese

populations, we compared the allele frequencies of the lead variants in 47 known and 13 novel mQTLs.

As a result, minor allele frequencies (MAF) of novel variants in the EUR of the 1000 Genomes Project

(1 KG) Phase3 were lower than those of known variants (p = 0.065, Mann-Whitney U test; Figure 1A). On

the other hand, there was no difference in their MAF in the East Asian population (EAS) (p = 0.27; Figure 1B).

Furthermore, we examined whether previously reported variant-metabolite associations in the EUR were

observed in the Japanese population. First, we extracted 556 variant-metabolite pairs showing association

in Europeans and examined their associations in Japanese (see STAR Methods) (Table S5). One hundred

forty pairs showed association (p < 0.05), of which 116 showed directional consistency (82.9%, p for sign

test = 1.2 3 10�15). When we set the association p value lower than 5.0 3 10�5, 43 variants remained,

and all showed directional consistency with those of Europeans. MAF of the 43 variants in 1 KG Phase3

were significantly higher than those of the remaining 513 variants in EAS (p = 0.045, Figure 1C) but not

in EUR (p = 0.11; Figure 1D).
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Table 1. Result of the GWAS

Putative

causal gene Metabolite

Lead SNP information
Previous

reportsdCHR Position Reference ALT ID Freq. Effect SE p -value

NBPF3 O-Phosphoethanolamine 1 21817126 G GGT rs80212518 0.46 0.20 0.02 4.7E-22 1

Phosphoric acid 1 21820042 A G rs12132412 0.23 0.20 0.03 8.5E-15 2

THEM4 3-Hydroxyisovaleric acid 1 151890958 A C rs61817697 0.30 �0.16 0.02 3.1E-13 3

ACP1 Ribulose 2 217,560 AG A rs56350804 0.23 �0.20 0.03 2.3E-14 a

Arabinose 2 268191 G T rs56321614 0.22 �0.24 0.02 2.6E-21 b

GCKR Mannose 2 27730940 T C rs1260326 0.42 0.54 0.02 8.3E-181 3,4,5,6,7,8,9

Threonine 2 27744364 ATT A rs373060500 0.43 0.13 0.02 2.8E-11 3,4,6,10,11,12

SLC1A4 2-Aminobutyric acid 2 65225088 G GC rs72538440 0.73 0.24 0.03 1.1E-20 3,4,5,6

CPS1 Acetylglycine 2 211540507 C A rs1047891 0.15 0.42 0.03 1.9E-45 3,4,5,6,13

Glycine 2 211540507 C A rs1047891 0.15 1.08 0.02 1.2E-410 3,4,5,6,8,9,11,12,13,14,15,

16,17,18,19,20,21,22,23,

24,25,26,27,28,29,30

Serine 2 211540507 C A rs1047891 0.15 0.37 0.03 1.5E-38 3,4,5,6,11,12,21,23,24

Creatinine 2 211595900 C T rs72933889 0.16 0.27 0.03 1.7E-22 2,12,31,32,33,34

GADL1 beta-Alanine 3 30768667 T TTTCCCA

AATTTG

rs147693330 0.52 �0.45 0.02 7.0E-120 3,6

SLC2A9 Uric acid 4 9984541 G T rs9994216 0.58 0.17 0.02 5.1E-17 3,5,6,8,9,29,31,35,36,37,

38,39,40,41,42,43,44,45,

46,47,48,49,50,51,52,53

SOD3c Threonic acid 4 24801834 C G rs1799895 0.04 �0.87 0.06 1.4E-45 b

ABCG2 Uric acid 4 89045331 A G rs75544042 0.71 �0.16 0.02 2.5E-13 3,31,35,36,37,39,40,41,42,

43,44,46,49,50,54

PPM1K Valine 4 89226422 T C rs1440581 0.47 0.13 0.02 1.2E-10 3,5,11,12,16,26,55,56

2-Oxoisocaproic acid 4 89228383 T C rs7660693 0.46 0.13 0.02 3.6E-10 3,5,11

3-Methyl-2-oxobutyric acid 4 89228383 T C rs7660693 0.46 0.15 0.02 1.1E-13 3,5,11

AGA Aspartic acid 4 178413876 T A rs12642803 0.45 �0.16 0.02 2.3E-13 3,12

SDHA Succinic acid 5 195139 C T rs118046653 0.02 0.68 0.07 1.9E-20 3

AGXT2 3-Aminoisobutyric acid 5 35030922 G A rs6882350 0.80 1.13 0.02 3.9E-677 1,3,4,6,15,22,57,58,

59,60,61,62

NADK2 Lysine 5 36266859 CTT C rs10556207 0.63 0.13 0.02 3.5E-10 3,11,12

REV3L Tyrosine 6 111545540 T C rs354551 0.69 �0.17 0.02 5.6E-15 3,4,5,11,12,16,22,

24,26,63,64

(Continued on next page)
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Table 1. Continued

Putative

causal gene Metabolite

Lead SNP information
Previous

reportsdCHR Position Reference ALT ID Freq. Effect SE p -value

PSPH Serine 7 56080426 C G rs62457261 0.67 0.32 0.02 1.9E-51 3,4,5,6,11,12,13,

17,21,23,24

Glycine 7 56081213 A AAAAT rs36126335 0.67 0.14 0.02 6.7E-11 3,11,12,25,28

ADHFE1 2-Deoxytetronic acid 8 67378275 GT G rs35896820 0.41 �0.17 0.02 1.9E-15 5

PYCRL Pipecolinic acid 8 144687092 T C rs896962 0.35 �0.23 0.02 6.7E-26 b

CCBL1 Indolelactic acid 9 131567995 G A rs7854319 0.32 �0.15 0.02 2.6E-12 3,4,5,6,24

DHTKD1 2-Aminoadipic acid 10 12074109 A G – 0.01 0.82 0.13 1.3E-10 3,12

LMO1 Threonine 11 8255106 G A rs204926 0.25 �0.16 0.03 2.3E-10 3

SAA1 2-Hydroxyisovaleric acid 11 18338682 A C rs10741740 0.56 �0.22 0.02 1.8E-27 3,4,5,6,8,24,29

EXT2 Xylose 11 44085687 C A rs7127924 0.21 0.23 0.03 1.7E-19 b

GLYAT Acetylglycine 11 58462882 T C rs11229584 0.83 0.22 0.03 5.8E-15 3,13

SLC22A12 Uric acid 11 64361219 G A rs121907892 0.03 �1.48 0.06 8.0E-130 11,13,31,36,37,40,

41,46,50,53

NOX4 Cystine 11 89224453 A C rs2289125 0.52 0.21 0.02 4.3E-24 3

PAH Phenylalanine 12 103306579 C T rs118092776 0.04 1.04 0.05 7.7E-96 3,5,11,12,13,16,21,23,26

ALDH2 2-Hydroxyisovaleric acid 12 112230019 G C rs4646776 0.27 �0.24 0.02 1.2E-25 b

2-Oxoisocaproic acid 12 112241766 G A rs671 0.27 �0.17 0.02 4.8E-14 11

HPD 2-Hydroxyisobutyric acid 12 122289655 G A rs372273603 0.82 0.36 0.03 5.3E-41 5,59,60,65

3-Hydroxyisovaleric acid 12 122303755 C T rs2928283 0.23 �0.19 0.02 5.6E-15 3,4,10

ASPG Asparagine 14 104561998 T C rs1770983 0.87 �0.34 0.03 2.2E-26 3,4,5,9,11,12,13,

14,21,24

ACSM2A 3-Indolepropionic acid 16 20466487 T G rs117928765 0.17 0.35 0.04 2.3E-21 3,4,5,6,13,24,66

ACSM2B 3-Hydroxyisovaleric acid 16 20563528 T C rs77863699 0.20 0.37 0.03 1.4E-49 3,4,10,24

GCSH Glycine 16 81147730 C T rs4258631 0.79 0.19 0.03 8.2E-15 3,11,12,16,17,21,

24,25,26,28

SLC7A5 Kynurenine 16 87878076 G A rs4843715 0.12 0.22 0.03 7.8E-13 3,4,5,6,12,13,24,57

DPEP1 Cystine 16 89693149 C T rs79068217 0.48 0.15 0.02 2.9E-12 b

Hypotaurine 16 89704365 G C rs1126464 0.32 0.16 0.02 1.4E-11 b

Cysteinylglycine 16 89722390 G A rs164752 0.40 0.44 0.02 5.6E-101 3,4,10

SLC13A5 Citric acid 17 6619817 T C rs170148 0.59 0.16 0.02 7.2E-11 5,11,26

PRPSAP2 1,5-Anhydro-D-sorbitol 17 18772654 C CT rs11460734 0.25 0.17 0.02 3.1E-12 3,6,67

DCXR Ribulose 17 79996451 G A rs56001523 0.06 �0.54 0.05 8.4E-32 a

(Continued on next page)
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Table 1. Continued

Putative

causal gene Metabolite

Lead SNP information
Previous

reportsdCHR Position Reference ALT ID Freq. Effect SE p -value

TYMS Arabinonic acid 18 680520 A C rs7239738 0.40 �0.31 0.02 6.6E-52 3

CEP89 Hypotaurine 19 33423691 T A – 0.01 �0.66 0.10 5.3E-11 b

PRODH2 4-Hydroxyproline 19 36290977 C T rs3761097 0.16 0.29 0.03 6.2E-23 12

Pipecolinic acid 19 36290977 C T rs3761097 0.16 0.45 0.03 2.7E-56 b

FUT2 Fucose 19 49206631 A T rs1047781 0.41 �0.85 0.02 9.2E-483 65

TP53RK 2-Oxoglutaric acid 20 45236778 T C rs6124830 0.46 0.17 0.02 3.7E-16 b

PRODH Proline 22 18910844 A G rs4269009 0.14 0.68 0.03 2.5E-119 3,4,5,6,8,11,12,13,14,17,

21,22,23,24,29,30,68

MPST Creatinine 22 37463858 G GCAAGGCCCTG

TCTGCCATTCTG

GTTGCTCCTCGC

CCAAGGCCCTG

TCTGCCATTCTG

GTTGCTCCTCGCC

– 0.42 �0.14 0.02 2.6E-10 b

Frequency and effect size are based on the ALT allele.
aMetabolites for which QTL was found for the first time in this study.
bNewly identified pair of locus and metabolite.
cMetabolites associated with this gene have not been reported.
dReferences are shown in supplemental information.
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Figure 1. Comparison of minor allele frequencies between the novel and known variants in the European and East Asian populations

(A and B) The number of variants falling in the indicated MAF ranges in EUR (A) and EAS (B) is shown with a vertical bar. The red and blue bars indicate novel

and known variants, respectively.

(C and D) The distribution of variants according to the MAF range in EAS (C) and EUR (D) is shown with vertical bars. The red and blue bars correspond to

those with a p value smaller and equal to or larger than 5.0 3 10�5, respectively.
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In addition, we estimated the genetic correlations for 29 of the 77 metabolites measured in both Japanese

and European studies.4 Forty-eight metabolites were not included in the analysis due to their low herita-

bility (less than 1.0 3 10�3) either in Europeans or in Japanese. We found that 13 metabolites showed a

significant difference in genetic effects (p < 6.5 3 10�4) between the two populations (Table 2). The 13 me-

tabolites included tryptophan (an essential amino acid) and pyruvic acid (the end product of glycolysis),

both of which are influenced by dietary habits.
Meta-analyses discovered additional gene-metabolite pairs

We performed a meta-analysis to identify more mQTLs. First, we used the summary statistics of 55 metab-

olites in the Tohoku Medical Megabank Organization (ToMMo),24 a Japanese community-based cohort

(Table S1). We identified 62 gene-metabolite pairs with a significant association (p < 4.1 3 10�10,

Figures S23–S33, Table S6). Of these, 36 pairs were not detected in our own dataset, and six were not re-

ported. Ten of the 36 pairs were on the known biological pathways. Subsequently, we conducted a multi-

population meta-analysis with a European study.4 We tested 77 metabolites that were included either in

the three datasets (44 metabolites) or in the European and our own studies (33 metabolites) (Table S1).

We identified 98 gene-metabolite pairs (p < 4.1 3 10�10, Table S7, Figures S34–S50), of which 30 were

not found in either our own study or the above Japanese meta-analysis. Among the 30 gene-metabolite

associations, two have not been reported previously. Eight out of them were mapped to the known biolog-

ical pathways.
Genetic variants influencing metabolite levels were enriched in the coding region

We annotated the function of the variants in linkage disequilibrium (LD) (r2 > 0.8) with 60 lead (Table 1) and

15 additional variants obtained by the conditional analysis (Table S3) in the 1 KG EAS Phase3.We found that

as many as 44 variants (58.7%) had two or more proxy variants in the coding regions. To investigate whether

such a high percentage of coding proxy variants exist in the genome, we conducted an enrichment analysis

by a random permutation (1,000 times) of chromosome andMAF-matched 75 variants. On average, 8.2 var-

iants (10.9%) had proxy variants in the coding regions, demonstrating a significant enrichment of 5.4-fold

(p = 2.0 3 10�3) (Figure 2A, Table S8). In addition, we found enrichment in nonsynonymous (8.2-fold, p =

2.0 3 10�3) (Figure 2B) and frameshift or stop gain (10.2-fold, p = 0.02) (Figure 2C) variants. On the other

hand, there was no significant enrichment in the regulatory region (Figure 2D). We compared the results
6 iScience 26, 105738, January 20, 2023



Table 2. Result of genetic correlation estimates with the European population

Metabolite rge SE Z p value (rge < 1)

Citrulline 0.06 0.07 13.99 1.89E-44

Myo-inositol 0.23 0.06 12.19 3.32E-34

1,5-Anhydro-D-sorbitol 0.14 0.07 11.50 1.29E-30

Tryptophan 0.18 0.08 10.85 1.92E-27

Lauric acid 0.26 0.08 9.22 3.02E-20

2-Hydroxyisobutyric acid 0.26 0.08 9.04 1.63E-19

Acetylglycine 0.01 0.12 8.47 2.36E-17

3-Hydroxyisovaleric acid 0.31 0.10 7.19 6.66E-13

Pyruvic acid �0.42 0.21 6.76 1.42E-11

3-Hydroxybutyric acid 0.04 0.15 6.34 2.24E-10

Aspartic acid �0.47 0.23 6.28 3.46E-10

Glycine 0.64 0.08 4.39 1.11E-05

Valine 0.44 0.16 3.59 3.31E-04

Uric acid 0.55 0.13 3.40 6.67E-04

Indoxyl sulfate 0.43 0.17 3.28 1.05E-03

Palmitoleic acid 0.50 0.19 2.63 0.01

Tyrosine 0.76 0.20 1.23 0.22

Threonic acid 0.69 0.27 1.17 0.24

Glyceric acid 0.77 0.20 1.14 0.25

Mannose 0.82 0.32 0.57 0.57

Glutamic acid 0.55 0.84 0.53 0.59

Citric acid 0.90 0.20 0.50 0.61

1,6-Anhydroglucose �0.07 2.38 0.45 0.65

2-Hydroxyisovaleric acid 0.65 2.34 0.15 0.88

Myristic acid 0.26 5.30 0.14 0.89

2-Hydroxybutyric acid 1.00 0.08 0.00 1.00

2-Oxoglutaric acid 1.00 0.10 0.00 1.00

Serinea 1.00 – – –

Glutaminea 1.00 – – –

Metabolites are listed in bold font if rge is significantly smaller than 1 (p < 6.5E-04).
aThe SE of rge could not be estimated by the jackknife test because all partitions gave the same estimates.
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with clinical measurement QTL,25 expression QTL (eQTL),23 and disease-associated loci26 of the Japanese

population. The enrichment of coding region variants was significantly higher (5.4-fold) than that of clinical

measurement QTL and disease-associated loci (2.1- and 1.9-fold, respectively) (Figure 2, Table S8).

Similarly, the nonsynonymous variants were significantly more enriched (8.2-fold) compared to clinical

measurement QTL (2.9-fold). On the contrary, regulatory region variants were more enriched in clinical

measurement QTL, eQTL, and disease-associated loci. Such enrichment has been reported for eQTL of

non-EAS27 and disease-associated loci.28
mQTL was associated with multiple clinical measurements and diseases

To investigate the impact of mQTL on clinical measurements, we performed a phenome-wide association

study (PheWAS) using summary statistics of a Japanese GWAS.25 We found 138 significant mQTL-clinical

measurement associations (Table S9). Associations of variants in theGCKR region were the most abundant

(43 associations), followed by the ALDH2 region (40 associations). TheGCKR region was reported as being

associated with dietary habits29 in the Japanese population. The metabolites associated with GCKR were

mannose (a sugar monomer) and threonine (an essential amino acid). 2-hydroxyisovaleric acid and

2-oxoisocaproic acid, which were associated with ALDH2, showed significant associations with drinking
iScience 26, 105738, January 20, 2023 7



Figure 2. The functional enrichment tests of mQTL, eQTL, clinical measurement QTL, and disease-associated loci

(A–D) The results are shown for different portions of the gene (A), amino acid substitution (B), frameshift/stopgain (C) and

regulatory elements (D). Black rectangle, green circle, blue triangle, and red inverted triangle correspond tomQTL, eQTL,

clinical measurement QTL, and disease-associated loci, respectively. The error bar with a horizontal line indicates a 95%

confidence interval. See also Table S8.
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frequency (p = 2.4 3 10�20 and 3.7 3 10�6, respectively) (Table S1). Because the ALDH2 genotypes are

known to be associated with drinking habits in Japanese,29 differences in alcohol consumption might

explain the pleiotropic effects of ALDH2.

Associations of variants in the CPS1 region were the third most abundant (24 associations, Figure 3,

Table S9). The A allele of rs1047891 in CPS1 increased creatinine, alanine aminotransferase (ALT), mean

corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH). In contrast, it decreased blood

urea nitrogen (BUN), uric acid, and estimated glomerular filtration rate (eGFR). Furthermore, the T allele

of rs72933889 was in LD with rs1047891 (r2 = 0.79 in 1 KG EAS) and affected creatinine and ALT levels

and eGFR in the same direction as the A allele of rs1047891. However, the association with BUN lost sig-

nificance (p = 9.3 3 10�5).

Subsequently, we conducted an association analysis on 109 of the above 138 association pairs using the

phenotype information of the Nagahama Study. We confirmed significant associations of 62 pairs

(p < 0.05), and all of them showed a direction consistency (Table S9).

We next examined the effect of the 75 genetic variants representing mQTL (Tables 1 and S3) on diseases

using the GWAS catalog database. We found 57 variant-disease association pairs comprising 18 variants

(24%) with 25 disorders (Figure 4, Table S10), which was 6.0-fold (95% confidence interval [CI]: 3.0-Infinity)

enriched compared with randomly selected variants (p = 2.0 3 10�3). Similar analyses using variants asso-

ciated with clinical measurement and gene expression revealed that the enrichment was comparable for

clinical measurement QTL (13.2-fold, 95% CI: 9.9–19.3) and eQTL (4.2-fold, 95% CI: 3.2–6.0).

Among the 57 mQTL-disease association pairs, the largest pair number was obtained for ALDH2 (19 pairs),

followed by GCKR (17 pairs). On the other hand, gout and macular telangiectasia type 2 were associated

with the largest number of mQTL (n = 6), followed by metabolic syndrome (n = 4) (Figure 4, Table S10).

ABCG2 and SLC2A9 were also identified as mQTL of uric acid, the causative agent of gout.30 Macular tel-

angiectasia type 2 is a rare neurodegenerative retinal disease characterized by low blood glycine and

serine levels.31 Indeed, the C allele of rs1047891 in CPS1 decreased the blood levels of these amino acids

and increased disease risk (Figure 4, Table S10).

To further investigate the association between mQTL and disease, we looked up the summary statistics of

multi-population GWAS for 1,326 disease phenotypes in the UK BioBank. We found 34 mQTL-disease

associations comprising six metabolites and 20 diseases (Table S11, pmeta < 6.3 3 10�7). The 20 diseases

were classified into seven endocrine-metabolic, five digestive, and four neoplasms and dermatologic

disorders. We examined whether diseases in a specific category were enriched in the 20 diseases by an
8 iScience 26, 105738, January 20, 2023



Figure 3. Associations between clinical measurement and mQTL

Clinical measurement (horizontal) and mQTL (vertical) combinations with one or more significant associations are shown

with the name of the putative causal gene. Red and blue rectangles indicate the allelic direction between the traits being

the same and opposite, respectively. The size of rectangles is proportional to the -log10(p) value except those showing

p < 1.1 3 10�5 (with an asterisk). The results of the GCKR and the ALDH2 region are not included. See also Table S9.
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over-representation analysis. As a result, endocrine and metabolic diseases showed significant enrichment

(p = 4.0 3 10�4) (Table S12).

Among the 34 mQTL-disease associations, 26 were examined in Europeans and one or more non-EURs,

corresponding to 88 European/non-European/disease combinations. We compared the direction of the

allelic effect in these combinations and found that 66 (75.0%) showed a direction consistency (sign test; p =

2.9 3 10�6).
Selection signature analysis revealed a strong negative selection signature for uric acid

We estimated the selection signatures of the genetic effects on metabolites using the BayesS model where

S < 0 and S > 0 indicate the negative and positive selection, respectively.32 We obtained a strong negative

selection signature in uric acid (bS = �1.0, p = 1.5 3 10�11) and phenylalanine (bS = �1.0, p = 1.9 3 10�5)

(Figure S51A). Next, we applied the same method to assess the polygenetic effect on the selection signa-

ture after excluding the variants that strongly influenced metabolite levels. More specifically, we removed

the lead mQTL variant, those located within 500 kb around it, and the variants in the CPS1, PPM1K, and

DPEP1 regions that showed pleiotropic effects on three or more metabolites. Only uric acid showed a

strong negative selection signature (bS = �1.5, p = 6.2 3 10�18) (Figure 5), suggesting the presence of mul-

tiple other variants under negative selection pressure. In contrast, the polygenicity of phenylalanine

increased from 3.0 3 10�3 to 0.06 (Figures S51B and S51C).
DISCUSSION

A genome-wide mQTL analysis of 121 human blood metabolites in the Japanese population identified

60 gene-metabolite associations consisting of 46 genes and 44 metabolites. Of note, 13 genetic variants

were identified for the first time. Allele frequencies of these variants were lower than those already re-

ported in the EUR (Figure 1A). In contrast, allele frequencies of associated variants in Europeans but

not in Japanese were lower in EAS than those showing associations in both populations (Figure 1C).
iScience 26, 105738, January 20, 2023 9



Figure 4. Association between mQTL and diseases

Disease (horizontal) and mQTL (vertical) combinations with a significant association are shown with the name of the

putative causal gene. Red and blue rectangles indicate the allelic direction between the traits being the same and

opposite, respectively.
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The difference in statistical power due to allele frequencies might partly explain the population-specific

genetic associations.

The direction of allelic effects on metabolites was consistent between the European and Japanese popu-

lations for most variants showing a strong association (Table S5). However, the allele effects on 13 metab-

olites estimated by genetic correlation analysis differed between the two populations (Table 2). Differences

in environmental factors, such as dietary habits, might explain these.

Of the 13 newly identified gene-metabolite association pairs, only the DCXR-ribulose pair was mapped on

the single pathway (Table S4). However, we found three other cases where the gene and the metabolite are

linked through another metabolite involved in two or more metabolic pathways. In the PYCRL-pipecolinic

acid association, 5-aminopentaonate is on the arginine and proline metabolic pathway in which PYCRL is

engaged and on the lysine degradation pathway involving pipecolinic acid (Table S13). It also intermedi-

ates the PRODH2-pipecolinic acid association (Table S13). Another example is the association between

ACP1 and ribulose which is intermediated by ribulose-5P. The DPEP1-cystine association could be physi-

ologically implicated by combining the present findings and the results of previous studies. The T allele of

rs79068217 in DPEP1 decreases DPEP1 expression (Table S2). On the other hand, the expression levels of

DPEP1 and SLC3A2, a cystine transporter, were reported to correlate positively in the human kidney.33

These suggest that the T allele of rs79068217 reduces the expression level of SLC3A2, resulting in

decreased cystine excretion into the urine and, thus, increased cystine levels in the blood.

Metabolite levels had stronger associations with genetic variants influencing the structure and function of

gene products than with those regulating expression (Figure 2). This result is in contrast with the findings in

the majority of disease-associated variants that are located in noncoding regions.28 However, some vari-

ants were associated with metabolite level and disease (Figure 4, Tables S10 and S11), highlighting the dif-

ference and overlap of mQTL with disease-associated loci.

The A allele of rs1047891 in CPS1 increased serine, glycine, and acetylglycine and decreased uric acid and

BUN in the blood. BUN is the end product of the urea cycle of which CPS1 functions in the first step. The
10 iScience 26, 105738, January 20, 2023



Figure 5. Selection signature analysis of metabolites

Ninety-one metabolites that passed the Markov chain Monte Carlo (MCMC) convergence tests are shown. For each

metabolite, the mode value of the MCMC chain is shown with a filled circle with an error bar with a horizontal line

representing the 95% confidence interval.
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change of relevant clinical traits (increased ALT, creatinine, MCV, and MCH and decreased eGFR) and

metabolite levels could be a consequence of the reduced activity of the urea cycle.

Selection signature analysis indicated that most human blood metabolites were unrelated to fitness. In

contrast, many clinical phenotypes have been under selection.32 The variation in the level of some metab-

olites affects diseases but might be tolerant of fitness. Meanwhile, uric acid showed a remarkably negative

selection signature. Hypouricemia is associated with several neurological disorders, such as Parkinson dis-

ease, Alzheimer’s disease, and multiple sclerosis.34 On the other hand, hyperuricemia can also cause

various diseases, such as gout or renal disorder.34 The multidirectional effect of uric acid on human health

might explain its strong negative selection signature. These suggest that uric acid can serve as an essential

biomarker of such diseases, affecting the fitness of the Japanese population.

The knowledge of genetic influences on human blood metabolites has been expanded by this study,

providing valuable insights into their physiological, pathological, and selective properties. Our results

demonstrate the importance of studying genetic effects on the metabolites in diverse ancestries.

Limitations of the study

This study has the limitation of a relatively small sample size compared to previous European studies.

Approximately 75% of variant-metabolite associations detected in Europeans did not show associations

in our dataset (p > 0.05, Table S5), which could be attributed to a low statistical power due to the sample

size. The second limitation is that we selected 121 metabolites for mQTL analysis, which is only a part of

those studied to date. A more comprehensive examination with a larger number of target metabolites
iScience 26, 105738, January 20, 2023 11



ll
OPEN ACCESS

iScience
Article
would allow more accurate comparisons of mQTL among ethnicities. The third point is that we used only

GC-MS to quantify metabolites, and no verification was performed using other technologies. Each technol-

ogy has its advantages and disadvantages, and measurements by other platforms may reveal new associ-

ations not identified in this study.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Healthy individuals enrolled in

the Nagahama study

The Nagahama Study N/A

Deposited data

Summary statistics of GWAS This paper https://www.hgvd.genome.med.kyoto-u.

ac.jp/repository/HGV0000020.html

Genotype reference panel 1000 Genomes Project (RRID:SCR_006828) https://www.internationalgenome.org/home

Summary statistics of GWAS for blood

levels of metabolites in the Japanese

population (ToMMo)

Sakaue et al., 202135 https://jmorp.megabank.tohoku.ac.

jp/202102/gwas/TGA000005

Summary statistics of GWAS for blood levels

of metabolites in the European population

Shin et al., 20144 http://metabolomics.helmholtz-

muenchen.de/gwas/

Summary statistics of GWAS for

58 clinical measurements

Kanai et al., 201825 http://jenger.riken.jp/en/result

Summary statistics of GWAS for 42 diseases Ishigaki et al., 202026 http://jenger.riken.jp/en/result

Summary statistics of expression QTL analysis

on unfractionated peripheral blood

Ishigaki et al., 201723 http://jenger.riken.jp/en/result

Summary statistics of UK Biobank Pan-Ancestry Pan-UKB team https://pan.ukbb.broadinstitute.org

Software and algorithms

GCMS solution software Shimadzu Version 2.71

SHAPEIT Delaneau et al., 201136 https://mathgen.stats.ox.ac.uk/genetics_

software/shapeit/shapeit.html

Minimac3 Das et al., 201637 https://genome.sph.umich.

edu/wiki/Minimac3

PLINK Purcell et al., 200738 https://www.cog-genomics.org/plink/1.9/,

https://www.cog-genomics.org/plink2

METAL Willer et al., 201039 http://csg.sph.umich.edu/

abecasis/metal/download/

ANNOVAR Wang et al., 201040 http://annovar.openbioinformatics.

org/en/latest/

Popcorn Brown et al., 201641 https://github.com/brielin/Popcorn

GCTB Zeng et al., 201832 http://cnsgenomics.com/software/gctb/

Other

Mass spectrometer Shimadzu GCMS-QP2010 Ultra
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Fumihiko Matsuda (fumi@genome.med.kyoto-u.ac.jp).
Materials availability

This study did not generate new unique reagents.
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Data and code availability

d Summary statistics of GWAS were deposited in the Human Genetic Variation Database (https://www.

hgvd.genome.med.kyoto-u.ac.jp/repository/HGV0000020.html). These data can be downloaded

without restriction.

d We used publicly available software for the analyses.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study population

Plasma and DNA samples were obtained from participants who had taken an extensive health check be-

tween 2013 and 2015 in the Nagahama Prospective Genome Cohort for Comprehensive Human Bioscience

(the Nagahama Study).21 We measured the blood metabolite levels of 8,270 participants and genotyped

7,040 participants. After quality control, 4,888 samples with the age range of 35 and 81 years (mean,

59.0 years) comprising 67.9% females were used for the mQTL analysis. All participants were fully informed

of the purpose and procedures of this study, and written consent was obtained from each participant.
Metabolite measurement

We collected blood samples (5 mL) of participants who fasted overnight from forearm veins into tubes con-

taining ethylenediaminetetraacetic acid (EDTA; Termo, Tokyo, Japan). We performed sample preparation

and GC-MS analysis in the following steps, as described in our previous study.42 The internal standard so-

lution (2-isopropylmalic acid, 0.1 mg/mL in purified water) and extraction solvent (methanol: water: chloro-

form = 2.5:1:1) were mixed at a ratio of 6:250, and added to 50 mL of each plasma sample. The resulting

solution was mixed using a shaker at 1,200 rpm for 30 min at 37�C. After centrifugation at 16,000 3 g for

5 min at 4�C, 150 mL of the supernatant was collected and mixed with 140 mL of purified water. The solution

was thoroughly mixed and centrifuged at 16,000 3g for 5 min at 4�C. Finally, 180 mL of the supernatant was

collected and lyophilized. The lyophilized sample was dissolved in 80 mL of methoxyamine solution (20 mg/

mL in pyridine) and agitated at 1,200 rpm for 30 min at 37�C. We added 40 mL of N-methyl-N-

trimethylsilyltrifluoroacetamide solution (GL science, Tokyo, Japan) for trimethylsilyl derivatization, fol-

lowed by agitation at 1,200 rpm for 30 min at 37�C. After centrifugation at 16,000 3 g for 5 min at room

temperature, 50 mL of the supernatant was transferred to a glass vial. We performed GC-MS analysis using

a GCMS-QP2010 Ultra (Shimadzu Corp.). The derivatized metabolites were separated on a DB-5 column

(30 m 3 0.25 mm id, film thickness 1.0 mm) (Agilent Technologies, Palo Alto, CA). Helium was used as

the carrier gas at a flow rate of 39 cm/s. The inlet temperature was 280�C. The column temperature was first

held at 80�C for 2 min, then raised at a rate of 15�C/min to 330�C, and held for 6 min. One microliter of the

sample was injected into the GC-MS in split mode (split ratio 1:3). The mass conditions were as follows:

electron ionization mode with an ionization voltage of 70 eV, ion source temperature of 200�C, interface
temperature of 250�C, full scan mode in the range of m/z 85–500, scan rate: 0.3 s/scan. Data acquisition

and peak processing were performed using GCMS solution software version 2.71 (Shimadzu, Kyoto,

Japan).

We identified low-molecular-weight metabolites as described previously.42 Chromatographic peaks were

identified by comparing their mass spectral patterns to those in the NIST library or Shimadzu GC/MS

Metabolite Database Ver. 1. The identification of metabolites was further confirmed through the coinci-

dence of retention indices in samples with those in the corresponding authentic standards. Retention

indices were determined and calibrated daily by measuring the n-alkane mixture (C8-40) (Restek, Tokyo,

Japan), which was run at the beginning of the batch analysis. We quantified each metabolite peak using

the area under the curve and then normalized using an internal standard.

We checked the linearity of the internal standard (IS; 2-isopropylmalic acid) in the concentration range of

0.03 to 300 mg/mL and confirmed a high correlation (Pearson’s r = 0.9997, Figure S52A). Based on the AUC

value at the lowest concentration of IS (0.03 mg/mL), for which linearity was confirmed in the experiment

described above, we set the detection limit at AUC = 1,000. We have not evaluated concentration depen-

dence. We demonstrated the high correlation of uric acid and glucose concentrations (Pearson’s r = 0.94,
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0.94, respectively, Figures S52B and S52C) measured by clinical laboratory test using 4,888 samples, vali-

dating the accuracy of our measurement.

We identified 127 metabolites with known chemical structures in 8,270 samples. Among them, four metab-

olites were excluded because they were detected in water samples, and two were excluded due to the high

relative standard deviation (>1). The median call rate of the remaining 121 metabolites was 99.99 (ranged

from 48.0 to 100.0) %. Detailed information for each metabolite, including the biochemical name and class

based on its chemical structure, is provided in Table S1. We then conducted a principal component (PC)

analysis using the 121 quantified metabolite data of 8,270 samples. We removed four samples as outliers

(from�103IQR (interquartile range) below the 25th percentile to 103IQR above the 75th percentile in one

of the top two inferred axes of variation). To normalize measurement variations caused by inter-day instru-

ment tuning differences, the medians of each run were aligned to 1.0 4,43, and the proportion of other

values was taken. Normalization effects on the machines were visually confirmed (Figure S53). Moreover,

PC was significantly associated with measurement dates and instruments before normalization (PC1:

p < 1.1 3 10�16, PC2: p < 1.1 3 10�16, one-way ANOVA) but not after (PC1: p = 1.0, PC2: p = 1.0).

METHOD DETAILS

Genotyping and imputation

Samples were genotyped using Illumina Human610-Quad (n = 1,735), HumanOmni2.5 (n = 1,941),

HumanCoreExome-24 (n = 1,721), or Asian Screening Array (n = 1,643). The alleles of all datasets were

aligned to GRCh37. After initial quality control of samples and genotypes, we performed the pre-phasing

of autosomes and X chromosomes using SHAPEIT ver. 2.837 to treat the male and female samples. Pre-

phased autosomes were imputed into the 1000 Genomes Phase3 v5 reference panel44 with minimac3

(ver. 1.0.14).37 For the X chromosome, we performed the imputation independently for males and females

except for the pseudo-autosomal region (from 10,001 bp to 2.6 Mb, from 154.9 Mb to 156 Mb). After impu-

tation, SNPs with MAF smaller than 0.005 or imputation quality R2 smaller than 0.3 were removed. Finally,

10,491,983 SNPs included in any of the four datasets were used for the association study. Details of the

quality control of samples and genotypes are shown in Figure S54.

QUANTIFICATION AND STATISTICAL ANALYSIS

Association analysis and meta-analysis

In the association analysis, we excluded outliers (from�33 IQR below the 25th percentile to 33 IQR above

the 75th percentile) for each metabolite. We calculated residuals for the quantitative metabolite trait by

linear regression analysis using age, sex, and top ten PCs as covariates in each group genotyped using

four typing kits. Then, a rank-based inverse normal transformation was applied to the estimated residuals.

We assumed an additive genetic model and carried out an association test on imputed allelic dosages for

these residuals by a linear regression model using PLINK (v2.00)45 in each SNP array. For the X chromo-

some, we conducted GWAS separately for males and females and merged their results by inverse-variance

meta-analysis. We combined the association results of four arrays using inverse-variance meta-analysis

based on effect size estimates and standard errors, using METAL software (released March 25, 2011).39

We set the genome-wide significance threshold at p = 4.1 3 10�10; 5.0 3 10�8/121 (Bonferroni correction

for the 121 metabolites).

Locus definition, putative causal gene assignment, and conditional analysis

For each metabolite, we combined variants with significant associations (p < 4.1 3 10�10) located within

500 kb and obtained independently associated loci at least 500-kb apart from each other. We refer to

such independent associated loci for each metabolite as ’mQTL’ (i.e., these could overlap other mQTL).

We determined the lead variant with a minimal p value in each mQTL. For each mQTL, we assigned the

most likely causal genes by PRoGeM.46 For this purpose, two databases for cis-eQTL were used. First,

we used the significant eQTL (p < 5.0 3 10�8) data of peripheral blood in the Japanese population,23

and selected proxy variants (r2 > 0.8) from the locus of the lead variant in the EAS population of 1KG.

We also used the significant cis-QTL prepared in the Genotype-Tissue Expression (GTEx) project (v7)

across all tissues assayed (n = 48), and selected proxies (r2 > 0.8) of the lead variant from the EUR and

the EAS in 1KG. We used the output of ‘‘co-occurring’’ candidates. When there were more than one candi-

date genes, the nearest gene from the lead variant among the candidate genes was assigned, and when

there was no candidate genes, the nearest gene from the lead variant was assigned.
iScience 26, 105738, January 20, 2023 17
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To identify a putative causal variant in each mQTL, we sought variants among proxies that change (i) the

amino acid residue (r2 > 0.8 1KG EAS) or (ii) the expression level of the mapped gene. ANNOVAR40 was

used to obtain functional information, and the same eQTL database and r2 threshold used for gene assign-

ment were employed to obtain expression information. When multiple variants passed the above criteria,

we sorted the variants in the order (i) to (ii) to select one variant. When multiple variants were within the

same criteria, we chose the variant with the highest LD with the lead SNP in 1KG EAS.

To assess the biological plausibility between the metabolite and the assigned gene, we used the pathway

information recorded in the KEGG database47 (http://rest.kegg.jp) released in July 2020. We excluded

‘‘Metabolic pathways’’ (map01100) which included more than 1,000 genes.

A stepwise conditional analysis was performed in the region within 1Mb to the lead variant using the

genomic dosage of the top associated variants as a covariate. The stepwise analysis was repeated until

no SNPs with significant associations (p < 4.1 3 10�10) appeared. The putative causal gene for additional

variants was assigned in the same way as described above. The variance of metabolites explained by

genome-wide significant SNPs was calculated by determining the coefficient of determination (R2) in the

multiple linear regression model, in which the dosage of the lead and additional SNPs were set as explan-

atory variables and the level of the metabolite (age, sex, and top 10PC-adjusted) was selected as the objec-

tive variable. The analysis was conducted using the statsmodel package in Python (ver. 2.7.5).

Novel locus identification

A detected mQTL was considered novel when its lead variant was located at least 500-kb away from any

variants whose association with the corresponding metabolite has been reported. We collected known

variant-metabolite associations from the following three resources. The first one is a summary of 40

GWAS for metabolites.11 This summary lists SNP-metabolite associations (p < 5.0 3 10�8) from 40 metab-

olite GWAS published from November 2008 to October 2018. We matched the metabolites of our study

with this summary by using HMDB identifiers.20 The second one is the GWAS catalog,48 released

September 24, 2021. We first converted chromosomal positions from hg38 to hg19 using the liftOver

tool.49 Then, we collected metabolite-SNP associations for each metabolite by searching its standard

and alternate names registered in the HMDB database.20 The third resource is the manually collected pa-

pers that were not included in either (i) or (ii).10,15,16,19,43,50–53

Comparison with European studies

To compare our results with those in the European population, we extracted blood metabolite-variant as-

sociations detected in the European population from the following three resources. The first one is the

summary of 40 metabolite GWAS 11 described above. From this summary, we selected metabolites whose

HMDB identifiers 20 were given, excluded three studies3,9,54 which partially or totally lacked information on

the direction of allelic effects, selected variants detected in both our study and previous studies, and

selected variant-blood metabolite associations. The number of studies and associations in each step are

shown in Figure S55. The second resource is the GWASCatalog (released September 24, 2021)48. We chose

SNPs that have genome-wide associations (p < 5.03 10�8) with the trait. Chromosomal positions were con-

verted from hg38 to hg19 using the liftOver tool 49. For each metabolite, we searched variant-metabolite

associations by searching standard and alternate names registered in the HMDB database20. We further

excluded studies that do not include the European population. From these associations, we excluded

the association included in the first resource, excluded studies that partially or totally lacked information

on the direction of allelic effects, selected variants detected in our study and previous studies, and selected

variant-blood metabolite associations. The number of studies and associations in each step are shown in

Figure S56. The third resource is variant-metabolite associations reported in papers concerning GWAS for

human blood metabolites conducted in the European population, published after October 2018 until

January 2022, and have not been included in either the first or second resource.10 Finally, we combined

the results of the three resources. If multiple SNPs existed within 500 kb distance for the same metabolite,

the SNP having the lowest p-value among them was selected.

Multi-population correlation estimates

We used Popcorn (version 0.9.9)41 to estimate the correlation coefficient for the per-allele effect size rge
between the current study and the European population4 for 77 metabolites measured in both studies.

We used the LD scores and summary statistics of variants present in the HapMap3 database55 and with
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MAF above 5% in both 1KG EUR and 1KG EAS. Here, we excluded 46 metabolites whose estimated heri-

tability was less than 1.03 10�3 in either one of the populations to calculate accurate multi-population ge-

netic correlation.56 The significance threshold was set to p = 6.5 3 10�4 for the jackknife test of rge < 1 to

correct for 77 multiple tests.

Meta-analysis with ToMMo and multi-population analysis

Weperformed ameta-analysis with another Japanese cohort (ToMMo) and amulti-population analysis with

a fixed-effect model based on Stouffer’s Z-score method. METAL software39 was used for sample size

weighting. We downloaded publicly available GWAS summaries of the Japanese35 and Europeans.4 For

the European results, we converted the genome coordinates of hg18 to hg19 using the UCSC liftOver

tool.49 For the meta-analysis with ToMMo, we analyzed the variants detected in both studies. As for

multi-population analysis, we examined the variants identified in the Japanese (either the current study

or ToMMo) and the European study. The significance threshold was set to p = 4.1 3 10�10. The same defi-

nition was used for the locus and assignment of the gene. The detected locus was considered ‘‘additional’’

when the lead variant was located at least 500-kb away from any variants showing genome-wide signifi-

cance in the association with the corresponding metabolite.

Functional annotation, enrichment analysis, and heritability estimates

To obtain functional annotation of variants, we used ANNOVAR (April 16, 2018, released40) for the portion

of the gene, amino acid substitution and frameshift/stopgain. For promoter and enhancer region annota-

tion, we used a chromatin state database of nine cell types.22 In each type of function, we conducted enrich-

ment analysis for mQTL using the following steps. 1) LetNv be the count of the number of the lead (Table 1)

and additional variants (Table S3) (in total, n = 75) in LD (r2 > 0.8) with a variant annotated in the selected

function. The 1KG EAS population was used to calculate LDs. 2) We randomly selected 75 variants from the

chromosome and MAF-matched (MAF difference <0.025) variants in 1 KG EAS data and counted the num-

ber of variants in the same manner as in step 1. 3) Step 2 was repeated 1,000 times, the counted number

labeled as N1 . N1000. 4) Fold enrichment of the selected function type was estimated by a mean of Nv/

N1 to Nv/N1000, and the empirical p value was calculated by sorting counts Nv and N1 to N1000.

We compared the results with 649 lead variants (at least 500 kb apart, p < 2.13 10�12; 5.03 10�8/23,018) of

eQTL23 and 174 lead variants (at least 500 kb apart, p < 1.23 10�9; 5.03 10�8/42) of disease-associated loci

in the Japanese population,26 and 960 lead variants (at least 500-kb apart, p < 8.63 10�10; 5.03 10�8/58) of

clinical measurement-associated loci Japanese.25

Phenome-wide association study

We examined the associations of 60 lead (Table 1) and 15 additional (Table S3) variants with 58 clinical mea-

surements, using summary statistics of a Japanese GWAS.25 When the variant was absent from the dataset,

we selected the one from 1 KG EAS which showed the strongest LD with the metabolite-associated variant.

The significance threshold was set to p = 1.13 10�5 to correct for 4,350 (753 58) multiple tests. To visualize

the results, Z values were clustered by Euclidean distance.

The association between the number of drinking days per week and metabolite levels was tested for the

same 4,888 samples by an ordinary linear regression model using the statsmodel package in Python

(ver. 2.7.5). As for drinking habit data, we used the results of the questionnaire, ‘‘How many days do you

drink per week?’’. Age, sex, and top ten PC-adjusted metabolite quantification values were used.

The results were validated using the data from 4,888 samples of the Nagahama Study. Association analyses

were performed using the same methods as those for the metabolites.

Association of mQTL with disease

We used the NHGRI GWAS catalog (released September 24, 2021)48 and converted chromosomal posi-

tions from hg38 to hg19 using the UCSC liftOver tool.49 First, we extracted variant-trait associations that

passed all of the following criteria: i) the variant is present in our own dataset, ii) with allelic direction infor-

mation, and iii) the trait was categorized as a disease based on the definition of experimental factor

ontology.57 Next, we assigned the lead and the additional variants to the variant-trait association using

the following two criteria: i) the variant is in high LD (r2 > 0.8) with the trait-associated variant in 1 KG
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EAS, and the study participants of that trait included East Asians, ii) the variant is in high LD (r2 > 0.8) with

trait-associated variants in 1KG EAS and 1KG EUR, and the study participants of that trait included Euro-

peans, but not East Asians. When multiple variants passed the above criteria, we chose the proxy variant

in 1KG EAS.

The enrichment analyses of QTLs for disease-associated loci were conducted using the same procedure as

the functional enrichment analysis. We matched the variant distance to the nearest gene (+/� 50% of the

variant with the closest gene) as well as the chromosome and MAF.

We also examined the associations of those 75 variants with disease phenotypes using summary statistics

of multi-population GWAS (https://pan.ukbb.broadinstitute.org). We used 1,326 phecode phenotypes.

When the corresponding variant was absent in the GWAS, we chose the variants with high LD (r2 > 0.8)

in EAS and other populations used in the study, prioritizing the variant with the highest LD (r2) in EAS

when multiple variants satisfied that criterion. When no variants met that criterion, we did not test the as-

sociation. LD was calculated in the nearest 1 KG population: African (AFR), EAS, EUR and Admixed Amer-

ican (AMR) were matched as is, while Central/South Asian (CSA) was matched to South Asian (SAS), and

Middle Eastern (MID) was matched to EUR. The significance threshold was set to p = 6.3 3 10�7, correcting

for 99,450 (1,326 3 75) multiple tests.
Estimation of negative selection signature of metabolite

We used the Bayesian mixed linear model (MLM) method with GCTB (ver. 2.0)32 for the estimation of a se-

lection signature S (S < 0 indicates negative selection while S > 0 shows positive selection). For genotype

preparation, we selected imputed genotypes with r2 over 0.9 in each typing kit and converted the allele

dosage into the best-guess genotype ([0,0.1] to 0, [0.9,1.1] to 1, [1.9, 2.0] to 2). We further selected

1,191,918 SNPs with call rates of over 97%, MAF over 0.01, and Hardy-Weinberg p-value over 1.0 3 10�6

in all datasets with four different typing arrays. We estimated the selection signature for each metabolite

by two sets of variants. The first set included all the 1,191,918 SNPs. The second set was generated from the

first set by removing theQTLs associated with correspondingmetabolite (p < 1.43 10�10 and within 500-kb

distance to the lead variant) and pleiotropic QTLs associated with at least three metabolites which corre-

sponded to CPS1 (chr2 211-212 Mb), PPM1K (chr4 88.7-89.7Mb), and DPEP1 (chr16 89.7-90.7Mb).

Considering the relatively small sample size (n = 4,888), we set the prior for S to 0.1 32. We used the nested

BayesS model, in which we partitioned the genome into 200-kb non-overlapping segments and skipped

over the windows with zero effect. The chain length was 25,000 iterations, with the first 5,000 discarded

as burn-in. In other points, the default parameters implemented in GCTB were used. The convergence

of the Markov chain Monte Carlo (MCMC) chain was tested using the Geweke test and Heidelberger

and Welch’s convergence diagnostic test.32 The significance threshold for each test was set to Z = 2 for

the Geweke test and p = 0.05 for Heidelberger andWelch’s convergence diagnostic test. The CODA pack-

age in R was used to perform the tests. We used the posterior mode and standard deviation of the MCMC

samples to estimate the parameters and their standard errors, respectively. Finally, metabolites with esti-

mated parameters S, heritability, and polygenicity that passed all convergence tests were reported. We

tested for Ss 0 using a two-sidedWald test. The significance threshold was set to p = 4.13 10�4 to correct

for 121 multiple tests.
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