
1

Programming Practice Python 2023

These are reserved Python keywords. Faded words will not be covered in this book.

Hajime Kita, Institute for Liberal Arts and Sciences

 Yoshitaka Morimura, Institute for Information Management and Communication

Masako Okamoto, Center for Promotion of Excellence in Higher Education

Kyoto University

Version 2023/10/19

Table of Content Next Chapter Table of Contents

2

Table of Content
Table of Content ·· 2

Table of Figures ··· 6

Table of Tables ·· 9

Table of Programs ·· 10

Table of Exercises ·· 13

0. Foreword ·· 16
0.1 Learning goals of this chapter ... 16
0.2 Reasons for writing an entirely new textbook ... 16
0.3 Humanities majors: you can do it! ... 17
0.4 Regarding the organization of this text ... 17
0.5 Notation ... 17
0.6 Warning regarding copying and pasting ... 17
0.7 Edits for later versions (2023 and later) .. 18
Notes for English Version .. 18
Acknowledgements ... 18

1. Computers and Programming ·· 19
1.1 Learning goals of this chapter ... 19
1.2 Computers and programs ... 19
1.3 Computer structure ... 21
1.4 Programming languages ... 23
1.5 Python ... 26
1.6 Various applications .. 26
1.7 How to learn programming .. 27
1.8 The fundamental concepts used in programming .. 33
1.9 What part of the program do you write? ... 33
References .. 34

2. Python: Execution Environment and How to Use It ··············· 35
2.1 Learning goals of this chapter ... 35
2.2 Assumptions regarding the learning environment .. 35
2.3 Setup ... 35
2.4 Launching IDLE ... 36
2.5 Python Shell .. 36
2.6 Writing and running scripts ... 39
2.7 Setting the working directory with the Anaconda Prompt 41
2.8 IDLE keyboard shortcuts ... 43
2.9 Executing Python commands ... 43
2.10 Creating a good environment for learning Python .. 45
2.11 For Mac users ... 46
References .. 48

3. Assigning and Operating on Variables ································ 49
3.1 Learning goals of this chapter ... 49
3.2 Flow of execution and information in programs .. 49
3.3 Variable naming... 50
3.4 Variable assignment and evaluation ... 52

Table of Content Next Chapter Table of Contents

3

3.5 Assignment operators ... 53
3.6 Data types used in Python .. 54
3.7 A more accurate understanding of Python variables 56
3.8 Assigning multiple variables .. 56
References .. 57

4. Exercise: Find the Square Root·· 58
4.1 Learning goals of this chapter ... 58
4.2 The square root hiding in plain sight ... 58
4.3 Calculation procedure ... 59
4.4 Python program ... 61
4.5 Be careful when using division.. 63
4.6 Notation to make equations easy to read ... 63

5. Lists ·· 64
5.1 Learning goals of this chapter ... 64
5.2 Learning with the Python shell .. 64
5.3 What is a list? .. 64
5.4 Generating lists ... 65
5.5 Methods ... 66
5.6 Accessing elements in a list .. 67
5.7 Negative indices and slicing .. 67
5.8 Adding to and combining lists ... 68
5.9 List assignment and duplication .. 69
5.10 Mutable and immutable objects .. 71
5.11 Shallow and deep copying .. 72
5.12 Visualizing lists .. 73
5.13 Keeping Calculation Results in a List ... 74
5.14 Tuples and dictionaries ... 75

6. Control Flow ··· 78
6.1 Learning goals of this chapter ... 78
6.2 Repeated processing using for-loops ... 78
6.3 Repetition using while-loops ... 85
6.4 Branching using 'if' statements ... 88
6.5 Termination of the Python program ... 90
6.6 Input from the terminal .. 91
6.7 Handling errors .. 92
6.8 Mathematical functions in Python ... 93
6.9 Converting numbers and strings; Combining strings 94
6.10 Format specification when displaying a number ... 94

7. Making Kyoto Intersections ··· 96
7.1 Learning goals of this chapter ... 96
7.2 Creating Kyoto’s intersections .. 96
7.3 List of lists and how to scan them ... 97

8. Test of skills ·· 102
8.1 Learning goals of this chapter ... 102
8.2 Fine tuning the square root calculation ... 102
8.3 Calculating Pi .. 102
8.4 Generating a deck of cards ... 103
8.5 Intersections in Heian-kyō ... 105
References .. 107

9. Encapsulation of Processing Using Functions ···················· 108

Table of Content Next Chapter Table of Contents

4

9.1 Learning goals of this chapter ... 108
9.2 Let’s make an absolute value function .. 108
9.3 Format for function definitions ... 109
9.4 Parameters and arguments .. 109
9.5 Return values .. 110
9.6 From an exercise in a prior chapter .. 110
9.7 Let’s write the square_root() function ... 111
9.8 Treatment of variables within functions... 112
9.9 Common uses of functions ... 113
9.10 Function calls and passing function objects ... 115
9.11 Default parameters and keyword parameters .. 115

10. Playing with Turtle ·· 117
10.1 Learning goals of this chapter ... 117
10.2 Modules ... 117
10.3 Turtle — The time-honored turtle .. 118
10.4 Python’s turtle module... 118
10.5 Let’s try it out ... 119
10.6 The major functions in the turtle module ... 121
10.7 Moving multiple turtles .. 121
10.8 Tips for creating your project... 123
10.9 Turtle Demo ... 128
10.10 Theme: Creating projects with turtle ... 128
10.11 How to take a screenshot ... 128
References .. 129

11. Creating a GUI Application with Tkinter (1) ························· 133
11.1 Learning goals of this chapter ... 133
11.2 GUIs and event-driven programming .. 133
11.3 Separating the model and user interface .. 133
11.4 tkinter ... 134
11.5 A simple exercise .. 135
11.6 tkinter example of calculator (tkdemo_2term.py) .. 138
11.7 Basic structure of a program using tkinter .. 141
11.8 Layout on a grid .. 142
11.9 Writing a callback function using a lambda (λ) notation 143
11.10 Configuring the appearance of a widget ... 146
11.11 How to close tkinter ... 148
11.12 How to extend the Frame class .. 149
11.13 Utilizing images with tkinter ... 152
References .. 154

12. Creating a GUI Application with Tkinter (2) ························· 155
12.1 Learning goals of this chapter ... 155
12.2 Conflicts between autonomous programs and GUIs 155
12.3 Analog clock program using tkinter ... 155
12.4 Coordinating actions using variables .. 163

13. Classes ··· 164
13.1 Learning goals of this chapter ... 164
13.2 Object-oriented programming ... 164
13.3 How to write and use classes in Python ... 164
13.4 Class variables and access restrictions .. 167
13.5 Inheritance ... 170
13.6 Designing classes starting from instances.. 170

Table of Content Next Chapter Table of Contents

5

14. File Input/Output ·· 171
14.1 Learning goals of this chapter ... 171
14.2 How to store data permanently ... 171
14.3 Regarding files .. 171
14.4 Let's try to run the code below first. .. 174
14.5 Reading and writing files in Python ... 174
14.6 Example 1 Wave approximation ... 176
14.7 Example 2 Text Editor ... 181

15. Learning Program Development with Tic-Tac-Toe ················ 184
15.1 Learning goals of this chapter ... 184
15.2 Developing a program ... 184
15.3 Design procedure - what to do before using your computer 184
15.4 Designing a simple tic-tac-toe program .. 185
15.5 Implementation of the program ... 191
15.6 Test of skills ... 206
15.7 Various topics related to program development ... 206

16. Academic Use of Python ·· 208
16.1 Learning goals of this chapter ... 208
16.2 Using a custom name when importing .. 208
16.3 NumPy ... 209
16.4 Matplotlib ... 212
16.5 pandas ... 222
16.6 Practice task .. 228
References .. 230

17. Review, and Where to Go From Here ·································· 231
17.1 Learning goals of this chapter ... 231
17.2 Reflection .. 231
17.3 Shuhari (three stages of mastery) - “Obey, Digress, Separate” 231
17.4 Python environments .. 231
17.5 Adding modules .. 232
17.6 Topics not covered in this book ... 232
17.7 Gratitude and repayment - how to make use of what you have learned 232
References .. 233

18. Appendix: Useful notes on Python and IDLE ······················ 234
18.1 Useful notes on Python ... 234
18.2 Pay attention to file names .. 234
18.3 IDLE notes: Python shell hotkeys ... 234
18.4 IDLE notes: Editor ... 234

19. Appendix: How to Read Error Messages in IDLE/Python ······· 236
19.1 Errors displayed by the IDLE editor .. 236
19.2 Errors displayed in Python shell when executing code 240

Table of Figures Next Chapter Table of Contents

6

Table of Figures
Figure 1-1 Jacquard machine and Analytical Engine .. 20

Figure 1-2 Progression of logic gates .. 21

Figure 1-3 Microprocessor transistor counts .. 21

Figure 1-4 Computer (hardware) organization ... 23

Figure 1-5 Programming languages and language processors ... 24

Figure 1-6 Types of language processors .. 25

Figure 1-7 JIS keyboard layout ... 31

Figure 1-8 Frameworks and libraries ... 34

Figure 2-1 Creating a folder to hold your programs.. 36

Figure 2-2 Starting IDLE from the Anaconda Prompt ... 36

Figure 2-3 IDLE’s Python Shell ... 37

Figure 2-4 Operating the Python Shell .. 38

Figure 2-5 Note the differences between IDLE Editor and the Python shell 40

Figure 2-6 Interactions between IDLE shell and Editor .. 41

Figure 2-7 Running Python in interactive mode ... 44

Figure 2-8 Running Python via a specified script ... 45

Figure 2-9 Using the -i option to stay in interactive mode once the program is finished running

 ... 45

Figure 2-10 Launching the online manual from IDLE ... 46

Figure 2-11 Python online manual (the right side is after selecting Japanese) 46

Figure 2-12 Inputting backslash on Mac .. 47

Figure 3-1 Visual representation of variable assignment and evaluation 53

Figure 3-2 In Python, a variable can have any type ... 55

Figure 3-3 Python variables contain information on data (object) location 56

Figure 4-1 Intuitive explanation of square root approximation .. 61

Figure 4-2 Calculation steps ... 61

Figure 5-1 List assignment .. 71

Table of Figures Next Chapter Table of Contents

7

Figure 5-2 Copying and assigning lists .. 71

Figure 5-3 Checking how lists behave with Python Tutor ... 74

Figure 8-1 Comprehensive diagram of Heian-kyō (generated by the writer from Reference

[14]図一 1 (Figure 1-1)) ... 105

Figure 9-1 Arguments and Parameters ... 110

Figure 9-2 Global variables and local variables .. 113

Figure 9-3 Common uses of functions .. 114

Figure 9-4 Function calls and “side effects” .. 114

Figure 10-1 A result of executing random_turtle.py .. 124

Figure 10-2 A result of executing turtle-tree.py .. 125

Figure 10-3 Former Toyosato Elementary School building and banister (10/16/2016 Kita

Photography) .. 125

Figure 10-4 Execution result of Program 10-5 ... 127

Figure 10-5 How to run the Turtle Demo .. 128

Figure 10-6 Keys used to take a schreen shot in Windows .. 129

Figure 11-1 Framework for event-driven programming ... 133

Figure 11-2 Model-View-Control Architecture ... 134

Figure 11-3 Tkinter system configuration ... 135

Figure 11-4 Object relationships in tkinter ... 137

Figure 11-5 Behavior carried out by the widgets, call back functions, and global variables . 138

Figure 11-6 Layout with grid .. 143

Figure 11-7 Execution of Program 11-5 ... 154

Figure 12-1 Use of 'after' in tkinter .. 155

Figure 12-2 The analog clock you will create ... 156

Figure 12-3 Calculation of the position of the hands of the clock 156

Figure 12-4 Coordinating actions using variables .. 163

Figure 13-1 Class and Instance Variables ... 169

Figure 14-1 Approximation of a sawtooth wave by summing trigonometric functions 176

Figure 14-2 Approximation of a sawtooth wave by summing trigonometric functions (with

positive slope at the origin) ... 177

Table of Figures Next Chapter Table of Contents

8

Figure 14-3 Approximation of a square wave by summing trigonometric functions 180

Figure 14-4 Using a “list of data at different time points” ... 181

Figure 14-5 Using a “list of each series’” ... 181

Figure 15-1 Example tic-tac-toe game records .. 186

Figure 15-2 Determining victory for the turn in question ... 189

Figure 15-3 Determining the winner .. 189

Figure 15-4 Overall source code structure ... 191

Figure 15-5 The V-Model of Software Development ... 207

Figure 16-1 The relationship between NumPy, Matplotlib and pandas 208

Figure 16-2 Execution of Program 16-1 ... 214

Figure 16-3 Example of Matplotlib usage ... 215

Figure 16-4 Drawing a scatter plot .. 217

Figure 16-5 Drawing a Histogram .. 218

Figure 16-6 Drawing multiple graphs ... 220

Figure 16-7 Graphing with pandas .. 227

Figure 16-8 A power graph and an approximation of a sawtooth wave by summing

trigonometric functions .. 229

Table of Tables Next Chapter Table of Contents

9

Table of Tables
Table 1-1 Symbols used in programming and their pronunciations 32

Table 2-1 Arithmetic operations in Python .. 38

Table 3-1 Python assignment operators ... 54

Table 3-2 Data types used in Python ... 54

Table 5-1 Notation for lists, tuples, and dictionaries ... 77

Table 6-1 Comparison operators in Python .. 89

Table 6-2 Conversions between numbers and strings .. 94

Table 6-3 Connecting and repeating strings ... 94

Table 10-1 Key Operation to Take a Schreen Shot ... 129

Table 11-1 Specifying colors with tkinter .. 146

Table 16-2 sample.csv .. 224

Table of Programs Next Chapter Table of Contents

10

Table of Programs
Program 2-1 (p2-1.py) ... 40

Program 4-1 Program that solves for square roots (ver. 1, p4-1.py) 62

Program 5-1, Keeping calculation process in a list (p5-1.py).. 74

Program 6-1 Program that solves for square roots (ver. 2, p6-1.py) 79

Program 6-2 Program that solves for square roots (ver. 2, p6-2.py) 80

Program 6-3 continue and break (p6-3.py) .. 81

Program 6-4 Calculating sum (p6-4.py) ... 82

Program 6-5 Nested for-loops (p6-5.py) .. 83

Program 6-6 Program that solves for square roots (ver. 3, p6-6.py) 86

Program 6-7 Program that solves for square roots (infinite loop method, p6-7.py) 87

Program 6-8 Forking using multiple conditions (p6-8.py) ... 90

Program 6-9 Forking with nested 'if' statements (p6-9.py) ... 90

Program 6-10 Termination of the Python program (p6-10.py) ... 91

Program 6-11 Program that checks user input (input_check.py) ... 92

Program 7-1 Making Kyoto intersections (p7-1.py) .. 96

Program 7-2 Making a table of Kyoto intersections (p7-2.py) ... 99

Program 7-3 Making a table of Kyoto intersections (p7-3.py) ... 100

Program 8-1 Card deck generation (incomplete, p8-1.py) .. 104

Program 9-1 Example of an absolute value function (p9-1.py) ... 108

Program 9-2 Example of an absolute value function (p9-2.py, returns when possible) 108

Program 9-3 Implementation of the square_root() function (p9-3.py) 111

Program 10-1 Turtle usage example (p10-1.py, Do not save this program as turtle.py)........ 119

Program 10-2 Program that draws polygons with n faces (incomplete, to be saved as p10-2.py)

 ... 120

Program 10-3 Moving multiple turtles (p10-3.py) ... 121

Program 10-4 Responding to mouse clicks in turtle graphics (p8-4.py) 123

Program 10-5 Defining the shape of a turtle (p10-5.py) ... 126

Program 10-6 random_turtle.py ... 130

Table of Programs Next Chapter Table of Contents

11

Program 10-7 detour.py .. 131

Program 10-8 turtle_tree.py .. 132

Program 11-1 Simple tkinter exercise (tkdemo.py) .. 136

Program 11-2 Calculator for addition only (tkdemo_2term.py) .. 139

Program 11-3 Setting up a callback function with arguments using a lambda notation

(tkdemo_2term_lambda.py) ... 144

Program 11-4 How to extend the Frame class in tkinter (tkdemo-2term_frame_extention.py)

 ... 149

Program 11-5 Program that displays card images: tkdemo-show_cards.py 152

Program 12-1 Analog clock with tkinter (without a date button, tkdemo_simple_clock.py) ... 157

Program 12-2 Analog clock with tkinter (with a date button, tkdemo_clock_with_button.py)

 ... 159

Program 13-1 CUI calculator program (p13-1.py) .. 165

Program 13-2 Class variables and instance variables (p13-2.py) 168

Program 14-1 Example of File Input/Output (p14-1.py) .. 174

Program 14-2 Approximation of a sawtooth wave by summing trigonometric functions (p14-

2.py) ... 178

Program 14-3 A simple text editor using tkinter (p14-3.py) ... 181

Program 15-1 Tic-tac-toe program example (Part 1: Global variables) 193

Program 15-2 Tic-tac-toe program example (Part 2: Turn-related functions) 194

Program 15-3 Tic-tac-toe program, example (Part 3: Board-related functions part 1) 195

Program 15-4 Tic-tac-toe program, example (Part 4: Board-related functions part 2) 197

Program 15-5 Tic-tac-toe program, example (Part 5: Board testing functions 1) 199

Program 15-6 Tic-tac-toe program, example (Part 6: Board testing functions 2) 201

Program 15-7 Tic-tac-toe program example (Part 7: Game record-related functions) 203

Program 15-8 Tic-tac-toe program, example (Part 8: The play() function and the main program)

 ... 204

Program 16-1 matplotlib example（use_matplotlib_outline.py) .. 213

Program 16-2 use_matplotlib.py .. 216

Program 16-3 use_matplotlib_scatter.py .. 217

Table of Programs Next Chapter Table of Contents

12

Program 16-4 use_matplotlib_hist.py .. 219

Program 16-5 use_matplotlib_subplot.py ... 220

Program 16-6 use_read_csv.py ... 226

Program 16-7 use_DadaFrame_plot.py ... 227

Program 16-8 Drawing graphs of powers of 1 to 4 with Numpy and Matplotlib

(use_matplotlib_power_function.py) .. 229

Program 19-1 missing_colon_error.py ... 236

Program 19-2 missing_parentheses_error.py... 237

Program 19-3 insufficient_indentation_error.py .. 238

Program 19-4 excess_indentation_error.py ... 239

Program 19-5 referencing_undefined_variable_error.py ... 240

Program 19-6 wrong_argument_type_error.py ... 241

Program 19-7 incorrect_indentation_in_class_error.py .. 242

Program 19-8 incorrect_optional_argument_error.py ... 243

Program 19-9 error-in-function.py ... 244

Table of Exercises Next Chapter Table of Contents

13

Table of Exercises

Exercise 1-1 Motives for taking this course ... 19

Exercise 1-2 Symbols used in Programming .. 33

Exercise 2-1 Reviewing arithmetic operations ... 38

Exercise 2-2 Differences between the Python shell and IDLE Editor 40

Exercise 2-3 Confirmation of thr result after execution of Program 2-1 41

Exercise 2-4 Prepare your own Python learning environment and report it. 45

Exercise 2-5 Redo today’s exercise in your personal learning environment. 45

Exercise 3-1 Programs and sheet music.. 49

Exercise 3-2 Practice using various variable names .. 52

Exercise 3-3 Explaining the behavior of variables .. 53

Exercise 3-4 Confirmaton of data type .. 55

Exercise 4-1 Creation and execution of a program to obtain square root 61

Exercise 4-2 Experience errors (1) .. 63

Exercise 4-3 Solve for the square root of some other numbers. ... 63

Exercise 5-1 Store calculation process in a list .. 75

Exercise 5-2 Store estimated accuracy in a list ... 75

Exercise 6-1 Apply 'for' statement to the program of solving square root 78

Exercise 6-2 Checking the block ... 79

Exercise 6-3 Prank ... 80

Exercise 6-4 Experience errors (2) .. 80

Exercise 6-5 Experience errors (3) .. 81

Exercise 6-6 Explanation of continue and break .. 81

Exercise 6-7 range() function .. 82

Exercise 6-8 Calculation of sum .. 83

Exercise 6-9 Nested for-loops ... 83

Exercise 6-10 Solving for averages ... 85

Exercise 6-11 Change access to list elements ... 85

Table of Exercises Next Chapter Table of Contents

14

Exercise 6-12 Write and run Program 6-6 .. 86

Exercise 6-13 Experience errors (4). ... 90

Exercise 6-14 Input number form terminal ... 92

Exercise 6-15 Reviewing Error Handling ... 92

Exercise 6-16 Use of math module .. 94

Exercise 7-1 Creating a table of Kyoto intersections .. 99

Exercise 7-2 Outputting lists of lists .. 101

Exercise 8-1 Fine tuning the square root calculation ... 102

Exercise 8-2 Calculating Pi using the Leibnitz formula ... 103

Exercise 8-3 Generating a deck of cards ... 103

Exercise 8-4 Generating Heian-kyō intersections .. 106

Exercise 9-1 Create an absolute value function ... 109

Exercise 9-2 Experience errors (5). ... 109

Exercise 9-3 Create a function to solve squate root .. 112

Exercise 9-4 Create a function to solve squate root (2nd) .. 112

Exercise 10-1 Draw a regular polygon with n faces .. 119

Exercise 10-2 How can you draw a 5-pointed star? ... 120

Exercise 10-3 Draw regular 7- and 9-sided polygons, and their star equivalents 121

Exercise 10-4 Categorize the above functions following the usages shown in Section 9.9. . 121

Exercise 11-1 Create an Addition Calculator with Tkinter ... 147

Exercise 11-2 Configuring the appearance of a widget .. 147

Exercise 11-3 Extending the Calculator to Four Arithmetic Operations (Skill Test) 147

Exercise 11-4 Management of Widgets with List (Skill Test) ... 148

Exercise 11-5 Differences with an actual calculator ... 148

Exercise 12-1 Reviewing the methods to be used .. 162

Exercise 12-2 Modifying the analog clock .. 162

Exercise 12-3 Improving the display .. 163

Exercise 13-1 Extention of Calculator Class .. 167

Exercise 13-2 Creation and Utilization of Multiple Objects ... 167

Table of Exercises Next Chapter Table of Contents

15

Exercise 13-3 User Calculator Class in the Tkinter Program .. 167

Exercise 14-1 Square wave approximation .. 180

Exercise 14-2 Implementation of the list from Example 1 ... 180

Exercise 15-1 Programming Branching with Complicated Condition 190

Exercise 15-2 Relationship of functions in tic-tac-toe program ... 205

Exercise 15-3 Getting the game record ... 205

Exercise 16-1 Modify it to draw a approximation of a saw wave with sum of trigonometric

functions. .. 228

0 Foreword Next Chapter Table of Contents

16

0. Foreword
This textbook was written for a (Python) programming exercises course as part of Kyoto
University’s Liberal Arts and Sciences courses.

0.1 Learning goals of this chapter
The objectives and goals of this course are as outlined below.

 Objectives
Python is a programming language that has many practical uses and is easy for beginners to learn. In
recent years, its use in academic research has steadily increased. In this course aimed at beginners,
students will learn to program using Python through various exercises.

 Goals
 Students will learn the fundamentals of how to use Python to execute programs.
 After learning about the functions and formats of the fundamental components of a Python

program, students will be able to use the examples to put together their own programs.
 Students will be able to design, implement, and test their own simple Python programs.

0.2 Reasons for writing an entirely new textbook
This text was based on the courses from the 2018-2022 academic years. There are already a large
number of introductory texts for Python, however, due to the reasons detailed below, it was decided
to add yet another text into the mix.

 This course does not aim to introduce the reader to Python, but rather to teach students how to
write (to become able to write) their own programs in Python. Many texts have the tendency
to merely be an introduction to the language itself.

 For beginners, learning a programming language is simply the overcoming of various
mistakes. Even mistakes that seem severe when you are a beginner are often completely
forgotten once you have gained some programming experience. Through practical exercises,
this course aims to keep the spots that beginners tend to make mistakes in mind, and to tailor
the explanations in a manner that helps them overcome these mistakes.

 Related to the above, learning a programming language consists of writing and executing
actual programs by yourself. This text includes directions for actual programming exercises.

While this text serves as a guide for beginners that explains the fundamentals of programming using
Python, it is not a comprehensive introduction of Python’s language specifications. It is
recommended for students to prepare other learning materials on Python and take them to classes.

0 Foreword Next Chapter Table of Contents

17

0.3 Humanities majors: you can do it!
It seems that there are many humanities students that think of programming as something that should
be left for the science majors. Programming is indeed a technique to control the complex machines
known as computers, and source code can often look like numerical formulas. However, in actuality,
programming merely delegates to machines work that humans can perform themselves. It is
important to firmly understand the actions performed by humans because in this respect humanities
students can gain an edge. Many humanities students have taken this course in the past and received
passing grades.

0.4 Regarding the organization of this text
This text was organized based on the courses from the 2018-2020 academic years. As such, it is
structured such that you can work through the exercises in order from the front of the book. Topics
from the classes that represent a digression from the topic at hand are compiled as independent
“Columns.”

0.5 Notation
It is most effective for students to learn using a two-pronged approach. One side of this approach will
see students learning by testing simple commands line by line in an interactive environment known
as the Python shell. The other side will have students write larger programs (scripts) in an editor and
execute them as a batch.
Features that students are to try out in the Python shell are represented in the text using the red
K2PFE font seen here:

 a = 1 + 2

The results obtained from executing these commands are shown in blue as seen here:

 3

Please try these out for yourself as you learn.
On the other hand, larger programs will be shown using the table format with three (or two) columns
seen below. Input the source code into the editor and execute the program to see the results. In this
representation, a character '␣' is placed instead of space ' ' so as to make them visible.

Row Source code Notes
1
2

a␣=␣1␣+␣2
print(a)

'␣' is used instead of
space ' ',

Notices in typing actual programs referring the source code lists:

 Spaces in the source code are replaced with '␣' so as to make them visible.

 Ordinally fonts in Windows, a glyph of yen (¥) is used for backslash code (\). K2PFE font
uses a glyph of backslash (\) instead.

0.6 Warning regarding copying and pasting
The source code that appears in this text was formatted in Word before being converted to PDF

0 Foreword Next Chapter Table of Contents

18

format. In the PDF document, spaces are not saved, and there are instances in which the characters
will be automatically changed. As such, please be aware that there are instances in which simply
copying and pasting from the PDF will lead to program errors.

0.7 Edits for later versions (2023 and later)
In the 2023 version, some misprints were corrected, some hard-to-read portions were edited, and
some additional explanations given during the 2022 course were added. The square root calculation
that was used as an exercise in Chapter 3 has been improved and added as its own section in Chapter
4. In addition, portions on Python program termination were added to the chapter on control flow
(Chapter 6), and various practical exercises covering material through Chapter 7 were added as
Chapter 8. Furthermore, ways of defining the turtle shape in the turtle graphics chapter (Chapter 10)
have been added, and a simple exercise to help introduce tkinter was added to chapter 11 alongside
improvements to the explanation. Image display has also been added to the widget. An example of an
error that can occur during function calls was added to chapter 19.

Notes for English Version
This textbook is a translation of the Japanese version referred to as “Puroguramingu-Enshuu Python
2023 (プログラミング演習 Python 2023).” The original version cited several Japanese references.
We have retained some quotes and references in Japanese.

Acknowledgements
Since the publication of the 2019 version following the 2019 academic year, we have received many
helpful opinions as well as identifications of misprints. Our deepest thanks for all of those who
shared their opinions with us.
K2PFE font used in this textbook were developed as a collaborative research by Professor Akihisa
Tatsumi, Part-time Lecturer Maya Kusunoki of Kyoto City University of Art, Dr. Tamaki Motoki of
Kyoto University and Hajime Kita one of the authors of this textbook. It is partly supported by JSPS
KAKENHI Grant Number JP 21K028 80.
English translation from Japanese version was supported by Center for Innovative Research and
Education in Data Science, Institute for Liberal Arts and Sciences, Kyoto University as one of its
activities in development of learning materials and their publication.
This book is licensed under CC-BY-NC-ND. For detail, access the following:
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
http://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja

1 Computers and Programming Next Chapter Table of Contents

19

1. Computers and Programming

1.1 Learning goals of this chapter
 Understand how computers operate in general, and how programs factor in.

 Learn about the role of programming languages in programming.

 Learn about various uses and applications for writing programs.

 Learn about how to study programming.

Exercise 1-1 Motives for taking this course
Please answer the following questions.

1. Why did you decide to take this course?
2. Why do you want to learn programming?
3. Why do you want to learn Python?
4. Please indicate whether you have any previous experience with studying programming (Yes

or no). If yes, how much?
5. For those with previous experience studying programming, what programming language(s)

did you use?

1.2 Computers and programs

 Machines that are run by programs
You have probably heard of the Jacquard machine sometime in a history course. Textiles are woven
by passing a weft thread through a warp thread. One can weave a specific design by varying which
warps are run on top of the weft and which are run beneath. A Jacquard machine is a machine that
can correctly weave the thread provided it is given instructions regarding which way to run the
thread in the form of paper with holes punched into it (referred to as punch cards). By binding
together many punch cards and feeding them into the machine in order, one can create complex
designs. In order to create a different pattern, one simply needs to swap out the punch cards.
One can still find Jacquard machines actively used in the Nishijin district in Kyoto, where weaving is
a booming local industry. Figure 1-1
Charles Babbage (1791-1871) was an inventor from Great Britain who set out to develop a
mechanized calculator. Starting with a mechanism that automatically generated number tables from
sequences of differences, Babbage took inspiration from the Jacquard machine and attempted to
create a mechanized calculator (The Analytical Engine) that is run by a program. Unfortunately, he
was never able to complete it; however, he is viewed as a pioneer in the field of computer science for
his attempts to make a mechanism that performs calculations according to a program.

1 Computers and Programming Next Chapter Table of Contents

20

Jacquard machines and punch cards
Taken at Fukuoka Weaving in Kyoto

Babbage’s Analytical Engine

Figure 1-1 Jacquard machine and Analytical Engine

https://commons.wikimedia.org/wiki/File:AnalyticalMachine_Babbage_London.jpg

 Computers are composed of “switches” that run by
electricity

In Babbage’s era, complex mechanical movements could only be attained by using gears or
something similar. Later on, it became possible to create mechanisms that use electricity to fit in
another electrical switch. One of these was to use an electromagnet to mechanically move (relay) an
electrical contact. Attempts were actually made to use these electrical relays to make computers.
However, while this works from an electrical standpoint, the mechanical movement that
accompanies it was far too slow.
After this, computers were developed that utilized vacuum tubes. These were tubes in which
electrons flowing between an electrode (cathode, anode) are controlled by the voltage applied to a
different electrode placed between them. Vacuum tubes had the advantage of fast electronic
movement, however, the fact that a filament was needed to add heat in order to make the cathode
emit electrons meant they had short lifespans.
Following this, transistors were invented. Transistors are devices that enable behavior similar to that
of a vacuum tube to occur within the solid matter of a semiconductor. Transistors have a long
lifespan, are very small, and do not consume much electricity. At this point, computers that consisted
of a large number of discrete transistors wired together were made.
Finally, integrated circuits were developed. These circuits are printed as an entire unit and consist
of a lot of transistors and wiring on top of a single semiconductor chip. Integrated circuits are much
smaller and much more cost efficient when compared to normal electronic circuits. Integrated circuit
technology was then used to develop microprocessors, which are essentially the main component of
a computer (all contained in a single chip). Microprocessors are the breakthrough that made cheap,
small computers that anyone can use, such as PCs and smartphones, into a reality.

1 Computers and Programming Next Chapter Table of Contents

21

Relay
Vacuum

tube Transistor
Integrated

Circuit

Increase in speed due
to lack of mechanical

components

Increase in
lifespan

Reduction in size
Less power

ti

Less parts
Reduction in size,
increase in speed,
reduction in cost

Figure 1-2 Progression of logic gates
Next, we will take a look at the amazingly rapid progression of the number of transistors that could
be integrated onto a single semiconductor chip (degree of integration), which has increased by over a
million times in 40 years. Technological innovations that improve efficiency by orders of magnitude
effected not only integrated circuits, but storage capacity and communication speed as well. It is
through technological innovations like this that you are able to use your smartphone to enjoy
YouTube videos in the modern era.

Figure 1-3 Microprocessor transistor counts

https://en.wikipedia.org/wiki/Transistor_count#Microprocessors
 Plot of a selection of Intel processors (Accessed Jan. 2, 2017)

1.3 Computer structure

 Stored-program computer
So just how do modern computers carry out complex data processing?
The actions a computer (the hardware itself) can perform at one time are very simple, and complex
work like data processing is merely a combination of these simple actions. This combination of
actions is expressed as a program and put into action.
In modern computers, programs are stored in memory just like the data they handle. They are read at
rapid speeds and then executed. Computers that work in this manner are called “stored-program

https://en.wikipedia.org/wiki/Transistor_count#Microprocessors

1 Computers and Programming Next Chapter Table of Contents

22

computers.” 0F0F

1 All computers used today, from the small microprocessors used in home appliances to
giant supercomputers, are stored-program computers.
By changing programs according to the type of work that needs to be done, the same computer
(hardware) can be used to accomplish a wide variety of tasks.
Programming is the act of writing out, in the form of a program, the data processing steps that you
wish to perform.

 The Components of Computers and Their Functions
The main components of a computer’s hardware are the CPU and the memory.
The CPU contains the following major elements of a computer.
 Mechanism(s) to take in and parse commands from the memory
 Counters that point to the memory addresses of the program(s) that are currently being run
 Device(s) to preserve data (registers)
 An arithmetic-logic unit (ALU) that functions to perform arithmetic and logical operations on

variables

The fundamental operations that a computer can perform are the following simple tasks.
 Configure a program and data used in the program in the memory (by some method).
 Provide the CPU with an execution start location forthea program
 The CPU repeats the following:

1. Reads one step of the program from the memory and performs calculations or move data
according to the instructions.
 The result of the calculation can also be stored in the memory.
 Input/output can also be performed.

2. The CPU advances the instruction being executed to the next location.
 In some cases, the executed location can change based on the program.

1 In an early computer called ENIAC, calculation settings were not done in stored-program fashion; rather, they were set

by altering the wiring of the cables. However, upon developing its successor, EDVAC, the stored-program method was
proposed. As the report proposing it was submitted by von Neumann, it is sometimes referred to as the von Neumann
architecture.

1 Computers and Programming Next Chapter Table of Contents

23

Memory

ＣＰＵ
Read one step of the

program from memory,
executes the contents,

and proceeds to the
next step

Program

Display and
Keyboard

external storage

Data

Figure 1-4 Computer (hardware) organization

In order for the hardware (CPU + memory) to be able to easily process commands at high speeds, the
commands that can be executed in actual computers are limited to extremely simple ones. These
commands are referred to as machine code.

1.4 Programming languages
Programming complex actions in machine code is profoundly difficult. Programming languages were
the solution devised in order to solve this problem, and they are created in the following manner.
 Determine rules that enable you to write programs in a manner that are more easy-to-

understand for people (decide upon programming language specifications). Generally
something that looks less like machine code and closer to numerical formulas

 Create a program that can execute any program (source code) written in accordance with the
rules of the language (build a language processor)

Essentially, you write a program in the programming language, and the written program is executed
using the language processor. In simpler terms, an language processor + a computer effectively
yields a virtual computer that can execute any program written in a programming language.

1 Computers and Programming Next Chapter Table of Contents

24

Computer
hardware

Software that
executes the
source code

(language processor)

Program written in the
language

(Source code)

Programming
language

specifications

Code in accordance with
the specifications

Executed by the
language processor Virtual computer that executes

the programming language

Figure 1-5 Programming languages and language processors

 Various programming languages
As shown in the table below, many programming languages have been created and are in common
use.

FORTRAN COBOL ALGOL Pascal PL/I
BASIC C, C++, C# Java Go Swift
Perl Ruby Python JavaScript LISP
Haskel R Matlab ProLog Scratch

In addition, there are many things that strongly resemble programming languages that are often used
together with them. For example, HTML which codes for web pages, CSS which codes for the
page’s style, XML and JSON which code for data, and SQL which codes for database inquiries.
Why are there so many programming languages being used? Why are they not just all combined into
one?
The advancement of computing requires the overall improvement of the programs that are
developed. Consequently, the ways of thinking required to effectively code as well the programming
languages based in these ways of thinking developed over time. The desire to write programs more
easily, more quickly, and more securely is ever-present. There is a demand for programming
languages that are specially tailored to specific uses. New programming languages have been
developed and the specifications and language processors for specific programming languages have
been altered with these facts in mind.
On the other hand, the use of software developed in a certain programming language as well as the
programmers who wish to code in that language create demand for its continued usage.
Discontinuing old languages can be difficult. FORTRAN, a programming language that is used in
scientific computing, is the oldest programming language, yet still sees use following various
modifications.
Some programming languages have been developed by software companies, while others have been
created by individuals or as a community effort. Certain programming languages are developed by
companies strictly for-profit and require that you buy their language processors. Additionally, there

Programming
language

specifications

Software that
executes the
source code

(language processor)

1 Computers and Programming Next Chapter Table of Contents

25

are cases in which languages are developed due to the needs of a company and the language
processors are distributed freely with their source code made public.

 Composition of a language processor
There are a few different ways to compose programs (language processors) that can process and
execute programs (source code) written in a programming language. The three variations are as
follows:

1) Compiler
Executes the source code and then translates (compiles) it into machine code. The resulting machine
code is then executed. Compiling takes time, however the compiled executable program (machine
code program) can be executed very quickly.

2) Interpreter
Interprets the source code line by line, simulating the operations. Execution speeds can be slow as
interpreting the source code takes time; however, interpreters are so flexible that they can be used for
various purposes such as interactive usage.

3) Intermediate representation (IR)
Lying somewhere in between compilers and interpreters, IR translates the source code not into the
CPU’s machine code, but rather into machine code (intermediate representation) for a hypothetical
virtual computer used for that language. This IR is then executed using an interpreter (virtual
machine). Java and Python use this type of translator.

Executed by
computer
hardware

Translated
into machine

code by
compiler

Source code Machine
code

Computer
hardware

Sequentially
executed by
interpreter

Source code

Computer
hardware

Translated by
intermediate

representation
compiler

Source code

Interm
ediate

representation

Intermediate
representation

interpreter

Figure 1-6 Types of language processors

1 Computers and Programming Next Chapter Table of Contents

26

1.5 Python

 History of Python
In 1989, Guido van Rossum began working on Python. Version 2.0 was released in 2000, and version
3.0 was released in 2008.

Note: Python version 3 is not backward compatible with version 2 (version 3 does not contain the
specifications of version 2). As such, both versions tend to be run concurrently in order to ensure that
programs written with version 2 can run properly.

Note: Python generally comes pre-installed on Mac and Redhat Linux, but in some cases
version 2 is the one that is installed. In order to use version 3, you may need to install the version 3
language processor separately and ensure the correct version is being used at all times.

 Characteristics of Python
 Easy for beginners to learn yet capable of advanced programming
 Can be used for a wide variety of applications
 Libraries for scientific computing (NumPy, scipy, matplotlib, pandas, etc.) are being

developed by many people.
 In recent years, interest in data science and artificial intelligence (machine learning)

techniques has increased dramatically. Python has been growing in popularity due to its
abundant libraries for these applications.

 Python distribution packages
There are several Python language processors in development, and as a result there are many
packages that contain different combinations of things such as development environments, and
libraries. For this class, we will use the following two packages:
 Python: A distributable from the designers of Python; uses CPython, which is coded in the C

language, as its language processor.
 Anaconda: Contains modules for scientific computing wrapped into CPython as a single

package. We assume that you will be using this package in this class.

1.6 Various applications
There are likely some of you who have specific applications in mind as reasons for why you want to
learn Python. Let’s look at some of its various potential usages.

 Applications for personal computers (PCs)
Programs that run on PCs can largely be divided into two groups based on their operating
environments.

1 Computers and Programming Next Chapter Table of Contents

27

 CUI programs. These programs operate via the Windows command prompt or something
similar, take text input from the keyboard, and output text onto the screen. These programs are
relatively easy to learn due to the simplicity of input and output, but they also tend to not be
very user-friendly.

 GUI programs. These programs operate within a window and are controlled via buttons or
similar objects within the window. GUI programs enable the user to operate the program in a
manner they are likely already accustomed to, and images can also be included. However, the
number of things that you have to program is usually much higher.
Reading and writing files, network management, and many other actions require similar
programming in both CUI and GUI programs.

A few examples of using potential applications are given below.
 Scientific computing and numerical simulations
 Data processing and analysis of numbers, strings of text, and images
 Video games and graphical works
 Automatic data collection from websites (called web scraping)

 Other applications
 Smartphone applications
 Programs that operate on web servers or other servers on networks
 Programs that operate in coordination with electronic circuits. Raspberry Pi is a small

computer that runs on Linux and Python that was developed for this purpose.

1.7 How to learn programming

 Reasons why programming is difficult
Computer programming can be difficult for a variety of reasons. Understanding how and why it is
difficult will likely help you in your journey to learn programming.

1) The concepts that compose programming languages are hard to
understand

Even the natural languages that you use every day require complex grammar and diction in order to
express complex ideas. Similarly, programming languages require you to employ various concepts
and contrivances in order to skillfully express complex programs.
There is no need for you to try to understand all of these concepts at once. You can gradually work
your way up from the simplest ones.

2) Unable to deal with errors
In programming, various errors (called bugs to liken them to metaphorical bugs eating away at the
program) arise from mistakes and typos. It is important to go into programming with the

1 Computers and Programming Next Chapter Table of Contents

28

understanding that you will frequently encounter bugs, however:
 You should understand that accurate typing in accordance with the syntax of the source code

is necessary.
 Syntax errors aside, there will be times when misconceptions about the program lead to it

operating in a manner that defies expectations.
 The vast majority of bugs are due to human error. It is important for you to gradually build up

experience recognizing and dealing with various errors.
 Dealing with errors involves backtracking from the result of “an error has occurred” to the

root problem that is causing it. You will need to come up with various hypotheses about the
cause of the error that correspond to the type of error you have encountered and then
investigate to determine whether or not it is actually the cause.

 There are times when the computer’s response (when the computer has been rendered unable
to process) does not match up with the actual mistakes in the program.

3) Unable to add the feature that you wish to implement
Even if you learn the components that make up a programming language, it can often be difficult to
figure out how to combine them in a manner that produces the desired result. Just like how even if
you know how to use a hammer and saw, you cannot build a house unless you know how a house is
built.
It is necessary to thoroughly analyze what you wish to do in plain words and then to write the
program after getting a clear understanding of the procedure. You can start by learning from
examples of relatively simple applications and gradually working your way up.

4) The program becomes too complicated to understand
When a program becomes very long it gets more and more complex and it can suddenly become
difficult to make sense of just what you are programming. For beginners, even a 100 line program
can seem very daunting. Learners should work towards a goal of writing a 100 line program as they
gradually pick up methods of coding in a way that makes longer programs much easier to navigate.

5) There are techniques for writing large programs
Some of the largest programs in the world can reach hundreds of millions of lines. Naturally, a single
person cannot write these programs on his/her own, nor can he/she know all of the lines of code they
contain. There are certain methods and tools for writing such huge programs. Some examples can be
seen below.
 Create a thorough plan for the entire program
 Partition it into modules so that the work can be divided
 Write and test the program module by module.
 Test the entire program after putting it all together

Once you are able to write programs of around 100 lines, it is a good idea to challenge yourself to
write a larger program with these techniques in mind.

1 Computers and Programming Next Chapter Table of Contents

29

 How to learn programming
As with all subjects, it is essential for you to learn how to learn.
 How do you pick up a foreign language?
 How do you learn mathematics?

Programming is the skill of actually writing programs with your own hands, so in that sense, it is
similar to other practical skills like math and foreign languages. However, programs can be tested as
you write them, and they can have all sorts of interesting applications, so they should not be as
intimidating as math or foreign languages.

1) Motivation: you should work with things that interest you
 Your motivation for learning is critical if you wish to be able to persist in their studies. There

are many people who say vague things like “I want to learn how to program.” However, this
alone is too vague to serve as a concrete goal, which makes it easy for you to lose motivation.
Fixating on something more concrete, even something more difficult like “I want to make a
game” is usually more effective. Choosing a certain subject or application that you are
interested in makes it easier for you to preserve your motivation to learn.

2) Lots of reading and writing is fundamental to learning programming
 Type out and execute a bunch of exercises.
 “Understand through doing” rather than “do after understanding”
 Learn the patterns in vocabulary, symbols, and notations. It’s important to learn common

patterns as a single unit.
 Typing source code more quickly and accurately helps raise your learning efficiency.

3) Reading aloud/Read while interpreting
 Reading the symbols in the source code out loud while interpreting their meaning is an

important ability that helps to facilitate effective communication in class.

4) Tinkering: play around with programming exercises.
 Make small changes to programs found in exercises to gain a feel for what is possible.
 Try combining multiple exercises. Doing so will help you understand what adjustments are

necessary when combining programs.

5) Tracing
 Follow a program manually by hand in order to see how it will function (called tracing)

6) Become able to deal with errors
 When programming, you are constantly dealing with errors. Becoming able to do so is an

important goal in and of itself.
 Actual programming requires you to be able to deal with unforeseen errors, but intentionally

1 Computers and Programming Next Chapter Table of Contents

30

writing programs that contain errors in order to see what happens can be an effective
way to gain experience.

 Read the error messages. There are many beginners who do not read the error messages that
are displayed when they encounter an error. Error messages can definitely seem difficult to
understand, but they are telling you where or what the error you have encountered is. Error
messages for errors that you have intentionally caused should be relatively easy to understand,
so please try to familiarize yourself with them.

7) Look up information
 You should strive to become able to search for information on programming via topic or

method. A few methods for doing so are given below.
 Learn how to use various libraries and advanced programming concepts.
 Learn about tools that support programming.
 You can look up information in books or on the internet.
 Ask others for help with things you don’t understand. This requires the communication

skills to be able to ask for help when you need it.

 Characters used in programs
Most programming languages are designed with English as a basis, so you will need to keep this in
mind when dealing with characters and character encoding. Reference the column titled
"Programming & Japanese - The Never-ending Battle against Character Encoding."
 Python (and most programming languages) uses half-width alphanumeric characters.
 Full-width characters are only used in strings and comments1.
 Python distinguishes between uppercase and lowercase letters (it is “case sensitive”).
 Various symbols are used in programming.
 It is important to learn the appropriate names for these symbols,
 not just their location on the keyboard. This ensures you can communicate about these

symbols with others.
 In addition, you will need to be able to press keys, such as the C key, while holding down the

Ctrl key. This is written as Ctrl-C. The same is true for the Alt key.

1 While variable names in Python can use kanji, this is not the case for many programming languages, so it is safer to just

avoid using it.

1 Computers and Programming Next Chapter Table of Contents

31

Figure 1-7 JIS keyboard layout

Various symbols are arranged differently than in an English keyboard (ASCII layout).

Pronunciations and notes regarding the usage of the most common symbols can be found in the table
below. This table was taken from a literature reference [1] and a portion added with the consent of
the authors.

1 Computers and Programming Next Chapter Table of Contents

32

Table 1-1 Symbols used in programming and their pronunciations

Symbol Pronunciation Notes
␣ Space Denoted as ␣ in the symbol column for

ease of understanding.
Programs use half-width spaces. Note that
using full-width spaces in anything other
than strings of Japanese text will result
in an error that will be difficult to
troubleshoot.

! Exclamation mark

" Double quotes Both " and ' can be used to surround
strings in Python. Either can be used,
but you must use the same type of quotes
on both sides of the string.

' Single quotes, apostrophe

Pound sign, no. sign
$ Dollar sign

% Percent

& And, ampersand

* Asterisk

+ Plus
, Comma
- Minus, hyphen
. Period, dot

/ Forward slash
: Colon Take note of the difference between these

two ; Semicolon

< Less than
> Greater to

= Equals, equal sign
? Question mark
@ At sign, at

\

\
Yen symbol
Backslash

In JIS encoding, ¥ is assigned the same
code as \. The Unicode (UTF-8) encoding
used in Python assigns these symbols
different codes, but many Windows
Japanese fonts display ¥ in place of \.
Mac users can simply just use a
backslash.

^ Caret, free-standing circumflex
_ Underscore, underline In Python, you will often use underscores

by combining two in a row like so: __

1 Computers and Programming Next Chapter Table of Contents

33

| Vertical bar
~ Tilde
[Square bracket (open bracket) Python and many other programming

languages make use of brackets and
parentheses for various different uses.
It can be easy to make typos.

] Square bracket (close bracket)
{ Curly bracket (open bracket)
} Curly bracket (close bracket)
(Parenthesis (open parenthesis)
) Parenthesis (close parenthesis)

<= Less than or equal to 2 characters

>= Greater than or equal to 2 characters
!= Not equal to 2 characters

== Double equal sign, equal-to
operator

2 characters

Exercise 1-2 Symbols used in Programming
Review the names of the symbols used in programming as well as their locations on the keyboard.

1.8 The fundamental concepts used in programming
The following are the fundamental concepts that make up programs, both in Python and in most
other programming languages.
 Arithmetic, strings, logical (true or false) operators
 Variables, variable assignment, evaluating variables (using the assigned value)
 Switching how the program functions based on various conditions (branching)
 Repeating certain lines of the program
 Coding for and calling a fixed set of operations (defining and calling functions)
 Managing complex data
 Input/output (computer terminals, GUIs, files, networks)

1.9 What part of the program do you write?
Nowadays, it is extremely rare for anybody to write an entire application all by themselves. You
should understand that coding generally consists of programming things that fall in between the two
categories below.

 Framework: The GUIs used by applications on personal computers as well as the web
servers that web applications run on are almost always pre-existing programs. A program like
this is called a framework.

 Library: On the other hand, mathematical functions like sine and cosine that many people
will find useful are generally used as part of a pre-existing library.

That is to say, you code the specific operations of their program within a framework while using a

1 Computers and Programming Next Chapter Table of Contents

34

library that suits your programming needs.

Framework
(The framework within which GUIs and web server programs operate)

Library

Parts you write yourself

Use as needed

Figure 1-8 Frameworks and libraries

References
 喜多 一，岡本雅子，藤岡健史，吉川直人：写経型学習による C言語プログラミングワーク

ブック，共立出版（2012, in Japanese

2 Python: Execution Environment and How to Use It Next Chapter Table of Contents

35

2. Python: Execution Environment and How to
Use It

2.1 Learning goals of this chapter
 Learn how to start Python’s integrated development environment, IDLE.

 Learn how to operate the Python Shell within IDLE.

 Learn how to use the editor to edit Python programs (scripts) in IDLE.

2.2 Assumptions regarding the learning environment
This text was written with the assumption that Kyoto University’s dedicated learning computers
would be used. As such, it assumes Python learning will occur in the following environment.

 Operating system: Windows 11

 Python distributable: Anaconda (made with Python 3)

 Python integrated development environment: IDLE (included with Anaconda)
Learners should install Anaconda on their own PCs. In the case that you do not intend to use the
numerical calculation modules introduced in Chapter 16 (NumPy, matplotlib, pandas), the original
Python package will suffice.
There are various integrated development environments for Python aside from IDLE, including
Jupyter Notebook and Spyder. IDLE is used as the integrated development environment for this text
because its functions are limited and thus it is easier for beginners to understand (easier for
instructors to teach with). In addition, it is easier to operate the turtle graphics that will be used as
examples. However, you should note that its startup method and behavior is slightly different
depending on whether you are using Windows or macOS. Important points regarding its use in
macOS will be presented later on.

2.3 Setup
Create the folder where you will be saving the Python programs (scripts) that you write for this class.
For example, you can make a folder called “Python Scripts” within your “My Documents” folder1F1F

1.

1 If you make a folder on the NextCloud N: drive on one of the university’s computers, you will be able to access it on your own PC at

home.

2 Python: Execution Environment and How to Use It Next Chapter Table of Contents

36

Figure 2-1 Creating a folder to hold your programs

2.4 Launching IDLE
From the start menu, select the 'Anaconda Prompt' found within the 'Anaconda3' folder and double
click to start it. Once it starts, launch IDLE by typing idle (in uppercase or lowercase letters) into the
window and pressing the ENTER key.

Figure 2-2 Starting IDLE from the Anaconda Prompt

2.5 Python Shell

 Confirming that it launched
When you launch IDLE, a Python shell like the one shown in the figure below will appear. This is an
environment in which Python can be executed in an interactive manner. Please check the following
two things:

 Double check the window title. The currently running Python version (IDLE Shell 3.10.12 in
this case) is displayed in the window title. When you have multiple versions of Python installed,

2 Python: Execution Environment and How to Use It Next Chapter Table of Contents

37

there are times when the incorrect version (Python 2, for example) is launched. If this happens,
double check how to launch IDLE.

 Double check the prompt. The “>>>” within the window is a symbol (called a prompt) meant
to prompt you to input commands. You can input Python commands here via the keyboard.

Figure 2-3 IDLE’s Python Shell

 Executing Python commands
Input

1+2

after the prompt in the Python shell and press the ENTER key. Henceforth, commands to be written
into the prompt will be shown in red text. This is a full-fledged Python program that gives the
answer to 1+2. The shell should execute this and return

3

in response. Results returned from the prompt will be written below in blue text.
Arithmetic operations in Python can be performed as shown in the table below. Multiplication uses
“*” and division uses “/.” Just like in mathematics, multiplication and division will be prioritized
over addition and subtraction. In addition, you can use () in order to specify the desired computation
sequence.
It is worth noting that in Python 3, “/” yields a float variable even when used on two integers. When
an integer is needed, you should use “//.” Also, there are many cases in which you would need to use

2 Python: Execution Environment and How to Use It Next Chapter Table of Contents

38

the remainder of a division operation in their program. The “%” operator can be used to obtain this
remainder.

Table 2-1 Arithmetic operations in Python

Operator Operation Notes
+ Addition
- Subtraction
* Multiplication
/ Division Returns a float variable in

Python
// Integer

division

% Remainder Gives the remainder of a division
operation

** Exponent Note that this is 2 characters.
() Prioritized

operations
Other types of brackets cannot be
used for this purpose.

Exercise 2-1 Reviewing arithmetic operations
Practice arithmetic operations in the Python Shell.

Input each of the next two lines (one at a time).
Reference the figure to the right.

a = 1 + 2

a

The first line is a command that assigns the value of
the equation “1+2” on the right-hand side of the “=” to
the variable “a” on the left-hand side. The shell will
not display anything after this command and will
simply request the next input.
The second line confirms the value of the variable a.

3

should be what the shell displays. Next, try
inputting

print(a)

into the prompt. print() is a function that outputs the expression within the () onto the shell as
characters. As you would expect,

3

is displayed.

Figure 2-4 Operating the Python Shell

2 Python: Execution Environment and How to Use It Next Chapter Table of Contents

39

Simply inputting a variable’s name into the Python shell will display its value. In the programs that
you will code later on, which will be scripts in which multiple lines are executed all at once, will
require you to explicitly use the print() function.

2.6 Writing and running scripts
Next, we will learn how to write a multiline Python script and execute it all at once. To do this, you
will use the IDLE Editor to edit the commands.

 Creating a new file
To create a new program, select “New File” from the “File” menu in the shell window. This should
launch the IDLE Editor.

 Verifying the IDLE editor
The IDLE Editor and the Python shell look very similar. Use the three points detailed below in order
to tell them apart.
 The title of the window will be the name of the file that you’re editing. If you have selected

“New File,” the window title will be “Untitled.”
 The menus in this window are different than those in the Python shell. Make sure that there is

a menu called “run.”
 The interior of the window is blank. There is no “>>>” prompt like in the shell.
 The line and column of the cursor should be displayed in the bottom right if you are using

Windows.

2 Python: Execution Environment and How to Use It Next Chapter Table of Contents

40

Figure 2-5 Note the differences between IDLE Editor and the Python shell

Exercise 2-2 Differences between the Python shell and IDLE Editor

Please review the differences between the Python shell and IDLE Editor.

 Coding, saving, and running a Python program
It’s only a two line program, but please input the text found in the yellow section of the table below
into the IDLE Editor.

Program 2-1 (p2-1.py)

Row Source code Notes
1
2

a␣=␣1␣+␣2
print(a)

Assigns the result of the equation "1+2" on the right-hand side
to the variable a.
Outputs the value of the variable a to the screen.

Confirm that there are no typos and then select “Run” and then “Run Module.” Run means to
execute the program, and module refers to the Python program that is currently being edited.
As this is a new program, you will need to save it. Save it as p2-1.py (.py is the filename extension
for Python programs) in the folder that you created for your Python programs. After doing so, it will
be run in the Python shell and the results will be displayed.

2 Python: Execution Environment and How to Use It Next Chapter Table of Contents

41

Python Shell

Interactive use

Idle Editor

Write programs
(scripts) and

execute in shell

• Resetting the Python shell
• Running programs
• Reverts to interactive mode

upon finishing running a
program
• Possible to run functions

from program or check
its variables

Launch

Save and run

Figure 2-6 Interactions between IDLE shell and Editor

When you tell the Idle Editor to run something, the program is saved in the file, the Python shell is
reset, and the program is run2F

1. When the program has finished running, the Python shell will revert
to interactive mode where it can receive input from the keyboard. In this mode, you can check the
values of the program’s variables and call its functions.

Exercise 2-3 Confirmation of thr result after execution of Program 2-1
Once p2-1.py has finished running, run the following command to check the value of a.

print(a)

2.7 Setting the working directory with the Anaconda
Prompt

We created a folder to store our Python programs, so let’s set it so that this folder is opened by
default. You are not able to specify a working directory in IDLE, so you will just set one in the
Anaconda Prompt that runs IDLE. Set the working directory using the following procedure.

1. Create a shortcut for the Anaconda Prompt on the desktop

1) Right click on the Anaconda Prompt in the Start Menu

1The reason that the shell needs to be reset is to eliminate the potential effects of any lingering variables from when the

shell was in interactive mode.

2 Python: Execution Environment and How to Use It Next Chapter Table of Contents

42

2) Select “More” => “Open file location”

3) Right click on the Anaconda Prompt icon in the explorer

4) Select “Send to” => “Desktop (create shortcut)”

2. Set a working directory using the Anaconda Prompt shortcut on the desktop.

1) Right click the Anaconda Prompt icon on the desktop

2) Select “Properties”

3) Add the folder location of your Python script folder to “Start in”

4) Click “Ok”

2 Python: Execution Environment and How to Use It Next Chapter Table of Contents

43

From now on, when you double click this desktop icon, the Anaconda Prompt and idle will work
from the specified folder.

2.8 IDLE keyboard shortcuts
IDLE’s Python shell and IDLE Editor are very simple, however they come with some several useful
keyboard shortcuts. These can be read in IDLE’s online manual, but the most commonly used ones
are listed in 18 Appendix: Useful notes on Python and IDLE.

2.9 Executing Python commands
Python programs can also be run directly via the Anaconda Prompt. Please go through the following
steps.

1. Close any sessions of IDLE and Anaconda Prompt that are currently open.
2. Specify the working directory as described in the previous section.
3. Launch the Anaconda Prompt from the shortcut on the Desktop.
4. Input “cd” and press the ENTER key to confirm that the working directory has been set

properly.
5. Input “dir” and press the ENTER key to see a list of the files that are saved in this folder.

Check to make sure that p2-1.py is listed.
6. Input “python” and confirm that the Python shell is launched in the Anaconda Prompt. For the

time being, you are merely confirming that it launches, so either input “exit()” or input “C”

2 Python: Execution Environment and How to Use It Next Chapter Table of Contents

44

while holding the CTRL key to close the shell.
7. Specifying the name of a Python program (script) by inputting “python p2-1.py” and running

the Python command will execute the program. Please confirm that this command runs as
intended.

8. Specifying the -i option by inputting “python -i p2-1.py” causes it to revert to interactive
mode after running the program (as it does when running the program in IDLE)

Figure 2-7 Running Python in interactive mode

2 Python: Execution Environment and How to Use It Next Chapter Table of Contents

45

Figure 2-8 Running Python via a specified script

Figure 2-9 Using the -i option to stay in interactive mode once the program is

finished running

2.10 Creating a good environment for learning Python

• Python language processor: install Anaconda on your computer

• Look over the Python Language Reference

• Keep a book on Python (one that suits your learning style) on hand

• English dictionary (data confirmation, function and variable names)

• Notebook and writing utensil (PC notepad works too): write down things that spring to mind

Exercise 2-4 Prepare your own Python learning environment and report it.

Exercise 2-5 Redo today’s exercise in your personal learning environment.

2 Python: Execution Environment and How to Use It Next Chapter Table of Contents

46

Figure 2-10 Launching the online manual from IDLE

Figure 2-11 Python online manual (the right side is after selecting Japanese)

2.11 For Mac users
This text explains how to use Python in Windows. There are a few differences to consider when
using it with a Mac. Please reference the list below.

 Installing Python and launching IDLE on Mac

1) Installing Anaconda
Press the download button on the site below or scroll down the page and download the Mac OS
installer from the screen that is displayed (if you don’t know which to choose, select the 64-Bit
Graphical Installer).

https://www.anaconda.com/products/individual/

Run the package file that you downloaded to install it (if you don’t understand the choices in the

installer, select “install for me only”).
If you use a Mac equipped with the new M1 CPUs, you will be asked whether to install Rosetta,
which is software that enables you to run programs designed for the older CPUs. Therefore, proceed
with the installation.
Also, it is worth noting that when Anaconda is installed, the terminal environment is changed into a
Conda environment more suitable for running Python (will display “(base)” at the start of every line).
This is all well and good if you only plan to use the terminal for programming exercises, but it may
be problematic when trying to run other software. To return the terminal to the default environment,
input “conda deactivate.” In order to return it to the Conda environment after deactivating it, simply
input “conda activate.”
If the Conda environment does not seemed to be installed (“(base)” is not displayed), run the line
below in the terminal, close it, and then reopen it. The “zsh” at the end is the name of the shell that
runs in the terminal. In the event that a shell other than zsh is being used, simply use the name of that
shell.
/opt/anaconda3/bin/conda init zsh

2 Python: Execution Environment and How to Use It Next Chapter Table of Contents

47

2) Launching IDLE
The terminal is the equivalent to the Windows command prompt. IDLE is run from the terminal.
You can launch it by selecting “Applications” => “Utilities” => “Terminal” in Finder.
Provided that Anaconda is installed, IDLE for Python 3 can be launched by inputting “idle3” using
the keyboard and pressing enter (please note that this is slightly different than the previous section in
which you needed to enter “idle” into the command prompt in Windows).

3) Navigating IDLE
Sometimes, when launching the IDLE Editor, you will be unable to navigate the menus by clicking.
If this happens, just click on another window or the desktop background and then click back to the
IDLE window (it will be titled “Python3.8”). This should fix the problem and enable you to use the
menus.

4) Japanese input in IDLE
Please note that using Japanese input in IDLE can cause it to become slow and unstable. At present
(9/29/2020), using Google Japanese input can lead to problems inputting characters. If this happens,
it is recommended to use Mac’s standard Japanese input.
For comments and other parts that don’t affect the program’s operation, one method is to simply
avoid using Japanese altogether.

5) Inputting backslashes in IDLE
In this textbook, there are sections in Chapters 11 and 12 in which yen symbols “¥” are input into the
programs. Mac users should input backslashes “\”

To input the backslash symbol “\” on Mac, hold down the bottom left “option” key and press the “¥”
key.

Figure 2-12 Inputting backslash on Mac

Press the ¥ key while holding the “option” key.

6) Closing IDLE
Once idle is closed, you can close the terminal window.

2 Python: Execution Environment and How to Use It Next Chapter Table of Contents

48

 Problems with Tkinter on Mac.
Aside from the above, there are some things that rely on the operating system in which Mac users
will see some differences from Windows users. Some examples include the GUI environment
Tkinter, which uses a package called Tcl/Tk, and the handling of Japanese fonts in the graphing
module matplotlib.

References
Many books about Python have been published in recent years, so it is likely difficult to decide
which to buy. As such, we will offer a few recommendations. References [2]-[6] are introductions to
Python. While it may be difficult to discern from the title, Reference [7] includes the experiences of
the author, who learned Python via self-study and became a programmer. Reference [8] explains
subjects that are not often included in introductory texts in the field of programming. References [9]
and [10] are geared towards practical applications. References [11] and [12] are texts that discuss the
numerical computing libraries, NumPy, matplotlib, and pandas, that will be touched on in this text.
For books other than these ones, please confirm that they deal with Python Version 3 before using
them.

 Bill Lubanovic: Introducing Python: Modern Computing in Simple Package, Oreilly & Associates Inc,
2nd Ed (2019)

 柴田淳：みんなの Python 第 4 版，SB クリエイティブ (2017, in Japanese)

 大津真:基礎 Python，インプレス (2016, in Japanese))

 松浦健一郎，司ゆき：はじめての Python エンジニア入門編，秀和システム (2019, in
Japanese))

 大澤文孝：いちばんやさしい Python 入門教室，ソーテック社 (2017, in Japanese))

 Cory Althoff: The Self-Taught Programmer: The Definitive Guide to Programming Professionally,
Self-Taught Media (2017)

 増井敏克：基礎からのプログラミングリテラシー，技術評論社 (2019, in Japanese))

 日経ソフトウェア編：いろいろ作りながら学ぶ！Python 入門，日経 BP(2019, in Japanese))

 Al Sweigart: Automate the Boring Stuff with Python, 2nd Edition: Practical Programming for Total
Beginners, No Starch Press, 2nd Ed. (2019)

 Wes McKinney: Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython,
O'Reilly Media, 2nd Ed. (2017)

 Jake VanderPlas: Python Data Science Handbook: Essential Tools for Working with Data, O'Reilly
Media, (2016)

3 Assigning and Operating on Variables Next Chapter Table of Contents

49

3. Assigning and Operating on Variables

3.1 Learning goals of this chapter
 Understand the flow of execution and the flow of information in Python. Learn about sequential

execution.

 Learn about naming, assigning, and evaluating variables in Python.

 Learn about the basic data types in Python.

 Learn about the type() function which looks up data (object) types, and the id() function which
looks up the location of an object.

3.2 Flow of execution and information in programs

 Sequential execution
In the example from the previous chapter

a = 1 + 2

print(a)

the program is executed one line at a time starting from the top. This is called “sequential
execution,” and it is a foundation on which programs are built. In addition, programs can:

 Diverge such that certain parts are only executed if certain conditions are met

 Repeat certain processes

 Call functions, effectively delegating the process to the definition of the function
These subjects will be tackled in later chapters. The source code of Python programs is written in
accordance with what is known as “the flow of execution.”

Exercise 3-1 Programs and sheet music
Computer programs share many similarities with sheet music. A fundamental characteristic of sheet
music is that the notes are played in order from the beginning (although they are read from left to
right which differs from top to bottom in programs). Also, note that there is notation that enables you
to change how certain parts are played or repeat certain parts.

3 Assigning and Operating on Variables Next Chapter Table of Contents

50

Sample sheet music: Kyoto University school anthem (taken from the link below)
https://www.kyoto-u.ac.jp/ja/about/operation/symbol/song-a.html

 Flow of information through variables
Meanwhile, in programs, information is processed at each step in the form of numbers or strings that
have been assigned to variables. As such, when compared to the flow of execution, the flow of
information can be quite difficult to follow, despite occurring through the assigning and checking of
the same variables. For example, in the code above, the value of the variable a that was set in the first
line is used by the print function in line 2.
How about in the following example?

a = 1 + 2

a = 3 + 4

print(a)

In this program, the value assigned to 'a' in line 1 is immediately overwritten in line 2. As such, you
can immediately see that this assignment is meaningless for print(a) in the third line by simply
following what happens to 'a'.

3.3 Variable naming

 Programs also use variable names with multiple
characters

The variable name used in the previous example was 'a.' In mathematics, letters of the alphabet (and
even Greek letters) are often used. However, programming languages, which handle various types of
data, can use longer variable names. For example,

a

x

x2

root

square_root

and so on.

 Variable naming rules
Please learn the following rules.
 You can use only uppercase letters, lowercase letters, numbers, and underscores.

 Uppercase and lowercase letters are treated as different characters.

3 Assigning and Operating on Variables Next Chapter Table of Contents

51

 A number cannot be used as the first character in a name.

 Reserved keywords used in Python syntax (words such as “if;” reserved keywords will be
displayed in red when using the IDLE Editor) cannot be used.

Variable names can use Japanese (kanji, etc.), however this is not common practice.

 Use variable names that are easy to understand

1) Taking mathematics as an example
Using appropriate names facilitates smoother thinking and communication. For example, in
mathematics, if you write a linear function as

y = ax + b
you can immediately understand that y is a linear function of x, the slope is a, and the intercept is
b. This is because it is the standard convention to use x and y as variables, to have y be a function
of x, and to use a and b as parameters.

However,

b  =  xa  +  y

is the same equation that merely switches x and y with a and b. Suddenly it becomes much more
difficult to understand.

2) How to name variables in Python programs
In programs, good variable naming can go a long way towards making a program easier to
understand. Please try to keep the following things in mind.
 Try to choose variable names that represent what the variable does within the program.2F3F

1
 Variables with very short names (like one-character names) should only be used when they

are only needed to have a very small scope to bring about their desired effect. In particular, l,
o, and O (lowercase L, lowercase O, and uppercase O) can be confused for the numbers 1 and
0, so it is best to avoid using them.

 In general, use lowercase letters instead of uppercase letters. Uppercase letters are generally
used for constants that do not change in value.

 Variable names with multiple words should use an underscore (_) as spaces. For example,
“street_name”2

 Use English when possible. There are times where programs grow much larger than initially
expected and come to be used by a large number of people. Often times this can mean people

1 We don’t often encounter the concept of “naming” in everyday life; naming kids or pets are generally the only times we name

anything. However, when using computers, the act of naming things is critically important when it comes to filenames, folder
names, and the like. Naming is one of the most common concepts within programming. It would be best to go in understanding that
good naming sense is needed when programming.

2 Alternatively, it is common to merely capitalize the first letter in each word after the first. In this case, the example would become
“StreetName.”

3 Assigning and Operating on Variables Next Chapter Table of Contents

52

all around the world will be using the program, so it is best to using English naming from the
beginning. 3 F4 F

1
Even beyond variable names, no matter how you write your programs, making them easy to
understand is of critical importance. PEP8[13] is the recommended coding guideline forPython
programs.

Exercise 3-2 Practice using various variable names
Run the program shown in Program 2-1 via the shell and practice changing the variable names to
various things.
 Please note that you need to change the variable in both the first and second lines to the same

thing.
 Try using a variable name of multiple words connected by an underscore.
 Also, see what error messages result from using variable names with reserved keywords or

names starting with a number.

3.4 Variable assignment and evaluation

Run the following program using the Python shell.
a = 1

print(a)

a = a + 1

print(a)

The variable 'a' is assigned the value of 1 in the first line.
In the third line, 'a' appears on both the left and right hand sides of the equation, so be careful when
reading it. In Python, this program does the following:

1. First, the expression on the right-hand side (a + 1) of the assignment operator (=) is
calculated.
 The variable 'a' is already assigned the value of 1, so the right-hand side will use “the

result of evaluating the value of a,” which is one. This gives us 1 + 1, yielding 2 as the
result of the calculation.

2. Next, this result is assigned (overwritten) to 'a,' the variable on the left-hand side.
Variables can be thought of as boxes with names.

1 There was a situation in which a FORTRAN program written by a German professor for his research was rewritten in C. Older

FORTRAN specifications placed limits on variable name length, so the variables were named using abbreviated German which was
completely unintelligible. The professor’s program had thorough English comments accompanying it, so it was still able to fulfill its
purpose.

3 Assigning and Operating on Variables Next Chapter Table of Contents

53

１０

a

１０

Assignment: save value in a

a = 10

１０

a

１０

Evaluate: obtain the
value of a

a

Figure 3-1 Visual representation of variable assignment and evaluation

Exercise 3-3 Explaining the behavior of variables
Below is a program that calculates the price of a ¥1000 product at 15% off.
 This program contains a single error which causes it to yield an error message when run.

Please locate and explain the error.
 After correcting the error, explain how the program behaves.

kakaku = 1000

nebikiritsu= 15

kakaku = Kakaku*(100-nebikiritsu)/100

print(kakaku)

3.5 Assignment operators
In programs, you frequently need to add or subtract a fixed number (for example, 1) to a variable.
You can make use of the operators below (beyond just the assignment operator “=”) in order to
perform such operations more conveniently.

3 Assigning and Operating on Variables Next Chapter Table of Contents

54

Table 3-1 Python assignment operators

Operator Example Meaning

+= a += b a = a + b
-= a -= b a = a - b
*= a *= b a = a*b
/= a /= b a = a/b

Note that the “++” and “--” operators commonly used in the C language are not present in Python.

3.6 Data types used in Python
The previous examples dealt with integers. Python programs can make use of many other data types
(seen in the table below), including floating-point numbers, which contain numbers after a decimal
point, strings, and Booleans (True and False). One feature of Python is that integers are not limited to
a certain number of digits (although at some point they are limited by computer memory and
calculation speed). For example,

2**200

evaluates to

1606938044258990275541962092341162602522202993782792835301376

As for numerical data types, complex numbers can also be used.

Table 3-2 Data types used in Python

Type
Function used
to convert

Explanation Constant
(literal)
notation example

Notes

Integer
int()

12345 No digit limit in Python

Floating-Point
Numbers
float()

A number that
has values
after the
decimal point

1.0
2.99792458E8

Has a size limit (of significant
digits and the range that can be
expressed). E8 means x108.

String
str()

A sequence of
characters

'aaa'
"日本語"

Strings are surrounded by single or
double quotes

Boolean
bool()1

Used to
evaluate
conditions

True
False

The first letters of constants are
uppercase.

1 Named after George Boole, the man who pioneered the theory behind the algebra of logical operators.

3 Assigning and Operating on Variables Next Chapter Table of Contents

55

It is worth noting that in Python, as with most programming languages, arithmetic using floating-
point numbers is carried out in binary. We often express fractions using decimals, but just like how
1/3 cannot be perfectly expressed as a decimal, 1/10 cannot be perfectly expressed using floating-
point numbers. For a more detailed explanation, please refer column chapter “What Does Float
Mean?”

Exercise 3-4 Confirmaton of data type
Run the following in the Python shell.

a = 1

b = 1/2

c = “ABC”

print(a)

print(b)

print(c)

print(type(a))

print(type(b))

print(type(c))

Although data (generally referred to as “objects”) has various “types” in Python, variables can be
assigned values regardless of the type of data they already contain.
The type() function can be used to find out what type of object is currently assigned to a variable.

0.3

U

１０

Z

X

True

Y

Figure 3-2 In Python, a variable can have any type

'Japanese'

3 Assigning and Operating on Variables Next Chapter Table of Contents

56

3.7 A more accurate understanding of Python
variables

In reality, variables in Python do not directly hold data (objects) themselves, rather they contain
information (a reference) that points to the whereabouts of the object. You do not need to worry
about this very much right now, however it will become important down the line when learning
about how complex data like lists are handled.
The information that points to data locations that are held by a variable can be looked up using the
id() function.

a = 1

b = 2

print(id(a), id(b))

Here

U

Here

Z
Here

ⅹ

Here

Y

0.3１０ 'Japanese' True

Figure 3-3 Python variables contain information on data (object) location

3.8 Assigning multiple variables
In Python, multiple variables can be assigned in one line by separating variables and expressions
with “,” on both the left and right sides of the equation.1

a = 1

b = 2

c, d = a*2, b*2

print(c, d)

Running this gives

1 Although this is not explained here, a data type called a tuple is being used here behind the scenes.

3 Assigning and Operating on Variables Next Chapter Table of Contents

57

2 4

as the output.
In order to switch the values of two variables, most programming languages assign the value to a
temporary variable (tmp in the example below) as shown below.

a = 1

b = 2

tmp = a

a = b

b = tmp

In Python, this can be done in the following manner.

a = 1

b = 2

a, b = b, a

References
 PEP 8 -- Style Guide for Python Code, https://www.python.org/dev/peps/pep-0008/ (Accessed on

2/12/20

https://www.python.org/dev/peps/pep-0008/

4 Exercise: Find the Square Root Next Chapter Table of Contents

58

4. Exercise: Find the Square Root

4.1 Learning goals of this chapter

 For this exercise, we will deal with sequential execution and handle variables in order to find an

approximation for the square root of a given number. While the calculation method introduced

in this chapter is quite simple, it requires division of numbers with many digits. As such, it is

difficult to perform by hand, but computers can carry it out with ease.

4.2 The square root hiding in plain sight
This textbook is designed to be able to be printed on A4 paper. Take a sheet of A4 paper and fold the
bottom right corner so it overlaps with the left side . The triangle that results from this is an isosceles
right triangle．

For simplicity’s sake, think of the two equivalent sides of this triangle as having a length of 1 (for
those who dislike that this differs from the actual length, think of the small side of the A4 paper as
210mm), then we get that the length of the hypotenuse x is equal to

𝑥𝑥2 = 12 + 12 = 2

according to the Pythagorean theorem. Thus, x has a value equal to the square root of 2 (√2), or

about 1.414. As a matter of fact, this length is the same as the length of the long side of the paper as

seen in the figure below.

4 Exercise: Find the Square Root Next Chapter Table of Contents

59

When folding A-series paper in two, the area is halved but the shape does not change. Setting the
horizontal side’s length as 1 and the vertical side’s length as √2, when one folds it in two the
vertical side’s length becomes √2/2 = 1/√2 and the horizontal edge’s length becomes √2 times
the length of the vertical edge resulting in the shape remaining unchanged.

In reality, A4 paper is 210 mm x 297 mm1, so the ratio of the vertical side to the horizontal side is
297/210 which is approximately equal to 1.414 ≅ √2. The square root of two is hiding in plain
sight all around us.
However, the square root is defined as the number that, when multiplied with itself, produces
the desired number. It is not apparent how one should find this value. Many students are told
that √2 or perhaps √3 and √5 are used often so they need to be memorized. It kind of leaves a
bad taste in one’s mouth, right?
Let’s use programming to solve for an approximate square root.

4.3 Calculation procedure
In order to solve for the square root √2 of a given number, follow the procedure below.

 Let the approximation of the square root be r. It can be initialized to the number whose square
root you want to find (2 in this example), or it can even be set to 1. In this case, let r = 2 .

 As another approximation of the square root, divide the number whose square root you wish to
find by the approximation r. In this example, that would give 2/r = 2/2 = 1. If the

1 A0 paper is 841 mm x 1189 mm, so four times the size of A4 paper on each side. This is because at those dimensions the area

becomes 841 mm x 1198 mm = 1,007,518 mm2 which is approximately 1 square meter.

4 Exercise: Find the Square Root Next Chapter Table of Contents

60

approximation r is indeed the square root being solved for, 2/r will become the square root as
well.

 The new approximation rNEW is the midpoint (average) between these two values. In this
example, that would be:

rNEW =
r + 2

r
2

=
2 + 2

2
2

=
2 + 1

2
= 1.5

 At this point, simply repeat the process after setting the value of r to rNEW.

rNEW =
1.5 + 2

1.5
2

=
1.5 + 1.33333

2
= 1.41666

As you can see, the number is indeed approaching the square root of 2. Repeating this procedure
over and over will further increase the accuracy of the approximation.

Laying out all of the variables in order to make this into a program yields the following:

1. Assign the number (>0) whose square root is being approximated to the variable x.
 x = 2

2. Set an initial value (>0) for the square root approximation and assign this to the variable rnew. In
this example, we will set this value equal to x.
 rnew = x

3. Assign the value of rnew to the variable r1.
 r1 = nnew

4. You can think of another approximation, x/r1, and assign this value to the variable r2 (r2 = x/r1).
 r2 = x/r1
If r1 is the square root of x, r2 will also become the square root of x. If it isn’t, one will be higher
than the true value, and one will be lower, making the true value fall somewhere in between.

5. As such, the new approximation can be set to the average of r1 and r2, (r1 + r2)/2, and update
the variable rnew by assigning it this new value.
 rnew = (r1 + r2)/2

6. Repeat steps 3-5 a certain number of times.

4 Exercise: Find the Square Root Next Chapter Table of Contents

61

x r1 = rnew

r2 = x/r1

r1 = rnew = (r1 + r2)/2

r2 = x/r1

r1 = rnew = (r1 + r2)/2

The square root of x is in between r1
and r2

The average of r1 and
r2 is closer to the square
root Repeat to get even closer

to the square root

Figure 4-1 Intuitive explanation of square root approximation

Figure 4-2 Calculation steps

4.4 Python program

Exercise 4-1 Creation and execution of a program to obtain square root

Input the source code of Program 4-1 from the following table into the IDLE Editor, save it as p4-
1.py, and run it. (Use ‘space’ instead of ‘␣’)

x

rnew

r1= rnew

r2 = x/r1

rnew =
(r1 + r2)/2x/r1 (r1 + r2)/2

Initial Value

2nd time
and on

Approximate square root

Another approximation

Average of the two,
improved approximation

Updating overall rnew value

4 Exercise: Find the Square Root Next Chapter Table of Contents

62

Program 4-1 Program that solves for square roots (ver. 1, p4-1.py)

Row Source code Notes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

#␣Find␣the␣square␣root␣of␣x
x␣=␣2

rnew␣=␣x

r1␣=␣rnew
r2␣=␣x/r1
rnew␣=␣(r1␣+␣r2)/2
print(r1,␣rnew,␣r2)

r1␣=␣rnew
r2␣=␣x/r1
rnew␣=␣(r1␣+␣r2)/2
print(r1,␣rnew,␣r2)

r1␣=␣rnew
r2␣=␣x/r1
rnew␣=␣(r1␣+␣r2)/2
print(r1,␣rnew,␣r2)

r1␣=␣rnew
r2␣=␣x/r1
rnew␣=␣(r1␣+␣r2)/2
print(r1,␣rnew,␣r2)

Lines starting with # are
comments

Initial assumption for the
approximation

The code below this section
simply repeats the red
portion 3 times.

If you obtain the following result, the program ran as expected.
2 1.5 1.0
1.5 1.4166666666666665 1.3333333333333333
1.4166666666666665 1.4142156862745097 1.411764705882353
1.4142156862745097 1.4142135623746899 1.41421143847487

With 4 repetitions, you will obtain the result of 1.4142135623746899.

If you calculate the root by using

2**(1/2)

you will get

1.4142135623730951

Note that the result of the program is accurate to the 11th digit after the decimal point.
An intuitive explanation of this approximation method is given above, however this is simply an
application of what is known as Newton’s method to solving for square roots. For more details,
reference the column titled “Newton’s Method.”

4 Exercise: Find the Square Root Next Chapter Table of Contents

63

Exercise 4-2 Experience errors (1)

Try a mistake of spelling "rmew" instead of "rnew" in line 4 of Program 4-1, and examine what will
happen if you run the program. See also "19 Appendix: How to Read Error Messages in
IDLE/Python."

Exercise 4-3 Solve for the square root of some other numbers.

1. Alter p4-1.py to solve for the square roots of other positive numbers.

2. Also, try and see what happens when this program attempts to solve for the square root of 0.

Don’t just look at the error message, actually go through the program step-by-step (called

tracing) to see where the problem occurs.

4.5 Be careful when using division
In programs, you will frequently run into situations where a variable is used as a divisor. Among the
four basic arithmetic operations, division has the unique feature in which it cannot work if 0 is used
as the divisor. When programming, be constantly mindful of whether or not the divisor in a division
problem will be 0.

4.6 Notation to make equations easy to read
From the 8th line of p3-1.py, the equation

rnew = (r1 + r2)/2

uses the assignment operator (=), addition (+), division (/), and () which determine operation priority.

 Note that spaces are placed before and after = and + in order to make the equation easier to
read.

 On the other hand, spaces are not placed directly within the () or on either side of the /.
Removing all of the spaces yields

rnew=(r1+r2)/2

which looks pretty cramped and is difficult to read.

 A general principle to follow would be to forego spaces before and after high priority operations
like * and /, while adding spaces before and after low priority operation like +, -, and =.

5 Lists Next Chapter Table of Contents

64

5. Lists

5.1 Learning goals of this chapter
Until now, we’ve dealt with simple numbers and simple strings. In Python, there are multiple ways to
handle batches of data all at once. Lists are one of these methods. In this chapter, you will learn the
following things about using lists in Python.

1. What is a list?

2. How is a list created?

3. Learn how to access the elements of a list.

4. Learn about assigning and copying lists

5. Learn the basics about tuples and dictionaries, which are alternative ways to handle a bunch of
data all at once.

5.2 Learning with the Python shell
This chapter is going to have a lot of short code. Rather than inputting it into the editor and running
it, you can learn more efficiently by inputting it into the Python shell and seeing what it does.

 Because the Python shell processes code line-by-line, you cannot just copy and paste multiple
lines into the shell and run them. Instead, input code one line at a time.

In order to limit the number of pages in this text, input will be printed in red font and output will
be printed in blue font below. Although the Python shell prompt is omitted, please proceed by
inputting the red text and confirming that it results in the outputted blue text.

5.3 What is a list?
In everyday life, if you mention a “shopping list,” this refers to a short memo containing a list of
items you intend to buy. In a similar manner, a Python list is a way for multiple pieces of data to be
handled all at once. By ascribing multiple pieces of data, a set order, you are able to handle them as a
single entity. For example, inputting

a = [5, 1, 3, 4]

and then

print(a)

prints the entire list.

[5, 1, 3, 4]

Inputting

5 Lists Next Chapter Table of Contents

65

print(a[0])

prints the element of the list at index zero.

5

Inputting

print(a[2])

prints the third element of the list.

3

5.4 Generating lists

 Generation by specifying elements
Lists are generated by enclosing the elements within [] and separating them using “,” like this:

a = [5, 1, 3, 4]

Or this:

b = ['Sanjyo', 'Shijyo', 'Gojyo', 'Shichijyo']

As you can see, strings can be used as elements of a list. Also, variables and equations can be
included as elements of a list.

c = 5

a = [c, 1, 3, 4]

a

[5, 1, 3, 4]

A long list of the same elements can be made by multiplication of list and an integer:

a = [1]*4

a

[1, 1, 1, 1]

However, it should be noted that if the element in the list is a complex objects like a list,
multiplication makes not make a list of copies of the element but just a list of the identical elements.

 Combining with the range() function
An empty list can be generated as an object of the list class like so:

e = list()

You can combine this with the range() function, which generates a series of numbers, like so:

n = list(range(5))

5 Lists Next Chapter Table of Contents

66

Printing this list using

print(n)

will show a list of numbers from 0 to 4.

[0, 1, 2, 3, 4]

 Generating lists from strings
It is possible to generate lists using strings instead of the range() function. Inputting

s = list('abcde')

and then

print(s)

Printing this list using

['a', 'b', 'c', 'd', 'e']

As you can see, you get a list containing the string ‘abcde’ split up into individual letters.
The string class contains a method called split() which can split a string into smaller segments using
a specified character to delimit the breaks1. For example, inputting

t = "a textbook of Python"

tlist = t.split()

Printing this list using

print(tlist)

yields

['a', 'textbook', 'of', 'Python']

which is a word list generated by using spaces as the delimiter.

5.5 Methods
In the previous example, we used the split() method to split a string using spaces as the delimiter.
Data handled by Python are generally referred to as “objects,” and the ways you can operate on this
data is determined in advance, and they change based on the class, type, and value of the data. These
predetermined operations are called “methods,” and can be called by placing a period after the
variable name and then writing the name of the method. In the previous example, the split() method
was called by placing a period after the variable t and then including “split()” after the period.

t = "a textbook of Python"

tlist = t.split()

1 Calling this method without an argument will cause it to default to using spaces as the delimiter. You can specify a desired delimiter.

You can also input help(str.split) into the Python shell to get an explanation of this method.

5 Lists Next Chapter Table of Contents

67

A method can also be called by attaching it to the string itself. For the example above, this would
become:

tlist = "a Python textbook".split()

A few methods for lists will be introduced below, so be sure to remember what a method is and how
to call one.1

5.6 Accessing elements in a list
Elements of a list can be accessed by including the element’s index within [].

a = [5, 1, 3, 4]

print(a[0])

yields

5

Then, by inputting

a[1] = 2

print(a)

2 is assigned to the second slot (index 1) of a, yielding

[5, 2, 3, 4]

The length of a list can be obtained using the len() function.

print(len(a))

yields

4

Please note that this is a function, not a method that can be called by “a.len()”

5.7 Negative indices and slicing
Python allows for list indices to be described in a wide variety of ways.

 Negative indices
Using an index of -x (x being an integer) refers to the element whose index is x elements from the
end of the list.

1 Methods are very similar to functions, which will be introduced in a later chapter. The major difference is that functions are not tied

to specific objects, while methods are mainly restricted to operating on certain objects. The way to call them is also similar. Classes
exist as a way for programmers to set their own data types that include their own method definitions. These will also be introduced
in a later chapter.

5 Lists Next Chapter Table of Contents

68

a = [5, 1, 3, 4]

print(a[-1])

yields the last element

4

See the table below for reference.

a[5, 1, 3, 4]
Accessing using a positive index a[0] a[1] a[2] a[3]
Accessing using a negative index a[-4] a[-3] a[-2] a[-1]

 Slicing
By making the index [starting index:stopping index], you can take out a select part of a list. This is
called a slice of the list. Please keep in mind that this includes up to the index before the stopping
index.

a = [5, 1, 3 4]

b = a[1:3]

print(b)

yields

[1, 3]

5.8 Adding to and combining lists
Lists come with various predetermined methods1. In this section, we will introduce the append()
method, which adds elements to a list, and the extend() method, which combines multiple lists
together.

 append method
This method adds the arguments to the end of a list.

a = [5, 1, 3 4]

a.append(2)

print(a)

This adds 2 to the end of list a, resulting in

[5, 1, 3, 4, 2]

1 Inputting “help(list)” into the Python shell will enable you to read an explanation on the methods available for lists.

5 Lists Next Chapter Table of Contents

69

 extend method
The extend() method is used to combine two lists.

a = [5, 1, 3, 4]

b = [2, 6]

a.extend(b)

print(a)

This will add list b to the end of list a, resulting in the following output:

[5, 1, 3, 4, 2, 6]

Note: using the append method will append the entirety of list b as the final element of list a, as seen
in the example below.

a = [5, 1, 3, 4]

b = [2, 6]

a.append(b)

print(a)

The entirety of list b is appended as the final element of list a, leading to the following output:

[5, 1, 3, 4, [2, 6]]

5.9 List assignment and duplication
First, try running the following program:

a = [1, 2, 3]

b = a

print(a)

print(b)

This should result in the following output:

[1, 2, 3]

[1, 2, 3]

Next, try to predict what the result will be from running a program like the one below.

b[0] = 0

a[1] = 0

print(a)

print(b)

This does not result in

5 Lists Next Chapter Table of Contents

70

[1, 0, 3]

[0, 2, 3]

but rather

[0, 0, 3]

[0, 0, 3]

This is because variables a and b refer to the exact same list. Checking this by inputting

print(id(a), id(b))

reveals that a and b both have the exact same id (which will vary based on your operating
environment).
In Python, the variables themselves do not contain the data, but rather the location of the data. Thus,

b = a

does not assign the data that a represents to b. Rather, it assigns to b the location of the data (list)
represented by a. As such, any changes to the elements of either a or b are in fact changes made to
the same list.

5 Lists Next Chapter Table of Contents

71

Here

a

Here

b

1 2 3

By setting b=a, the reference to the list contents that is
contained in a is assigned to b, making them reference the
same contents

List contents

Figure 5-1 List assignment

If you wish to handle b as an entity independent of a, you will need to explicitly create a copy and
assign it (when using lists).

b = a.copy()

This same issue can occur when passing lists into a function as arguments. Reference the column
titled "Reference & Duplication."

Here

a

Here

b

1 2 3

List contents

By using b=a.copy() a duplicate of a’s contents are created, and a
reference to these contents is assigned to b.

1 2 3

Duplication

Figure 5-2 Copying and assigning lists

5.10 Mutable and immutable objects
Everyone should now be able to correctly predict how a program with the following code will
behave.

a = 1

b = a

b = 2

5 Lists Next Chapter Table of Contents

72

print(a, b)

An important concept regarding data management in Python is the idea of mutable versus
immutable objects.

 Numbers and strings are immutable (unchangeable)
objects

In Python, numbers and strings are what are known as immutable objects. This means that in the
third line of the program above, b = 2 does not overwrite the data (with a value of 1) currently
referenced by b. Rather, it creates an entire separate entity containing the data “2” and assigns the
location of this data to b. You can examine their locations in memory using the code below.

a = 1

b = a

print(id(a), id(b))

b = 2

print(id(a), id(b))

Running this gives the following:
>>> a = 1

>>> b = a

>>> print(id(a), id(b))

1434938848 1434938848

>>> b = 2

>>> print(id(a), id(b))

1434938848 1434938880

As you can see, a and b refer to the same location in line 3. However, by line 5 they refer to different
locations.

 Lists are mutable objects
On the other hand, lists are mutable objects whose element can be changed. Because of this, when
there are two variables (a and b) containing references to the same list, any changes to the elements
of either of these variables will affect the other.

5.11 Shallow and deep copying
Unfortunately, there are additional issues to consider when using lists. What does variable b refer to
in the following program?

a = [[1, 2], [3, 4]]

5 Lists Next Chapter Table of Contents

73

b = a.copy()

Let’s see what happens when we do the following:

b.appen([5, 6])

print(a)

[[1, 2], [3, 4]]

print(b)

[[1, 2], [3, 4], [5, 6]]

As you would expect, adding append() to b works without affecting a because we created a copy of a
and assigned it to b. Next, try the following:

b[0][0] = 0

print(a)

[[0, 2], [3, 4]]

print(b)

[[0, 2], [3, 4], [5, 6]]

This time, the assignment to the element at index [0][0] of b affected a as well. When we check to
see what a[0] and b[0] each refer to, we get:

print(id(a[0]), id(b[0]))

3188920520008 3188920520008

As you can see, they reference the same object.
This is because the copy() method prepares a new list separate from the target list (copy source) and
then transcribes the locations of each element over to this new list. Thus, when the elements
themselves are lists, the method does not create copies of them. This kind of copy is called a shallow
copy, and a copy in which the elements themselves are also copied is called a deep copy.

5.12 Visualizing lists
There is a website called Python Tutor (http://www.pythontutor.com) where you can input short
Python programs and see their behavior (variable usage) visualized. An example can be seen below.
Using it to see how lists behave can serve to greatly aid your understanding.

5 Lists Next Chapter Table of Contents

74

Figure 5-3 Checking how lists behave with Python Tutor

5.13 Keeping Calculation Results in a List
On calculation of square root studied in the previous chapter（p3-1.py） , rewrite the

program so as to keep calculation process in a list.

Program 5-1, Keeping calculation process in a list (p5-1.py)

Row Source code Notes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

#␣Find␣the␣square␣root␣of␣x
x␣=␣2

rnew␣=␣x
rnew_list = [rnew]

r1␣=␣rnew
r2␣=␣x/r1
rnew␣=␣(r1␣+␣r2)/2
print(r1,␣rnew,␣r2)
rnew_list.append(rnew)

r1␣=␣rnew
r2␣=␣x/r1
rnew␣=␣(r1␣+␣r2)/2
print(r1,␣rnew,␣r2)
rnew_list.append(rnew)

r1␣=␣rnew
r2␣=␣x/r1

Lines starting with # are
comments

Create a list with rnew as
an element

The code below this section
simply repeats the above 3
times.

5 Lists Next Chapter Table of Contents

75

21
22
23
24
25
26
27
28
29
30

rnew␣=␣(r1␣+␣r2)/2
print(r1,␣rnew,␣r2)
rnew_list.append(rnew)

r1␣=␣rnew
r2␣=␣x/r1
rnew␣=␣(r1␣+␣r2)/2
print(r1,␣rnew,␣r2)
rnew_list.append(rnew)
print(rnew_list)

print the list

Exercise 5-1 Store calculation process in a list
Write Program 5-1 and execute it. After execution, examine the length and elements of rnew_list
with Python Shell.

Exercise 5-2 Store estimated accuracy in a list

In Program 5-1, accuracy of rnew can be estimated by r1 - r2. Modify the program to calculate
the estimated accuracy, store it in another list, say diff_list, and output the list at the end of the
program.

5.14 Tuples and dictionaries
Aside from lists, two ways you can handle large amounts of data all at once in Python is by using
tuples and dictionaries.

 Tuple
Similar to lists, tuples are a data type that consists of multiple elements.
Tuples can be created by simply delimiting the elements on the right-hand side of the equation with
commas and assigning them to the variables on the left-hand side.

a =1, 2

a

(1, 2)

The right-hand side can also be surrounded by parenthesis.

a = (1, 2)

a

(1, 2)

Actually, data is treated as tuples in assignments of and function 'return' statements containing
multiple values. If the left side has a number of variables equal to the number of elements, each
element will be assigned to its respective index.

(b, c) = a

5 Lists Next Chapter Table of Contents

76

b

1

c

2

As with lists, the elements of a tuple can be referenced using [] and the correct index.

print(a[0])

1

However, tuples are immutable objects, so elements cannot be assigned new values after they are
created.

a[0] = 2

The above code will yield the following error:

Traceback (most recent call last):

File "<pyshell#9>", line 1, in <module>

a[0] = 2

TypeError: 'tuple' object does not support item assignment

 Dictionaries
With lists, you access elements using a numerical index. This is useful when the numerical order of
the elements is meaningful. Dictionaries are a data type in which elements are accessed using strings
(words). The string that functions as the index is called a “key.”

age = {"Yamada":18, "Tanaka":19}

age

{'Yamada': 18, 'Tanaka': 19}

age["Yamada"]

18

Referencing a key that does not exist will result in an error, but assigning it simply adds it to the
dictionary.

age["Sato"] = 20

age

{'Yamada': 18, 'Tanaka': 19, 'Sato': 20}

The existence of a key in a dictionary can be checked using the 'in' operator.

"Okada" in age

5 Lists Next Chapter Table of Contents

77

False

As with lists, tuples and dictionaries can be used to iterate through for-loops.

 Notation for lists, tuples, and dictionaries
Lists, tuples, and dictionaries all use different types of brackets. The correct notation for each type
can be seen in the table below.

Table 5-1 Notation for lists, tuples, and dictionaries

Data type Brackets
used

Example Accessing
elements

Mutable/
Immutable

Lists [] d = [0, 1, 2] d[0] Mutable
Tuples () d = (0, 1, 2) d[0] Immutable
Dictionaries { } d = {"a":1, "b":2, "c":3} d["a"] Mutable

6 Control Flow Next Chapter Table of Contents

78

6. Control Flow

6.1 Learning goals of this chapter
In this chapter, you will learn the following methods for controlling the execution of a program.

1. Repeated processing and range() functions using for and while loops

2. Branching using if statements

3. Error handling with try statements

In addition, you will learn the following things which are related to the above points

4. How to write conditional expressions

5. Getting input from the keyboard using the input() function

6. Mathematical functions in Python

7. Format designation for outputted text

There is a lot to learn in this chapter, but the material covered will show up in many programs
throughout the following chapters. You should be able to pick up the material naturally after seeing
many instances of it in use.
It isn’t necessary to learn all the fine details at this point. It is important to separate the concept of
“what can this code do” from the experience of actually writing it. If you remember what certain
code can do and how to write it in a general sense, you can always check out the fine details in your
textbook when the need arises.

6.2 Repeated processing using for-loops
One of the main objectives of programming is to have computers automatically do things that are
difficult and/or repetitive for people to do by hand. for-loops are an important method for
programming the repetitive parts. Those of you who are familiar with C will notice Python's 'for'
statement has a slightly different syntax, but it is easier to use because you can easily write iterations
over elements of a list.

 Performing a fixed number of repetitions using a for-
loop and the range() function

The times that computers can show their true might through programming is when they are able to
perform a lot of processing at a very high speed. However, using sequential execution learned in the
Chapter 3, you need to write each and every step that the computer executes. Program 4-1 for solving
square roots in Chapter 4 repeated the exact same code four times. Here you will learn how to use a
for-loop with the range() function to automate these repetitions.

Exercise 6-1 Apply 'for' statement to the program of solving square root
Write and run the program contained in the table below.

6 Control Flow Next Chapter Table of Contents

79

Program 6-1 Program that solves for square roots (ver. 2, p6-1.py)

Row Source code Notes
1
2
3
4
5
6
7
8
9
10

#␣Find␣the␣square␣root␣of␣x
x␣=␣2

rnew␣=␣x

for␣i␣in␣range(10):
␣␣␣␣r1␣=␣rnew
␣␣␣␣r2␣=␣x/r1
␣␣␣␣rnew␣=␣(r1␣+␣r2)/2
␣␣␣␣print(r1,␣rnew,␣r2)

Lines starting with # are comments

Repeats the code below while iterating i from
0 to 9. Note the colon at the end of line 6.
In Python, the repeated portion (block) is
indented (the recommended amount is 4
spaces).

It is possible to indent large portions of text all at once in the IDLE Editor by selecting the text,
holding down the Ctrl key, and pressing the] key (Ctrl-]). Text can be unindented by using the Ctrl-
[shortcut.

 Writing for-loops5F6F

1
The word “for” has many different meanings. In the context of programming, thinking of it as “for
the sake of” can make things difficult to understand. It is better to think of it as closer to its meaning
that is synonymous with “regarding.” for-loops in Python are written in the following manner.

for target variable in range of repetition :
 Repeated block

In the p6-1.py example above, the target variable is 'i', the range of repetition is 'range(10),' and the
block is the indented code in lines 7-10.
The range(10) function generates 10 values from 0 to 9 (index of -1). The for-loop puts the generated
values into the variable i and repeats the block.
Translating the for-loop into plain English would yield the following.
 For values of the target variable within the range of repetition, repeat the repeated block.
From here onward, explanations of Python’s syntax will be enclosed in a frame like the example
above. Fixed expressions will be written in red, and parts that can change based on context will be
written in black.

Exercise 6-2 Checking the block
Unindent line 10 from the block in the previous example (p6-1.py) as shown below. Check and
explain how the program behaves.

1for-loops in Python can be written very effectively using lists and other data types. These usages will be introduced later. This chapter

will cover using for-loops with the range() function.

6 Control Flow Next Chapter Table of Contents

80

Program 6-2 Program that solves for square roots (ver. 2, p6-2.py)

Row Source code Notes
1
2
3
4
5
6
7
8
9
10

#␣Find␣the␣square␣root␣of␣x
x␣=␣2

rnew␣=␣x

for␣i␣in␣range(10):
␣␣␣␣r1␣=␣rnew
␣␣␣␣r2␣=␣x/r1
␣␣␣␣rnew␣=␣(r1␣+␣r2)/2
print(r1,␣rnew,␣r2)

Lines starting with # are comments

Unindent this line from the block

Exercise 6-3 Prank
The repeated portion in the program above (p6-2.py) can be run very quickly because the part that
outputs to the terminal has been removed from the for-loop. Change the index of the range() function
on line 6 from 10 to 100, 1000, 10000, 100000, 1000000, and 10000000 to see how long it takes to
run.6F7F

1

 Blocks in Python
Multiple line portions that are all executed as a unit are called blocks. This concept is very important
in the world of programming.

 Blocks in Python are denoted by indenting them all by the same amount. This is one of Python’s
defining features.

 'for' statements and other lines that require a subsequent block of code require that a colon (:) be
placed at the end of the line.

 As indentation carries significant meaning in Python programs, you should stick to the standard
practice of indenting by 4 spaces.

 When 'for' statements and other lines that require a subsequent block of code are entered into the
IDLE Editor, it will automatically indent the next lines.

 Using full-width spaces in an indent will result in an error. Be careful not to do this, as it
can be a very difficult error to spot. Also, while this can depend on the settings of the editor
being used, using the TAB key will result in an error if the TAB code is input as is.

 In other languages, like C, blocks are enclosed in { }. Students who are familiar with other
languages will need to take care to use the correct notation.

Exercise 6-4 Experience errors (2)
Statements such as 'for' statement that require a succeeding block have to end with a colon ":".

1 Modern personal computers clock in at the GHz level. At one instruction per clock cycle, this leads to extremely fast processing.

However, Python takes longer to process than most programming languages due to the fact that it is run via intermediate
representation.

6 Control Flow Next Chapter Table of Contents

81

Examine what will happen if you forget to type ":", and run the program. Or also try a mistake of
writing semicolon ";" instead of ":". See also "19 Appendix: How to Read Error Messages in
IDLE/Python."

Exercise 6-5 Experience errors (3)
In Program 6-1, lines 7 through 10 belong to a same block with a same indentation (four spaces).
Examine what will happen if you put less spaces (e.g., three spaces) or more spaces (e.g., five
spaces) in line 7, and run the program. See also "19 Appendix: How to Read Error Messages in
IDLE/Python."

 Controlling the processing within a for-loop
‘Break’ and ‘continue’ statements can be used within for-loops in order to abort processing or to skip
processing at a specific repetition.

 break: Breaks out from the for-loop

 continue: Skips the remaining code in the block of the for-loop and continues to the next
iteration of the loop.

These statements are used in conjunction with 'if' statements, which enable conditional branching
and will be introduced later.

Program 6-3 continue and break (p6-3.py)

Row Source code Notes
1
2
3
4
5
6

for␣i␣in␣range(10):
␣␣␣␣if␣i␣==␣1:
␣␣␣␣␣␣␣␣continue
␣␣␣␣if␣i==␣8:
␣␣␣␣␣␣␣␣break
␣␣␣␣print(i)

Move to the next iteration
if i is 1
Break from the loop if i is
8

This program results in the output shown below.

0
2
3
4
5
6
7

Exercise 6-6 Explanation of continue and break
Explain the output seen above using the source code.

 range() function
To be precise, range is implemented as a class and not a function. However, as it is often used

6 Control Flow Next Chapter Table of Contents

82

similarly to a function, we will refer to it as the range() function in order to facilitate easier
understanding. range() generates a sequence of numbers over a set interval. However, you cannot
know exactly what values are generated by merely looking at the calling of the range() function
itself. The generated values can be checked by creating a list.
Inputting

list(range(10))

into the Python shell yields

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The range() function can be used in three different ways based on what arguments are passed to it.
These usages can be seen below.
 Only an ending value is passed as an argument. This takes the form

range(ending_value)

as seen above. This starts at 0 and stops at the integer before the ending value.
Students who aren’t as familiar with programming languages may feel that it’s odd that it starts with
0 and that the ending value is not included. Please refer to the column titled “Starting from 0” for
information about this. The total number of numbers generated still matches the ending value, so
it isn’t that difficult to remember. It is standardized throughout Python to start with 0 and stop at the
value before the specified end point.
 Both a starting value and an ending value are passed as arguments.

range(starting_value, ending_value)

The starting value is included, but the ending value is not. A comma must be placed between the two
arguments. Placing a half-width space between the arguments will make it easier to read.
 A starting value, ending value, and step width are passed as arguments.

range(starting_value, ending_value, step_width)

Exercise 6-7 range() function
Practice the three usages of the range() function in the Python shell using list() as shown above.

 Calculating sums
In the previous example, the range function was merely used to specify the number of repetitions,
and the target variable was not used in any particular way. In this example, we will examine a
program that actually utilizes the target variable.

Program 6-4 Calculating sum (p6-4.py)

Row Source code Notes
1
2
3
4

sum␣=␣0
for␣i␣in␣range(10):
␣␣␣␣sum␣=␣sum␣+␣i
print(sum)

Sets sum to 0
i goes from 0 to 9
adds i to the sum
displays the sum

6 Control Flow Next Chapter Table of Contents

83

Exercise 6-8 Calculation of sum
Try running Program 5-4. Also, try changing the scope of the sum. Line 3 can also be written as sum
+= i. Try this out for yourself.

 Nested for-loops
Values for two-dimensional structures such as tables, which contain rows and columns, can be
generated by nesting a for-loop within the block of another for-loop. For example,

Program 6-5 Nested for-loops (p6-5.py)

Row Source code Notes
1
2
3

for␣i␣in␣range(3):
␣␣␣␣for␣j␣in␣range(3):
␣␣␣␣␣␣␣␣print(i,j)

Running the code above yields the following output:
0 0

0 1

0 2

1 0

1 1

1 2

2 0

2 1

2 2

Please note that the target variable for the inner for-loop is different than that of the outer for-loop.

Exercise 6-9 Nested for-loops
Try and find out what happens when the variable i is used as the argument for the range() function
(change it to range(i)) in line 2.

 Using for-loops to manage lists

1) How to combine list length with the range function
The elements of a list can be accessed in order with a for-loop by using range(len(a)) to generate

6 Control Flow Next Chapter Table of Contents

84

each element. For example:

a = [5, 1, 3, 4]

for i in range(len(a)):

 print(i, a[i])

yields

0 5

1 1

2 3

3 4

2) How to directly use lists with a for-loop
If you simply desire to reference the element values, the code below would also suffice.

a = [5, 1, 3, 4]

for d in a:

 print(d)

yields

5

1

3

4

In this case, the contents of the elements are passed to d, so changing d does not change the list’s
contents. When you wish to update the elements of a list, you can access them using their index.

3) How to use the enumerate function
The enumerate function is used in cases where you want to use both the index of an element and its
value.

a = [5, 1, 3, 4]

for i, d in enumerate(a):

 print(i, d)

0 5

1 1

2 3

3 4

6 Control Flow Next Chapter Table of Contents

85

Exercise 6-10 Solving for averages
To solve for the average value of a list whose elements are numbers, you could use the following
code:

a = [5, 1, 3, 4]

sum = 0

for i in range(len(a)):

 sum += a[i]

average = sum/len(a)

print(average)

The result of this code is:

3.25

Exercise 6-11 Change access to list elements
Rewrite the above program in a manner such that it uses a for-loop to use the list directly.

 List comprehension using for-loops
Consider a list of numbers risen to the second power.

[0, 1, 4, 9, 16]

You can make this by explicitly writing it out, as done above, or you could use the following code:

a = []

for i in range(5):

 a.append(i*i)

In addition, Python has another way to do this, called list comprehension, that entails including a for
-loop within the list.

a = [i*i for i in range(5)]

6.3 Repetition using while-loops

 Calculating the square root with specified accuracy
Let’s try calculating square roots to a set level of accuracy. Because r1 and r2 lie on opposite sides of
the true value, the absolute value of the difference between them, |r1 - r2|, can be taken to be the

6 Control Flow Next Chapter Table of Contents

86

accuracy of the calculation. Let’s write the program specifying the error to be no more than 10-6.
Accuracy in this manner, in which you specify a certain number of digits past the decimal point, is
known as absolute accuracy. However, in scientific calculations, there are many situations in which it
is better to specify a number of significant digits. For more information on this subject, please refer
to the column titled “Relative Accuracy.”

Program 6-6 Program that solves for square roots (ver. 3, p6-6.py)

Row Source code Notes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

#␣Find␣the␣square␣root␣of␣x
x␣=␣2

rnew␣=␣x

diff␣=␣rnew␣-␣x/rnew
if␣diff␣<␣0:
␣␣␣␣diff␣=␣-diff
while␣(diff␣>␣1.0E-6):
␣␣␣␣r1␣=␣rnew
␣␣␣␣r2␣=␣x/r1
␣␣␣␣rnew␣=␣(r1␣+␣r2)/2
␣␣␣␣print(r1,␣rnew,␣r2)
␣␣␣␣diff␣=␣r1␣-␣r2
␣␣␣␣if␣diff␣<␣0:
␣␣␣␣␣␣␣␣diff␣=␣-diff

Takes the difference between the two
approximations (x and 1 (=x/x))
Changes the sign if negative
Repeats if the difference is larger
than 10-6

Recalculates the difference

Exercise 6-12 Write and run Program 6-6

Running the program should yield the following result:

2 1.5 1.0

1.5 1.4166666666666665 1.3333333333333333

1.4166666666666665 1.4142156862745097 1.411764705882353

1.4142156862745097 1.4142135623746899 1.41421143847487

1.4142135623746899 1.414213562373095 1.4142135623715002

 Calculating the square root with an infinite loop
A program that solves for square roots using an infinite loop is shown in Program 6-7. It calculates
accuracy and uses an 'if' statement to determine whether or not to exit the loop via a ‘break’
statement. This program differs from p6-6.py in two ways.

 An end condition is not specified at the beginning of the loop.

6 Control Flow Next Chapter Table of Contents

87

 The condition of the ‘while’ statement determines whether to continue, but the condition that
determines whether to activate the ‘break’ statement is a condition that judges whether to
stop. So, in this manner, the conditions are inverted.

Program 6-7 Program that solves for square roots (infinite loop method, p6-7.py)

Row Source code Notes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

#␣Find␣the␣square␣root␣of␣x
x␣=␣2

rnew␣=␣x

while␣True:
␣␣␣␣r1␣=␣rnew
␣␣␣␣r2␣=␣x/r1
␣␣␣␣rnew␣=␣(r1␣+␣r2)/2
␣␣␣␣print(r1,␣rnew,␣r2)
␣␣␣␣diff␣=␣r1␣-␣r2
␣␣␣␣if␣diff␣<␣0:
␣␣␣␣␣␣␣␣diff␣=␣-diff
␣␣␣␣if␣diff␣<=␣1.0E-6:
␣␣␣␣␣␣␣␣break

Infinite loop repetition

break if the absolute value
of the difference is less
than or equal to 10-6

 Structure of a while-loop
The format of a while loop, which repeatedly processes a block of code as long as the given
condition remains true, is as follows:

while conditional expression:

 Block of code

The condition is checked before the block of code is executed. This is why, in the example above, the
value of diff is calculated both before entering the while loop and inside of it. Details regarding how
to write conditional expressions will be introduced in the coming sections.
As with for-loops, ‘break’ and ‘continue’ statements can be used when you wish to break from the
loop or enter the next iteration.

 Infinite loops
You will also frequently encounter instances in which while loops are used in the manner seen below.

while True:

 Block containing a break statement

In this usage, the conditional expression is the constant True, meaning that the condition is always

6 Control Flow Next Chapter Table of Contents

88

satisfied. This means that the while-loop itself will continue infinitely. As such, you need to include a
condition to exit the loop in the form of a ‘break’ statement within the block.
If the break condition is not met, execution of Python will need to be forcibly stopped. You can do
this by using the keyboard shortcut Ctrl-C.

6.4 Branching using 'if' statements

 Structure of an 'if' statement
'if' statements can be used in a few different ways. The most basic is to execute a block of code if the
condition in the 'if' statement is met. In addition to this, you can include a block of code to execute if
the condition is not met (else), and you can even include yet another condition to evaluate if the
initial condition is not met (elif, meaning else if).

if conditional expression:
 Block to be executed if the condition is true

if conditional expression:
 Block to be executed if the condition is true
else:
 Block to be executed if the condition is false

if conditional expression 1:
 Block to be executed if conditional expression 1 is true
elif conditional expression 2:
 Block to be executed if conditional expression 1 is false
 but conditional expression 2 is true
else:
 Block to be executed if both conditions are false

It is worth noting that Python does not have an equivalent to the switch statement found in C in
which you can evaluate three or more conditions to switch between many blocks of code. You can
achieve similar branching using multiple ‘elif’ statements.

 How to write conditional expressions

1) Comparing numerical values
Perhaps the most common condition is a comparison of numerical values. The operators that can be
used to compare numerical values can be seen in the table below.

6 Control Flow Next Chapter Table of Contents

89

Table 6-1 Comparison operators in Python

Operator Meaning Notes
== Equivalent Two equals signs. This is to

differentiate it from the
assignment operator, which is a
single equals sign.

!= Not equivalent 2 characters
> Greater than
< Less than
>= Greater than or equal to 2 characters
<= Less than or equal to 2 characters

The equivalence operator is two equals signs (==). Please take mental note of this, because it is easy
to mix up with the assignment operator (=).

Also, it is worth noting that floating-point numbers are in many cases merely approximations. As
such, the equivalence operator can potentially produce unexpected behavior. In order to avoid this,
try to make determinations using inequalities when possible.

2) Comparing strings
The operators above can also be used with strings. However, please note that string values are
determined by their character encoding (Unicode) number, so make sure to keep this in mind when
comparing strings in this manner.

In addition to the above, you can use “in” to check whether the string on the left is included within
the string on the right. For example,

'a' in 'abc'

returns

True

3) Logical operations
The logical operators “and,” “or,” and “not” enable you to combine multiple conditions.

4) Prioritizing operations with ()
Python has a defined order of operations:

 Arithmetic operations are prioritized over comparison operations

 Comparison operations are prioritized over logical operations

It is good practice to use () in order to make your programs easier to read by explicitly stating the
order of operations. For example:

a == 1 and b != 0

The code above behaves exactly the same as the code below, but the latter is easier to read.

6 Control Flow Next Chapter Table of Contents

90

(a == 1) and (b != 0)

 Nested 'if' statements
Just like how 'for' statements are often nested within other 'for' statements, 'if' statements are also
frequently used in this manner. The following two programs make the same determinations but are
written in different ways.

Program 6-8 Forking using multiple conditions (p6-8.py)

Row Source code Notes
1
2
3
4

a␣=␣1
b␣=␣0
if␣(a␣==␣1)␣and␣(b␣==␣0):
␣␣␣␣print("YES␣a==1␣and␣b␣==␣0")

Forking with multiple
conditions

Program 6-9 Forking with nested 'if' statements (p6-9.py)

Row Source code Notes
1
2
3
4
5

a␣=␣1
b␣=␣0
if␣a␣==␣1:
␣␣␣␣if␣b==0:
␣␣␣␣␣␣␣␣print("YES␣a==1␣and␣b␣==␣0")

Forking with nested "if"
statements

Exercise 6-13 Experience errors (4).
It is a common mistake of writing an assignment operator "=" instead of the comparison operator
"==" in a "if" statement. Examine what will happen if you write "if a = 1: " in the third line of
Program 6-9 and run it. See also "19 Appendix: How to Read Error Messages in IDLE/Python."

6.5 Termination of the Python program
Python programs terminate upon executing the final row, but one can use the exit() function from
the sys module in the manner seen below if one wishes to end a program partway through. One can
return a termination code to the location that called the program by passing an argument through the
exit function. Generally, a value of 0 is used for normal termination and other values are used for
abnormal termination. The function defaults to 0 if no argument is specified.

It is worth noting that the exit() function called without the module stops execution in the Python
shell.

6 Control Flow Next Chapter Table of Contents

91

Program 6-10 Termination of the Python program (p6-10.py)

Row Source Code Notes
1
2
3
4
5
6

import sys
for i in range(5):
␣␣␣␣print(i)
␣␣␣␣if i==3:
␣␣␣␣␣␣␣␣sys.exit()
print("end")

import sys module

If i is 3, terminate
program using
sys.exit()

Executing this gives the result below. One can see that the program terminates when i is 3.

0

1

2

3

6.6 Input from the terminal
So far, we’ve built the number whose square root we want to find into the program itself. Let’s
consider adding input from the terminal. Below is the Python shell screen. Red text is input, and blue
text is output.

Python shell screen Notes
>>> a = input("*** ")

*** sss
>>> a

'sss'
>>> type(a)

<class 'str'>
>>>

Change the input prompt string to “***”
and then accept input via the input
function and assign it to a
Input sss
Evaluate a

Retrieves the data type of a using the
type function

Displays that a is a string (str)

The argument of the input function (the string within the parentheses) is the string that will be
displayed. The function’s return value (the result of the function call) is a string.
In order to obtain numerical data, convert it to the appropriate type using int() or float().
In the square root program from before, change the part that sets the value of x to

x = input("Find the square root of ")

x = float(x)

You could even write this in one line like so:

x = float(input("Find the square root of "))

This enables you to store the numerical value input into the terminal within the variable x.

6 Control Flow Next Chapter Table of Contents

92

Exercise 6-14 Input number form terminal
Modify p6-6.py so that it solves for the square root of the number input through the terminal.
Open p6-6.py or p6-7.py and select Save As in the File menu to create a new program named e.g.,
p6-6-1.py or p6-7-1.py.

6.7 Handling errors
When something that cannot be interpreted as a number is passed through the float() or int()
functions as an argument, it results in a ValueError. If you have not specified what should be done in
such a case, Python will suspend processing of the program at this point. You can make use of a 'try'
statement to deal with errors that may arise in a program.
The following program continuously accepts input and handles errors in order to only output
(print(x)) positive numbers. This program contains an infinite loop that lacks an explicit stoppage
condition. Input Ctrl-C to stop the program.

Program 6-11 Program that checks user input (input_check.py)

Row Source code Notes
1
2
3
4
5
6

7
8
9
10
11
12
13
14
15

while␣True:
␣␣␣␣x␣=␣input("Enter positive number␣")
␣␣␣␣try:
␣␣␣␣␣␣␣␣x␣=␣float(x)
␣␣␣␣except␣ValueError:
␣␣␣␣␣␣␣␣print(x,␣"can't be converted to a
number")
␣␣␣␣␣␣␣␣continue
␣␣␣␣except:
␣␣␣␣␣␣␣␣print("Unecpected error")
␣␣␣␣␣␣␣␣exit()
␣␣␣␣if␣x␣<=0:
␣␣␣␣␣␣␣␣print(x,␣"is not positive")
␣␣␣␣␣␣␣␣continue
#␣Below␣is␣the␣result␣of␣receiving␣a␣proper␣input
␣␣␣␣print(x)

Infinite loop

Put the part that can give an
error within the try block
Handles a ValueError
Make sure to capitalize
letters when appropriate
Handles other errors

Ends the program. This is the
end of the try block.
Checks whether the input is
positive
Continuation of the while-
loop

Exercise 6-15 Reviewing Error Handling
Run the above program and see how it responds after receiving various inputs.

 Structure of a 'try' statement
Blocks that can generate exceptions are put within 'try' statements, and specified exceptions are
placed within 'except' statements with a corresponding block. An 'except' statement that does not
specify an exception type will activate for any exception that is encountered (except for exceptions

6 Control Flow Next Chapter Table of Contents

93

specified above it).

try:
 Block which will require exception handling
except exception:
 Block to be processed when the specified exception occurs
except:
 Block designed to handle all exceptions besides the ones specified above it

 Always be suspicious of external input
The programmer cannot control the external input that they receive. Programs that are only written to
be able to handle anticipated input are often unable to properly handle unexpected input. This often
leads to incorrect results. It is very important that you always distrust external input. You should
ideally always check its validity and include appropriate contingencies for any potential errors that
can arise from unanticipated input.

6.8 Mathematical functions in Python
In the examples thus far, I’ve been explicitly calculating the absolute value of the calculation error
diff by changing the sign if the number is negative, like so:

if diff < 0:

 diff = -diff

Python is equipped with an absolute value function, so this can be written in just one line:

diff = abs(diff)

In addition, Python is equipped with a library (module) containing many sorts of mathematical
functions. To use this, simply write

import math

to import the module before you use it. Constants and functions defined in the math module can be
called by writing the module name followed by a period and the name of the function or constant you
wish to call. For example:

math.pi

3.141592653589793

math.sqrt(2)

1.4142135623730951

The examples above are for mathematical constant pi and obtaining a square root.

6 Control Flow Next Chapter Table of Contents

94

Exercise 6-16 Use of math module
Mimic the examples above and play around with the math module yourself within the Python shell.

6.9 Converting numbers and strings; Combining
strings

We have used the input() function to obtain a string followed by the int() or float() functions to
convert the string to a number. Additionally, you can also use the str() function to convert numerical
data to a string. The format() method, which will be explained below, can be used in cases when you
wish to specify the format. These conversion methods are summarized in the table below.

Table 6-2 Conversions between numbers and strings

Conversion Function Example Notes
String to Integer int() a = int("123") An improper string will result

in a ValueError
String to Floating-
point number

float() a =
float("123.4")

Same as above

Integer / Floating-
point number to String

str() s = str(123.4) str() can also convert lists
and other various types of
objects into strings as well.

It is worth noting that numerical values and any other non-string values passed to the print function
are automatically converted into strings.
Strings can be connected by using the “+” operator. In addition, strings can be repeated by using the
“*” operator in conjunction with an integer. Also, you can combine a number with a string by using
the “+” operator and the str() function.

Table 6-3 Connecting and repeating strings

Operation Operator Example Result
Connecting strings + "abc" + "def" "abcdef"
Connecting strings and numbers "abc"+str(1.2) "abc1.2"
Repeating strings * "abc"*2 "abcabc"

6.10 Format specification when displaying a number
When Python’s print() function displays a numerical value, a number of digits that matches the
number is automatically selected. It is possible for the user to specify both the number of digits and
the format with which the number is displayed. A concrete example can be seen below:

c = 2.99792458E8

na = 6.02214076E23

form = "light speed is {0:12.8g} m/s, Avogadroʼs number is {1:12.8g} mol**(-1)"

print(form.format(c, na))

executing the above code, we obtain:

6 Control Flow Next Chapter Table of Contents

95

light speed is 2.9979246e+08 m/s, Avogadro's number is 6.0221408e+23 mol**(-1)

The above code enables you to pick both the number of digits and the format displayed8F9F

1.
 The right side of the third line is the string that specifies the format. The portion enclosed in

{} is the format to which the number will be converted.
 For example, {0:12.8g} acts upon the 0th element (the number before the colon in the

format) of the argument of the format method below it,
 displaying at least 12 digits and going to 8 digits (only 8 digits are displayed to the user)

past the decimal point in g format (one of the formats used to display floating-point
numbers).

 Existing formats include 'd' format, which is used to display integers in base 10, ‘e’
format, which is used to display floating-point numbers using exponent representation,
and 'f' format, which displays in fixed-point representation. 'g' format switches between
both of these based on the value of the number.

 The form.format(c, na) on the fourth line generates a string in which variables c and na are
converted to strings according to the format specified within form. This code calls the format
method, which is a method belonging to string variables (form in this case). This method is
called by connecting it to the string it acts upon with a period, i.e., “.”.

1 The International System of Units (SI) announced with its 2018 amendments that as of May 20, 2019, The International Prototype of

the Kilogram would be replaced by a new definition of the kilogram based on physical constants. The values for the speed of light
and Avogadro’s number used in this example were not determined by actual measurements, rather they are defined to be certain
quantities.

7 Making Kyoto Intersections Next Chapter Table of Contents

96

7. Making Kyoto Intersections

7.1 Learning goals of this chapter
In this chapter, we will use 'for' statements and lists to practice. we will be going through an example
that deals with Kyoto’s intersections, which have a grid-like structure.

7.2 Creating Kyoto’s intersections
Play around with the following example, which uses 'for' statements to handle lists. Be careful if you
decide to write the street names in Japanese characters, as the code will then mix half-width and full-
width characters. Note that aside from place names, everything is written using half-width characters
(including spaces).

Program 7-1 Making Kyoto intersections (p7-1.py)

Row Source code Notes
1
2
3
4
5
6

tozai␣=␣["Sanjyo",␣"Shijyo",␣"Gojyo"]
nanboku␣=␣["Horikawa",␣"Karasuma",␣"Kawaramachi"]
for␣i␣in␣tozai:
␣␣␣␣for␣j␣in␣nanboku:
␣␣␣␣␣␣␣␣cross␣=␣i+j
␣␣␣␣␣␣␣␣print(cross)

Only the text in red font
uses full-width characters

Concatenate strings using the
+ operation

Your screen in the IDLE Editor should look like the screenshot below. Make sure that the reserved
keywords for and in, the strings (such as “Sanjyo”), and the print function are all colored
appropriately.

This will give the following result7F8 F

1

1 There are cases in which Kyoto intersections are named with the east-west street said first (such as ShijyoKawaramachi) and there

are cases in which the north-south street is said first (like HigashiyamaSanjyo). In this example, we will be generating the names
mechanically, so they may differ from the way they are actually said.

7 Making Kyoto Intersections Next Chapter Table of Contents

97

SanjyoHorikawa

SanjyoKarasuma

SanjyoKawaramachi

ShijyoHorikawa

ShijyoKarasuma

ShijyoKawaramachi

GojyoHorikawa

GojyoKarasuma

GojyoKawaramachi

The following example, Street Name in Kanji because of showing a problem of full-width characters.
If you accidentally use a full-width ” to close a string, the text that is colored will change.

Running this will result in an error (invalid syntax). The 四 is displayed in red in the editor. This is
because the double quote closing "三条 (Sanjyo)” is in doble-width character, and hence the double
quote opening "四条 (shijyou)" is interpreted as double quotes that end the strings following ‘”三
条.’

7.3 List of lists and how to scan them
Lists in Python can actually contain lists as elements. This fact can be used to create a data

7 Making Kyoto Intersections Next Chapter Table of Contents

98

structure resembling a table.

a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Inserting line breaks to make this easier to read yields the following1.

a = [[1, 2, 3],

[4, 5, 6],

[7, 8, 9]]

Display all of list a

print(a)

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Display the first element of a (the element is a list).

print(a[0])

[1, 2, 3]

Display index 1 of the first element of a.

print(a[0][1])

2

When tabular data is represented as a list of lists, referencing every element can be achieved through
nested 'for' statements. There are multiple ways to do this.

 Using indices
a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

sum = 0

for i in range(len(a)):

 for j in range(len(a[i])):

 sum += a[i][j]

print(sum)

yields the following:

45

 Handling the list directly with 'for' statements
For this example, we will only be referencing the values of the elements, so the code can be written
in the manner shown below. The target variable for the 'for' statement is the list itself this time rather

1 Usually in Python, statements cannot span multiple lines. This is the case in Python 3, but you can clearly see that the example

above spans multiple lines. If open brackets such as (do are not closed, then line breaks will not result in an error. In cases where
brackets are not used, a \ is required to achieve the same effect.

7 Making Kyoto Intersections Next Chapter Table of Contents

99

than a number, so “row” and “element” are used for ease of understanding.

a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

sum = 0

for row in a:

 for element in row:

 sum += element

print(sum)

 Creating a table of Kyoto intersections
Exercise 7-1 Creating a table of Kyoto intersections

Use Program 7-1 as a reference to create the table below as a list of lists.
cross_table =[["SanjyoKawaramachi", "SanjyoKarasuma", "SanjyoHorikawa"],

 ["ShijyoKawaramachi", "ShijyoKarasuma", "ShijyoHorikawa"],

 ["GojyoKawaramachi", "GojyoKarasuma", "GojyoHorikawa"]]

This program can be written in a few different ways. For example:
 Assign the null string "" to each element beforehand, create a list of lists containing the

necessary number of elements, and assign each intersection name to an element.

Program 7-2 Making a table of Kyoto intersections (p7-2.py)

Row Source code Notes
1
2
3
4
5
6
7

tozai␣=␣["Sanjyo",␣"Shijyo",␣"Gojyo"]
nanboku␣=␣["Horikawa",␣"Karasuma",␣"Kawaramachi"]
cross_table␣=␣[["","",""],␣["",␣"",␣""],␣["",␣"",␣""]]
for␣i␣in␣range(len(tozai)):
␣␣␣␣for␣j␣in␣range(len(nanboku)):
␣␣␣␣␣␣␣␣cross␣=␣tozai[i]+nanboku[j]
␣␣␣␣␣␣␣␣cross_table[i][j]␣=␣cross

Creates a list of the
required size

Generates intersection
names
Assigns intersection
names

After running this, you can look at cross_table and see that the table was constructed correctly.

>>> cross_table

[['SanjyoHorikawa', 'SanjyoKarasuma', 'SanjyoKawaramachi'],
['ShijyoHorikawa', 'ShijyoKarasuma', 'ShijyoKawaramachi'], ['GojyoHorikawa',
'GojyoKarasuma', 'GojyoKawaramachi']]

As the table in the program above is small, it can be directly defined in line 3. For larger tables, you

7 Making Kyoto Intersections Next Chapter Table of Contents

100

can use something similar to the code below. This example creates a table with 5 rows and 4
columns.

cross_table = []

for i in range(5):

 row = []

 for j in range(4):

 row.append("")

 cross_table.append(row)

 Set cross_table to be an empty list and then create a list of intersections for each east-west street.

Finally, add (append) this to cross_table.

Program 7-3 Making a table of Kyoto intersections (p7-3.py)

Row Source code Notes
1
2
3
4
5
6
7
8
9

tozai␣=␣["Sanjyo",␣"Shijyo",␣"Gojyo"]
nanboku␣=␣["Horikawa",␣"Karasuma",␣"Kawaramachi"]
cross_table␣=␣[]
for␣i␣in␣range(len(tozai)):
␣␣␣␣street␣=␣[]
␣␣␣␣for␣j␣in␣range(len(nanboku)):
␣␣␣␣␣␣␣␣cross␣=␣tozai[i]+nanboku[j]
␣␣␣␣␣␣␣␣street.append(cross)
␣␣␣␣cross_table.append(street)

List of streets

Generates intersection names
Appends intersection to
streets
Appends list of streets to
table

 Displaying the table of intersections

1) Outputting lists
Let’s output the list with commas (a half-width comma and a space) inserted between intersections
that start with the same east-west street, but with no commas at the end of each line. This would look
like so:

SanjyoKawaramachi, SanjyoKarasuma, SanjyoHorikawa

The print function defaults to ending with a line break, but you can specify the end option to change
the string that displays at the end.

street = ["SanjyoKawaramachi", "SanjyoKarasuma", "SanjyoHorikawa"]

for i in range(len(street)):

 if i < len(street)-1:

7 Making Kyoto Intersections Next Chapter Table of Contents

101

 print(street[i], end=", ") # Adds “, ” to all but the final of the line

 else:

 print(street[i]) # Line break at the end

While still a bit advanced at this point, you can also pass the entire list to the print function all at
once using “*” and specify the delimiter character with the sep option.

street = ["SanjyoKawaramachi", "SanjyoKarasuma", "SanjyoHorikawa"]

print(*street, sep=", ")

Exercise 7-2 Outputting lists of lists
Create a program that outputs the list of lists of intersection names created in the example above in a
manner that conforms to the following conditions:
 Output the intersection names for one east-west street on one line.
 Insert “, ” (a half-width comma and a space) in between the intersection names starting with

the same east-west street. However, do not put a comma at the end of each line.
Specifically, the program must yield the following output:

SanjyoKawaramachi, SanjyoKarasuma, SanjyoHorikawa

ShijyoKawaramachi, ShijyoKarasuma, ShijyoHorikawa

GojyoKawaramachi, GojyoKarasuma, GojyoHorikawa

8 Test of skills Next Chapter Table of Contents

102

8. Test of skills

8.1 Learning goals of this chapter

 In this chapter, we will test your skills with some practical exercises that span the material

covered so far.

8.2 Fine tuning the square root calculation

Exercise 8-1 Fine tuning the square root calculation

Combine input_check.py and p6-1.py to create a program satisfying the following conditions that
can solve for square roots. Do not try to grapple with everything listed below all at once. Try to sort
out which section of the text is related to each item listed and then update your program to satisfy
each condition one at a time. Test your program and confirm it is working as intended after adding
each one.

1. Use the abs() function to calculate the absolute value.
2. Make the program repeatedly ask for what number’s square root to solve for.
3. Make the program notify the user if the input cannot be converted into a number, then have

the program ask for another input.
4. Make the program notify the user if the input is below 0, then have the program ask for

another input.
If you can, try your hand at the following:

5. Have the program end when the input received from the terminal is “end”
6. Make the calculation accuracy function based on relative accuracy (10-6) instead of absolute

accuracy. After implementing this, try solving for the square roots of very small and very
large numbers (like 1010 and 10-10) and see how the program performs. On relative accuracy,
see the chapter of “Relative Accuracy” in the Column Edition.

8.3 Calculating Pi

 Leibnitz Formula
The following formula (Leibnitz Formula) regarding Pi is well-known. The right hand side is an
alternating series of the reciprocals of odd numbers.

π
4

=
1
1
−

1
3

+
1
5
−

1
7

…  

8 Test of skills Next Chapter Table of Contents

103

The formula used in Chapter 3 and 4 to solve for square roots converges extremely quickly. On the

other hand, this formula is quite simple but is known for converging quite slowly. One must calculate

10 times as many terms in order to raise the accuracy of the calculation by just a single digit.

 Calculating Pi using the Leibnitz formula
Exercise 8-2 Calculating Pi using the Leibnitz formula

Write a program that uses the Leibnitz formula to solve for an approximation of Pi. Run the program
with 1, 10, 100, 1000, 10000, 100000, and 1000000 terms on the right hand side and compare the
result to Pi as it is defined by the math module.
It is worth noting that the math module must be imported in order to do this. The value of Pi can be
referenced by using math.pi.

 import math

 print(math.pi)

 3.141592653589793

 Hint
In the Leibnitz formula, to solve for the right hand side, for example one can set

 n = 10

 for i in range(n):

to 0 initially and use a for-loop where i is incremented by 1 with each loop. The denominator for the

i-th term would be i%2 + 1, and the sign would be positive when i%2 ==0 (when i is even), and it

would be negative when i%2 == 1 (when i is odd).

8.4 Generating a deck of cards

 Set of cards
A deck of cards consists of 4 suits with 13 cards each as well as a joker (we will only add one) added
in.

 Generating a deck of cards
Exercise 8-3 Generating a deck of cards

Consider the process of creating a list of card names (one for each combination of suit and value) and
then randomly shuffling them to create a deck of cards. Complete the program seen below using the
program that creates Kyoto intersections as a reference.

8 Test of skills Next Chapter Table of Contents

104

Program 8-1 Card deck generation (incomplete, p8-1.py)

Raw Source Code Notes
1
2
3

4

5
6
7
8
9
10
11
12

import random
suits = ["♠","♥","♦","♣"]
ranks =
["A","2","3","4","5","6","7","8","9","10","J","Q","K"]
cards = []
#␣Generate␣a␣card␣with␣a␣suit␣and␣value
#␣and␣append␣to␣cards

cards.append("Joker")
print(cards)
#␣Shuffle␣cards␣and␣assign␣it␣to␣deck
deck =
print(deck)

import radom number
module
List of suits
List of values

List to hold the
generated cards

Add the joker
print cards

print deck

 Random sorting of the list components
In order to get a random sorting of the list components, we will import the random module and use a
function from it called sample. The first argument will be the list itself and the second argument will
be the number of list components we want to sort. For example, use

 import random

 a = [1, 2, 3, 4]

 b = random.sample(a, len(a))

 print(a)

 print(b)

to get the following. b changes with each execution.
 [1, 2, 3, 4]

 [2, 1, 3, 4]
It is worth noting that the random module also contains the shuffle function, but the way that it
returns a random sorting of the list passed through it as an argument differs from the sample
function. For example, running

 import random

 a = [1, 2, 3, 4]

 random.shuffle(a)

 print(a)
yields different results each time, however it will yield results like the ones seen below.

 [1, 4, 3, 2]

8 Test of skills Next Chapter Table of Contents

105

8.5 Intersections in Heian-kyō

 Oji (main streets) in Heian-kyō
When the capital was moved to Heian-kyō in 794 A.D., it was made up of Oji (main streets) and Koji
(minor streets). A figure depicting only the Oji (main streets) can be seen below. 1 The Suzaku-Oji
street, which ran through the center of Heian-kyō from north to south, was around where the Senbon-
dori street currently is. Heian-kyō expanded further to the west when compared to the present day
Kyoto metropolitan area.

Figure 8-1 Comprehensive diagram of Heian-kyō
(generated by the writer from Reference [14]図一 1 (Figure 1-1))

From these, the Oji (main streets) running east to west arranged starting from the north are as

follows.

1 As it were, this is apparently a blueprint of Heian-kyō, not an exact map of it as it actually was.

Those who are interested in maps of Kyoto will find [13] by Mr. Kaneda to be a good reference.

8 Test of skills Next Chapter Table of Contents

106

Ichijo Oji，Tsuchimikado Oji，Konoe Oji，Nakamikado Oji，Oimikado Oji，

Nijo Oji，Sanjo Oji，Shijo Oji，Gojo Oji，Rokujo Oji，Shichijo Oji，

Hajchijo Oji，Kujo Oji

The Oji (main streets) running north to south arranged starting from the east are as follows.
Kyogoku Oji，Higashi no Touin Oji，Nishi no Touin Oji，Omiya Oji，Mibu Oji，
Suzaku Oji，

Kogamon Oji，Nishi Omiya Oji，Sai Oji，Kitsuji Oji，Nishi Kyogoku Oji

 Generating Heian-kyō intersections
Exercise 8-4 Generating Heian-kyō intersections

List the intersection names using the format “East-west street name” + “North-south street name.”
However, be sure to satisfy the conditions seen below.
 Omit the “Oji (main street)” portion from the intersection names as is generally done in present

day Kyoto. For example, as in “Gojo Omiya.”
 List intersections starting in the northwestern corner and going east. Once you reach the end of

that east-west street, proceed to the next east-west street immediately to the south starting once
again from the west side. For example, going along the Ichijo Oji would yield the result seen below.
Ichijo Nishi Kyogoku, Ichijo Kitsuji, Ichijo Sai, IchijoNishi Omiya, Ichijo Kogamon, Ichijo
Suzaku, Ichijo Mibu, Ichijo Omiya, Ichijo Nishi no Touin, Ichijo Higashi no Touin, Ichijo
Kyogoku

 Delimit the names with ", " when going from west to east, do not start a new line. Start a new line
once you reach the eastern end (do not put a comma at the end).

 There are no intersections within the inner part of the Heian Palace, so just display “****” instead
of an intersection name. This special case can also be delimited with a comma. Intersections on
the side of the Heian Palace (except the part on the north side that is not a proper intersection)
should be displayed. In other words:

 Display:

 Ichijo Nishi Omiya，Ichijo Omiya，

 Tsuchimikado Nishi Omiya，Tsuchimikado Omiya，

 Konoe Nishi Omiya，Konoe Omiya，

 Nakamikado Nishi Omiya，Nakamikado Omiya，

 Oimikado Nishi Omiya，Oimikado Omiya，

 Nijo Nishi Omiya，Nijo Kogamon，Nijo Suzaku，Nijo Mibu，Nijo Omiya

 Hidden:

 Ichijo Kogamon， Ichijo Suzaku， Ichijo Mibu，

8 Test of skills Next Chapter Table of Contents

107

 Tsuchimikado Kogamon，Tsuchimikado Suzaku，Tsuchimikado Mibu，

 Konoe Kogamon，Konoe Suzaku，Konoe Mibu，

 Nakamikado Kogamon，Nakamikado Suzaku，Nakamikado Mibu，

 Oimikado Kogamon，Oimikado Suzaku，Oimikado Mibu

 Those who have time should try running the prompt below in Anaconda.

python heiankyo.py > heiankyo.csv
However, make the program name heiankyo.py. By doing so, a file called heiankyo.csv should be
created. One can open excel by double clicking on this file. The ">" in the command above is a
feature of the Anaconda prompt (or more specifically the Windows command prompt) called redirect
that takes the output to the console and inputs it into a file called heiankyo.csv.

 Hint
There are various ways one could go about displaying “****” instead of an intersection name. For
example, use
 Consider treating from Ichijo Oji to Oimikado Oji as well as anything from Nijo Oji and further

south separately.
 If the east-west street is from Ichijo Oji to Oimikado Oji and the north-south street is from

Kogamon Oji to Mibu Oji, change the intersection name to “****” etc.

References
 金田 章裕：古地図で見る京都 : 『延喜式』から近代地図まで，平凡社 (2016, in

Japanese)

9 Encapsulation of Processing Using Functions Next Chapter Table of Contents

108

9. Encapsulation of Processing Using
Functions

9.1 Learning goals of this chapter
1. In this chapter, we will use the exercise from Chapter 5 to learn how to take a batch of

commands and define it as a function so that it can be used when needed.
2. Learn how to pass values as arguments to functions.
3. Learn how to return a value from a function when it is called.
4. Learn about variables used within functions and the scope within which they have influence.
5. Learn about some general situations in which functions tend to be used.

As with Chapter 5, there is a lot to learn in this chapter. However, you will be able to use the material
covered in this chapter in concrete examples throughout the rest of the text. As such, you don’t need
to worry about learning all the fine details right away. Simply focus on learning what you can do
with the concepts learned in this chapter as well as on building experience writing code using
these concepts. It is always possible to look back through the text to review the fine details as the
need arises.

9.2 Let’s make an absolute value function
As a simple exercise in defining functions, let’s create our own absolute value function like the one
we used in a previous chapter.

Program 9-1 Example of an absolute value function (p9-1.py)

Row Source code Notes
1
2
3
4
5
6
7
8

def␣myabs(x):
␣␣␣␣if␣x<0:
␣␣␣␣␣␣␣␣x␣=␣-x
␣␣␣␣return␣x

while␣True:
␣␣␣␣a␣=␣float(input(">␣"))
␣␣␣␣print(a,␣myabs(a))

Definition of the myabs function, the
argument is x
Flips the sign if x is negative
Returns x

This is the main program (the part that runs
first when the program is executed)
Calls myabs with a as the argument

Program 9-2 Example of an absolute value function (p9-2.py, returns when possible)

Row Source code Notes
1
2
3
4
5

def␣myabs(x):
␣␣␣␣if␣x<0:
␣␣␣␣␣␣␣␣return␣-x
␣␣␣␣return␣x

Definition of the myabs function, the argument
is x
if x is negative, flip the sign and return
Returns x

9 Encapsulation of Processing Using Functions Next Chapter Table of Contents

109

6
7
8

while␣True:
␣␣␣␣a␣=␣float(input(">␣"))
␣␣␣␣print(a,␣myabs(a))

This is the main program (the part that runs
first when the program is executed)
Calls myabs with a as the argument

Exercise 9-1 Create an absolute value function
Write Program 9-1 and Program 9-2 and confirm that they behave as expected.

Exercise 9-2 Experience errors (5).
In Program 9-1 and Program 9-2, function "myabs" assumes that the given parameter is numeral. If
you forget calling float() function in line 7 and write as "a = input("> "), the input data is assigned to
variable a as string. Examine what will happen in this case. See also "19 Appendix: How to Read
Error Messages in IDLE/Python."

9.3 Format for function definitions
The general format for function definitions is given below.

def function name(parameters):
 Explanatory string
 Block executed by the function
 return value returned by the function
 Function names are governed by the same rules as variable names (referred to as identifiers). As

functions tend to be accompanied by specific actions, verbs are often chosen as function names.

 Parameters are the values that the function receives. They are written using the variable names
(parameters) with which they will be referred to within the function. When multiple parameters
are specified, they must be separated using “,”9F10F

1.

 Even if there are no parameters, the () after the function name cannot be omitted. The () are also
necessary when calling a function with no parameters.

 The explanatory string (it is called a docstring) can be omitted. Reference the column titled
"Documenting a Program."

 'return' statements are generally written at the end of the function definition.

 'return' statements can be included anywhere and are not limited to the block of an 'if' statement
that checks for certain conditions or to the end of the definition.

 If the function does not need a return value, you do not need to include a 'return' statement.

9.4 Parameters and arguments
The parameters where the function is actually called are arguments or actual parameters, and the

1 There are other ways to treat variables in Python that will be omitted here.

9 Encapsulation of Processing Using Functions Next Chapter Table of Contents

110

parameter used internally within the function are also called formal arguments. Reference the
column titled " Parameters and Arguments."

 Arguments can be variables, equations, and function calls. The equation or function will be
evaluated first before the result is passed to the function.

 Arguments and parameters do not need to have the same names.

 If a number, string, etc. is passed to a function as a argument, the value of the corresponding
parameter will not be affected even if another value is assigned to the parameter within the
function10F11F

1.

m = 10
n = 5
k = f(m, n)

def f(x, y):
z = x*y
return z

Function definition

Parameters

Function call

Arguments

m (evaluated value)
n (evaluated value)

x's contents
y's contents

Figure 9-1 Arguments and Parameters

9.5 Return values

The calculated result of a function is returned using a 'return' statement.
 As seen in Program 9-2, it is possible to include multiple 'return' statements within a function

definition. However, splitting the return among multiple possible statements can make editing
the function difficult.

 In Python, it is possible to return multiple values by separating them with commas. When
calling the function, multiple variables can be listed, separated by commas, to accept multiple
return values. If multiple return values are accepted with a single variable, this variable will
contain multiple return values and become a data type known as a tuple.

9.6 From an exercise in a prior chapter
In a prior chapter, you learned how to write a program to solve for square roots as well as how to
accept the number whose root it would solve as input from the terminal. Combining these concepts,
we dealt with the problem of writing a program that would continually ask for numbers from the
terminal and solve for the square root of the inputted numbers. Two potential ways to write a
program that continually asks for input from the terminal are explained below.

1 Lists can be overwritten.

9 Encapsulation of Processing Using Functions Next Chapter Table of Contents

111

1. Receive input, calculate the square root only when the proper input is received, and repeat by
asking for more input.

2. Continually repeat receiving proper input from the terminal followed by solving for the square
root of the input.

If you were to program both of these, 1 would need to solve for the square root, and 2 would need to
obtain proper input from the terminal before solving for the square root. If you were to assume these
actions were performed by the functions get_positive_numeral() and square_root(), the programs
could be written as described below.

1.

while True:

 Obtain input x from the terminal and check
 whether it is a positive number

 if positive number:

 r = square_root(x)

 print(r)

2.

while True:

 x = get_positive_numeral()

 r = square_root(x)

 print(r)

Writing a fixed batch of processing as a function like this allows you to encapsulate said processing.
The advantages of doing this include:
 The program that calls the function becomes much shorter and easier to understand.
 The same processing can easily be performed in different parts of the program.
 Modifying the definition of the function becomes easier when you separate the program

where it is used from the program where it is defined.

9.7 Let’s write the square_root() function
Let’s take p6-6.py, which solves for square roots, and turn it into the square_root() function.

Program 9-3 Implementation of the square_root() function (p9-3.py)

Row Source code Notes
1
2
3

def␣square_root(x):
␣␣␣␣'Calculate square root of
argument x'

A function that takes a parameter x
explanatory string (docstring)

9 Encapsulation of Processing Using Functions Next Chapter Table of Contents

112

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

␣␣␣␣rnew␣=␣x
␣␣␣␣#
␣␣␣␣diff␣=␣rnew␣-␣x/rnew
␣␣␣␣if␣diff␣<␣0:
␣␣␣␣␣␣␣␣diff␣=␣-diff
␣␣␣␣while␣(diff␣>␣1.0E-6):
␣␣␣␣␣␣␣␣r1␣=␣rnew
␣␣␣␣␣␣␣␣r2␣=␣x/r1
␣␣␣␣␣␣␣␣rnew␣=␣(r1␣+␣r2)/2
␣␣␣␣␣␣␣␣print(r1,␣rnew,␣r2)
␣␣␣␣␣␣␣␣diff␣=␣r1␣-␣r2
␣␣␣␣␣␣␣␣if␣diff␣<␣0:
␣␣␣␣␣␣␣␣␣␣␣␣diff␣=␣-diff
␣␣␣␣return␣rnew
#␣Main␣program␣from␣here
v␣=␣2
r␣=␣square_root(v)
print("Result is␣",␣r)

The function definition block extends
until line 17. As with p6-6.py, be
careful of the indentation.

'return rnew,' returns the calculated
value

The result of running this program is shown below.
If you include an explanatory string (docstring) with a function definition in Python, you can display
this string by calling the help function and passing the name of the function as the argument.

2 1.5 1.0
1.5 1.4166666666666665 1.3333333333333333
1.4166666666666665 1.4142156862745097 1.411764705882353
1.4142156862745097 1.4142135623746899 1.41421143847487
1.4142135623746899 1.414213562373095 1.4142135623715002
Result is 1.414213562373095
>>> help(square_root)
Help on function square_root in module __main__:

square_root(x)
 Calculate square root of argument x

>>>

Exercise 9-3 Create a function to solve squate root
Make a program that continually solves for square roots with the function square_root().

Exercise 9-4 Create a function to solve squate root (2nd)
Define the function get_positive_numeral(), and make program that continually solves for square
roots with it as well as the function squate_root().

9.8 Treatment of variables within functions
Python treats variables within functions in the following manner. Reference the column titled "

9 Encapsulation of Processing Using Functions Next Chapter Table of Contents

113

Scope of Variables."

 Local variables: Variables defined (assigned) within functions can only be used within those
functions. Every time the function is run, these variables will be lost when the function ends.

 Parameters are treated as local variables.

 Global variables: Variables defined outside of the function can be read to obtain their values.

 Assignments to global variables: Within functions, only global variables that are declared with
'global' statement can be assigned values.

Because variables are treated in this manner in Python:
 Variables only temporarily needed within functions can be used freely without worrying about

their influence on anything else.
 Operating on global variables can be a primary cause of longer programs being difficult to

understand. In Python, reading variables, which is relatively safe, is permitted unconditionally.
On the other hand, writing to variables requires an explicit 'global' statement. In this way, Python
strikes a good balance between convenience and safety.

a = 10
b = 0

def f():
global b
c = a*a
b= c

f()
print(b, a) Main program

Function
definition

'a' and 'b' are global variables

Variables used with a global statement
can be assigned

'c' is a local variable

The global variable 'a' can only be read
'b' declared as global

Figure 9-2 Global variables and local variables

9.9 Common uses of functions
Unlike mathematical functions, there are multiple ways in which Python functions are commonly
used. The information supplied to the function within () is called the argument, and the value
returned by the function is called the return value.

 Pass an argument and use the return value. Similar to how mathematical functions are used.

y = math.fabs(-2.0)

 Pass no arguments and do not use a return value. Used to execute a fixed set of commands.
 For example, turtle’s up() function seen in the next chapter

9 Encapsulation of Processing Using Functions Next Chapter Table of Contents

114

 Pass arguments but do not use a return value. Used to execute a set of statements that contains
changing values.
 For example, turtle’s forward(100) function seen in the next chapter

 Pass no arguments and use a return value. Used to gain information about the state of something.
 For example, turtle’s p = pos() seen in the next chapter

There are also functions that read and write to global variables as well as functions that exchange
information using lists and other rewriteable arguments. However, these uses for functions are
often referred to as function side effects. Because they are often difficult to explicitly state within the
source code (particularly the side that calls the function), they have the downside of making
programs more difficult to understand.

f()f()

f(x)b = f(y)

f(x)f(y)

f()b = f()

No arguments or returns
values; performs fixed actions

Pass an argument;
performs actions based on
the argument and no
return value

No arguments;
receive a return
value

Pass an argument and
receive a return value

Fixed actions

Action based on argument

Obtains state of something

Calculates return value
from argument

Figure 9-3 Common uses of functions

a = 0

def f():
global a
a = a+1

def g(x):
x[0] = 0

f()
print(a)
b = [1,2,3]
g(b)
print(b)

Global variable

Function that operates on
global variable

Function that operates on the contents of
a list argument

Main program
By calling this function, the contents of
both the global variable and the list
argument change

Figure 9-4 Function calls and “side effects”

9 Encapsulation of Processing Using Functions Next Chapter Table of Contents

115

9.10 Function calls and passing function objects
When executing a function defined by a 'def' statement, you write something like f() regardless of
whether or not the function has arguments. Regarding this, in later chapters, you will run into the
function that runs when the mouse is clicked in turtle graphics, or the function that runs when a
button is pressed in a GUI program within tkinter in which solely the function name is written. Using
this notation does not run the function on the spot, rather it enables you to pass the function in its
entirety as an object that can be executed later. In the example below, the function f is passed as an
argument to the function F, and f runs within F.

def f():

 print("f says Hello")

Function that takes a function as an parameter and runs it

def F(y):

 print("In F, ", end="")

 y()

runs f

f()

f says Hello

passes f to F and runs F

F(f)

In F, f says Hello

9.11 Default parameters and keyword parameters

 Default parameters
Within function definitions in Python, it is possible to specify a value to be implicitly used (default
value) in the case that an argument is not passed. This can be done by setting the argument equal to
something (using “=”) within the function definition.

 Keyword parameters
When calling a function, arguments are written in order from left to right. However, by writing
“argument name = value”, you can pass a value for only the specified parameter.

 Example
def f(a, b=2, c=3):

 return a + b + c

9 Encapsulation of Processing Using Functions Next Chapter Table of Contents

116

f(1,1,1)

3

f(1)

6

f(1, c=2)

5

When programming with tkinter in later chapters, there will be a large number of parameters. Thus,
we will be using this method of employing keyword parameters to specify only the necessary ones.

10 Playing with Turtle Next Chapter Table of Contents

117

10. Playing with Turtle

10.1 Learning goals of this chapter
1. Learn how to use modules in Python with Turtle.

2. Learn how to use class objects in Python with Turtle

3. Review what you have learned so far through making graphical works with Turtle.
Independently learn how to use the libraries necessary to make these graphical works.

10.2 Modules
Python offers a variety of libraries in the form of “modules.” To use a module, you must first import
the module in the Python script. There are a few ways you can do this, as seen below.

 Where to put 'import' statements
'import' statements are normally all listed at the beginning of a program.

 Importing a module by specifying its name
The math module provides access to mathematical functions. To import it, we write:

import math

In order to call functions and constants from the module, first write the module name, followed by a
dot. For example, to call the “pi” constant, we write:

math.pi

All modules typically follow this style.

 Importing a module using a custom name
An alias is used when you want to refer to a module name in a shortened form. For example, the
module tkinter, which will be discussed later, is often abbreviated to tk, as follows:

import tkinter as tk

Then, you can use the alias tk to refer to the module in your code.

 Importing elements from within a module
We will import functions from the turtle module used in this chapter simply by writing:

from turtle import *

This allows us to use all the functions in a module just by calling the function name. However, it is
dangerous to overuse this method, because you may lose track of which module the function or
variable belongs to. Reference the column titled " Namespaces."

10 Playing with Turtle Next Chapter Table of Contents

118

 Be careful not to name programs with the same file
name as a module

When Python reads the import command, it searches beforehand in the folder containing the libraries
and other files for Python programs with the specified module name.
When this occurs, the current working folder is searched first, so if you create a file called turtle.py,
for example, it will be interpreted as a module file and an error will occur. Be careful not to create a
Python script in the working folder with the same name as a module.

10.3 Turtle — The time-honored turtle
Turtle graphics allows you to give commands to a turtle (robot) on the screen to move forward,
rotate, and such, as well as create a graphical representation of its trajectory.
LOGO, a programming language developed at the Massachusetts Institute of Technology (MIT), has
integrated graphics functionality which allows for the visualization of the movement of programs for
learning. One of the developers of LOGO, Seymour Papert (1928-2016), is famous for his efforts in
teaching children programming. He is quoted as saying:

In many schools today, the phrase "computer-aided instruction" means making the
computer teach the child. One might say the computer is being used to program the child.
In my vision, the child programs the computer and, in doing so, both acquires a sense of
mastery over a piece of the most modern and powerful technology and establishes an
intimate contact with some of the deepest ideas from science, from mathematics, and from
the art of intellectual model building.

- Seymour Papert [10], emphasis in bold by the author.
In Japan, a teacher named Mr. Totsuka created a program to process LOGO by himself, and taught it
in elementary schools[11]. Other child-friendly programming languages include Squeak (developed
by Alan Kay), and Scratch11F12F

1, which was developed at MIT. Squeak and Scratch also have turtle
graphics functionality. The mascot of Scratch, which is a cat that you can make run around using
programming, is descended from turtle graphics. You can also use the Turtle module in Python to
have fun with turtle graphics.
Dealing only with numbers can get tiresome, so in this chapter, we will review what you have
learned up until now using turtle graphics.

10.4 Python’s turtle module
 In Python, turtle graphics is provided as the turtle module.

 It is based on the tkinter GUI environment12F13F

2.

 It can be used in two ways: procedurally, to manipulate a single turtle with function calls, and
object-oriented, to handle multiple turtles.

1The MIT Media Lab Group that developed Scratch is called “lifelong kindergarten.” Isn’t that a wonderful name?
2IDLE, which is used in this course, and the GUI environment introduced below are similar. Tkinter uses the Tcl/Tk GUI library.

10 Playing with Turtle Next Chapter Table of Contents

119

 Note: Do not create Python programs with the same file name as the module name
(turtle.py), or Python will not be able to find the correct module.

10.5 Let’s try it out

Write the program in the table below and try running it.

Program 10-1 Turtle usage example
(p10-1.py, Do not save this program as turtle.py)

Row Source code Notes
1
2
3
4
5
6
7
8
9
10

from␣turtle␣import␣*
forward(100)
left(90)
forward(100)
left(90)
forward(100)
left(90)
forward(100)
left(90)
done()

Calls the functions defined in the turtle module.

End

The forward() function makes the turtle move forward, and the left() function makes the turtle move
left.
The turtle holds a pen, and when the pen is pressed down (which is the default setting), it marks the
path that the turtle takes when it moves.

Exercise 10-1 Draw a regular polygon with n faces
Complete the following program so that it draws a regular polygon with n faces.

10 Playing with Turtle Next Chapter Table of Contents

120

Program 10-2 Program that draws polygons with n faces (incomplete, to be saved as
p10-2.py)

Row Source code Notes
1
2
3

from␣turtle␣import␣*
n␣=␣5
for␣i␣in␣range(n):

done()

Calls the functions defined in the turtle module.
Draw a regular pentagon
Repeat n times

End

Exercise 10-2 How can you draw a 5-pointed star?
Hint: for regular polygons, the direction the turtle was facing changed so that after completing its
circuit, it had made a single revolution. What is needed to draw a 5-pointed star?

10 Playing with Turtle Next Chapter Table of Contents

121

Exercise 10-3 Draw regular 7- and 9-sided polygons, and their star equivalents
Make the turtle draw a regular 7-sided polygon, regular 9-sided polygon, and their star equivalents
(where the shape made inside of the star has the same number of vertices as the regular polygon
equivalent).

10.6 The major functions in the turtle module
The following functions are available. For more details, see
 24.1. turtle — Turtle graphics
in the Python documentation.

 forward(d): Move the turtle forward by the specified distance d. fd(d) is the same function.

 back(d), bk(d), backward (d):Move the turtle backward

 right(a), rt(a): Turn the turtle right by a degrees

 left(a), lt(a) :Turn the turtle left by a degrees

 goto(x, y), setpos(x, y), setposition(x, y): Move the turtle to the coordinates x, y

 setheading(a): Set the orientation of the turtle to a degrees

 pendown(), pd(), down(): Pull the pen down (draw when moving)

 penup(), pu(), up(): Pull the pen up

 position(), pos(): Return the turtle’s current location as a two-dimensional vector. Two variables
are output as return values, as shown below.

x, y = pos()

 heading(): Return the turtle’s current orientation

 isdown(): Returns True if the pen is down, False if the pen is up.

Exercise 10-4 Categorize the above functions following the usages shown in Section

9.9.

10.7 Moving multiple turtles

 Example program
Program 10-3 Moving multiple turtles (p10-3.py)

Row Source code Notes
1
2
3
4
5
6

from␣turtle␣import␣*
t1␣=␣Turtle()
t2␣=␣Turtle()
t1.color('red')
t2.color('blue')
for␣i␣in␣range(180):

Calls the functions defined in the turtle module.
Creates the first turtle t1
Creates the second turtle t2
Sets the color of t1 to red
Sets the color of t2 to blue

10 Playing with Turtle Next Chapter Table of Contents

122

7
8
9
10
11

␣␣␣␣t1.forward(5)
␣␣␣␣t2.forward(3)
␣␣␣␣t1.left(2)
␣␣␣␣t2.left(2)
done()

Moves t1 forward 5 steps
Moves t2 forward 3 steps
Turns each turtle left twice

End

 Using Class Objects
In this example, each turtle is created as an object of the Turtle class.
A turtle has a number of attributes, such as “location” (coordinates), “direction,” “pen up” or “pen
down,” and “pen color.” In order to program a turtle, you need to know these attributes and be able to
change them.
Objects with a class type are a good way to describe such operations. By using multiple turtles, you
will be able to understand the key points of using class objects.

1) 1) Creating a turtle
Objects of the Turtle class are created with the Turtle() command. The function that creates a class
object is called a constructor, which in this case creates a turtle (a construct)1. In the example below,
by assigning the generated object to the variable t1, the turtle can be referred to by the variable t1
thereafter.

t1 = Turtle()

2) 2) Manipulating the Turtle
The way to know the state of the turtle, or to change its state, is to call a “method.” Methods are
invoked by writing “.” followed by the method name (and arguments) of the object variable. Think
of it like a function call, except that an object is the target.

t1.forward(10)

3) 3) Determining the Turtle's Attributes
To find out an attribute of the turtle, call a method that returns the attribute, and assign the result to
an appropriate variable.

x, y = t1.pos()

This can also be written as follows

(x, y) = t1.pos()

1 In computer programming, you will often encounter terms with suffixes such as -er, because personifying expressions are useful for

expressing the things you ask a computer to do. The word “computer” also used to mean a person in charge of calculations (a
calculator) until the advent of mechanical calculators.

10 Playing with Turtle Next Chapter Table of Contents

123

10.8 Tips for creating your project

 Responding to Mouse Clicks
Define a function to be executed when the mouse is clicked, and pass the defined function object to
the onscreenclick() function.

Program 10-4 Responding to mouse clicks in turtle graphics (p8-4.py)

Row Source code Notes
1
2
3
4
5
6
7
8

from␣turtle␣import␣*
def␣come(x,y):
␣␣␣␣(xx,yy)␣=␣pos()
␣␣␣␣newxy␣=␣((xx+x)/2,(yy+y)/2)
␣␣␣␣print(x,y)
␣␣␣␣goto(newxy)
onscreenclick(come)
done()

Defines a function to be executed when
the mouse is clicked, with the parameters
being the position of the mouse cursor
when clicked.
The function definition ends here.
Set up the function to be called when the
mouse is clicked (note that there is no
() after "come").

 Converting Coordinates to Angles
To find the angle from the x and y coordinates in a given direction, Python provides a function called
atan2 in the math module13F14F

1. The argument is the previous vertical coordinate. The return value is in
radians, so to use it with turtle, where the angle is set in degrees, we convert it as follows.

import math

y = 2

x = 1

angle = math.atan2(y, x)*180/math.pi

x, y

math.atan2(y,x)

1 To calculate coordinates from angles, you can use the trigonometric functions cos and sin, but since these are not suitable as inverse

trigonometric functions, atan2 has been implemented as an extension of the inverse tangent function (atan).

10 Playing with Turtle Next Chapter Table of Contents

124

 Using Random Numbers
Random motion is another interesting thing to visualize.

• To use random numbers in Python, use the random module.

• Refer to the column titled "Random Numbers."

• Here is an example of turtle graphics using random numbers (see random_turtle.py for more
details).

• The turtle is stopped by a mouse click.

Figure 10-1 A result of executing random_turtle.py

 Drawing Fractals
A shape in which one part is similar to the whole is called a fractal. Fractal figures are interesting
both for what they are drawn as and for the algorithms that draw them.

 Use recursion (calling a function within the function itself).

 See the column titled "Recursion."

 See detour.py and turtle-tree.py. The recursive calls are marked in red.

10 Playing with Turtle Next Chapter Table of Contents

125

Figure 10-2 A result of executing turtle-tree.py

 Defining the shape of a turtle

1) The tortoise and the hare1
The former Toyosato Elementary School building in Shiga Prefecture is famous due to William
Merrell Vories’ architecture, but a little known fact is that one can find a tortoise and hare engraved
into the banisters.

Figure 10-3 Former Toyosato Elementary School building and banister

(10/16/2016 Kita Photography)

One can make a good turtle shape with Python’s Turtle Graphics, but it is hard to make a good hare.
However, one can define and use one’s own as seen in the example below.

2) Example hare and card suits
By default, one has access to six shapes in Turtle Graphics: arrow, "turtle", "circle", "square",
"triangle", and "classic". One can register additional shapes by using the register_shape method seen
on the screen. In order to define the shape, one must supply a name and a tuple of x and y
coordinates that make up the outline of the shape. One can get the screen by using the getscreen

1 In Japanese, we use the word “KAME” both for turtle and tortoise, and “USAGI” both for rabbit and hare.

10 Playing with Turtle Next Chapter Table of Contents

126

function. An example of a hare can be seen below.

rdata = ((0, 16), (-2, 14), (-3, 11), (-3, 6), (-2, 5), (-2, 7),

 (-1, 10), (-2, 7), (-2, 5), (-3, 6), (-3, 10), (-4,13),

 (-5, 13), (-4, 2), (-5, -10), (-4, -10), (-3, -4),

 (0, -5), (3, -4), (4, -10), (5, -10), (4, 2), (5, 13),

 (4, 13), (3, 10), (3, 6), (2, 5), (2, 7), (1, 10),

 (2, 7), (2, 5), (3, 6), (3, 11), (2, 14))

getscreen().register_shape("rabbit", rdata)

Program 10-5 Defining the shape of a turtle (p10-5.py)

Row Source Code Notes
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

#␣Output␣various␣turtle␣shapes

from␣turtle␣import␣*
#␣hide␣default␣turtle
ht()
#␣ Define␣a␣hare␣shape␣consisting␣of␣tuples␣with␣(x,␣y)␣coordinates
#␣rabbit␣shape␣data
rdata␣=␣((0,␣16),␣(-2,␣14),␣(-3,␣11),␣(-3,␣6),␣(-2,␣5),␣(-2,␣7),
␣␣␣␣␣␣␣␣␣(-1,␣10),␣(-2,␣7),␣(-2,␣5),␣(-3,␣6),␣(-3,␣10),␣(-4,13),
␣␣␣␣␣␣␣␣␣(-5,␣13),␣(-4,␣2),(-5,␣-10),␣(-4,␣-10),␣(-3,␣-4),
␣␣␣␣␣␣␣␣␣(0,␣-5),␣␣(3,␣-4),␣(4,␣-10),␣(5,␣-10),␣(4,␣2),␣(5,␣13),
␣␣␣␣␣␣␣␣␣(4,␣13),␣(3,␣10),␣(3,␣6),␣(2,␣5),␣(2,␣7),␣(1,␣10),
␣␣␣␣␣␣␣␣␣(2,␣7),␣(2,␣5),␣(3,␣6),␣(3,␣11),␣(2,␣14))
#␣␣Register␣it␣under␣the␣name␣"rabbit"
getscreen().register_shape("rabbit",␣rdata)
#␣ Define␣card␣suit␣shapes
d␣=␣((0,␣16),␣(10,␣0),␣(0,␣-16),␣(-10,␣0),␣(0,␣16))
h␣=␣((0,␣6),␣(2,␣8),␣(4,␣9),␣(8,␣9),␣(10,␣8),␣(12,␣6),␣(13,␣4),
␣␣␣␣␣(13,␣0),␣(12,␣-2),␣(11,␣-3),␣(0,␣-16),␣(-11,␣-3),␣(-12,␣-2),
␣␣␣␣␣(-13,␣0),␣(-13,␣4),␣(-12,␣6),␣(-10,␣8),␣(-8,␣9),␣(-4,␣9),
␣␣␣␣␣(-2,␣8),␣(0,␣6))
s␣=␣((0,␣16),␣(10,␣4),␣(12,␣2),␣(13,␣-2),␣(12,␣-6),␣(10,␣-8),
␣␣␣␣␣(8,␣-9),␣(4,␣-9),␣(1,␣-8),␣(3,␣-16),␣(0,␣-16),␣(-3,␣-16),
␣␣␣␣␣(-1,␣-8),␣(-4,␣-9),␣(-8,␣-9),␣(-10,␣-8),␣(-12,␣-6),␣(-13,␣-2),
␣␣␣␣␣(-12,␣2),␣(-10,␣4),␣(0,␣16))
c␣=␣((0,␣16),␣(4,␣15),␣(6,␣13),␣(7,␣10),␣(7,␣8),␣(6,␣5),␣(4,␣3),
␣␣␣␣␣(1,␣2),␣(1,␣-2),␣(2,␣-2),␣(3,␣1),␣(5,␣3),␣(7,␣4),␣(11,␣4),
␣␣␣␣␣(13,␣3),␣(15,␣1),␣(16,␣-3),␣(15,␣-7),␣(13,␣-9),␣(11,␣-10),
␣␣␣␣␣(7,␣-10),␣(5,␣-9),␣(3,␣-7),␣(2,␣-4),␣(1,␣-4),␣(1,␣-8),␣(3,␣-16),
␣␣␣␣␣(0,␣-16),␣(-3,␣-16),␣(-1,␣-8),␣(-1,␣-4),␣(-2,␣-4),␣(-3,␣-7),
␣␣␣␣␣(-5,␣-9),␣(-7,␣-10),␣(-11,␣-10),␣(-13,␣-9),␣(-15,␣-7),␣(-16,␣-3),
␣␣␣␣␣(-15,␣1),␣(-13,␣3),␣(-11,␣4),␣(-7,␣4),␣(-5,␣3),␣(-3,␣1),
␣␣␣␣␣(-2,␣-2),␣(-1,␣-2),␣(-1,␣2),␣(-4,␣3),␣(-6,␣5),␣(-7,␣8),␣(-7,␣10),
␣␣␣␣␣(-6,␣13),␣(-4,␣15),␣(0,␣16))
#␣ Register␣them␣under␣the␣names␣"dia",␣"heart",␣"shade",␣"clover"
getscreen().register_shape("dia",␣d)
getscreen().register_shape("heart",␣h)

10 Playing with Turtle Next Chapter Table of Contents

127

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

getscreen().register_shape("spade",␣s)
getscreen().register_shape("clover",␣c)

#␣ Outline␣color␣and␣fill␣color␣of␣the␣generated␣turtle␣shapes

#␣ The␣1st␣row␣of␣shapes␣contains␣the␣6␣shapes␣that␣
#␣can␣be␣used␣by␣default
shapes␣=␣["arrow",␣"turtle",␣"circle",␣"square",␣"triangle",␣"classic",
␣␣␣␣␣␣␣␣␣␣"rabbit",␣"dia",␣"spade",␣"heart",␣"clover"]
colors␣=␣["black",␣"green",␣"black",␣"black",␣"black",␣"black",
␣␣␣␣␣␣␣␣␣␣"red",␣"red",␣"black",␣"red",␣"black"]
colors_fill␣=␣["white",␣"white",␣"white",␣"white",␣"white",␣"white",
␣␣␣␣␣␣␣␣␣"white",␣"red",␣"black",␣"red",␣"black"]

#␣In␣the␣turtle␣list␣ttls,␣generate␣a␣turtle␣with␣Turtle(),␣set␣
#␣the␣shape␣and␣color␣and␣then␣let␣it␣walk␣for␣a␣bit.
ttls␣=␣[]
for␣i␣in␣range(len(shapes)):
␣␣␣␣ttls.append(Turtle())
␣␣␣␣ttls[i].up()
␣␣␣␣ttls[i].shape(shapes[i])
␣␣␣␣ttls[i].color(colors[i],␣colors_fill[i])
␣␣␣␣for␣j␣in␣range(i*3):
␣␣␣␣␣␣␣␣ttls[i].fd(20)
␣␣␣␣␣␣␣␣ttls[i].left(10)

#␣Doing␣a␣lap␣together

for␣i␣in␣range(36):
␣␣␣␣for␣i␣in␣range(len(shapes)):
␣␣␣␣␣␣␣␣ttls[i].fd(20)
␣␣␣␣␣␣␣␣ttls[i].left(10)

Running this program displays the drawings shown below.

Figure 10-4 Execution result of Program 10-5

10 Playing with Turtle Next Chapter Table of Contents

128

10.9 Turtle Demo
Python provides a turtle graphics demo program that can be called from the IDLE menu.

Figure 10-5 How to run the Turtle Demo

10.10 Theme: Creating projects with turtle
To test your skills so far, please create a project using Turtle.

 You will submit the program, screenshots, and your notes.

 The program should be programmed by you.

 However, it is okay to ask for advice. Please include an acknowledgement of the advice you
receive in your notes.

 Submit your project as an attachment.

 The following information should be included in the memo.

 Name, affiliation

 Description of your project

 The functions of Python and turtle graphics that you have learned.

 Bibliographic information about any information you referred to, if applicable, and if it is a
website, the title, URL and access date of the website

 If there is someone who helped you, write the name of the person who helped you and a
description of the help you received in the acknowledgments.

 This should be written in Word etc. and submitted as a PDF file.

10.11 How to take a screenshot
 To obtain a screenshot of a specific window in Windows, follow the steps below.

 Select the window.

 Hold down the ALT key and press the PRTSC key.
If you press only the PRTSC key, a screenshot of the entire screen will be taken.

10 Playing with Turtle Next Chapter Table of Contents

129

 This will copy the screenshot to the clipboard.

 You can then save the screenshot by pasting the contents of the clipboard into a program
that can manipulate images, such as Paint.

 See [17] for more details about screenshots on a Mac.

Table 10-1 Key Operation to Take a Schreen Shot

 The entire
desktop

A specific window Location of the shot

Windows Print Screen key Alt + Print Screen key Clipboard (with copy)
 Win + Print

Screen key
Win + Alt + Print
Screen key

Save the file in PNG
format in the Picture
Screenshot folder/Video
Capture folder

Mac Command + shift
+ 3

Command + shift + 4 +
space

Save to Desktop as PNG

In current Windows 11, a screen shot tool ‘Snipping tool’ is launched with Print Screen key

instead of taking the screen shot of the entire desktop.

Figure 10-6 Keys used to take a schreen shot in Windows

References
 Seymour A. Papert: Mindstorms: Children, Computers, And Powerful Ideas, Basic Books (1993)
 戸塚滝登著: コンピュータ教育の銀河, 晩成書房 (1995, in Japanese)
 Taking a screenshot on a Mac, https://support.apple.com/ja-jp/HT201361(accessed May 7, 2021)

10 Playing with Turtle Next Chapter Table of Contents

130

Program 10-6 random_turtle.py

Ro
w

Source code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29

from␣turtle␣import␣*
import␣random
#␣Import␣random␣module␣as␣you␣will␣be␣using␣random␣numbers

#␣Variable␣(flag)␣to␣stop␣execution
stop_flag␣=␣False

#␣Function␣called␣when␣the␣mouse␣is␣clicked;␣takes␣x,␣y␣parameters
#␣We␣need␣this␣here,␣but␣we␣will␣not␣use␣it
#␣Set␣the␣stop␣execution␣flag␣to␣True

def␣clicked(x,y):
␣␣␣␣global␣stop_flag
␣␣␣␣stop_flag␣=␣True

#␣Specify␣what␣to␣do␣when␣the␣mouse␣is␣clicked;
here, call␣the␣clicked␣function.

onscreenclick(clicked)

speed(0)
while(not␣stop_flag):
␣␣␣␣#␣Randomly␣change␣the␣orientation␣in␣the␣range␣of␣-90␣to␣90␣degrees
␣␣␣␣left(random.randint(-90,90))
␣␣␣␣forward(10)
␣␣␣␣#␣If␣the␣turtle's␣position␣is␣more␣than␣a␣certain␣distance␣from␣the␣origin,␣g
o␣back.
␣␣␣␣if␣position()[0]**2+position()[1]**2␣>␣200**2:
␣␣␣␣␣␣␣␣forward(-10)

10 Playing with Turtle Next Chapter Table of Contents

131

Program 10-7 detour.py

Row Source code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

from␣turtle␣import␣*
def␣detour(L):
␣␣␣␣if␣L␣<␣10:
␣␣␣␣␣␣␣␣forward(L)
␣␣␣␣else:
␣␣␣␣␣␣␣␣LL␣=␣L/3
␣␣␣␣␣␣␣␣detour(LL)
␣␣␣␣␣␣␣␣left(60)
␣␣␣␣␣␣␣␣detour(LL)
␣␣␣␣␣␣␣␣right(120)
␣␣␣␣␣␣␣␣detour(LL)
␣␣␣␣␣␣␣␣left(60)
␣␣␣␣␣␣␣␣detour(LL)

for␣i␣in␣range(6):
␣␣␣␣detour(100)
␣␣␣␣left(60)

10 Playing with Turtle Next Chapter Table of Contents

132

Program 10-8 turtle_tree.py

Row Source code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

from␣turtle␣import␣*

#␣Recursively␣draw␣a␣tree
def␣tree(n):
␣␣␣␣#␣If␣parameter␣is␣less␣than␣or␣equal␣to␣1,␣go␣forward␣5␣steps.
␣␣␣␣if␣n<=1:
␣␣␣␣␣␣␣␣forward(5)
␣␣␣␣else:
␣␣␣␣␣␣␣␣#␣If␣the␣parameter␣is␣greater␣than␣1,
␣␣␣␣␣␣␣␣#␣move␣(the␣trunk)␣forward␣according␣to␣the␣value␣of␣the␣parameter
␣␣␣␣␣␣␣␣forward(5*(1.1**n))
␣␣␣␣␣␣␣␣#␣Record␣the␣current␣position␣and␣orientation
␣␣␣␣␣␣␣␣xx␣=␣pos()
␣␣␣␣␣␣␣␣h␣=␣heading()
␣␣␣␣␣␣␣␣#␣Rotate␣30␣degrees␣to␣the␣left
␣␣␣␣␣␣␣␣left(30)
␣␣␣␣␣␣␣␣#␣Draw␣a␣tree␣of␣size␣n-2␣(left␣branch)
␣␣␣␣␣␣␣␣tree(n-2)
␣␣␣␣␣␣␣␣#␣Raise␣the␣pen␣to␣stop␣drawing␣the␣trajectory
␣␣␣␣␣␣␣␣up()
␣␣␣␣␣␣␣␣#␣Return␣to␣the␣previously␣recorded␣position␣(top␣of␣the␣trunk)
␣␣␣␣␣␣␣␣setpos(xx)
␣␣␣␣␣␣␣␣setheading(h)
␣␣␣␣␣␣␣␣#␣Pull␣the␣pen␣down
␣␣␣␣␣␣␣␣down()
␣␣␣␣␣␣␣␣#␣Go␣15␣degrees␣to␣the␣right
␣␣␣␣␣␣␣␣right(15)
␣␣␣␣␣␣␣␣#␣Draw␣a␣tree␣with␣size␣n-1␣(right␣branch)
␣␣␣␣␣␣␣␣tree(n-1)
␣␣␣␣␣␣␣␣#␣Pull␣pen␣up␣and␣go␣back
␣␣␣␣␣␣␣␣up()
␣␣␣␣␣␣␣␣setpos(xx)
␣␣␣␣␣␣␣␣setheading(h)
␣␣␣␣␣␣␣␣#␣Pull␣the␣pen␣down
␣␣␣␣␣␣␣␣down()

#␣Use␣the␣fastest␣drawing␣speed,␣as␣it␣takes␣a␣long␣time␣␣␣␣␣␣␣
speed(0)

#␣Draw␣a␣tree␣of␣size␣12
tree(12)

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

133

11. Creating a GUI Application with Tkinter (1)

11.1 Learning goals of this chapter
In this chapter, you will create a GUI application using tkinter, and learn:

 The role of frameworks in GUI applications, and learn about event-driven programming.

 The MVC architecture in GUI applications.

 To understand how to define functions in Python by implementing callback functions in tkinter.

11.2 GUIs and event-driven programming
In GUI applications, the user selects and uses various operations using menus and buttons. They also
expect the computer to respond appropriately to their actions.

 These user operations are called “events.”

 Many GUI applications use a GUI “framework.”

 The framework monitors the mouse and keyboard operations, detects events, and calls the event-
handling program set up by the programmer.

In a GUI application that uses a framework, the programmer is mainly responsible for programming
the following parts.

 Configuration of the screen where buttons, etc. are placed to be used as a GUI application

 Definition of the processes to be run when an event occurs

This type of programming is called event-driven programming because it mainly describes
responses to events.

User
GUI

Framework

Screen
design

Processing
when an event

occurs

User-created
programs

Figure 11-1 Framework for event-driven programming

11.3 Separating the model and user interface
Let's say you want to write a calculator program that handles addition, subtraction, multiplication,

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

134

and division. Since addition, subtraction, multiplication, and division are operations on two numbers
(binary operations), the user wants to delegate the task to the computer as follows:

 The “first number,” “second number,” and “operation to be performed,” are “set,” then

 the set operation is “applied.”

 The “result of the application” is “obtained”
The words written in blue are “things” that act as the targets of operations such as numbers and
operations, and are indicated by “nouns (phrases).” On the other hand, the words written in red are
“operations” and are indicated by verbs including verbal nouns. These constitute the “model” of the
“calculator” task.
On the other hand, in order for people to interact with this model, you need a user interface that
people can operate. The user interface of a calculator application on a personal computer or a smart
phone is one example, as well as a Python shell where expressions can be entered using the
keyboard. For visually impaired users, interfaces with audio and braille may be required.
If you focus on creating a calculator, you can say that the “model” is shared and only the user
interface changes in various ways. In GUI programming, this concept is called an “MVC
architecture.” Let’s look over the definitions of M, V, and C below. Reference the column titled
"GUI."
 M: Model - a model to be computed that provides the framework of the application, essentially

independent of the GUI.
 V: View - a program that shows the results obtained by the model to the user, which is handled

by the GUI.
 C: Control, a program for user operations on the model, which is handled by the GUI.

MODEL

CONTROL

VIEW

GUI

User

Figure 11-2 Model-View-Control Architecture

11.4 tkinter
There are several basic software and windowing environments for personal computers, such as
Windows, macOS, Linux/X-Window. Each of them uses different methods for drawing windows.

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

135

Tcl/Tk is a GUI framework that absorbs the differences between these OS and windowing
environments so that it can be used across different platforms.
tkinter is a package that makes Tcl/Tk available in Python.

Windows macOS Linux/
Ｘ-window

Tcl/Tk

tkinter

Python Application

Figure 11-3 Tkinter system configuration

 Terms in tkinter
• Widget: A generic term for a component such as a button that makes up a GUI.

• Container: A receptacle for widgets (groups of widgets).

• Layout manager/geometry manager: A mechanism to adjust the geometric arrangement of
widgets.

• Callback function: A function that is called when a widget is manipulated to perform the
necessary processing.

11.5 A simple exercise

We will start with an easy exercise to make sure you understand the framework of programs using

tkinter as well as the concepts and terms associated with them. The

program below uses the “<-” and “->” buttons like the diagram on

the left to scroll through the displayed days of the week. The GUI

can be exited by pressing the “EXIT” button.

This is a simple exercise, so please use it to try out various

functionalities of tkinter.

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

136

Program 11-1 Simple tkinter exercise (tkdemo.py)

Row Source Code Notes
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

#␣Simple␣tkinter␣exercise,␣scroll␣through␣the␣days
#␣of␣the␣week␣with␣a␣button
import␣tkinter␣as␣tk
#␣Number␣that␣denotes␣the␣days␣list␣and␣current␣display
dow␣=␣["SUN",␣"MON",␣"TUE",␣"WED",␣"THU",␣"FRI",␣"SAT"]
current_dow␣=␣0

#␣call␣back␣function␣that␣moves␣the␣day␣forward
def␣forward():
␣␣␣␣global␣current_dow
␣␣␣␣current_dow␣+=␣1
␣␣␣␣if␣current_dow␣==␣7:
␣␣␣␣␣␣␣␣current_dow␣=␣0
␣␣␣␣l_dow["text"]␣=␣dow[current_dow]

#␣call␣back␣function␣that␣moves␣the␣day␣back
def␣backward():
␣␣␣␣global␣current_dow
␣␣␣␣current_dow␣-=␣1
␣␣␣␣if␣current_dow␣==␣-1:
␣␣␣␣␣␣␣␣current_dow␣=␣6
␣␣␣␣l_dow["text"]␣=␣dow[current_dow]
#␣call␣back␣function␣that␣terminates␣tkinter
def␣fin():
␣␣␣␣root.destroy()
#␣Window␣and␣widget␣creation,␣widget␣layout
root␣=␣tk.Tk()
f␣=␣tk.Frame(root)
f.grid()

l_dow␣=␣tk.Label(f,␣text=dow[current_dow])
l_dow.grid(row=0,␣column=0,␣columnspan=3)

b_backward␣=␣tk.Button(f,␣text="<-",␣command␣=␣backward)
b_forward␣=␣tk.Button(f,text="->",␣command␣=␣forward)
b_exit␣=␣tk.Button(f,␣text="EXIT",␣command␣=␣fin)
b_backward.grid(row=1,␣column=0)
b_forward.grid(row=1,␣column=1)
b_exit.grid(row=1,␣column␣=␣2)
#␣Start␣GUI
print("tkinter␣started")
root.mainloop()
#␣Confirm␣GUI␣termination
print("tkinter␣stopped")

Import the tkinter module
with the name tk.
dow stands for day of week.
current_dow is a variable
that stores the index of
the day that is being
displayed.
current_dow is treated as a
global variable,

Update the text attribute
of label l_dow.

Everything but lowering
current_dow is the same as
the forward function.

The destroy method of root
window is called to
terminate.
Generate window as a root
with the Tk method.
Generate Frame as f root as
parent, and position via
grid() method.
Generate a label that
displays the day, position
using three columns in 0th
row.
Specify the call back
function with the text
attribute and command
attribute to generate 3
buttons, position in 1st
row
Start GUI with the
mainloop() method
Confirm that it terminated

The tkinter program will be structured in the following way.

 It seems to be common to import the tkinter module using the name tk. (3rd row)

 Defining the variables to be used in the program (5th and 6th row).

 Definition of the call back function, description of the behavior when the button is pressed

(when an event occurs). (Rows 8 to 25)

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

137

 In this exercise, by making current_dow, which is the variable that indicates the display

position of the days of the week, into a global variable, we are able to get the two buttons to

work properly without messing each other up.

 Changing the text attribute of l_dow that displays the day when the button is pressed. (14th

and 22th row)

 In the fin() function, we terminate the GUI by calling the window root’s destroy() method.

(25th row)

 We have fleshed out the inner workings of the program pretty well now, so next we will

generate and position the windows and widgets that control and display it.

 Generate a window using the tk.Tk() method

 Use the tl.Frame() method to generate a Frame container that has the window root as its

parent.
 Assignment to Frame f window root using the geometry manager grid() method. An

argument is not necessary because f is the only thing that it can be assigned to.
 Generate and position label and button widgets positioned on top of Frame widget f
 Generation and assignment of Label widgets that will display characters. In this

example, the 0th column to the 3rd column of the 0th row is used for assignment.
 Generate and position 3 buttons. The characters that the text attribute displays can

specify the callback function that runs when the command attribute’s button is pressed.
 At this point, the GUI is ready, so launch the GUI using the mainloop() method from root. Please

confirm for yourself that 44th row is not executed until the EXIT button is pressed and the GUI
is closed.

The generated window and widget object relationships are showed on Figure

root f

Window
root = tk.Tk()

Frame
f = tk.Frame(root)

Widgets such as buttons
b_forward = tk.Button(f)

Figure 11-4 Object relationships in tkinter

Also, show the behavior carried out by the widgets, call back functions, and global variables on
Figure 11-5 when a button is pressed.

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

138

b_backward b_forward b_exit

l_dow

Variable current_dow

List dow = ["SUN", "MON", ...]

def␣forward():
␣␣␣␣global␣current_dow
␣␣␣␣current_dow␣+=␣1
␣␣␣␣if␣current_dow␣==␣7:
␣␣␣␣␣␣␣␣current_dow␣=␣0
␣␣␣␣l_dow["text"]␣=␣dow[current_dow]

def␣backward():
␣␣␣␣global␣current_dow
␣␣␣␣current_dow␣-=␣1
␣␣␣␣if␣current_dow␣==␣-1:
␣␣␣␣␣␣␣␣current_dow␣=␣6
␣␣␣␣l_dow["text"]␣=␣dow[current_dow]

Update 'text' attribute Update Value

Call Back Functions

Global Variables

Widgets

Execute with
Button Click

Figure 11-5 Behavior carried out by the widgets, call back functions, and global

variables

11.6 tkinter example of calculator (tkdemo_2term.py)
Consider the following addition-only calculator.

• It consists of 10 keys (0-9), 3 buttons (C (clear), + (add), =
(calculate)),

• and a single line of character input/output for numerical values.

• The 0 to 9 buttons insert a digit at the least significant digit of the
number being entered, just like a calculator. (Multiply the number
entered thus far by 10 and add the number of the pressed key to
it.)

• C sets the numerical value to 0.

• The + key registers the input number as the first term of a binary operation and then sets the
input number to 0 again.

• The = key registers the second input number as the second term of the binary arithmetic
operation, executes the addition, prints the result, and zeros the input number.

Program 11-2 is an example implementation of this.

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

139

Program 11-2 Calculator for addition only (tkdemo_2term.py)

Row Source code Notes
1
2
3

4
5
6
7
8
9
10
11
12
13
14
15
16

17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

import␣tkinter␣as␣tk

#␣Defines␣variables␣for␣calculation␣functions␣and␣fu
nctions␣for␣events.

#␣Model␣for␣binary␣operations
#␣Number␣being␣entered
current_number␣=␣0
#␣First␣number
first_term␣=␣0
#␣Second␣number
second_term␣=␣0
#␣Result
result␣=␣0

def␣do_plus():
␣␣␣␣"calculation␣when␣+␣key␣was␣pressed,␣set␣the␣fir
st␣term␣and␣clear␣the␣current␣input"
␣␣␣␣global␣current_number
␣␣␣␣global␣first_term

␣␣␣␣first_term␣=␣current_number
␣␣␣␣current_number␣=␣0

def␣do_eq():
␣␣␣␣"calculation␣when␣=␣key␣was␣pressed,␣set␣the␣sec
ond␣term,␣executeaddition,␣clear␣the␣current␣input"
␣␣␣␣global␣second_term
␣␣␣␣global␣result
␣␣␣␣global␣current_number
␣␣␣␣second_term␣=␣current_number
␣␣␣␣result␣=␣first_term␣+␣second_term
␣␣␣␣current_number␣=␣0

#␣Number␣key␣callback␣function
def␣key1():
␣␣␣␣key(1)
␣␣␣␣
def␣key2():
␣␣␣␣key(2)

def␣key3():
␣␣␣␣key(3)

def␣key4():

Import tkinter using its
short form tk

Note that there is no
dependency on variables,
functions, or GUIs to
handle binary operations

The definition of the
widget's callback function
starts here

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

140

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

␣␣␣␣key(4)

def␣key5():
␣␣␣␣key(5)

def␣key6():
␣␣␣␣key(6)

def␣key7():
␣␣␣␣key(7)

def␣key8():
␣␣␣␣key(8)

def␣key9():
␣␣␣␣key(9)

def␣key0():
␣␣␣␣key(0)

#␣Functions␣for␣batch␣processing␣number␣keys
def␣key(n):
␣␣␣␣global␣current_number
␣␣␣␣current_number␣=␣current_number␣*␣10␣+␣n
␣␣␣␣show_number(current_number)

def␣clear():
␣␣␣␣global␣current_number
␣␣␣␣current_number␣=␣0
␣␣␣␣show_number(current_number)

def␣plus():
␣␣␣␣do_plus()
␣␣␣␣show_number(current_number)

def␣eq():
␣␣␣␣do_eq()
␣␣␣␣show_number(result)

def␣show_number(num):
␣␣␣␣e.delete(0,tk.END)
␣␣␣␣e.insert(0,str(num))␣
␣␣␣␣
#␣Create␣the␣tkinter␣screen

root␣=␣tk.Tk()
f␣=␣tk.Frame(root)
f.grid()

The processing of number
keys is the same, only the
numbers are different

Processing the Clear key

Processing the + key

Processing the = key

Function to display a
number entered by the user

Create a window with Tk()
Create a frame container
Assign a frame

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

141

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

#␣Create␣a␣widget

b1␣=␣tk.Button(f,text='1',␣command=key1)
b2␣=␣tk.Button(f,text='2',␣command=key2)
b3␣=␣tk.Button(f,text='3',␣command=key3)
b4␣=␣tk.Button(f,text='4',␣command=key4)
b5␣=␣tk.Button(f,text='5',␣command=key5)
b6␣=␣tk.Button(f,text='6',␣command=key6)
b7␣=␣tk.Button(f,text='7',␣command=key7)
b8␣=␣tk.Button(f,text='8',␣command=key8)
b9␣=␣tk.Button(f,text='9',␣command=key9)
b0␣=␣tk.Button(f,text='0',␣command=key0)
bc␣=␣tk.Button(f,text='C',␣command=clear)
bp␣=␣tk.Button(f,text='+',␣command=plus)
be␣=␣tk.Button(f,text="=",␣command=␣eq)

#␣Lay␣out␣widgets␣using␣a␣grid␣geometry␣manager

b1.grid(row=3,column=0)
b2.grid(row=3,column=1)
b3.grid(row=3,column=2)
b4.grid(row=2,column=0)
b5.grid(row=2,column=1)
b6.grid(row=2,column=2)
b7.grid(row=1,column=0)
b8.grid(row=1,column=1)
b9.grid(row=1,column=2)
b0.grid(row=4,column=0)
bc.grid(row=1,column=3)
be.grid(row=4,column=3)
bp.grid(row=2,column=3)

#␣Widget␣to␣display␣numbers
e␣=␣tk.Entry(f)
e.grid(row=0,column=0,columnspan=4)
clear()

#␣The␣GUI␣starts␣here
root.mainloop()

Create a button with
display text and a
callback function

Assign the button to the
frame by specifying its
position with grid

Create an Entry widget for
text input to display
numeric values, and define
its horizontal size

Go to GUI processing with
the mainloop method

11.7 Basic structure of a program using tkinter
Importing the module

import tkinter as tk # Import tkinter as the shorter custom name of tk

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

142

Define the callback function

 def key1():

 Contents of key1

Create the window

root = tk.Tk()

Create and allocate a frame. A frame is a kind of container that stores widgets inside it.

f = tk.Frame(root) # Create a frame with root as its parent,

f.grid() # and allocate it to a location with grid()

Creating a widget (button)

b1 = tk.Button(f, text=ʻ1ʼ, command=key1)

Create a button with f as the parent. The text to display is ʻ1ʼ, command
to execute is key1

1. Create a widget (entry, to display text)

e = tk.Entry(f)

2. Specify the layout

b1.grid(row=3, column=0)

3. Run the GUI

 root.mainloop()

11.8 Layout on a grid
A widget in tkinter can be assigned to a window or container after specifying a layout manager to
manage the layout. There are several layout managers, but one of the simplest is grid, which provides
a grid for positioning widgets. It can be used as follows.
 Define a grid layout by specifying its position

b1.grid(row=3,column=0)

 It is also possible to specify how many columns there will be

e.grid(row=0,column=0,columnspan=4)

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

143

1

e.grid(row=0,column=0,columnspan=3)

b1.grid(row=3,column=0)

1

f = tk.Frame(root)Widgets root = tk.Tk()

f.grid()

Figure 11-6 Layout with grid

11.9 Writing a callback function using a lambda (λ)
notation

In the previous example, the contents of the functions key0() to key9() are calls to the function key()
with different arguments. In the definition of the widget, the command=key1 argument on the right
side of

b1 = tk.Button(f,text='1', command=key1)

must be a "function object," and if you write

b1 = tk.Button(f,text='1', command=key(1)) # This is wrong

then the argument of the key() function will be set to 1, the function is called, and into the command,
the return value is assigned. If you designate an argument of 1 to the key() function, it will not be
called as a callback function. On the other hand, the function key1() is a dedicated callback function
for button b1, and is not used for any other purpose. In this sense, it would be convenient to directly
link the definition of the function key1() with the specification of the callback function for button b1,
eliminating the need for the name key1.
Python uses the lambda notation 14F15F

1 to achieve this, where a function is defined and assigned to a
variable without naming it on the fly. In the example of b1,

b1 = tk.Button(f,text='1', command=lambda:key(1))

The key(1) following lambda: is the content of the ad hoc function definition, which is essentially the
same as the key1() function.

1 The name comes from a theoretical model called lambda calculus, which is used in computer science.

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

144

Program 11-3 Setting up a callback function with arguments using a lambda notation
(tkdemo_2term_lambda.py)

Row Source code Notes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

import␣tkinter␣as␣tk

#␣Defines␣variables␣for␣calculation␣functions␣and␣those for␣events.
#␣Model␣for␣binary␣operations
#␣Number␣being␣entered
current_number␣=␣0
#␣First␣number
first_term␣=␣0
#␣Second␣number
second_term␣=␣0
#␣Result
result␣=␣0

def␣do_plus():
␣␣␣␣"calculation␣when␣+␣key␣was␣pressed,␣set␣the␣first␣term␣and␣clear␣
the␣current␣input"
␣␣␣␣global␣current_number
␣␣␣␣global␣first_term

␣␣␣␣first_term␣=␣current_number
␣␣␣␣current_number␣=␣0

def␣do_eq():
␣␣␣␣"calculation␣when␣=␣key␣was␣pressed,␣set␣the␣second␣term,␣executea
ddition,␣clear␣the␣current␣input"
␣␣␣␣global␣second_term
␣␣␣␣global␣second_term
␣␣␣␣global␣result
␣␣␣␣global␣current_number
␣␣␣␣second_term␣=␣current_number
␣␣␣␣result␣=␣first_term␣+␣second_term
␣␣␣␣current_number␣=␣0

#␣Functions␣for␣batch␣processing␣number␣keys
def␣key(n):
␣␣␣␣global␣current_number
␣␣␣␣current_number␣=␣current_number␣*␣10␣+␣n
␣␣␣␣show_number(current_number)

def␣clear():
␣␣␣␣global␣current_number
␣␣␣␣current_number␣=␣0
␣␣␣␣show_number(current_number)

Import
tkinter
using
its
short
form tk

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

145

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

def␣plus():
␣␣␣␣do_plus()
␣␣␣␣show_number(current_number)

def␣eq():
␣␣␣␣do_eq()
␣␣␣␣show_number(result)

def␣show_number(num):
␣␣␣␣e.delete(0,tk.END)
␣␣␣␣e.insert(0,str(num))␣
␣␣␣␣
#␣Create␣the␣tkinter␣screen

root␣=␣tk.Tk()
f␣=␣tk.Frame(root)
f.grid()

#␣Create␣a␣widget

b1␣=␣tk.Button(f,text='1',␣command=lambda:key(1))
b2␣=␣tk.Button(f,text='2',␣command=␣lambda:key(2))
b3␣=␣tk.Button(f,text='3',␣command=␣lambda:key(3))
b4␣=␣tk.Button(f,text='4',␣command=␣lambda:key(4))
b5␣=␣tk.Button(f,text='5',␣command=␣lambda:key(5))
b6␣=␣tk.Button(f,text='6',␣command=␣lambda:key(6))
b7␣=␣tk.Button(f,text='7',␣command=␣lambda:key(7))
b8␣=␣tk.Button(f,text='8',␣command=␣lambda:key(8))
b9␣=␣tk.Button(f,text='9',␣command=␣lambda:key(9))
b0␣=␣tk.Button(f,text='0',␣command=␣lambda:key(0))
bc␣=␣tk.Button(f,text='C',␣command=clear)
bp␣=␣tk.Button(f,text='+',␣command=plus)
be␣=␣tk.Button(f,text="=",␣command=␣eq)

#␣Lay␣out␣widgets␣using␣a␣grid␣geometry␣manager

b1.grid(row=3,column=0)
b2.grid(row=3,column=1)
b3.grid(row=3,column=2)
b4.grid(row=2,column=0)
b5.grid(row=2,column=1)
b6.grid(row=2,column=2)
b7.grid(row=1,column=0)
b8.grid(row=1,column=1)
b9.grid(row=1,column=2)
b0.grid(row=4,column=0)
bc.grid(row=1,column=3)

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

146

90
91
92
93
94
95
96
97
98
99

be.grid(row=4,column=3)
bp.grid(row=2,column=3)

#␣Widget␣to␣display␣numbers
e␣=␣tk.Entry(f)
e.grid(row=0,column=0,columnspan=4)
clear()

#␣The␣GUI␣starts␣here
root.mainloop()

11.10 Configuring the appearance of a widget
There are several ways to configure the color, size, font, etc. of a widget, such as a button.

 How to set an argument when creating the widget
You can specify arguments when generating the widget. It is convenient to use keyword arguments.
 font=('Helvetica', 14) Text font and size
 width=2 The size of the widget
(For buttons, the number of characters)
 bg = ‘#ffffc0’ Background color, two hexadecimal digits each in
 RGB 00 is darker, ff is lighter
Note that bg does not currently change the color on the Mac, so if you set the argument
highlightbackground instead of bg, the color of the button itself will not change, but the color around
the button will. Please substitute highlightbackground in for bg if you are doing this exercise on a
Mac.

Table 11-1 Specifying colors with tkinter

Notation Red Green Blue Color

'#ffffff' ff ff ff White

'#000000' 00 00 00 Black

'#ff0000' ff 00 00 Red

'#00ff00' 00 ff 00 Green

'#0000ff' 00 00 ff Blue

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

147

 Configuring the Appearance of a Generated Widget
(Part 1)

To change the appearance of a generated widget while it is running, use the configure() method of
the widget. The arguments are allocated in the same way as the keyword arguments are at the time of
generation. For example, suppose b is a button widget as follows:

b.configure(size=2)

To reference the current value, call the cget() method with the attribute as an argument. Note that the
attribute is given as a string.

b.cget(“size”)

 Configuring the Appearance of the Generated Widget
(Part 2)

The appearance of the widget can also be set and referenced in the following way. Note that the
settings in square brackets must be a string (enclosed by quotation marks, etc.). Settings are
performed by substitution.

b["size"] =2

print(b[“size”])

Exercise 11-1 Create an Addition Calculator with Tkinter
Write a program like Program 11-2 or Program 11-3 and see how it works.

Exercise 11-2 Configuring the appearance of a widget
 Set the font size of the addition calculator and the color of the widget as follows. Set the

background color to '#ffffc0' (light yellow) for the frame, white for numeric keys, red for clear
keys, and green for + and = keys.

 The size of the button should be 2 (the length in characters).
 The font and size of the button and entry should be ('Helvetica', 14).

Exercise 11-3 Extending the Calculator to Four Arithmetic Operations (Skill Test)
Extend the addition calculator so that it can perform the four primary arithmetic operations.
However, keep the following in mind.
 You must consider the placement of the buttons.
 For division, since a divide by zero error may occur, when the second term is zero, either do

nothing or display an error.
 Omit the decimal point for division. The operator for finding the integer quotient in Python is

“//.”
Hint: The program needs to be extended in the following two ways.

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

148

 Add a button widget to specify the four arithmetic operations.
(This should not be too difficult.)

 Set up a callback function for when the arithmetic operator button or the “=” button is
pressed.
Consider the following hints.
 In a calculator, when an operation key such as + is pressed, the operation is not

performed; it is performed when the = key is pressed. Thus, when an arithmetic key (for
addition, subtraction, multiplication, or division) is pressed, the calculator stores the
operation to be performed in a variable until it is executed. For example, you could set up
a variable called “operation” and set it to 1 for addition, 2 for subtraction, 3 for
multiplication, 4 for division.

 When the = key is pressed, you need to change the operation that is actually performed to
match the stored operation. For example, your code may look like this:

if operation == 1:

 Block that performs addition

elif operation == 2:

 Block that performs subtraction

elif operation == 3:
 Block that performs multiplication

else:

 Block that performs division

Exercise 11-4 Management of Widgets with List (Skill Test)
In Program 11-2 and Program 11-3, we use many Button widgets. Try to manage them by using
these objects as members of a list. With this list, try to rewrite the program using 'for' statement.

Note: we use a lambda expression in Program 11-3 (for example, command=lambda:key(1)).
Here, the argument of function key(1) is given as a constant, but with this expression, we can't use a
variables (for example, i) whose value should be exaluated at the definition of the lambda
expression. It can be written using lambda expression with an argument having a default value like
the following:

command=lambda x = i:key(x)

Exercise 11-5 Differences with an actual calculator
Look for differences in behavior between your program and an actual calculator (or calculator
application). For example, what happens when you press an arithmetic key such as + instead of =?
You will find that actual calculator products are well designed.

11.11 How to close tkinter
In an application using tkinter, calling mainloop() will result in an infinite loop that waits for user
action and then calls the callback function. Methods of closing tkinter other than exiting with the exit

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

149

button of the window are as follows.
 To escape from mainloop(), call the quit() or destroy() method of the object created by tk.Tk()

(e.g., root) in a given callback function. The difference in the behavior of these methods is as
follows:

 quit(): The program exits the loop, but the window or widgets remain.
 destroy(): exits the loop and removes the window or widgets altogether.

11.12 How to extend the Frame class
In the previous program, Frame and widgets such as the Button widget were configured separately.
However, in practical examples of tkinter, Frame is often implemented as an extended class and
widgets are generated during its initialization. In this section, we show an example of this. For more
information about classes, please refer to the explanation in a later chapter.

Program 11-4 How to extend the Frame class in tkinter
 (tkdemo-2term_frame_extention.py)

Row Source code Notes
1
2
3

4
5
6
7
8
9
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24

import␣tkinter␣as␣tk

#␣Defines␣variables␣for␣calculation␣functions␣and␣those␣for␣events
.
#␣Example␣using␣Frame␣subclasses

#␣Model␣for␣binary␣operations
#␣Number␣being␣entered
current_number␣=␣0
#␣First␣number
first_term␣=␣0
#␣Second␣number
second_term␣=␣0
#␣Result
result␣=␣0

def␣do_plus():
␣␣␣␣"calculation␣when␣+␣key␣was␣pressed,␣set␣the␣first␣term␣and␣cl
ear␣the␣current␣input"
␣␣␣␣global␣current_number
␣␣␣␣global␣first_term
␣␣␣␣first_term␣=␣current_number
␣␣␣␣current_number␣=␣0

def␣do_eq():
␣␣␣␣"calculation␣when␣=␣key␣was␣pressed,␣set␣the␣second␣term,␣exec
uteaddition,␣clear␣the␣current␣input"

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

150

25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

␣␣␣␣global␣second_term
␣␣␣␣global␣result
␣␣␣␣global␣current_number
␣␣␣␣second_term␣=␣current_number
␣␣␣␣result␣=␣first_term␣+␣second_term
␣␣␣␣current_number␣=␣0

#␣Create␣a␣class␣called␣MyFrame␣that␣inherits␣from␣tk.Frame
#␣Then␣you␣can␣add␣widgets␣and␣callback␣functions␣(methods)␣in␣it,
#␣Which␣is␣the␣standard␣way␣of␣using␣tkinter

class␣MyFrame(tk.Frame):

#␣␣__init__␣is␣the␣initialization␣method␣used␣to␣create␣class␣obje
cts;
#␣It␣has␣two␣underscores␣on␣each␣side
␣␣␣␣def␣__init__(self,␣master␣=␣None):
␣␣␣␣␣␣␣␣super().__init__(master)
#␣Create␣a␣widget␣that␣will␣not␣be␣referenced␣later␣(with␣local␣va
riables)
␣␣␣␣␣␣␣␣b1␣=␣tk.Button(self,text='1',␣command=lambda:self.key(1))
␣␣␣␣␣␣␣␣b2␣=␣tk.Button(self,text='2',␣command=lambda:self.key(2))
␣␣␣␣␣␣␣␣b3␣=␣tk.Button(self,text='3',␣command=lambda:self.key(3))
␣␣␣␣␣␣␣␣b4␣=␣tk.Button(self,text='4',␣command=lambda:self.key(4))
␣␣␣␣␣␣␣␣b5␣=␣tk.Button(self,text='5',␣command=lambda:self.key(5))
␣␣␣␣␣␣␣␣b6␣=␣tk.Button(self,text='6',␣command=lambda:self.key(6))
␣␣␣␣␣␣␣␣b7␣=␣tk.Button(self,text='7',␣command=lambda:self.key(7))
␣␣␣␣␣␣␣␣b8␣=␣tk.Button(self,text='8',␣command=lambda:self.key(8))
␣␣␣␣␣␣␣␣b9␣=␣tk.Button(self,text='9',␣command=lambda:self.key(9))
␣␣␣␣␣␣␣␣b0␣=␣tk.Button(self,text='0',␣command=lambda:self.key(0))
␣␣␣␣␣␣␣␣bc␣=␣tk.Button(self,text='C',␣command=self.clear)
␣␣␣␣␣␣␣␣bp␣=␣tk.Button(self,text='+',␣command=self.plus)
␣␣␣␣␣␣␣␣be␣=␣tk.Button(self,text="=",␣command=self.eq)

#␣Lay␣out␣widgets␣using␣a␣grid␣geometry␣manager
␣␣␣␣␣␣␣␣b1.grid(row=3,column=0)
␣␣␣␣␣␣␣␣b2.grid(row=3,column=1)
␣␣␣␣␣␣␣␣b3.grid(row=3,column=2)
␣␣␣␣␣␣␣␣b4.grid(row=2,column=0)
␣␣␣␣␣␣␣␣b5.grid(row=2,column=1)
␣␣␣␣␣␣␣␣b6.grid(row=2,column=2)
␣␣␣␣␣␣␣␣b7.grid(row=1,column=0)
␣␣␣␣␣␣␣␣b8.grid(row=1,column=1)
␣␣␣␣␣␣␣␣b9.grid(row=1,column=2)
␣␣␣␣␣␣␣␣b0.grid(row=4,column=0)
␣␣␣␣␣␣␣␣bc.grid(row=1,column=3)
␣␣␣␣␣␣␣␣be.grid(row=4,column=3)
␣␣␣␣␣␣␣␣bp.grid(row=2,column=3)

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

151

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

#␣Widgets␣and␣class␣objects␣that␣display␣numbers␣that␣will
#␣be␣referenced␣by␣other␣methods␣are␣created␣as␣an␣instance
#␣variable␣with␣the␣"self."␣prefix
␣␣␣␣␣␣␣␣self.e␣=␣tk.Entry(self)
␣␣␣␣␣␣␣␣self.e.grid(row=0,column=0,columnspan=4)
#␣When␣defining␣a␣class,
#␣The␣first␣parameter␣of␣a␣method␣is␣"self."
#␣Inside␣of␣a␣class,␣the␣class␣object␣variable␣and␣method␣also
#␣reference␣"self"
␣␣␣␣def␣key(self,n):
␣␣␣␣␣␣␣␣global␣current_number
␣␣␣␣␣␣␣␣current_number␣=␣current_number␣*␣10␣+␣n
␣␣␣␣␣␣␣␣self.show_number(current_number)

␣␣␣␣def␣clear(self):
␣␣␣␣␣␣␣␣global␣current_number
␣␣␣␣␣␣␣␣current_number␣=␣0
␣␣␣␣␣␣␣␣self.show_number(current_number)

␣␣␣␣def␣plus(self):
␣␣␣␣␣␣␣␣do_plus()
␣␣␣␣␣␣␣␣self.show_number(current_number)

␣␣␣␣def␣eq(self):
␣␣␣␣␣␣␣␣do_eq()
␣␣␣␣␣␣␣␣self.show_number(result)

␣␣␣␣def␣show_number(self,␣num):
␣␣␣␣␣␣␣self.e.delete(0,tk.END)
␣␣␣␣␣␣␣self.e.insert(0,str(num))
␣␣␣␣␣␣␣␣

#␣Main␣program␣from␣here

root␣=␣tk.Tk()
f = MyFrame(root)
f.pack()
f.mainloop()

Use the
extended
class. pack()
is a geometry
manager.

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

152

11.13 Utilizing images with tkinter

 Card images
In this section, we will make use of the exercise that displays images of cards. For the images, we

will use the card images that have been published at the site below.
https://www.kenney.nl/assets/boardgame-pack

It is worth noting that the terms of use are as seen below.

License: (CC0 1.0 Universal) You're free to use these game assets in any

project, personal or commercial. There's no need to ask permission before

using these. Giving attribution is not required, but is greatly appreciated!

In the package that one downloads, one will find image data in the form of PNG files within the

Cards folder found inside the PNG folder. The image size (number of pixels) is 140 x 190.

 Handling images with tkinter
Here we will make use of tkinter's PhotoImage class. The image formats supported by this class are
PGM, PPM, GIF, and PNG (Tkinter version 8.6 and on). The well-known JPEG image format cannot
be used as-is. To use it, one would need to convert to a different format in advance or concurrently
use a different module for image handling.

 Program that displays card images
Create a folder called Cards within the folder where this program is saved and store the card images
inside it.
As seen in Program 11-5 below,
 First, create a list of the image filenames and store it in cardImages,
 Then create a PhotoImage class object list that has read the image files and assign it to

cardImageWidgets.
 After this, we convert the image attributes of the labels for displaying images using the call back

functions “back” and “forward.”

Program 11-5 Program that displays card images: tkdemo-show_cards.py

Row Source Code Notes
1
2
3
4
5
6

#␣Show␣Card␣Images␣with␣tkinter
import␣tkinter␣as␣tk

#␣Components␣that␣make␣up␣card␣filenames
backs␣=␣["blue",␣"green",␣"red"]
suits␣=␣["Clubs",␣"Diamonds",␣"Hearts",␣"Spades"]

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

153

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

ranks␣=␣["A",␣"2",␣"3",␣"4",␣"5",␣"6",␣"7",␣
␣␣␣␣␣␣␣␣␣"8",␣"9",␣"10",␣"J",␣"Q",␣"K"]
joker␣=␣["Joker"]

#␣List␣that␣stores␣card␣filenames
cardImages␣=␣[]
#␣Card␣reverse␣image␣name
for␣b␣in␣backs:
␣␣␣␣for␣i␣in␣range(1,6):
␣␣␣␣␣␣␣␣card␣=␣"cardBack_"␣+␣b␣+␣str(i)␣+␣".png"
␣␣␣␣␣␣␣␣cardImages.append(card)
#␣Card␣front␣image␣name
for␣s␣in␣suits:
␣␣␣␣for␣r␣in␣ranks:
␣␣␣␣␣␣␣␣card␣=␣"card"␣+␣s␣+␣r␣+␣".png"
␣␣␣␣␣␣␣␣cardImages.append(card)
#␣Joker␣image␣name
cardImages.append("card"␣+␣joker[0]␣+␣".png")

root␣=␣tk.Tk()

#␣Read␣the␣image␣files␣in␣order␣and␣create␣a␣list␣of
#␣PhotoImage␣class␣objects
cardImageWidgets␣=␣[]
for␣i␣in␣cardImages:
␣␣␣␣image␣=␣tk.PhotoImage(file␣=␣"cards/"␣+␣i)
␣␣␣␣cardImageWidgets.append(image)

#␣Index␣to␣access␣image
cardIndex␣=␣0

def␣back():
␣␣␣␣'callback␣function␣that␣returns␣to␣previous␣image'
␣␣␣␣global␣cardIndex
␣␣␣␣cardIndex␣-=␣1
␣␣␣␣if␣cardIndex␣<␣0:
␣␣␣␣␣␣␣␣cardIndex␣=␣len(cardImageWidgets)␣-␣1
␣␣␣␣#␣Convert␣label␣image␣attribute
␣␣␣␣l["image"]␣=␣cardImageWidgets[cardIndex]

def␣forward():
␣␣␣␣'callback␣function␣that␣returns␣to␣next␣image'
␣␣␣␣global␣cardIndex
␣␣␣␣cardIndex␣+=␣1
␣␣␣␣if␣cardIndex␣>=␣len(cardImageWidgets):
␣␣␣␣␣␣␣␣cardIndex␣=␣0
␣␣␣␣l["image"]␣=␣cardImageWidgets[cardIndex]

f␣=␣tk.Frame(root)
f.pack()
#␣″Return″␣button␣and␣″Next″␣button
bb␣=␣tk.Button(f,␣text␣=␣"<",␣command␣=␣back)
bf␣=␣tk.Button(f,␣text␣=␣">",␣command␣=␣forward)

Generate image filenames
in order.

Specify a pass to the
file, read the image
file, and generate a
PhotoImage class object.

Two callback functions

Main program starts here

11 Creating a GUI Application with Tkinter (1) Next Chapter Table of Contents

154

60
61
62
63
64
65
66
67
68

#␣Label␣widget␣that␣displays␣card␣images
l␣=␣tk.Label(f,␣text␣=␣"card")
bb.grid(row=0,␣column=0)
l.grid(row=0,␣column=1)
bf.grid(row=0,␣column=2)
#␣Set␣the␣first␣image
l["image"]␣=␣cardImageWidgets[cardIndex]

root.mainloop()

Create and position the
label widget that
displays the forward and
backward buttons and
images.

Set the first image

Running the program results in the display shown below (examples of a few cards are shown).

Figure 11-7 Execution of Program 11-5

References
There are many resources on the internet explaining how to use Tkinter. The use of tkinter is slightly
different between Python 2 and Python 3. For example, the module to import is Tkinter in Python 2,
while it is tkinter in Python 3. Please be careful when referring to articles online.

 Tkinter 8.5 reference: a GUI for Python
https://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html

12 Creating a GUI Application with Tkinter (2) Next Chapter Table of Contents

155

12. Creating a GUI Application with Tkinter (2)

12.1 Learning goals of this chapter
In this chapter, you will learn the following skills by creating an analog clock with tkinter:

 How to use autonomous programs such as animations together with a GUI, and

 How to draw graphics using the Canvas widget.

12.2 Conflicts between autonomous programs and
GUIs

GUI frameworks such as tkinter observe user operations and delegate processing to a set callback
function when an event such as a mouse click occurs. At that time, the callback function is expected
to terminate promptly. It waits for the callback function to finish, then goes back to observing,
waiting for an event to occur.
At the same time, if the program itself operates continuously (as is the case with an animation) and if
the callback function is then called, the observation of events will stop.
In tkinter, there is a method called after that executes the specified callback function after a given
period of time to meet both of these needs. Using the after method allows tkinter to register the
process after the specified time and terminate the callback function so that the GUI event observation
loop is not stopped for a long period of time.

プ グ グ演 第

mainloop()

mainloop()

Can’t run at the same time

Waiting for input Call_back process Waiting for
the time

Displaying
the time

Clock behavior

Using after

Waiting for input Call_back process
Time display
Register after

Clock behavior

Figure 12-1 Use of 'after' in tkinter

As a caveat, note that this way of doing things is not suitable for applications that require a lot of
computation time, such as simulations. You need to look into the use of libraries and concepts such
as threads to run programs in parallel.

12.3 Analog clock program using tkinter
In this section, you will create an analog clock as shown in Figure 12-2. It displays the hour, minute,

12 Creating a GUI Application with Tkinter (2) Next Chapter Table of Contents

156

and second hands, and the date display can be turned on and off with a button. Refer to Figure 12-3
for calculating the position of the clock hands.
The following program is implemented by extending the Frame class. Some lines are longer than
others; in the list below, the lines without numbers are a part of long single lines that have had the
text wrapped onto a new line. Please be careful when you type this code out.

Figure 12-2 The analog clock you will create

12

6

39

x

y

x = x0 + r * cos(θ)

y = y0 + r * sin(θ)

(x0, y0)

(x, y)

r
θ = (seconds/60)*360-90

Figure 12-3 Calculation of the position of the hands of the clock

12 Creating a GUI Application with Tkinter (2) Next Chapter Table of Contents

157

 Source code
The program is a bit complicated, so at first, we will look at the code without the button to turn
on/off the date display. The code with the button added is shown further below.

Program 12-1 Analog clock with tkinter (without a date button,
tkdemo_simple_clock.py)

Row Source code Notes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25

26

27

28
29

30
31
32

#␣Analog␣clock␣with␣no␣date␣button␣using␣tkinter␣canvas

import␣tkinter␣as␣tk
import␣math
import␣time

#␣Extend␣the␣Frame␣class

class␣MyFrame(tk.Frame):
␣␣␣␣def␣__init__(self,␣master␣=␣None):
␣␣␣␣␣␣␣␣super().__init__(master)

#␣Create␣a␣canvas

␣␣␣␣␣␣␣␣self.size␣=␣200
␣␣␣␣␣␣␣␣self.clock␣=␣tk.Canvas(self,␣width=self.size,␣heigh
t=self.size,␣background="white")
␣␣␣␣␣␣␣␣self.clock.grid(row=0,␣column=0)

#␣Draw␣the␣dial

␣␣␣␣␣␣␣␣self.font_size␣=␣int(self.size/15)
␣␣␣␣␣␣␣␣for␣number␣in␣range(1,12+1):
␣␣␣␣␣␣␣␣␣␣␣␣x␣=␣self.size/2␣+␣math.cos(math.radians(number*
360/12␣-␣90))*self.size/2*0.85
␣␣␣␣␣␣␣␣␣␣␣␣y␣=␣self.size/2␣+␣math.sin(math.radians(number*
360/12␣-␣90))*self.size/2*0.85
␣␣␣␣␣␣␣␣␣␣␣␣self.clock.create_text(x,y,text=str(number),␣fi
ll="black",␣font␣=("",14))

#␣Create␣instance␣variables␣to␣check␣for␣the␣passage␣of␣tim
e

␣␣␣␣␣␣␣␣self.sec␣=␣time.localtime().tm_sec
␣␣␣␣␣␣␣␣self.min␣=␣time.localtime().tm_min

Import time to
handle time

Two underscores on
each side

Widget for drawing

12 Creating a GUI Application with Tkinter (2) Next Chapter Table of Contents

158

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51

52
53

54
55
56
57
58
59
60
61
62

63
64
65
66
67

68
69
70
71

72
73
74

␣␣␣␣␣␣␣␣self.hour␣=␣time.localtime().tm_hour
␣␣␣␣#
␣␣␣␣#␣Draw␣a␣dynamic␣display
␣␣␣␣#
␣␣␣␣def␣display(self):
␣␣␣␣␣␣␣␣#
␣␣␣␣␣␣␣␣#␣Draw␣the␣second␣hand
␣␣␣␣␣␣␣␣#
␣␣␣␣␣␣␣␣self.sec␣=␣time.localtime().tm_sec
␣␣␣␣␣␣␣␣angle␣=␣math.radians(self.sec*360/60␣-␣90)
␣␣␣␣␣␣␣␣x0␣=␣self.size/2␣-␣math.cos(angle)*self.size/2*0.1
␣␣␣␣␣␣␣␣y0␣=␣self.size/2␣-␣math.sin(angle)*self.size/2*0.1
␣␣␣␣␣␣␣␣x␣=␣self.size/2␣+␣math.cos(angle)*self.size/2*0.75
␣␣␣␣␣␣␣␣y␣=␣self.size/2␣+␣math.sin(angle)*self.size/2*0.75
␣␣␣␣␣␣␣␣#
␣␣␣␣␣␣␣␣#␣Search␣for␣the␣previous␣drawing␣using␣its␣tag,␣de
lete␣it,␣then␣redraw␣the␣new␣line
␣␣␣␣␣␣␣␣#
␣␣␣␣␣␣␣␣self.clock.delete("SEC")
␣␣␣␣␣␣␣␣self.clock.create_line(x0,y0,x,y,␣width=1,␣fill="re
d",␣tag="SEC")
␣␣␣␣␣␣␣␣#
␣␣␣␣␣␣␣␣#␣Draw␣the␣minute␣and␣hour␣hands,␣and␣make␣the␣hour
␣hand␣move␣slightly␣every␣minute
␣␣␣␣␣␣␣␣#
␣␣␣␣␣␣␣␣x0␣=␣self.size/2
␣␣␣␣␣␣␣␣y0␣=␣self.size/2
␣␣␣␣␣␣␣␣self.min␣=␣time.localtime().tm_min
␣␣␣␣␣␣␣␣angle␣=␣math.radians(self.min*360/60␣-␣90)
␣␣␣␣␣␣␣␣x␣=␣self.size/2␣+␣math.cos(angle)*self.size/2*0.65
␣␣␣␣␣␣␣␣y␣=␣self.size/2␣+␣math.sin(angle)*self.size/2*0.65
␣␣␣␣␣␣␣␣self.clock.delete("MIN")
␣␣␣␣␣␣␣␣self.clock.create_line(x0,y0,x,y,␣width=3,␣fill="bl
ue",␣tag="MIN")

␣␣␣␣␣␣␣␣self.hour␣=␣time.localtime().tm_hour
␣␣␣␣␣␣␣␣x0␣=␣self.size/2
␣␣␣␣␣␣␣␣y0␣=␣self.size/2
␣␣␣␣␣␣␣␣angle␣=␣math.radians((self.hour%12+self.min/60)*360
/12␣-␣90)
␣␣␣␣␣␣␣␣x␣=␣self.size/2␣+␣math.cos(angle)*self.size/2*0.55
␣␣␣␣␣␣␣␣y␣=␣self.size/2␣+␣math.sin(angle)*self.size/2*0.55
␣␣␣␣␣␣␣␣self.clock.delete("HOUR")
␣␣␣␣␣␣␣␣self.clock.create_line(x0,y0,x,y,␣width=3,␣fill="gr
een",␣tag="HOUR")
␣␣␣␣␣␣␣␣#
␣␣␣␣␣␣␣␣#␣Draw␣the␣date␣
␣␣␣␣␣␣␣␣#

12 Creating a GUI Application with Tkinter (2) Next Chapter Table of Contents

159

75
76
77
78
79

80
81
82
83
84
85
86
87
88
89

␣␣␣␣␣␣␣␣x␣=␣self.size/2
␣␣␣␣␣␣␣␣y␣=␣self.size/2␣+␣20
␣␣␣␣␣␣␣␣text␣=␣time.strftime('%Y/%m/%d␣%H:%M:%S')
␣␣␣␣␣␣␣␣self.clock.delete("TIME")
␣␣␣␣␣␣␣␣self.clock.create_text(x,␣y,␣text=text,␣font=("",12
),␣fill="black",␣tag="TIME")
␣␣␣␣␣␣␣␣#
␣␣␣␣␣␣␣␣#␣Call␣again␣in␣100␣milliseconds
␣␣␣␣␣␣␣␣#␣
␣␣␣␣␣␣␣␣self.after(100,␣self.display)

root␣=␣tk.Tk()
f␣=␣MyFrame(root)
f.pack()
f.display()
root.mainloop()

Main program
starts here

Call display first

Program 12-2 Analog clock with tkinter
(with a date button, tkdemo_clock_with_button.py)

Row Source code Notes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23

#␣Analog␣clock␣with␣a␣date␣button␣using␣tkinter␣canvas

import␣tkinter␣as␣tk
import␣math
import␣time

#␣Extend␣the␣Frame␣class

class␣MyFrame(tk.Frame):
␣␣␣␣def␣__init__(self,␣master␣=␣None):
␣␣␣␣␣␣␣␣super().__init__(master)

#␣Create␣a␣canvas

␣␣␣␣␣␣␣␣self.size␣=␣200
␣␣␣␣␣␣␣␣self.clock␣=␣tk.Canvas(self,␣width=self.size,␣heigh
t=self.size,␣background="white")
␣␣␣␣␣␣␣␣self.clock.grid(row=0,␣column=0)

#␣Draw␣the␣dial

␣␣␣␣␣␣␣␣self.font_size␣=␣int(self.size/15)

Import time to
handle time

Widget for
drawing

12 Creating a GUI Application with Tkinter (2) Next Chapter Table of Contents

160

24
25

26

27

28
29
30
31

32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

␣␣␣␣␣␣␣␣for␣number␣in␣range(1,12+1):
␣␣␣␣␣␣␣␣␣␣␣␣x␣=␣self.size/2␣+␣math.cos(math.radians(number*
360/12␣-␣90))*self.size/2*0.85
␣␣␣␣␣␣␣␣␣␣␣␣y␣=␣self.size/2␣+␣math.sin(math.radians(number*
360/12␣-␣90))*self.size/2*0.85
␣␣␣␣␣␣␣␣␣␣␣␣self.clock.create_text(x,y,text=str(number),␣fi
ll="black",␣font␣=("",14))

#␣Create␣a␣button␣to␣toggle␣the␣date␣display␣on/off

␣␣␣␣␣␣␣␣self.b␣=␣tk.Button(self,␣text="Show␣Date",␣font=(""
,14),␣command␣=␣self.toggle)
␣␣␣␣␣␣␣␣self.b.grid(row␣=␣1,␣column␣=␣0)

#␣Create␣instance␣variables␣to␣check␣for␣the␣passage␣of␣tim
e

␣␣␣␣␣␣␣␣self.sec␣=␣time.localtime().tm_sec
␣␣␣␣␣␣␣␣self.min␣=␣time.localtime().tm_min
␣␣␣␣␣␣␣␣self.hour␣=␣time.localtime().tm_hour
␣␣␣␣␣␣␣␣self.show_date␣=␣False

␣␣␣␣#
␣␣␣␣#␣Callback␣when␣the␣button␣is␣pressed
␣␣␣␣#
␣␣␣␣def␣toggle(self):
␣␣␣␣␣␣␣␣if␣self.show_date:
␣␣␣␣␣␣␣␣␣␣␣␣self.b.configure(text="Show␣Date")
␣␣␣␣␣␣␣␣else:
␣␣␣␣␣␣␣␣␣␣␣␣self.b.configure(text="Hide␣Date")
␣␣␣␣␣␣␣␣self.show_date␣=␣not␣self.show_date

␣␣␣␣#
␣␣␣␣#␣Draw␣a␣dynamic␣display
␣␣␣␣#
␣␣␣␣def␣display(self):
␣␣␣␣␣␣␣␣#
␣␣␣␣␣␣␣␣#␣␣Draw␣the␣second␣hand
␣␣␣␣␣␣␣␣#
␣␣␣␣␣␣␣␣self.sec␣=␣time.localtime().tm_sec
␣␣␣␣␣␣␣␣angle␣=␣math.radians(self.sec*360/60␣-␣90)
␣␣␣␣␣␣␣␣x0␣=␣self.size/2␣-␣math.cos(angle)*self.size/2*0.1
␣␣␣␣␣␣␣␣y0␣=␣self.size/2␣-␣math.sin(angle)*self.size/2*0.1
␣␣␣␣␣␣␣␣x␣=␣self.size/2␣+␣math.cos(angle)*self.size/2*0.75
␣␣␣␣␣␣␣␣y␣=␣self.size/2␣+␣math.sin(angle)*self.size/2*0.75
␣␣␣␣␣␣␣␣#
␣␣␣␣␣␣␣␣#␣Search␣for␣the␣previous␣drawing␣using␣its␣tag,␣de
lete␣it,␣then␣redraw␣the␣new␣line

Is the date
displayed?
Change the button
text
Invert whether or
not the date is
shown

12 Creating a GUI Application with Tkinter (2) Next Chapter Table of Contents

161

66
67
68

69
70

71
72
73
74
75
76
77
78
79

80
81
82

83
84
85
86
87

88
89
90
91
92
93
94
95
96
97

98
99
100
101
102
103
104
105
106
107

␣␣␣␣␣␣␣␣#
␣␣␣␣␣␣␣␣self.clock.delete("SEC")
␣␣␣␣␣␣␣␣self.clock.create_line(x0,y0,x,y,␣width=1,␣fill="re
d",␣tag="SEC")
␣␣␣␣␣␣␣␣#
␣␣␣␣␣␣␣␣#␣Draw␣the␣minute␣and␣hour␣hands,␣and␣make␣the␣hour
␣hand␣move␣slightly␣every␣minute
␣␣␣␣␣␣␣␣#
␣␣␣␣␣␣␣␣self.min␣=␣time.localtime().tm_min
␣␣␣␣␣␣␣␣x0␣=␣self.size/2
␣␣␣␣␣␣␣␣y0␣=␣self.size/2
␣␣␣␣␣␣␣␣angle␣=␣math.radians(self.min*360/60␣-␣90)
␣␣␣␣␣␣␣␣x␣=␣self.size/2␣+␣math.cos(angle)*self.size/2*0.65
␣␣␣␣␣␣␣␣y␣=␣self.size/2␣+␣math.sin(angle)*self.size/2*0.65
␣␣␣␣␣␣␣␣self.clock.delete("MIN")
␣␣␣␣␣␣␣␣self.clock.create_line(x0,y0,x,y,␣width=3,␣fill="bl
ue",␣tag="MIN")
␣␣␣␣␣␣␣␣self.hour␣=␣time.localtime().tm_hour
␣␣␣␣␣␣␣␣x0␣=␣self.size/2
␣␣␣␣␣␣␣␣y0␣=␣self.size/2
␣␣␣␣␣␣␣␣angle␣=␣math.radians((self.hour%12+self.min/60)*360
/12␣-␣90)
␣␣␣␣␣␣␣␣x␣=␣self.size/2␣+␣math.cos(angle)*self.size/2*0.55
␣␣␣␣␣␣␣␣y␣=␣self.size/2␣+␣math.sin(angle)*self.size/2*0.55
␣␣␣␣␣␣␣␣self.clock.delete("HOUR")
␣␣␣␣␣␣␣␣self.clock.create_line(x0,y0,x,y,␣width=3,␣fill=
"green",␣tag="HOUR")

␣␣␣␣␣␣␣␣#
␣␣␣␣␣␣␣␣#␣Draw␣the␣date
␣␣␣␣␣␣␣␣#
␣␣␣␣␣␣␣␣x␣=␣self.size/2
␣␣␣␣␣␣␣␣y␣=␣self.size/2␣+␣20
␣␣␣␣␣␣␣␣text␣=␣time.strftime('%Y/%m/%d␣%H:%M:%S')
␣␣␣␣␣␣␣␣self.clock.delete("TIME")
␣␣␣␣␣␣␣␣if␣self.show_date:
␣␣␣␣␣␣␣␣␣␣␣␣self.clock.create_text(x,␣y,␣text=text,␣font=("
",12),␣fill="black",␣tag="TIME")
␣␣␣␣␣␣␣␣#
␣␣␣␣␣␣␣␣#␣Call␣again␣in␣100␣milliseconds
␣␣␣␣␣␣␣␣#␣
␣␣␣␣␣␣␣␣self.after(100,␣self.display)

root␣=␣tk.Tk()
f␣=␣MyFrame(root)
f.pack()
f.display()
root.mainloop()

Draw only when
the date is
displayed

Main program
starts here

12 Creating a GUI Application with Tkinter (2) Next Chapter Table of Contents

162

 Key points of this program
 You will need to import modules other than tkinter, including the time module, which is

imported to handle time, and the math module, which is imported to use trigonometric functions.

 This program defines the MyFrame class, which is an extension of Frame, then creates widgets,
assigns them, and defines callback functions within it.

 The __init__() method of the MyFrame class is automatically called when the class object is
created. In this method, the necessary widgets are created. There are two underscores on
each side of the method name.

 The Canvas widget is created for drawing

 The dial is drawn by calling the create_text() method of the Canvas widget.

 A button is created to toggle the display of the time in text. (Only for the code that
includes the button)

 Instance variables are allocated for time elapsing, display switching, etc., and set the
values using the seconds, minutes, hours, etc., in the time.localtime() function.

 A callback function is defined for when the button is pressed. The b.configure() method is
called to switch the text displayed on the button (b), and set the variable representing the
state. (Only in the code with the button)

 Method to draw the clock face:

 When using Canvas to draw, you can attach a “tag” to the drawn object, so that you can
delete it later. First you will need to delete the old drawing (clock hand).

 The coordinates of the clock hands are calculated from the time using a trigonometric
function, and drawn using the create_line() method.

 At the end of this method, the after method is set to make this method call itself 100
milliseconds later to continuously draw the clock.

 Finally, there is the main program. The program creates a window with the Tk() method, creates
a MyFrame class object, draws the first instance of the clock with f.display(), and then passes
control of the program to tkinter with mainloop().

Exercise 12-1 Reviewing the methods to be used
List the methods of the time module, math module, and tkinter Canvas class that are called in this
program, and look over these methods in detail in the Python online documentation.

Exercise 12-2 Modifying the analog clock
Make the following modifications to the analog clock program.

1. For the date display, have it display the date and the time using a.m. and p.m. instead of just
the date and time.

12 Creating a GUI Application with Tkinter (2) Next Chapter Table of Contents

163

2. Add another button to toggle the display of the second hand on and off.
Hint: Review the role of the self.toggle method, and figure out how to do the same thing for the
second hand display.

Exercise 12-3 Improving the display
This program redraws the clock hands and the date every 100 milliseconds, but it also redraws things
that do not change. The date and position of the second hand change every second, but the minute
hand and hour hand only change every minute. Think about how you can make it so the minute and
hour hands are only redrawn if there has been a change since the last time it was drawn. Also, think
about how to avoid the roughly second long delay that occurs when the screen is first displayed or
when a button is pressed.

12.4 Coordinating actions using variables
In Program 12-2, when the button to turn on/off the date display is pressed, the value of the
show_date variable is simply switched using the toggle() method that is set as the callback function.
On the other hand, the display() method, which runs continuously on a timer, looks at the show_date
variable and toggles the date display on and off.
You can use variables to create settings that coordinate the behavior of methods that work
independently of each other. Variables such as show_date are called flags because they are used to
raise and lower flags.

toggle display

Yes

show_date

Button

Toggle button display Redraw the second, minute, and hour hands

Invert self.show_date
Remove the date

If self.show_date

Draw the date

Register in after

Figure 12-4 Coordinating actions using variables

13 Classes Next Chapter Table of Contents

164

13. Classes

13.1 Learning goals of this chapter
You have already used class objects in turtle graphics and tkinter. Here, you will learn about classes
in more detail.

 You will learn about the concept of object-oriented programming.

 You will define and use classes.

 You will learn about variables that are used in classes.

13.2 Object-oriented programming
To handle multiple turtles in turtle graphics, we did the following.

 Generate as many turtles as needed.

 Call methods on individual turtles to tell them what to do and query their status.
Each turtle had its own state, which included its position, orientation, pen color, and whether or not
the pen was down.
Objects are things like these turtles that have their own internal state and can be instructed to behave
by calling methods from outside. Programming with objects is called object-oriented programming.
In the tkinter analog clock example, programming was done by extending the Frame class of tkinter.
A “class” is a description of a type that can be used to generate objects with unique states and
methods. Each object generated from a class is called an “instance.”
In short:
 An object (of a class type) is an element of a program with its own state (variables) and

methods, like a robot that you can order around (as we did with the turtles).
 A class is a description of what variables and methods an object of that type has; it is a type

used to create objects.
 An instance is an individual object generated with a class as its type.
 Object-oriented programming is a method of creating programs by defining classes and using

generated instances of them. It is a concept that can be described as writing programs to
coordinate the behavior of robots.

13.3 How to write and use classes in Python
As in the tkinter example, we will create a character user interface (CUI) type program that performs
binary operations. we will use a class to organize the variables that hold the first and second terms,
the result of the operation, the operator, and the method that actually performs the operation.

13 Classes Next Chapter Table of Contents

165

 Source code
Program 13-1 CUI calculator program (p13-1.py)

Row Source code Notes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

class␣Calculator():
␣␣␣␣def␣__init__(self):
␣␣␣␣␣␣␣␣self.first_term␣=␣0
␣␣␣␣␣␣␣␣self.second_term␣=␣0
␣␣␣␣␣␣␣␣self.result␣=␣0
␣␣␣␣␣␣␣␣self.operation␣=␣"+"
␣␣␣␣␣␣␣␣
␣␣␣␣def␣do_operation(self):
␣␣␣␣␣␣␣␣if␣self.operation␣==␣"+":
␣␣␣␣␣␣␣␣␣␣␣␣self.result␣=␣self.first_term␣+␣self.second_term
␣␣␣␣␣␣␣␣elif␣self.operation␣==␣"-":
␣␣␣␣␣␣␣␣␣␣␣␣self.result␣=␣self.first_term␣-␣self.second_term

#␣Main␣program␣starts␣here
calculator␣=␣Calculator()
while␣True:
␣␣␣␣f␣=␣int(input("First␣term␣"))
␣␣␣␣calculator.first_term␣=␣f
␣␣␣␣o␣=␣input("Operation␣")
␣␣␣␣calculator.operation=o
␣␣␣␣s␣=␣int(input("Second␣term␣"))
␣␣␣␣calculator.second_term=s
␣␣␣␣calculator.do_operation()
␣␣␣␣r␣=␣calculator.result
␣␣␣␣print("Result␣",␣r)

Initialization
method

Method to perform
operations

Create an object

Example
First term 1
Operation +
Second term 2
Result 3
First term 10
Operation -
Second term 5
Result 5
First term
Traceback (most recent call last):
 File "M:/Documents/Python Scripts/class_demo.py", line 17, in <module>
 f = int(input("First term "))
KeyboardInterrupt
>>>

Press Ctrl-C to interrupt

13 Classes Next Chapter Table of Contents

166

 Overview of the program
 Class definition block (lines 1-12): classes are defined as follows.
class ClassName ():

 Definition of methods, etc.

 The name of the class (Calculator in this example) can be determined by the same rules as for
variables, but the convention is to capitalize the first letter and write the rest in lowercase. When
using multiple words in a name, “camel case” is used, whereby the first letter of each word is
capitalized (with no spaces in between words) and the rest of the letters are lowercase. (For
example, FunctionCalculator)

 The definition of the method __init__(self) (lines 2-6): methods and variables beginning with
__ (two underscores) often have special roles in Python.
 __infit__() is a method that is executed whenever a class object is created.
 It is used to initialize variables in the class, and it is also called a "constructor" because it takes
a role of making a object. Reference the column titled " Personification." Unlike functions, class
method definitions must always contain a parameter, which is usually named self by
convention. The value of this parameter is automatically given by the system when the method
is called. There is no need to write the first argument when calling a class method.

 Instance variables and initialization (lines 3-6): The __init__() method initializes the variables
used in the class.

 Variables that begin with self. are called “instance variables.” They are object-specific
variables that can always be used within the object whenever an object of that class is
created.

 On the other hand, variables without self. are treated as local variables like in functions, and
are discarded when the method is finished processing.

 Definition of the method do_operation() (lines 8-12): This is a method that can be called
explicitly, which performs the specified operation on the first and second terms and prints the
result. Note the self. in the code; the parameter self is attached to the instance variables when
they are processed.

 Main program (line 14 onward): This is a calculator program that receives text input from the
terminal and executes it. It is written in an infinite loop, so use Ctrl-C to escape.

 Generating a class-type object (line 15). Class-type objects are created by calling the class
name like a function and assigning it to a variable.

Variable = ClassName ()

 Manipulation of instance variables and methods of class-type objects (lines 18-24). By

appending a “.” followed by an instance variable name or method name to the class object
variable, you can call these methods or variables. Note that the do_operation() method requires
the parameter self in the definition, but does not require it when it is called.

13 Classes Next Chapter Table of Contents

167

Exercise 13-1 Extention of Calculator Class
Extend the Calculator class to handle multiplication and division. You may return just an integer
quotient for division.

Exercise 13-2 Creation and Utilization of Multiple Objects
Create a program that generates and uses multiple objects of the Calculator class. Think about what
you can do if you are able to utilize many robots that do addition. For example, how about a robot
that does addition and another that monitors it, then checks the figures (does subtraction)?

Exercise 13-3 User Calculator Class in the Tkinter Program
Modify the calculator program created by tkinter so that it uses the Calculator class

13.4 Class variables and access restrictions
We mentioned earlier that Python programs have global variables that are valid for the entire
program and local variables that are valid only while executing within a function. You also need to
learn about class variables and instance variables when working with classes.

 Class Variables
 Creation: Declared in the class definition, outside of the method definition.

 Behavior: Acts as a variable shared by the class.

 Access: Can be referenced without creating a class object by writing
ClassName.variablename in the code.

 Instance Variables
 Creation: Declared by adding the self. prefix in the method definition.

 Behavior: Each instance that is created is treated as an independent variable. The value is
retained as long as the instance is in use.

 Access: In the definition of a method, refer to it by adding the self. prefix as you do when
creating it.
To reference an instance variable in a program that used the created instance, the variable to
which the instance is assigned (e.g., a) is reference by writing the name, followed by a
period (.), followed by the name of the instance variable.

Python does not have a very strong variable protection feature. Both class variables and instance
variables can be referenced and rewritten externally. One way to restrict access from outside the class
is to use variables that begin with two underscores. Such variables can be accessed by methods in
the class, but cannot be manipulated directly from outside the class.

13 Classes Next Chapter Table of Contents

168

Program 13-2 Class variables and instance variables (p13-2.py)

Row Source code Notes
1
2
3
4
5
6
7

8
9
10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

#␣Class␣practice
class␣MyClass():
␣␣␣␣#␣The␣following␣are␣class␣variables
␣␣␣␣a␣=␣"My␣Class"
␣␣␣␣__b␣=␣0
␣␣␣␣
␣␣␣␣#␣The␣following␣is␣the␣function␣called␣to␣create␣mydata,
␣giving␣the␣initial␣value␣of␣the␣mydata␣as␣a␣parameter
␣␣␣␣
␣␣␣␣def␣__init__(self,␣data):
␣␣␣␣␣␣␣␣#␣__number␣is␣a␣serial␣number␣given␣to␣the␣instance
␣␣␣␣␣␣␣␣self.__number␣=␣MyClass.__b
␣␣␣␣␣␣␣␣self.mydata␣=␣data
␣␣␣␣␣␣␣␣print("MyClass␣Object␣is␣created,␣number:␣",␣
self.__number)
␣␣␣␣#␣Increase␣the␣value␣of␣the␣class␣variable␣by␣1
␣␣␣␣␣␣␣␣MyClass.__b␣+=␣1

␣␣␣␣#␣Method␣that␣displays␣the␣serial␣number␣␣␣␣
␣␣␣␣def␣show_number(self):
␣␣␣␣␣␣␣␣print(self.__number)

#␣Main␣program␣from␣here

if␣__name__␣==␣"__main__":
␣␣␣␣print("Class␣Variable␣a␣of␣MyClass:␣",MyClass.a)

␣␣␣␣instance1␣=␣MyClass(1)
␣␣␣␣instance2␣=␣MyClass(10)

␣␣␣␣instance1.show_number()
␣␣␣␣instance2.show_number()

␣␣␣␣print("mydata␣of␣instance1:␣",␣instance1.mydata)
␣␣␣␣print("mydata␣of␣instance2:␣",␣instance2.mydata)
␣␣␣␣instance1.mydata␣+=␣1
␣␣␣␣instance2.mydata␣+=␣2
␣␣␣␣print("mydata␣of␣instance1:␣",␣instance1.mydata)
␣␣␣␣print("mydata␣of␣instance2:␣",␣instance2.mydata)

Class Definition

__b is an access-
protected variable

This is an
initialization
method that takes
parameter data

Does not execute
when imported as a
module, according
to the instructions
in line 24

If you run this program, you will get the following. You can see that the instances are numbered
using class variables, that the instance variable mydata is independent for each instance, and that it
can be accessed directly from the main program.

13 Classes Next Chapter Table of Contents

169

Class Variable a of MyClass: My Class

MyClass Object is created, number: 0

MyClass Object is created, number: 1

0

1

mydata of instance1: 1

mydata of instance2: 10

mydata of instance1: 2

mydata of instance2: 12

Also, the following operation will cause an error in the shell. You can see that instance variables that
start with “__” are protected.

>>> print(instance1.__number)

Traceback (most recent call last):

File "<pyshell#46>", line 1, in <module>

 print(instance1.__number)

AttributeError: 'MyClass' object has no attribute '__number'

Note that the line:

if __name__ == “__main__”:

in the source code indicates that this code will only be executed when the current file is run as the
main program. It is possible to import this source code as a module, but in that case, anything below
this line will not be executed.

class A():

a1 = A()

a2 = A()Independent for
each instance

Class type
Object

Class type
Object

Instance variables

Instance variables

Created

Class definition

Blocks
(such as method
definitions)

Class variables

The only shared variable
in the class

Figure 13-1 Class and Instance Variables

13 Classes Next Chapter Table of Contents

170

13.5 Inheritance
Inheritance is an important aspect of writing programs using classes. For example, in the example of
tkinter implementation, the MyFrame class we defined inherited from tkinter's Frame class.
MyFrame inherits the functionality of the Frame class and adds the definition of widgets on the
Frame.

13.6 Designing classes starting from instances
Classes are a powerful tool for creating programs that do complex things. As we saw earlier, a class
is a “type” that creates objects of a class type (instances). However, it is difficult to think of things
in terms of types.
When actually designing a class, it is best to think in terms of specific instances, as shown below.

 Consider the data (candidates for instance variables) and operations (candidates for methods)
that you want to handle together as a single object.

 Consider a class for each such object.

 Make the classes more widely available.

 If multiple objects (classes) are the same, then the same class can be used for those objects.

 If the only difference is values that are set, consider assigning the value to an instance
variable and giving it as an argument when the object is created.

 If shared methods and individual methods are mixed, consider inheritance.

14 File Input/Output Next Chapter Table of Contents

171

14. File Input/Output

14.1 Learning goals of this chapter
1. Learn about text files as they are used in Python.

2. Learn how to use spreadsheet software dealing with CSV files to handle the results of Python
calculations.

3. Learn how to read and write text files in Python.

4. Learn about filedialog in tkinter to assist in selecting files.

14.2 How to store data permanently
In conventional programs, data set to variables in the program is retained only while the program is
running, and is erased when the program is terminated.
In addition, the input and output of a program, whether GUI or CUI, is input by a human, and the
results are read by a human.
In order to use data permanently in a program, it is necessary to write and read data in a form that
can be saved outside the program. Candidates for this are as follows:

• A file on the computer
• A database on a computer

• A service on a network

In this section, you will learn how to handle files on a computer, which is the basis of all of these

methods.

14.3 Regarding files

 File Path
Files on computers are managed by operating systems such as Windows, macOS, and linux. These
operating systems have a hierarchical folder (directory) 1 structure, in which folders can be placed
within folders, and the location of a file is identified by its position in the folder structure. The string
describing the location of a file is called the “file path,” and is a combination of the “hierarchical
folder structure notation” and the file name.
To give an example, in Windows

1Windows uses folders as a mechanism for organizing files, while its predecessors, MS-DOS and unix, used the term “directory.”

Strictly speaking, they are slightly different, but here we will treat folders and directories as the same thing.

14 File Input/Output Next Chapter Table of Contents

172

M:\documents\python scripts\p3-1.py
is the file path. Depending on a used font, it may be represented as

M:\documents\python scripts\p3-1.py
Here
M: the drive name (corresponding to the disk device or file server)
¥document¥python_scripts: folder path
p3-1.py: file name
.py: everything after the “.” in a file name is called the “extension,” which indicates the file type.
A full path starts at the drive name and includes all of the folders. A full path is the only way to
identify a specific file on a computer.
In addition to this, there is a “current working folder [directory]” that is referred to as the current
working directory, (cwd), as well as a “relative path” which is a path that describes only the
differences from the specified folder. For example, if your working folder is

M:\documents\python scripts
then the relative path notation

p3-1.py
would refer to

M:\documents\python scripts\p3-1.py

 Use of Raw String
When you write file path directly in a source code, you should know Python treats '\' for

special meaning, e.g, '\n' means newline. Since a filepath often uses '\' for separator of

folders, you have to write two '\'s for each '\'
filepath = "M:¥¥documents¥¥python scripts¥¥p3-1.py"

or use prefix 'r' to treat the string as it is:

filepath = r"M:¥documents¥python scripts¥p3-1.py"
Reference the column titled " Escaping."

 Text Files
A text file is a file written in text code (and symbols such as line breaks) in a format that can
be read and written by humans using an editor. For example, Python source code and
email messages are text files.
On the other hand, a file consisting of data in a computer's internal format is called a “binary file.”
The word “binary” means “base-2.” Binary files are written in the computer's internal format with no

14 File Input/Output Next Chapter Table of Contents

173

change; they have the advantage of not losing numerical value accuracy, and taking up a small
amount of data. However, without a description of the file's contents, it’s not possible to tell what is
written in a binary file.
In this chapter, you will learn how to read and write text files in Python.

 CSV format
Python programs can be used in conjunction with other tools without much effort. The CSV (comma
separated value) format is an easy way to handle data for this purpose. This is a type of text file in
which each line consists of:

Data entry 1, Data entry 2, Data entry 3
and so on, with commas separating the data. If you add the extension .csv to the file name of a file in
this format, it can be read by spreadsheet software such as Microsoft Excel, making it easy to create
graphs.
Data in the CSV format is relatively easy to output. On the other hand, reading data in the CSV
format data can be tricky due to the handling of comma and line break characters; depending on the
content of your data, you may want to consider using a library1 or other method.

 Character Encoding Issues
Due to the historical nature of the Japanese language, there are several different character encodings
that are used on different operating systems. For example, the character codes used for Japanese file
names are as follows
• Mac, Linux: Unicode
• Windows: Shift-JIS
In text files, in addition to the above differences in character encoding, there are also differences in
the code used to represent a line break.
- Python 3 uses UTF-8 internally, which is one of the Unicode representations. Python programs
(scripts) created in IDLE are coded and stored in UTF-8 as well. If you are running Python on a
single OS, you don't need to worry too much about the differences between OSes, as Python will
adjust accordingly. You need to be careful when running the program on different operating systems,
however.

 Error Handling
Error handling is extremely important for file input/output. This is because the contents of files, the
file system, and the data to be read cannot be controlled by the program. When you try to open a file,
you must be aware that various things may happen. For example, the file or folder may not exist, you
may not have write permission, or you may run out of disk space in the middle of writing a file.

1In Python, the csv module is a library for handling CSV. In a later chapter we will see an example of loading a CSV file with pandas.

14 File Input/Output Next Chapter Table of Contents

174

14.4 Let's try to run the code below first.

 Source code
Program 14-1 Example of File Input/Output (p14-1.py)

Row Source code Notes
1

2
3
4
5
6
7
8
9
10
11
12
13
14

#␣Import␣the␣OS␣module␣to␣find␣out␣the␣current␣working␣
directory␣(the␣folder␣where␣you␣are␣working)
import␣os

#␣Get␣the␣current␣working␣directory␣and␣print␣it␣on␣the␣screen
print(os.getcwd())
#␣Create␣a␣file␣named␣'Japanese␣file.txt'␣and␣write␣fill␣it␣in
f␣=␣open('Japanese-File.txt','w')
f.write('日本語\n日本語\n日本語\n')
f.close()
#␣Open␣Japanese␣file.txt␣for␣reading␣to␣display␣its␣contents
f␣=␣open('Japanese-File.txt','r')
s␣=␣f.read()
f.close()
print(s)

Write text in
Kanji. On
Windows, "\"
may be shown as
"\"

 Program Notes
• Figure out the current working folder (current working directory) (line 8)

• Open the file named “Japanese file.txt” for writing (w), and assign it to the variable “f” for
future use. It is written as a relative path, so it will be created in the working folder with this
name. (line 10)

• Write the string to a file (line 11). “\n” means “new line.”

• Close the writing file (line 12)

• Open a file with the same name for reading (r). (line 15)

• Assign the entire contents of the file to the variable s. (Line 16)

• Close the file (line 17)

• Output the data (text) (line 18)

14.5 Reading and writing files in Python

 Using the open Function
Files can be manipulated as per the following procedure.

14 File Input/Output Next Chapter Table of Contents

175

1. Open the file with the open function and get the file object in the return value.

 file = open(file name,mode)

The mode can be “r” for reading, “w” for writing, etc. In the above example, the return value is
assigned to the variable file.
In Python, unless otherwise specified, text files are written in the standard character set of the
operating system, and the encoding argument can be used to explicitly specify the character set.

 file = open(file name,mode, encoding= "utf-8")

If it fails to open the file, it raises an IOError exception.
2. Reading and writing to a file object

A. Reading from a file object using the read() method

 s = file.read()

In the above example, the entire text file is read as a string and assigned to the variable s.
B. Writing to a file object using the write() method

 file.write(s)

The above example writes data in s to the file as a string.
The data can be added in the same way until the file is closed.

3. Close the file

 file.close()

Note: open is a built-in function, and read, write, and close are methods of the file object.

In the above example, the entire contents of the file are read at once; to read a single line, use the
readline() method. It is also possible to process the contents of a file line by line using a for statement
as follows 16F17F

1.

file = open("filename", "r")

for line in file:

 A block that works on each line one line at a time

 Using the 'with' statement - Automating close()
A file opened with the open() function must be closed with the close() method, but in the following
cases, the close() function may not be performed.

 You simply forgot to call the close() method.

1 Python's 'for' statement can be applied to a variety of objects, such as range() functions, strings (one character at a time), lists

(element by element), etc. This is because they are iterable, which means that they can be iterated over. File objects are also iterable,
where iterations occur line by line.

14 File Input/Output Next Chapter Table of Contents

176

 The close() method is not executed due to an error in the code where it is written.
To avoid this, Python provides 'with' statement, which automatically closes the file opened by the
with statement after the block ends.

with open(File name and other arguments of the open function) as variables for the
file object :
 A block that manipulates the file

14.6 Example 1 Wave approximation

 Key points in the example below
• Since it is cumbersome to input the exact file path from a terminal, tkinter (only the filedialog

module) is used.

• The calculation results are output in CSV format and linked to spreadsheet software.

• As an example, we will use an example that expresses a periodic function as a sum of
trigonometric functions.

 Approximation of Periodic Function by Sum of
Trigonometric Functions

It is known that a periodic function (a function whose value repeats with a certain period) can be
approximated by the sum of sine (sin) and cosine (cos) functions that are integer multiples of the
frequency. A sawtooth wave can be approximated as follows (see also the column titled
“Trigonometric Functions”).

𝑓𝑓(𝑥𝑥) =
sin(𝑥𝑥)

1
+

sin(2𝑥𝑥)
2

+
sin(3𝑥𝑥)

3
+

sin(4𝑥𝑥)
4

…
The figure below plots the sum of the first through fifth terms.

Figure 14-1 Approximation of a sawtooth wave by summing trigonometric functions

14 File Input/Output Next Chapter Table of Contents

177

For simplicity, the signs of the terms shown above are all the same, but for the sawtooth wave (that
has a positive slope at the origin), the signs change alternately as shown below.

f(𝑥𝑥) =
sin(𝑥𝑥)

1
−

sin(2𝑥𝑥)
2

+
sin(3𝑥𝑥)

3
−

sin(4𝑥𝑥)
4

…  

Figure 14-2 Approximation of a sawtooth wave by summing trigonometric functions
(with positive slope at the origin)

A sawtooth wave with an amplitude of 1 (maximum and minimum values are ±1) has a coefficient
(2/π) applied to the whole wave.

14 File Input/Output Next Chapter Table of Contents

178

 Source code
Program 14-2 Approximation of a sawtooth wave by summing trigonometric

functions (p14-2.py)

Row Source code Notes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31

32
33
34
35
36
37
38
39
40

import␣tkinter␣as␣tk
import␣tkinter.filedialog
import␣math

#␣Example␣of␣using␣only␣tkinter's␣filedialog

#␣Hide␣the␣root␣window␣by␣reading␣the␣withdraw()␣method
root␣=␣tk.Tk()
root.withdraw()

#␣Read␣the␣filedialog␣for␣writing␣and␣get␣the␣file␣name.

filename␣=␣tkinter.filedialog.asksaveasfilename()

#␣Close␣tkinter

root.destroy()

#␣If␣you␣don't␣get␣a␣file␣name,␣close␣it

if␣filename:
␣␣␣␣pass
else:
␣␣␣␣print("No␣file␣specified")
␣␣␣␣exit()␣␣␣␣

#␣Approximate␣a␣saw␣wave␣by␣superimposing␣sine␣waves␣upon
␣one␣another

#␣w␣=␣sin(t)␣+␣sin(2t)/2␣+␣sin(3t)/3␣+␣sin(4t)/4␣...

#␣2␣periods␣worth,␣1000␣steps␣overall,␣harmonics␣up␣to␣th
e␣5th

cycles␣=␣2
steps␣=␣1000
harmonics␣=␣5
#␣Error␣handling␣when␣a␣file␣cannot␣be␣opened
try:
#␣Open␣the␣file
␣␣␣␣with␣open(filename,'w')␣as␣file:
␣␣␣␣␣␣␣␣for␣i␣in␣range(steps):

Import filedialog as
well

Get the file name
from the dialog and
go back.
tkinter is no longer
used, so it is
closed.

pass is a command
that does not do
anything.

14 File Input/Output Next Chapter Table of Contents

179

41
42
43
44
45
46
47
48
49
50

51
52

␣␣␣␣␣␣␣␣␣␣␣␣angle_in_degree␣=␣360*cycles*i/steps
␣␣␣␣␣␣␣␣␣␣␣␣angle␣=␣math.radians(angle_in_degree)
␣␣␣␣␣␣␣␣␣␣␣␣s␣=␣str(angle_in_degree)
␣␣␣␣␣␣␣␣␣␣␣␣w␣=␣0
␣␣␣␣␣␣␣␣␣␣␣␣for␣j␣in␣range(1,harmonics+1):
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣w␣+=␣math.sin(angle*j)/j
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣s␣=␣s+",␣"+␣str(w)
␣␣␣␣␣␣␣␣␣␣␣␣#print(s)
␣␣␣␣␣␣␣␣␣␣␣␣file.write(s+"\n")
␣␣␣␣␣␣␣␣print("Writing␣to␣file␣"+␣filename␣+␣"␣is␣finishe
d")
except␣IOError:
␣␣␣␣print("Unable␣to␣open␣file")

Express the angle as
a string

Concatenate sum w to
s, separated by a
comma (,)
Add a line break
"\n" and write it
Append s to the
file.

 Program Notes

1) Use of tkinter's filedialog (lines 1-25)
 When you open or save a file in a Windows application, you can find or specify the file in a

separate window. tkinter provides a filedialog mechanism for this purpose. In this program, the
main window of tkinter is created in line 8. Because we use only the filedialog function, the
main window of tkinter is hided in line 9. Also note that the mainloop() method is not called.

 There are several formats for filedialog depending on the intended use, but in this case, the
asksaveasfilename() method for "save as" is called in line 13, and the filename is set to the file
name (path name) obtained by the return value.

 Since tkinter is not needed when coming back from filedialog, root.destroy() terminates tkinter.

 If the user does something such as cancel the program, the filename will be empty, so the
program will be terminated when the if statement is false.

 For more information on using filedialog for reading, refer to the following example.

2) Calculation and file output (lines 23 to 53)
 This part calculates the superposition of trigonometric functions and outputs it in CSV format.

 For file handling, it is necessary to deal with an error such as when the program is not able to
open the file. In line 37, a block that manipulates the file with a try statement handles this. The
corresponding error handling is in lines 52 and 53.

 In line 40, a with statement is used to open a file with filename obtained from filedialog, and the
opened file is handled by the variable file.

 One line of computation and output is as follows:
 angle, first term, sum up to second term, sum up to third term, sum up to fourth term, sum up to fifth
term.

14 File Input/Output Next Chapter Table of Contents

180

The summation is computed in the variable w, and the contents of a line are added to the variable
s as a string. To make the CSV format, the value of w is converted to a string and concatenated
to s separated by a comma (,) as follows:

 s = s+", "+ str(w)

The comma is followed by a 17F18F

1 space to make the resulting file easier to read.

 After the computation up to the fifth term in the for statement is completed, lines 49 and 50 are
output to a file.

print(s)

file.write(s+"\n")

Line 49 is commented, but if you want to see the result in the Python shell, remove the #. In line
50, file.write() writes to the file, but “\n” is added to the single-line string s to add a “line break.”
Mac users should enter a backslash “\” instead of “¥.”

Exercise 14-1 Square wave approximation
A square wave (a periodic function that alternates between values of ±1) can be approximated by a
trigonometric function as follows 2

𝑓𝑓(𝑥𝑥) =
sin(𝑥𝑥)

1
+

sin(3𝑥𝑥)
3

+
sin(5𝑥𝑥)

5
+

sin(7𝑥𝑥)
7

…

Calculate the trigonometric approximation for the square wave in the same way as in the example,
output the result to a CSV file, and create a graph using spreadsheet software.

Figure 14-3 Approximation of a square wave by summing trigonometric functions

Exercise 14-2 Implementation of the list from Example 1
In the program in Example 1, the results of the calculations were concatenated as strings and written
to a file one line at a time. Reimplement this program as follows, separating the calculation and

1Turing part of a program that could otherwise be executed into a comment is called “commenting out,” and is often used to check the

operation of a program.
2 For a square wave of amplitude 1, a factor of 4/π is applied to the whole wave.

14 File Input/Output Next Chapter Table of Contents

181

output.
 Write the result of the calculation to a list using a list.
 After the calculation is completed, write a CSV file in the same format as in Example 1 that

refers to the list.
There are two ways of constructing a list, as follows. Either implementation method is acceptable.

[,

,

,

]

[time(0), term 1(0), sum(0) up to term 2, sum(0) up to term 3, sum(0) up to term 4]

[time(1), term 1(1), sum(1) up to term 2, sum(1) up to term 3, sum(1) up to term 4]

[time(2), term 1(2), sum(2) up to term 2, sum(2) up to term 3, sum(2) up to term 4]

[time(3), term 1(3), sum(3) up to term 2, sum(3) up to term 3, sum(3) up to term 4]

Figure 14-4 Using a “list of data at different time points”

Series of tim
es

Series of the
first term

Series of sum
s up to

the second term

Series of sum
s up

to the third term

Series of sum
s up

to the fourth term

Figure 14-5 Using a “list of each series’”

14.7 Example 2 Text Editor
You can create a simple text editor using tkinter. tkinter has all the features you have learned so far,
as well as the messagebox dialog for displaying messages, the filedialog method for reading files, the
tkinter Menu widget, Text widget, etc. For the geometry manager, we will use 'pack' instead of 'grid'
for simplicity.
The Kanji encoding for the files is not specified, so Python assumes the standard encoding for each
OS. On Windows, it is assumed that Shift-JIS code (cp932) is used.

Program 14-3 A simple text editor using tkinter (p14-3.py)

Row Source code
1
2
3
4

import␣tkinter␣as␣tk
import␣tkinter.messagebox
import␣tkinter.filedialog
#␣messagebox␣and␣filedialog␣need␣to␣be␣imported␣explicitly

14 File Input/Output Next Chapter Table of Contents

182

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

#␣Create␣a␣class␣called␣MyFrame␣that␣inherits␣from␣tk.Frame
#␣Set␣up␣widgets␣and␣callback␣functions␣(methods)␣in␣it.
#␣This␣is␣the␣standard␣way␣to␣use␣tkinter.

class␣MyFrame(tk.Frame):
#␣__init__␣is␣the␣initialization␣method␣for␣creating␣a␣class␣object
␣␣␣␣def␣__init__(self,␣master␣=␣None):
␣␣␣␣␣␣␣␣super().__init__(master)
␣␣␣␣␣␣␣␣self.master.title('Simple␣Editor')

#␣Create␣a␣menu:␣menubar␣->␣filemenu␣->␣Open,␣Save␣as,␣Exit
␣␣␣␣␣␣␣␣menubar␣=␣tk.Menu(self)
␣␣␣␣␣␣␣␣filemenu␣=␣tk.Menu(menubar,␣tearoff␣=␣0)
␣␣␣␣␣␣␣␣filemenu.add_command(label␣=␣"Open",␣command␣=␣self.openfile)
␣␣␣␣␣␣␣␣filemenu.add_command(label␣=␣"Save␣as...",␣command␣=␣self.saveas)
␣␣␣␣␣␣␣␣filemenu.add_command(label␣=␣"Exit",␣command␣=␣self.master.destroy)
␣␣␣␣␣␣␣␣menubar.add_cascade(label␣=␣"File",␣menu␣=␣filemenu)
␣␣␣␣␣␣␣␣self.master.config(menu␣=␣menubar)

#␣Create␣a␣Text␣widget␣for␣editing␣as␣a␣class␣variable␣using␣editbox
␣␣␣␣␣␣␣␣self.editbox␣=␣tk.Text(self)
␣␣␣␣␣␣␣␣self.editbox.pack()

#␣Method␣to␣open␣a␣file,␣requires␣the␣parameter␣"self"␣
which␣is␣different␣than␣the␣parameter␣that␣a␣function␣would␣take
␣␣␣␣def␣openfile(self):
#␣Get␣the␣file␣name␣in␣filedialog
␣␣␣␣␣␣␣␣filename␣=␣tkinter.filedialog.askopenfilename()
#␣Process␣the␣filename␣if␣it's␣not␣empty
␣␣␣␣␣␣␣␣if␣filename:
␣␣␣␣␣␣␣␣␣␣␣␣tkinter.messagebox.showinfo("Filename","Open:␣"+filename)
#␣Open␣a␣file␣with␣a␣variable␣named␣file␣in␣it␣using␣a␣with␣statement
␣␣␣␣␣␣␣␣␣␣␣␣with␣open(filename,'r')␣as␣file:
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣text␣=␣file.read()
#␣Set␣the␣file␣contents␣in␣the␣editbox␣Text␣widget
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣self.editbox.delete('1.0',tk.END)
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣self.editbox.insert('1.0',text)
␣␣␣␣␣␣␣␣else:
␣␣␣␣␣␣␣␣␣␣␣␣tkinter.messagebox.showinfo("Filename","Canceled")

#␣Method␣to␣save␣to␣a␣file
␣␣␣␣def␣saveas(self):
#␣open␣a␣file␣with␣a␣variable␣named␣file␣using␣a␣with␣statement
␣␣␣␣␣␣␣␣filename␣=␣tkinter.filedialog.asksaveasfilename()
␣␣␣␣␣␣␣␣if␣filename:
␣␣␣␣␣␣␣␣␣␣␣␣with␣open(filename,'w')␣as␣file:
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣file.write(self.editbox.get('1.0',tk.END))

14 File Input/Output Next Chapter Table of Contents

183

52
53
54
55
56
57
58
59
60

␣␣␣␣␣␣␣␣␣␣␣␣tkinter.messagebox.showinfo("Filename","Saved␣AS:"+filename)
␣␣␣␣␣␣␣␣else:
␣␣␣␣␣␣␣␣␣␣␣␣tkinter.messagebox.showinfo("Filename","Canceled")

#␣Main␣program␣from␣here
root␣=␣tk.Tk()
f␣=␣MyFrame(root)
f.pack()
f.mainloop()

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

184

15. Learning Program Development with Tic-Tac-
Toe

15.1 Learning goals of this chapter
In this chapter, you will do the following to learn how to develop a program, using tic-tac-toe as an
example.

1. Analyze how to play tic-tac-toe, and identify what needs to be expressed in the program.

2. Prepare a game record for testing the program.

3. Create the data and functions that make up the program, starting with the smallest.

4. Assemble the whole program to complete the tic-tac-toe program.

15.2 Developing a program
As seen in the previous programs, it is difficult for beginners to create a program when given a
specific task. This is because being able to use the various elements of a programming language and
developing a coherent program from scratch are two different skills. For example, just because you
can use a hammer and a saw doesn't mean you can build a house, because to build a house, you
need to know what it consists of and in what order it needs to be designed and constructed. The same
applies to programs.

15.3 Design procedure - what to do before using your
computer

You often see beginners open their computer to create a program only to end up getting stuck. Why
does that happen?
The procedure for designing and creating a program is as follows. You don't necessarily need the
computer at first, but because you are facing the computer screen, you may get stuck.
 What to do before using a computer
 Describe what you want to achieve in words
 Identify what you need the program to do
 What to express as variables
 What values each variable will have
 What should be expressed as a protocol (function)
 What should be expressed as an interaction with people

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

185

 Decide the order in which to create the program
 Decide how to test it

 This is where the work on the computer begins
 Create the program (functions) starting with the parts that do not depend on others
 Test the functions you create (unit testing)
 Test the whole program (integration testing)

15.4 Designing a simple tic-tac-toe program

 Tic-Tac-Toe
Describe in words the rules of tic-tac-toe and how the game proceeds.

〇 ×

〇

〇 ×

 Sentence analysis
Analyze the sentences you made that describe the rules of tic-tac-toe and the progression of the game
in terms of parts of speech (nouns, copulas, verbs).1 You will end up with points similar to those
below.
 Items (nouns) that take a specific state: these are candidates for variables
 3×3 board, turn

 The state of items (copulas): possible values for the variables
 The state of each square (empty, O (player one), X (player two))
 Whose turn it is

 Actions that check states (candidates for functions)
 Whose turn it is
 State of the squares
 Player one wins, player two wins, draw

 Changing the state of a square (this is a candidate for a function)
 Placing O or X in a square
 Alternating turns

1This existence of such tasks is why literacy in the humanities is important for programmers.

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

186

 Creating a Game Record (to Prepare for Testing)
Before you build your program, you should make some test board game records. It is difficult to
cover all cases, but here are some cases to consider.
 Must include cases where player one wins, player two wins, and there is a draw
 Include all the different winning patterns (vertical (3 ways), horizontal (3 ways), diagonal (2

ways))
Preparing test cases first is called “test first programming;” it is more effective than “coding first,”
which is where you start building the program first, in the following reasons
 You're less likely to create test cases if you start later
 You can test these cases at any time during the creation of the program
 Test cases can help you to be aware of the need to test during coding

手番 row column row column row column
1 〇 0 0 0 0 0 1
2 × 1 1 1 0 0 0
3 〇 1 0 1 1 2 1
4 × 2 0 2 2 1 1
5 〇 0 2 0 2 2 2
6 × 0 1 0 1 2 0
7 〇 2 1 2 0 1 0
8 × 2 2 0 2
9 〇 1 2

結果 引き分け 先手勝ち 後手勝ち

0 1 2 0 1 2 0 1 2
0 1〇 6× 5〇 0 1〇 6× 5〇 0 2× 1〇 8×
1 3〇 2× 9〇 1 2× 3〇 1 7〇 4×
2 4× 7〇 8× 2 7〇 4× 2 6× 3〇 5〇

Figure 15-1 Example tic-tac-toe game records

 Variable design

1) The board
 The 3×3 board is represented by a nested list in which the elements are integers.

board = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
 The initial state is all 0s (empty)
 The meaning of the values is as follows: 0 is an empty space, 1 is for player one (O), and 2 for

player two (X).
 For this purpose, we define constants (there is no way to forbid changing the values in Python).

We use uppercase letters to make it clear that they are constants. we also use the following

Turn

Result Draw Player one wins Player two wins

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

187

constants to consider the turn and result.

OPEN = 0

FIRST = 1

SECOND = 2

DRAW = 3

2) Turn
 An integer variable will indicate which player’s turn it is. The initial value is FIRST (the first

move)

turn = FIRST

 The values use the previous constants (FIRST, SECOND), where FIRST indicates that it is
player one’s turn, and SECOND indicates that it is player two’s turn

3) Game record
 The turn order is always “player one, then player two, then player one...” The move made by

each player is represented in the list of rows and columns.

 We then append the result (undecided, player one wins, player two wins, draw) to this list 18F19F

1.

 Game Record = [[first move (row, column)], [second move (row, column)], ..., [last move (row,
column)], [result]]

 The row and column can be represented by an integer value of either 0, 1, or 2. The result can be
represented by an integer value of 0, 1, 2, or 3.

 Functions concerning the board and turns
Create functions to “operate” on the state, “check” the state, “display” it on the screen, initialize it (a
type of operation), etc.
The board and the turn are shared as global variables, so a global declaration is required to change
the values of variables outside the function from within a function. Functions such as those below
may be needed.

1) Turns
 Operation: Initialize the turn
 Operation: Change whose turn it is
 Display: Display the turn (generate a string for it)

1 Because the game record is represented by a single list, different list elements actually represent two different things (where the

players moved, and the result). This is admittedly not a very straightforward implementation.

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

188

2) The Board
 Operation: Initialize the board
 Operation: Mark the specified square on the board with the marker of the player whose turn it is
 Check: Determine the state of individual squares on the board
 Check: Determine which player wins the game, based on the board
 Check: Determine if all squares on the board are occupied
 Display: Output the entire board (generate it as a string)

3) Game Records
 Operation: Replay a game using the game record.

4) Algorithm for determining the winner
If you try to explicitly write out a method of determining the winner of a game of tic-tac-toe as you
play it in your daily life, it would be as follows.
 Determine whether the turn (denoted by t) results in victory in a given row or column.
 If all the spots in the three positions in row/column of interest are t, then t wins.
 Otherwise, t does not win

 Determine if the game is won in a certain direction (horizontal, vertical, diagonal, reverse
diagonal)
 If horizontal or vertical
 if the game is won in row 0 (column 0), t wins
 If not, then if the game is won in row 1 (column 1), t wins
 If not, then if the game is won in row 2 (column 2), t wins
 Otherwise, t does not win

 If the game is won in the diagonal or reverse diagonal line, then t wins
 Determining victory based on the above

1. If the game is won horizontally, then t wins.
2. If not, then if the game is won vertically, t wins.
3. If not, then if the game is won diagonally, t wins.
4. If not, then if the game is won reverse diagonally, t wins.
5. Otherwise, t does not win

Also, while it is not possible on a board where victory is checked for every turn, on a randomly
generated board, it is possible to have a case where both player one and player two win.

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

189

and or

or

You win if you
have three
spaces in a row

If you have all of the
spaces in a row:
victory in a row

Victory in a column

Victory in a
diagonal line

Victory in a reverse
diagonal line

If you have all of the
spaces in any of
these directions, you
win

Figure 15-2 Determining victory for the turn in question

 Determining the winner
Using the above procedure (function), you can determine the winner of a game of tic-tac-toe as
follows.

1. Check whether player one has won or not; if player one has won, then it is player one’s victory.
2. If not, then check whether player two has won or not; if player two has won, then it is player

two’s victory.
3. If not, then if there is still an empty space on the board, then the game is unfinished.
4. If not (if there are no empty spaces on the board), the game is a draw.

True

True

True
False

False

False

Determining
the winner

Player one wins?

Player two wins?

Are there empty
spaces?

Unfinished Draw Player two wins Player one wins

Figure 15-3 Determining the winner

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

190

 How to write complex conditional decisions
As explained in Section 4, the determination of the winner of a tic-tac-toe game is actually quite
complicated. For example, suppose you have three conditions: is_A, is_B, and is_C (think of these as
variables or functions that take a value of True or False). The part of the function that decides if all of
them are True is written as:

return is_A and is_B and is_C:

You could also nest the if statements as follows:

if is_A:

 if is_B:

 if is_C:

 return True

return False

Also, you could write it as:

if not is_A:

 return False

if not is_B:

 return False

if not is_C:

 return False

return True

If you use that last way of writing it, then you could also write it as:

conditions = [is_A, is_B, is_C]

for c in conditions:

 if not c:

 return False

return True

In the last method, even if the number of conditions to be checked increases, the decision part can be
written succinctly by using a for statement.

Exercise 15-1 Programming Branching with Complicated Condition
Based on the examples above, write a function that returns True if any of is_A, is_B, or is_C is True.

 Progression of the game
Let's consider the flow of the main program. Input and output are done in the Python shell in the
form of characters. You'll see how easy it is to implement using the functions you defined earlier.

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

191

 Initialize the game
 Display the board
 Repeat the following until the game is won, lost, or drawn:
 Prompt the user for the input of the active player until a valid input is obtained.
 Get input from the active player

 Update the board
 Display the board
 Determine if the game is won, lost, or drawn
 Show the result and escape the main loop if the game is over

 Change the player's turn

15.5 Implementation of the program

1) Source code structure
Once the design is complete, you can start fleshing out the program. Check to see that your Python
source code looks something like the following.

Import the necessary modules

Define constants and variables

Functions relating to the turn

Functions to test functions relating to the turn

Functions relating to the board

Functions to test functions relating to the board

Functions relating to board records

Functions to test functions relating to board records

Functions for game progression

Main program

Figure 15-4 Overall source code structure

2) Example code (tic_tac_toe.py)
An example implementation of the program is shown below. Some notes concerning the way things
were implemented and the notation are explained below.
 The program is implemented in the order shown in Figure 15-4.

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

192

 The program has nearly 500 lines in total, but the code with the yellow background is for
testing functions.

 Functions come with a docstring. Multi-line docstrings start and end with ''' (three single
quotes).

 There are no modules that need to be imported.
 The display functions do not “print to the screen,” but generate a string that can be passed to

the print() function.
 The main program simply prints “tic-tac-toe.” All the functions are loaded, so you can call

them in Python shell for testing or for actual play.

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

193

Program 15-1 Tic-tac-toe program example (Part 1: Global variables)

Row Source code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26

#␣Tic-tac-toe

#␣There␣are␣no␣modules␣that␣need␣to␣be␣imported.

#␣Define␣constants

#␣Create␣a␣game␣record␣in␣play()␣(needs␣to␣be␣completed).

'This␣is␣a␣tic-tac-toe␣program'
OPEN␣=␣0
FIRST␣=␣1
SECOND␣=␣2
DRAW␣=␣3

#␣Constant␣variable

turn␣=␣FIRST
board␣=␣[[0,0,0],[0,0,0],[0,0,0]]

#␣Test␣board␣records

log1␣=␣[[0,␣0],␣[1,␣1],␣[1,␣0],␣[2,␣0],␣[0,␣2],␣[0,␣1],␣[2,␣1],␣[2,␣2],␣[1,␣2],␣
[DRAW]]
log2␣=␣[[0,␣0],␣[1,␣0],␣[1,␣1],␣[2,␣2],␣[0,␣1],␣[2,␣0],[FIRST]]
log3␣=␣[[0,␣1],␣[0,␣0],␣[2,␣1],␣[1,␣1],␣[2,␣2],␣[2,␣0],␣[1,␣0],␣[0,␣2],[SECOND]]

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

194

Program 15-2 Tic-tac-toe program example (Part 2: Turn-related functions)

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

#␣Functions␣related␣to␣turns

#␣Convert␣the␣move␣number␣to␣a␣string

def␣show_turn():
␣␣␣␣'Return␣a␣string␣showing␣current␣turn'
␣␣␣␣if␣turn␣==␣FIRST:
␣␣␣␣␣␣␣␣return('First')
␣␣␣␣elif␣turn␣==␣SECOND:
␣␣␣␣␣␣␣␣return('Second')
␣␣␣␣else:
␣␣␣␣␣␣␣␣return('Vaule␣of␣turn␣is␣not␣adequate')

#␣Initialize␣the␣turn

def␣init_turn():
␣␣␣␣'Initialize␣turn'
␣␣␣␣global␣turn
␣␣␣␣turn␣=␣FIRST

#␣Change␣the␣turn

def␣change_turn():
␣␣␣␣'Change␣turn'
␣␣␣␣global␣turn
␣␣␣␣if␣turn␣==␣FIRST:
␣␣␣␣␣␣␣␣turn␣=␣SECOND
␣␣␣␣elif␣turn␣==␣SECOND:
␣␣␣␣␣␣␣␣turn␣=␣FIRST

57
58
59
60
61
62
63
64
65
66
67

#␣Test␣turn-related␣functions

def␣test_turn():
␣␣␣␣'Test␣program␣of␣turn'
␣␣␣␣init_turn()
␣␣␣␣print(show_turn(),"␣is␣the␣current␣turn")
␣␣␣␣change_turn()
␣␣␣␣print(show_turn(),"␣is␣the␣current␣turn")
␣␣␣␣change_turn()
␣␣␣␣print(show_turn(),"␣is␣the␣current␣turn")

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

195

Program 15-3 Tic-tac-toe program, example (Part 3: Board-related functions part 1)

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

#␣Board-related␣functions

#␣A␣string␣that␣displays␣the␣board

def␣show_board():
␣␣␣␣'Return␣a␣string␣showing␣the␣current␣board'
␣␣␣␣s␣=␣'␣:0␣1␣2\n---------\n'
␣␣␣␣for␣i␣in␣range(3):
␣␣␣␣␣␣␣␣s␣=␣s␣+␣str(i)␣+␣':␣'
␣␣␣␣␣␣␣␣for␣j␣in␣range(3):
␣␣␣␣␣␣␣␣␣␣␣␣cell␣=␣''
␣␣␣␣␣␣␣␣␣␣␣␣if␣board[i][j]␣==␣OPEN:
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣cell␣=␣'␣'
␣␣␣␣␣␣␣␣␣␣␣␣elif␣board[i][j]␣==␣FIRST:
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣cell␣=␣'O'
␣␣␣␣␣␣␣␣␣␣␣␣elif␣board[i][j]␣==␣SECOND:
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣cell␣=␣'X'
␣␣␣␣␣␣␣␣␣␣␣␣else:
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣cell␣=␣'?'
␣␣␣␣␣␣␣␣␣␣␣␣s␣=␣s␣+␣cell␣+␣'␣'
␣␣␣␣␣␣␣␣s␣=␣s␣+␣'\n'
␣␣␣␣return␣s

#␣Initialize␣the␣board

def␣init_board():
␣␣␣␣'Set␣all␣the␣places␣on␣board␣OPEN'
␣␣␣␣for␣i␣in␣range(3):
␣␣␣␣␣␣␣␣for␣j␣in␣range(3):
␣␣␣␣␣␣␣␣␣␣␣␣board[i][j]␣=␣OPEN

#␣Return␣the␣value␣of␣position␣i,␣j␣on␣the␣board

def␣examine_board(i,j):
␣␣␣␣'Return␣state␣of␣the␣i-th␣row␣j-th␣column␣place␣on␣the␣board'
␣␣␣␣return␣board[i][j]

#␣Register␣the␣turn␣t␣to␣i,␣j␣on␣the␣board,␣and␣return␣its␣status␣as␣a␣string

def␣set_board(i,j,t):
␣␣␣␣'''
set␣turn␣t␣on␣the␣i,␣j␣place␣of␣the␣board,␣and␣return␣the␣status
returned␣value␣will␣be
␣␣'ok'␣if␣successfully␣places
␣␣'Not␣empty'␣the␣place␣is␣not␣empty

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

196

114
115
116
117
118
119
120
121
122
123
124
125
126
127

␣␣'illegal␣turn'␣if␣turn␣value␣is␣not␣adequate
␣␣'illegal␣slot'␣if␣place␣is␣not␣adequate
'''
␣␣␣␣if␣(i>=0)␣and␣(i<3)␣and␣(j>=0)␣and␣(j<3):
␣␣␣␣␣␣␣␣if␣(t>0)␣and␣(t<3):
␣␣␣␣␣␣␣␣␣␣␣␣if␣examine_board(i,␣j)␣==␣0:
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣board[i][j]␣=␣t
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣return␣'OK'
␣␣␣␣␣␣␣␣␣␣␣␣else:
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣return␣'Not␣empty'
␣␣␣␣␣␣␣␣else:
␣␣␣␣␣␣␣␣␣␣␣␣return␣'illegal␣turn'
␣␣␣␣else:
␣␣␣␣␣␣␣␣return␣'illegal␣slot'

128
129
130
131
132
133
134
135
136
137
138
139
140

#␣Testing␣function␣for␣the␣board

def␣test_board1():
␣␣␣␣'The␣first␣test␣program␣on␣the␣board'
␣␣␣␣init_board()
␣␣␣␣print(show_board())
␣␣␣␣print(set_board(0,0,1))
␣␣␣␣print(show_board())
␣␣␣␣print(set_board(1,1,2))
␣␣␣␣print(show_board())
␣␣␣␣print(set_board(1,1,1))
␣␣␣␣print(show_board())

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

197

Program 15-4 Tic-tac-toe program, example (Part 4: Board-related functions part 2)

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

#␣Determine␣if␣a␣turn␣t␣wins␣in␣the␣horizontal␣direction

def␣check_board_horizontal(t):
␣␣␣␣'Check␣whether␣turn␣t␣is␣win␣in␣horizontal␣direction'
␣␣␣␣for␣i␣in␣range␣(3):
␣␣␣␣␣␣␣␣if␣(board[i][0]␣==␣t)␣and␣(board[i][1]␣==␣t)␣and␣(board[i][2]␣==␣t):
␣␣␣␣␣␣␣␣␣␣␣␣return␣True
␣␣␣␣return␣False

#␣Determine␣if␣a␣turn␣t␣wins␣in␣the␣vertical␣direction

def␣check_board_vertical(t):
␣␣␣␣'Check␣whether␣turn␣t␣is␣win␣in␣vertical␣direction␣'
␣␣␣␣for␣j␣in␣range␣(3):
␣␣␣␣␣␣␣␣if␣(board[0][j]␣==␣t)␣and␣(board[1][j]␣==␣t)␣and␣(board[2][j]␣==␣t):
␣␣␣␣␣␣␣␣␣␣␣␣return␣True
␣␣␣␣return␣False

#␣Determine␣if␣a␣turn␣t␣wins␣in␣the␣diagonal␣direction

def␣check_board_diagonal(t):
␣␣␣␣'Check␣whether␣turn␣t␣is␣win␣in␣diagonal␣direction'
␣␣␣␣if␣(board[0][0]␣==␣t)␣and␣(board[1][1]␣==␣t)␣and␣(board[2][2]␣==␣t):
␣␣␣␣␣␣␣␣return␣True
␣␣␣␣return␣False

#␣Determine␣if␣a␣turn␣t␣wins␣in␣the␣reverse␣diagonal␣direction

def␣check_board_inverse_diagonal(t):
␣␣␣␣'␣Check␣whether␣turn␣t␣is␣win␣in␣inverse␣diagonal␣direction␣'
␣␣␣␣if␣(board[0][2]␣==␣t)␣and␣(board[1][1]␣==␣t)␣and␣(board[2][0]␣==␣t):
␣␣␣␣␣␣␣␣return␣True
␣␣␣␣return␣False

#␣Simple␣determination␣of␣victory␣for␣a␣turn␣t

def␣is_win_simple(t):
␣␣␣␣'Check␣win␣of␣turn.␣Do␣not␣check␣win␣of␣the␣other␣turn'
␣␣␣␣if␣check_board_horizontal(t):
␣␣␣␣␣␣␣␣return␣True
␣␣␣␣if␣check_board_vertical(t):
␣␣␣␣␣␣␣␣return␣True
␣␣␣␣if␣check_board_diagonal(t):
␣␣␣␣␣␣␣␣return␣True
␣␣␣␣if␣check_board_inverse_diagonal(t):

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

198

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

␣␣␣␣␣␣␣␣return␣True
␣␣␣␣return␣False

#␣Determine␣the␣winner␣by␣confirming␣the␣opponent␣has␣not␣won.

def␣is_win_actual(t):
␣␣␣␣'Check␣win␣of␣turn␣t.␣It␣also␣check␣whether␣the␣other␣turn␣do␣not␣win'
␣␣␣␣if␣not␣is_win_simple(t):
␣␣␣␣␣␣␣␣return␣False
␣␣␣␣if␣t==FIRST:
␣␣␣␣␣␣␣␣␣if␣is_win_simple(SECOND):
␣␣␣␣␣␣␣␣␣␣␣␣␣return␣False
␣␣␣␣else:
␣␣␣␣␣␣␣␣if␣is_win_simple(FIRST):
␣␣␣␣␣␣␣␣␣␣␣␣return␣False
␣␣␣␣return␣True

#␣Determine␣whether␣the␣board␣is␣full

def␣is_full():
␣␣␣␣'Confirm␣all␣the␣places␣are␣not␣empty'
␣␣␣␣for␣i␣in␣range(3):
␣␣␣␣␣␣␣␣for␣j␣in␣range(3):
␣␣␣␣␣␣␣␣␣␣␣␣if␣board[i][j]␣==␣OPEN:
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣return␣False
␣␣␣␣return␣True

#␣Determine␣whether␣a␣draw␣has␣occurred

def␣is_draw():
␣␣␣␣'Check␣wheter␣board␣is␣draw'
␣␣␣␣if␣is_win_simple(FIRST):
␣␣␣␣␣␣␣␣return␣False
␣␣␣␣if␣is_win_simple(SECOND):
␣␣␣␣␣␣␣␣return␣False
␣␣␣␣if␣not␣is_full():
␣␣␣␣␣␣␣␣return␣False
␣␣␣␣return␣True

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

199

Program 15-5 Tic-tac-toe program, example (Part 5: Board testing functions 1)

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

#␣Second␣board␣testing␣function,␣which␣tests␣the␣victory␣determination

def␣test_board2():
␣␣␣␣'The␣second␣test␣program␣of␣the␣board'
␣␣␣␣init_board()
␣␣␣␣board[0][0]␣=␣FIRST
␣␣␣␣board[1][0]␣=␣FIRST
␣␣␣␣board[2][0]␣=␣FIRST
␣␣␣␣print(show_board())
␣␣␣␣print("HORIZONTSL␣FIRST:␣"␣,check_board_horizontal(FIRST))
␣␣␣␣print("HORIZONTSL␣SECOND:␣",check_board_horizontal(SECOND))
␣␣␣␣print("VERTICAL␣FIRST:␣"␣␣␣,check_board_vertical(FIRST))
␣␣␣␣print("VERTICAL␣SECOND:␣"␣␣,check_board_vertical(SECOND))
␣␣␣␣init_board()
␣␣␣␣board[0][0]␣=␣SECOND
␣␣␣␣board[1][0]␣=␣SECOND
␣␣␣␣board[2][0]␣=␣SECOND
␣␣␣␣print(show_board())
␣␣␣␣print("HORIZONTSL␣FIRST:␣"␣,check_board_horizontal(FIRST))
␣␣␣␣print("HORIZONTSL␣SECOND:␣",check_board_horizontal(SECOND))
␣␣␣␣print("VERTICAL␣FIRST:␣"␣␣␣,check_board_vertical(FIRST))
␣␣␣␣print("VERTICAL␣SECOND:␣"␣␣,check_board_vertical(SECOND))

␣␣␣␣init_board()
␣␣␣␣board[0][0]␣=␣FIRST
␣␣␣␣board[0][1]␣=␣FIRST
␣␣␣␣board[0][2]␣=␣FIRST
␣␣␣␣print(show_board())
␣␣␣␣print("HORIZONTSL␣FIRST:␣"␣,check_board_horizontal(FIRST))
␣␣␣␣print("HORIZONTSL␣SECOND:␣",check_board_horizontal(SECOND))
␣␣␣␣print("VERTICAL␣FIRST:␣"␣␣␣,check_board_vertical(FIRST))
␣␣␣␣print("VERTICAL␣SECOND:␣"␣␣,check_board_vertical(SECOND))
␣␣␣␣init_board()
␣␣␣␣board[0][0]␣=␣SECOND
␣␣␣␣board[0][1]␣=␣SECOND
␣␣␣␣board[0][2]␣=␣SECOND
␣␣␣␣print(show_board())
␣␣␣␣print("HORIZONTSL␣FIRST:␣"␣,check_board_horizontal(FIRST))
␣␣␣␣print("HORIZONTSL␣SECOND:␣",check_board_horizontal(SECOND))
␣␣␣␣print("VERTICAL␣FIRST:␣"␣␣␣,check_board_vertical(FIRST))
␣␣␣␣print("VERTICAL␣SECOND:␣"␣␣,check_board_vertical(SECOND))

␣␣␣␣init_board()
␣␣␣␣board[0][0]␣=␣FIRST
␣␣␣␣board[1][1]␣=␣FIRST

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

200

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

␣␣␣␣board[2][2]␣=␣FIRST
␣␣␣␣print(show_board())
␣␣␣␣print("DIAGONAL␣FIRST:␣"␣,check_board_diagonal(FIRST))
␣␣␣␣print("DIAGONAL␣SECOND:␣",check_board_diagonal(SECOND))
␣␣␣␣print("INV␣DIAGONAL␣FIRST:␣"␣␣␣,check_board_inverse_diagonal(FIRST))
␣␣␣␣print("INV␣DIAGONAL␣SECOND:␣"␣␣,check_board_inverse_diagonal(SECOND))
␣␣␣␣init_board()
␣␣␣␣board[0][0]␣=␣SECOND
␣␣␣␣board[1][1]␣=␣SECOND
␣␣␣␣board[2][2]␣=␣SECOND
␣␣␣␣print(show_board())
␣␣␣␣print("DIAGONAL␣FIRST:␣"␣,check_board_diagonal(FIRST))
␣␣␣␣print("DIAGONAL␣SECOND:␣",check_board_diagonal(SECOND))
␣␣␣␣print("INV␣DIAGONAL␣FIRST:␣"␣␣␣,check_board_inverse_diagonal(FIRST))
␣␣␣␣print("INV␣DIAGONAL␣SECOND:␣"␣␣,check_board_inverse_diagonal(SECOND))

␣␣␣␣init_board()
␣␣␣␣board[0][2]␣=␣FIRST
␣␣␣␣board[1][1]␣=␣FIRST
␣␣␣␣board[2][0]␣=␣FIRST
␣␣␣␣print(show_board())
␣␣␣␣print("DIAGONAL␣FIRST:␣"␣,check_board_diagonal(FIRST))
␣␣␣␣print("DIAGONAL␣SECOND:␣",check_board_diagonal(SECOND))
␣␣␣␣print("INV␣DIAGONAL␣FIRST:␣"␣␣␣,check_board_inverse_diagonal(FIRST))
␣␣␣␣print("INV␣DIAGONAL␣SECOND:␣"␣␣,check_board_inverse_diagonal(SECOND))
␣␣␣␣init_board()
␣␣␣␣board[0][2]␣=␣SECOND
␣␣␣␣board[1][1]␣=␣SECOND
␣␣␣␣board[2][0]␣=␣SECOND
␣␣␣␣print(show_board())
␣␣␣␣print("DIAGONAL␣FIRST:␣"␣,check_board_diagonal(FIRST))
␣␣␣␣print("DIAGONAL␣SECOND:␣",check_board_diagonal(SECOND))
␣␣␣␣print("INV␣DIAGONAL␣FIRST:␣"␣␣␣,check_board_inverse_diagonal(FIRST))
␣␣␣␣print("INV␣DIAGONAL␣SECOND:␣"␣␣,check_board_inverse_diagonal(SECOND))

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

201

Program 15-6 Tic-tac-toe program, example (Part 6: Board testing functions 2)

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

#␣Third␣board␣testing␣function,␣which␣determines␣whether␣it␣is␣a␣victory␣or␣draw

def␣test_board3():
␣␣␣␣'␣The␣third␣test␣program␣of␣the␣board␣'
␣␣␣␣init_board()
␣␣␣␣board[0][0]␣=␣FIRST
␣␣␣␣board[1][0]␣=␣FIRST
␣␣␣␣board[2][0]␣=␣SECOND
␣␣␣␣board[0][1]␣=␣SECOND
␣␣␣␣board[1][1]␣=␣SECOND
␣␣␣␣board[2][1]␣=␣FIRST
␣␣␣␣board[0][2]␣=␣FIRST
␣␣␣␣board[1][2]␣=␣FIRST
␣␣␣␣board[2][2]␣=␣SECOND
␣␣␣␣print(show_board())
␣␣␣␣print("HORIZONTSL␣FIRST:␣"␣,check_board_horizontal(FIRST))
␣␣␣␣print("HORIZONTSL␣SECOND:␣",check_board_horizontal(SECOND))
␣␣␣␣print("VERTICAL␣FIRST:␣"␣␣␣,check_board_vertical(FIRST))
␣␣␣␣print("VERTICAL␣SECOND:␣"␣␣,check_board_vertical(SECOND))
␣␣␣␣print("DIAGONAL␣FIRST:␣"␣,check_board_diagonal(FIRST))
␣␣␣␣print("DIAGONAL␣SECOND:␣",check_board_diagonal(SECOND))
␣␣␣␣print("INV␣DIAGONAL␣FIRST:␣"␣␣␣,check_board_inverse_diagonal(FIRST))
␣␣␣␣print("INV␣DIAGONAL␣SECOND:␣"␣␣,check_board_inverse_diagonal(SECOND))
␣␣␣␣print("IS␣WIN␣SIMPLE␣FIRST",␣is_win_simple(FIRST))
␣␣␣␣print("IS␣WIN␣SIMPLE␣SECOND",␣is_win_simple(SECOND))
␣␣␣␣print("IS␣WIN␣ACTUAL␣FIRST",␣is_win_actual(FIRST))
␣␣␣␣print("IS␣WIN␣ACTUAL␣SECOND",␣is_win_actual(SECOND))
␣␣␣␣print("IS␣FULL",␣is_full())
␣␣␣␣print("IS␣DRAW",␣is_draw())

␣␣␣␣init_board()
␣␣␣␣board[0][0]␣=␣FIRST
␣␣␣␣board[1][0]␣=␣SECOND
␣␣␣␣board[2][0]␣=␣FIRST
␣␣␣␣board[0][1]␣=␣SECOND
␣␣␣␣board[1][1]␣=␣FIRST
␣␣␣␣board[2][1]␣=␣OPEN
␣␣␣␣board[0][2]␣=␣FIRST
␣␣␣␣board[1][2]␣=␣OPEN
␣␣␣␣board[2][2]␣=␣SECOND
␣␣␣␣print(show_board())
␣␣␣␣print("HORIZONTSL␣FIRST:␣"␣,check_board_horizontal(FIRST))
␣␣␣␣print("HORIZONTSL␣SECOND:␣",check_board_horizontal(SECOND))
␣␣␣␣print("VERTICAL␣FIRST:␣"␣␣␣,check_board_vertical(FIRST))
␣␣␣␣print("VERTICAL␣SECOND:␣"␣␣,check_board_vertical(SECOND))

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

202

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

␣␣␣␣print("DIAGONAL␣FIRST:␣"␣,check_board_diagonal(FIRST))
␣␣␣␣print("DIAGONAL␣SECOND:␣",check_board_diagonal(SECOND))
␣␣␣␣print("INV␣DIAGONAL␣FIRST:␣"␣␣␣,check_board_inverse_diagonal(FIRST))
␣␣␣␣print("INV␣DIAGONAL␣SECOND:␣"␣␣,check_board_inverse_diagonal(SECOND))
␣␣␣␣print("IS␣WIN␣SIMPLE␣FIRST",␣is_win_simple(FIRST))
␣␣␣␣print("IS␣WIN␣SIMPLE␣SECOND",␣is_win_simple(SECOND))
␣␣␣␣print("IS␣WIN␣ACTUAL␣FIRST",␣is_win_actual(FIRST))
␣␣␣␣print("IS␣WIN␣ACTUAL␣SECOND",␣is_win_actual(SECOND))
␣␣␣␣print("IS␣FULL",␣is_full())
␣␣␣␣print("IS␣DRAW",␣is_draw())

␣␣␣␣init_board()
␣␣␣␣board[0][0]␣=␣SECOND
␣␣␣␣board[1][0]␣=␣FIRST
␣␣␣␣board[2][0]␣=␣SECOND
␣␣␣␣board[0][1]␣=␣FIRST
␣␣␣␣board[1][1]␣=␣SECOND
␣␣␣␣board[2][1]␣=␣FIRST
␣␣␣␣board[0][2]␣=␣SECOND
␣␣␣␣board[1][2]␣=␣OPEN
␣␣␣␣board[2][2]␣=␣FIRST
␣␣␣␣print(show_board())
␣␣␣␣print("HORIZONTSL␣FIRST:␣"␣,check_board_horizontal(FIRST))
␣␣␣␣print("HORIZONTSL␣SECOND:␣",check_board_horizontal(SECOND))
␣␣␣␣print("VERTICAL␣FIRST:␣"␣␣␣,check_board_vertical(FIRST))
␣␣␣␣print("VERTICAL␣SECOND:␣"␣␣,check_board_vertical(SECOND))
␣␣␣␣print("DIAGONAL␣FIRST:␣"␣,check_board_diagonal(FIRST))
␣␣␣␣print("DIAGONAL␣SECOND:␣",check_board_diagonal(SECOND))
␣␣␣␣print("INV␣DIAGONAL␣FIRST:␣"␣␣␣,check_board_inverse_diagonal(FIRST))
␣␣␣␣print("INV␣DIAGONAL␣SECOND:␣"␣␣,check_board_inverse_diagonal(SECOND))
␣␣␣␣print("IS␣WIN␣SIMPLE␣FIRST",␣is_win_simple(FIRST))
␣␣␣␣print("IS␣WIN␣SIMPLE␣SECOND",␣is_win_simple(SECOND))
␣␣␣␣print("IS␣WIN␣ACTUAL␣FIRST",␣is_win_actual(FIRST))
␣␣␣␣print("IS␣WIN␣ACTUAL␣SECOND",␣is_win_actual(SECOND))
␣␣␣␣print("IS␣FULL",␣is_full())
␣␣␣␣print("IS␣DRAW",␣is_draw())

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

203

Program 15-7 Tic-tac-toe program example (Part 7: Game record-related functions)

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

#␣Log␣replay

def␣replay_log(log):
␣␣␣␣'Replay␣a␣game␣log.␣It␣shows␣replay␣on␣screen␣with␣print()␣function'
␣␣␣␣init_board()
␣␣␣␣init_turn()
␣␣␣␣print(show_board())
␣␣␣␣for␣m␣in␣log:
␣␣␣␣␣␣␣␣if␣len(m)␣==␣2:
␣␣␣␣␣␣␣␣␣␣␣␣print(show_turn(),"␣is␣the␣current␣turn")
␣␣␣␣␣␣␣␣␣␣␣␣print(set_board(m[0],␣m[1],␣turn))
␣␣␣␣␣␣␣␣␣␣␣␣print(show_board())
␣␣␣␣␣␣␣␣␣␣␣␣print("IS␣WIN",␣turn,␣":␣",␣is_win_actual(turn))
␣␣␣␣␣␣␣␣␣␣␣␣change_turn()
␣␣␣␣␣␣␣␣else:
␣␣␣␣␣␣␣␣␣␣␣␣print("RESULT␣IN␣LOG:␣",m[0])
␣␣␣␣print("IS␣WIN␣FIRST:␣",␣is_win_actual(FIRST))
␣␣␣␣print("IS␣WIN␣SECOND:␣",␣is_win_actual(SECOND))
␣␣␣␣print("IS␣DRAW:␣",␣is_draw())

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

#␣Log␣test

def␣test_log():
␣␣␣␣'Test replay of logs'
␣␣␣␣print("LOG1")
␣␣␣␣replay_log(log1)
␣␣␣␣print("LOG2")
␣␣␣␣replay_log(log2)
␣␣␣␣print("LOG3")
␣␣␣␣replay_log(log3)

#␣Test␣all

def␣test_all():
␣␣␣␣'Do all the test programs'
␣␣␣␣test_turn()
␣␣␣␣test_board1()
␣␣␣␣test_board2()
␣␣␣␣test_board3()
␣␣␣␣test_log()

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

204

Program 15-8 Tic-tac-toe program, example (Part 8: The play() function and the main
program)

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

#␣Actual␣gameplay

def␣play():
␣␣␣␣'Conduct␣an␣actual␣tic-tac-toe␣game␣interactively␣on␣terminal'
␣␣␣␣init_turn()
␣␣␣␣init_board()
␣␣␣␣print(show_board())
#␣Create␣an␣empty␣list␣for␣the␣game␣record.␣
#␣Declare␣it␣as␣a␣global␣variable␣if␣you␣want␣to␣access␣it␣outside␣of␣play()
#␣␣␣␣global␣log
␣␣␣␣log␣=␣[]
␣␣␣␣while␣True:
␣␣␣␣␣␣␣␣print(show_turn(),"␣is␣the␣current␣turn")
␣␣␣␣␣␣␣␣while(True):
␣␣␣␣␣␣␣␣␣␣␣␣row␣=␣int(input("Input␣the␣number␣of␣row␣you␣want␣to␣place:␣"))
␣␣␣␣␣␣␣␣␣␣␣␣column␣=␣int(input("Input␣a␣number␣of␣column:␣"))
␣␣␣␣␣␣␣␣␣␣␣␣result␣=␣set_board(row,␣column,␣turn)
␣␣␣␣␣␣␣␣␣␣␣␣print(result)
␣␣␣␣␣␣␣␣␣␣␣␣if␣result␣==␣"OK":
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣break
␣␣␣␣␣␣␣␣␣␣␣␣print("Inadequate␣value(s),␣try␣again")
␣␣␣␣␣␣␣␣#␣Add␣a␣turn␣to␣the␣log␣here␣(outside␣of␣the␣inner␣while)
␣␣␣␣␣␣␣␣#␣Additional␣code␣required␣here
␣␣␣␣␣␣␣␣#
␣␣␣␣␣␣␣␣print(show_board())
␣␣␣␣␣␣␣␣if␣is_draw():
␣␣␣␣␣␣␣␣␣␣␣␣print("Game␣is␣draw")
#␣Add␣the␣game␣result␣(a␣draw)␣to␣log␣here.
␣␣␣␣␣␣␣␣␣␣␣␣break
␣␣␣␣␣␣␣␣if␣is_win_actual(turn):
␣␣␣␣␣␣␣␣␣␣␣␣print(show_turn(),␣"won␣the␣game")
#␣Add␣the␣game␣result␣(current␣player's␣win)␣to␣log␣here.
␣␣␣␣␣␣␣␣␣␣␣␣break
␣␣␣␣␣␣␣␣change_turn()
␣␣␣␣#␣This␣is␣a␣replay␣of␣the␣game
␣␣␣␣#␣Currently␣the␣log␣is␣empty,␣so␣determine␣victory,␣and␣process
␣␣␣␣if␣len(log)>0:
␣␣␣␣␣␣␣␣replay_log(log)
␣␣␣␣else:
␣␣␣␣␣␣␣␣print("Game␣log␣was␣not␣recorded")
if␣__name__␣==␣'__main__':
␣␣␣␣print('Tic-Tac-Toe')

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

205

3) Testing the program
After reading the above program and running it in the Python shell, run the test functions from the
shell to see how the program works. The test functions provided are as follows, in order from top to
bottom.

test_turn()

test_board1()

test_board2()

test_board3()

test_log()

test_all()

4) Running the program
After running the above program, call the play() function from the Python shell and try playing tic-
tac-toe.

play()

Exercise 15-2 Relationship of functions in tic-tac-toe program

Extract defined functions in the tic-tac-toe program, and make a spreadsheet on the

relationship of functions as shown in the following figure.

 Make a table having function names in the 1st row and column,
 Mark cells with ‘↑’ whose column functions are called by the function shown in the

row.

By arranging rows and columns appropriately, marks can be placed lower than the diagonal

line.

 function 1 function 2 function 3
function 1
function 2 ↑
function 3 ↑ ↑

Exercise 15-3 Getting the game record
Extend the above program to collect the game record of the game in the play() function. You can also
replay the game record after the winner is determined.

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

206

15.6 Test of skills
Using the methods you have learned so far, try the following as a test of your skills.

 Create a GUI-based tic-tac-toe game instead of a CUI based one, using tkinter.

 By using classes, implement functions to control the turn, the board, the game record, etc. as
methods in the classes.

 Extend the game to be played by a computer on one side of the board, rather than by two
humans.

 Develop a similar program for the game of Reversi instead of tic-tac-toe.

15.7 Various topics related to program development

 What you can understand from a test
Computer programs usually have to work properly in a virtually infinite number of cases. For
example, the number of possible games of tic-tac-toe is quite large. For this reason, you must
consider the following points concerning tests:

 It is easy to see that a program that does not pass the test has a mistake in it; however,

 you must remember that if a program passes a test, it does not guarantee that it will run

properly in all cases where it is expected to have passed the test.

It is easier to test component functions than it is to test their combined functions. You can build more
confidence in your skill at using complex functions by building them with correctly working
components.

 Refactoring
There are two ways in which a program can be improved, as below
 Enhancing the functionality of the program
 Maintaining the functionality of the program, but rearranging how it is implemented in order to

make it easier to maintain and extend.
The latter kind of improvement is called “refactoring.” An example of this is reprogramming your
tic-tac-toe program using classes. There are several reasons why refactoring is necessary.
 Programs are used for a long time, so they must be easy to maintain.
 Also, the developers of the program may be replaced.
 There is a constant demand for additional functionality in programs.

15 Learning Program Development with Tic-Tac-Toe Next Chapter Table of Contents

207

 The V-model of software development
In the first half of the development of a program, even a small example like the tic-tac-toe program
you made above, the requirements of the final product (specifications) are clear. Then, you flesh out
the specifics of the program step by step, including the functions to be implemented. In the second
half of development, you repeatedly perform tests on non-interdependent functions in sequence,
which eventually leads to the conclusion of programming after many iterations.
This process is represented by a V-shape as shown in the figure below, and is called the V-model of
software development.
Because of the V-shape structure, the distance from design to implementation and testing is much
greater in the upper part of the V-shape. This means that inappropriate design in the upper part of the
V takes longer to be discovered in implementation and testing, and requires more diligent reworking.
There are two possible directions for successful software development detailed below. The latter is
called agile development.
 Define required specifications, and reduce reworking
 Narrow down the specifications and develop quickly, then add features if necessary.

Specifications
(“This is the software I want”)

It is not
supposed to be

like this
Creating value

through the
product

Backtracking: the further
up the line the greater
the impact

Design
Refinement in
stages Implementation

Build up from the bottom

Figure 15-5 The V-Model of Software Development

16 Academic Use of Python Next Chapter Table of Contents

208

16. Academic Use of Python

16.1 Learning goals of this chapter
One of the reasons why Python has attracted so much attention is that it offers a wide range of
libraries suitable for numerical computation, as well as for other academic applications. We will use
the following three libraries in this chapter to learn the basics of working with data (in NumPy and
pandas), as well as the basics of graphing (in Matplotlib).
Each of them is a quite sophisticated package, and you need to have some expertise in the fields in
which these packages are applied in order to fully utilize them, so you will learn only the basics here.

1. NumPy: A basic package for numerical computation in the field of science and technology
SciPy: A library for more advanced numerical computations

2. Matplotlib: A package for plotting data on graphs

3. pandas: a data analysis package
These are interrelated, as shown in the figure below.

Python

Matplotlib
NumPy

pandas

Plotting with DataFrame and
other plot methods

Creating a Series or
DataFrame from an ndarray

Plotting with the plot
method in pyplot

Creating a
DataFrame from
a dictionary that

has lists as its
values

Create an ndarray from a list

Plot a list or other data with
the plot method in pyplot

Figure 16-1 The relationship between NumPy, Matplotlib and pandas

16.2 Using a custom name when importing
The following custom names are often used for importing packages such as NumPy, Pandas,
Matplotlib. You will use these custom names in this text.

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

16 Academic Use of Python Next Chapter Table of Contents

209

16.3 NumPy
Python is a slow programming language, but NumPy is written in C, and can perform vector and
matrix operations very quickly.

 Generating multi-dimensional arrays
While Python uses lists to group data together, NumPy uses its own data format, the ndarray (aka
array).

1) Generating from a list
import numpy as np

data1 = [1, 2, 3]

arr1 = np.array(data1) # 1-dimensional data

data2 = [[1,2,3],[4,5,6]]

arr2 = np.array(data2)

2) Create an array in which all elements are zero
np.zeros(5) # A 1D array of with 5 elements

array([0., 0., 0., 0., 0.])

np.zeros((2,2)) # A 2D array of with a size of (2,2); note the double
parentheses ()

array([[0., 0.],

[0., 0.]])

a = np.array([[1,2,3],[4,5,6]])

np.zeros_like(a) # Same size as array a

array([[0, 0, 0],

[0, 0, 0]])

An array consisting only of 1's can be created using ones and ones_like.

 ndarray attributes
You can read up on your own about the following attributes of ndarrays.

 ndim：ndarray dimension

 shape: ndarray size
 dtype: Data type

import numpy as np

16 Academic Use of Python Next Chapter Table of Contents

210

arr2 = py.array([[1,2,3],[4,5,6]]

arr2.ndim

2

arr2.shape

(2,3)

arr2.dtype

dtype('Int32')

Note that while Python's integer types have no limit on the number of digits, ndarray uses a fixed-
length type that allows fast operations to be performed in order to speed up computation.

 Accessing ndarray elements
The elements of an ndarray can be accessed using [] in the same way as a list. These ndarrays also
start at an index of 0.

arr1 = np.array([1,2,3])

arr1[0]

1

arr1[1] = 1

arr1

array([1,1,3])

For multi-dimensional arrays you can also use [,] notation instead of [][].

arr2[0][0]

arr2[0,0]

 Slicing
ndarrays can be sliced in the same manner as lists can.

arr1[2:]

array([3])

Multi-dimensional arrays use the following notation: [:,:]

arr2[0:2,0:2]

array([1,2][4,5])

Note The result of slicing an ndarray is not a “copy,” but a reference to a part of the original ndarray.
If you assign a scalar value to a slice, it will be assigned to all elements.

16 Academic Use of Python Next Chapter Table of Contents

211

 ndarray operations
ndarray data can be used to perform arithmetic operations, powers, comparisons, and so on. These
operations are iterable over all elements in the ndarray.
Matrix products use the @ operator.
The value is applied to all the elements for scalar operations.

arr1 = np.array([1,2,3])

arr1*2

array([2,4,6])

arr1 + 1

array([2,3,4])

 Extraction of elements satisfying the conditions
You can extract the elements that satisfy the conditions in the following way.

arr1 = np.array([1,2,3,4,5])

cond = arr1 > 2 # Generate an array of elements that satisfy the
conditions

cond

array([False, False, True, True, True])

arr1[cond] # Slice based on the defined conditions

array([3, 4, 5])

 Matrix Calculations
Numpy makes it easy to perform mathematical matrix calculations on ndarrays.
 Matrix transposition (swapping rows and columns)

We will use the T attribute of ndarray.
 Matrix product

We will use the @ operator.
 Using the linalg (linear algebra) module: numpy.linalg (or np.linalg if you imported numpy

with the np alias) defines the following matrix functions.
 diag (diagonal elements),
 trace (sum of diagonal elements),
 det (determinant),
 eig (eigenvalue),
 inv (inverse),
 solve (to solve a linear equation)

16 Academic Use of Python Next Chapter Table of Contents

212

 Random numbers
Numpy allows you to generate random numbers in bulk.

 seed: sets the initial value for random number generation.

 rand: generates uniformly continuous random numbers.

 randn: generates random numbers that follow a standard normal distribution.

 randint: generates random numbers in a given range.

Here is an example of how to use it.

 np.random.rand(10)
Generates 10 floating-point random numbers with values between 0 and 1

 np.random.randn(5,5)
Generates random numbers that follow a standard normal distribution as a two-dimensional
array of size (5,5)

 np.random.permutation([1,2,3,4,5])
Generates a random permutation of the list [1,2,3,4,5]. range() and ndarray can be specified as
arguments. For multi-dimensional arrays, only the first index is replaced.

 np.random.randint(2,size=10)
Generates an integer random number in range(0,2) with a size of 10. Since we are able to
provide lower and upper limits, The size of the array can be specified using “size=”

16.4 Matplotlib

 backend: graph output environment
Matplotlib allows you to choose how to output the graph. In this section, we see how to use tkagg,
which is a tkinter-based environment for IDLE.
 In Matplotlib, the environment that actually outputs the graph is called a backend. There are

various backends available.
 tkagg is a backend that uses Tkinter to output graphs.
 In the IDLE environment, it is specified using the use() function after importing matplotlib.

import matplotlib

matplotlib.use('tkagg')

 The use() function must be specified before importing the matplotlib.pyplot plotting module.
 In IPython and Jupyter Notebook (which uses IPython), before using matplotlib, you can specify

the following, depending on the backend you want to use.

%matplotlib notebook

%matplotlib tk

16 Academic Use of Python Next Chapter Table of Contents

213

 Text output in Japanese
 The standard matplotlib font does not support Japanese characters, so they will be displayed

as boxes (□).
 The ttc font can now be used in matplotlib version 3.1 or later. If you are using this version or

a newer one, you do not need to install additional fonts 1.
 There are several ways to specify fonts, but here we show how to specify them all at once in

the program.
 If you have installed additional fonts, first delete the fontList.json in the .matplotlib folder in

the user's folder if it is old.

 Usage of fonts for OS in matplotlib is shown in Program 16-1, and execution result is shown

in Figure 16-2.

 For Mac user, comment out line 7, and uncomment line 10 in Program 16-1.

Program 16-1 matplotlib example（use_matplotlib_outline.py)

Raw Source Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

import␣matplotlib

#␣Set␣tkinter␣as␣the␣output␣destination␣before␣importing␣pyplot

matplotlib.use('tkagg')

import␣matplotlib.pyplot␣as␣plt

#␣Enable␣matplotlib␣to␣display␣Japanese␣characters.

#␣Yu␣Gothic␣can␣be␣used␣in␣matplotlib␣version␣3.1␣or␣later

matplotlib.rc('font',␣**{'family':'Yu␣Gothic'})

#␣For␣Mac␣User,␣try␣the␣following␣instead␣of␣the␣above␣line

#␣matplotlib.rc('font',␣**{'family':'Hiragino␣Maru␣Gothic␣Pro'})

#␣The␣following␣is␣an␣example␣plot

data␣=␣[1,2,3]

plt.plot(data)

plt.title('タイトル')

plt.show()

1 The following example uses Yu Gothic, but Yu Mincho, MS Gothic, MS Mincho, etc. can also be used.

16 Academic Use of Python Next Chapter Table of Contents

214

Figure 16-2 Execution of Program 16-1

 Setting the Title, Axis Labels, and Linestyle
 The function to set the title of the graph is title.
 The function to set the x-axis labels is xlabel.
 The function to set the y-axis labels is ylabel.
 The linestyle can be specified as an argument of the plot function.
 By specifying the color, and linestyle, and marker as strings
 By specifying the color, linestyle, linewidth, etc. as arguments.

 Example (the relevant part only)

plt.plot([1,2,3], 'k-') # A black solid line

plt.plot([2,3,4], 'r--') # A red dashed line

plt.plot([3,4,5], 'b--o') # A blue dashed line with circular markers (〇)

plt.title('Title')

plt.xlabel('Horizontal Axis ')

plt.ylabel('Vertical Axis ')

plt.show()

16 Academic Use of Python Next Chapter Table of Contents

215

 Example

1) use_matplotlib.py

Figure 16-3 Example of Matplotlib usage

Title
Series 1

Series 2

Series 3

Horizontal axis

Ve
rti

ca
l a

xi
s

16 Academic Use of Python Next Chapter Table of Contents

216

Program 16-2 use_matplotlib.py

Row Source code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

#␣The␣basic␣way␣to␣use␣matplotlib

import␣matplotlib

#␣set␣tkinter␣to␣use␣(as␣the␣output␣destination)␣before␣importing␣pyplot

matplotlib.use('tkagg')
import␣matplotlib.pyplot␣as␣plt

#␣Enable␣matplotlib␣to␣display␣Japanese␣characters.
#␣uncomment␣one␣apropriate␣for␣your␣environment

#␣For␣Windows
matplotlib.rc('font',␣**{'family':'Yu␣Gothic'})
#␣For␣Campus␣PC␣Terminal
#matplotlib.rc('font',␣**{'family':'IPAPGothic'})
#␣For␣macOS
#matplotlib.rc('font',␣**{'family':'Hiragino␣Maru␣Gothic␣Pro'})

#␣Draw␣a␣line␣graph␣with␣three␣lines

plt.plot([1,2,3],'k-',label='Series␣1')
plt.plot([2,3,4],'r--',label='Series␣2')
plt.plot([3,4,5],'b--o',label='Series␣3')

plt.title('Title')
plt.xlabel('Horizontal␣Axis␣')
plt.ylabel('Vertical␣Axis␣')
plt.legend()␣#␣Legend
plt.show()

2) Drawing a scatter plot
A scatter plot can be drawn by giving the x-axis data and y-axis data to the scatter function of pyplot.

• use_matplotlib_scatter.py

16 Academic Use of Python Next Chapter Table of Contents

217

•

Figure 16-4 Drawing a scatter plot

Program 16-3 use_matplotlib_scatter.py

Row Source code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

#␣Draw␣a␣scatter␣plot␣with␣matplotlib

import␣matplotlib

matplotlib.use('tkagg')
import␣matplotlib.pyplot␣as␣plt
import␣numpy␣as␣np

#␣Enable␣matplotlib␣to␣display␣Japanese␣characters.
#␣uncomment␣one␣apropriate␣for␣your␣environment

#␣For␣Windows
matplotlib.rc('font',␣**{'family':'Yu␣Gothic'})
#␣For␣Campus␣PC␣Terminal
#matplotlib.rc('font',␣**{'family':'IPAPGothic'})
#␣For␣macOS
#matplotlib.rc('font',␣**{'family':'Hiragino␣Maru␣Gothic␣Pro'})

#␣Create␣random␣data

datax␣=␣np.random.randn(100)
datay␣=␣datax␣+␣np.random.randn(100)*0.3

#␣Draw␣a␣scatter␣plot.

plt.scatter(datax,datay,label='Data1')

#␣Create␣another␣set␣of␣data

Title
Data 1
Data 2

Horizontal axis

Ve
rti

c

16 Academic Use of Python Next Chapter Table of Contents

218

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

#␣
datax␣=␣np.random.randn(100)
datay␣=␣0.6*datax␣+␣np.random.randn(100)*0.4

#␣Specify␣the␣color,␣then␣create␣a␣scatter␣plot

plt.scatter(datax,datay,color='red',label='Data2')

#␣Fill␣in␣the␣title,␣axis␣labels,␣and␣legend

plt.title('Title')
plt.xlabel('Horizontal Axis ')
plt.ylabel('Vertical Axis ')
plt.legend()

#␣Display

plt.show()

•

3) Drawing a Histogram
You can draw a histogram by feeding the data for it into the hist function of pyplot. The number of
bars is automatically adjusted, but it can also be specified.
use_matplotlib_hist.py

Figure 16-5 Drawing a Histogram

Histogram

Data value

Fr
eq

ue
nc

y

16 Academic Use of Python Next Chapter Table of Contents

219

Program 16-4 use_matplotlib_hist.py

Row Source code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

#␣Draw␣a␣histogram␣with␣matplotlib

import␣matplotlib

#␣Set␣tkinter␣as␣the␣output␣destination␣before␣importing␣pyplot

matplotlib.use('tkagg')
import␣matplotlib.pyplot␣as␣plt
import␣numpy␣as␣np

#␣Enable␣matplotlib␣to␣display␣Japanese␣characters.
#␣uncomment␣one␣apropriate␣for␣your␣environment

#␣For␣Windows
matplotlib.rc('font',␣**{'family':'Yu␣Gothic'})
#␣For␣Campus␣PC␣Terminal
#matplotlib.rc('font',␣**{'family':'IPAPGothic'})
#␣For␣macOS
#matplotlib.rc('font',␣**{'family':'Hiragino␣Maru␣Gothic␣Pro'})

#␣Create␣a␣histogram

data␣=␣np.random.randn(1000)
plt.hist(data,bins=20)

#␣Set␣the␣title␣and␣axis␣labels

plt.title('Histogram')
plt.xlabel('Value of Data')
plt.ylabel('Data Frequency')

#␣Display

plt.show()

4) Drawing Multiple Graphs
Matplotlib allows you to draw multiple graphs side by side in the following manner.
 Obtain a Figure object using pyplot's figure function.
 Add a subplot to the Figure object with pyplot's add_subplot function. Save the result to a

variable.
 Adjust the spacing of the subplots with pyplot's subplots_adjust function.

16 Academic Use of Python Next Chapter Table of Contents

220

 Draw each subplot with the plot, scatter, and hist functions.
 Add the title and axis labels with set_title, set_xlabel, and set_ylabel. Make sure the function

names are correct.
use_matplotlib_subplot.py

Figure 16-6 Drawing multiple graphs

Program 16-5 use_matplotlib_subplot.py

Row Source code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

#␣Example␣using␣subplot

import␣matplotlib
matplotlib.use('tkagg')
import␣matplotlib.pyplot␣as␣plt
import␣numpy␣as␣np

#␣Enable␣matplotlib␣to␣display␣Japanese␣characters.
#␣uncomment␣one␣apropriate␣for␣your␣environment

#␣For␣Windows
matplotlib.rc('font',␣**{'family':'Yu␣Gothic'})
#␣For␣Campus␣PC␣Terminal
#matplotlib.rc('font',␣**{'family':'IPAPGothic'})
#␣For␣macOS
#matplotlib.rc('font',␣**{'family':'Hiragino␣Maru␣Gothic␣Pro'})

#␣Create␣3␣subplots,␣and␣adjust␣the␣spacing

Line graph Scatter plot

Time Attribute 1
Histogram

Data value

Fr
eq

ue
nc

y
Lo

ca
tio

n

At
tri

bu
te

 2

Data 1
Data 2

16 Academic Use of Python Next Chapter Table of Contents

221

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

fig␣=␣plt.figure()
ax1␣=␣fig.add_subplot(2,2,1)
ax2␣=␣fig.add_subplot(2,2,2)
ax3␣=␣fig.add_subplot(2,2,3)
plt.subplots_adjust(hspace=0.5,␣wspace=␣0.5)

#␣First,␣output␣a␣line␣graph
#␣
data␣=␣np.random.randn(100).cumsum()
ax1.plot(data)
ax1.set_title('Line Graph')
ax1.set_xlabel('Time')
ax1.set_ylabel('Place')

#␣Second,␣output␣a␣scatter␣plot

datax␣=␣np.random.randn(100)
datay␣=␣datax␣+␣np.random.randn(100)*0.3
ax2.scatter(datax,datay,label='Data1')

datax␣=␣np.random.randn(100)
datay␣=␣0.6*datax␣+␣np.random.randn(100)*0.4
ax2.scatter(datax,datay,color='red',label='Data2')

ax2.set_title('Scatter Plot')
ax2.set_xlabel('Attribute1')
ax2.set_ylabel('Attribute2')
ax2.legend()

#␣Third,␣output␣a␣histogram

data␣=␣np.random.randn(1000)
ax3.hist(data,bins=20)

ax3.set_title('Histogram')
ax3.set_xlabel('Value of Data')
ax3.set_ylabel('Data Frequency')

#␣Display␣the␣graphs
#␣
plt.show()

16 Academic Use of Python Next Chapter Table of Contents

222

16.5 pandas

 Dataframe
The following are Pandas-specific data formats.
 One-dimensional Series
 Two-dimensional DataFrame

A DataFrame has a row name (index) and a column name (column).

Data

Column Name

Row
 N

am
e

 Create a DataFrame

1) Create from an array in numpy
import numpy as np

import pandas as pd

d = np.array([[1,2,3],[4,5,6],[7,8,9]])

df = pd.DataFrame(d,columns=['a' ,'b' ,'c'])

df

 a b c

0 1 2 3

1 4 5 6

2 7 8 9

The column and row names can be found using:

df.columns

df.index

respectively.

16 Academic Use of Python Next Chapter Table of Contents

223

2) Create from a dictionary where the values are lists.
df = pd.DataFrame({'a': [1,4,7], 'b':[2,5,8], 'c':[3,6,9]})

df

 a b c

0 1 2 3

1 4 5 6

2 7 8 9

A dictionary is a Python data type that consists of a set of key-value pairs.

dic = {'a':1, 'b':2, 'c':3}

You can search for values using the keys.

dic['a']

1

 Importing csv files
 You can create a DataFrame by reading data A a spreadsheet saved as a csv file.

df = pd.read_csv("file name")

 The first row is treated as the column name.
 If you want to read all the data, specify the following options.

header = None or names = [list of column names]

 To read a file containing Japanese characters on Windows, specify the Japanese character
encoding.

encoding = 'SHIFT-JIS'

 If you use Japanese character encoding for column names, an error will occur when specifying
data in column names.

 sample.csv is show below.

Program 16-6 read the data with the follow steps (use_read_csv.py)
1. Import numpy module.
2. Import pandas module.
3. Import os module.
4. show the current working folder, and then get folder path. If sample.csv is located in the shown

folder, just type ‘.’, otherwise give the folder path.

folderpath␣=␣input("Enter␣folder␣path:␣")

5. Use os.chdir to change to the folder with the csv file.

16 Academic Use of Python Next Chapter Table of Contents

224

os.chdir(folderpath)

6. Import the csv file

df = pd.read_csv("sample.csv")

7. Show the read data and their summary with the following:
print(df)

print(df.describe())

Note: pd.read_csv does not seem to be able to handle Japanese file names correctly.

Table 16-1 sample.csv

ID Japanese English Mathematics Science Social Studies

A 91 69 100 82 94

B 80 60 45 52 46

C 92 92 76 73 97

D 58 50 60 71 77

E 58 75 96 96 94

F 92 89 86 82 74

G 97 87 59 55 56

H 62 73 52 60 74

I 73 85 41 49 75

J 61 61 49 51 63

K 49 56 58 63 85

L 42 50 56 59 78

M 52 66 50 49 43

N 88 72 52 64 48

O 72 75 56 54 80

P 94 90 61 58 67

Q 95 85 72 68 43

R 70 85 68 62 81

S 74 85 96 96 53

T 65 53 64 67 75

By executing the program we obtain the following:

 ID Japanese English Mathematics Science Social Studies Total

0 A 91 69 100 82 94 436

1 B 80 60 45 52 46 283

2 C 92 92 76 73 97 430

3 D 58 50 60 71 77 316

4 E 58 75 96 96 94 419

5 F 92 89 86 82 74 423

6 G 97 87 59 55 56 354

16 Academic Use of Python Next Chapter Table of Contents

225

7 H 62 73 52 60 74 321

8 I 73 85 41 49 75 323

9 J 61 61 49 51 63 285

10 K 49 56 58 63 85 311

11 L 42 50 56 59 78 285

12 M 52 66 50 49 43 260

13 N 88 72 52 64 48 324

14 O 72 75 56 54 80 337

15 P 94 90 61 58 67 370

16 Q 95 85 72 68 43 363

17 R 70 85 68 62 81 366

18 S 74 85 96 96 53 404

19 T 65 53 64 67 75 324

 Japanese English Mathematics Science Social Studies Total

count 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000

mean 73.250000 72.900000 64.850000 65.550000 70.150000 346.700000

std 17.149114 14.164076 17.547754 14.195904 17.141132 53.425896

min 42.000000 50.000000 41.000000 49.000000 43.000000 260.000000

25% 60.250000 60.750000 52.000000 54.750000 55.250000 314.750000

50% 72.500000 74.000000 59.500000 62.500000 74.500000 330.500000

75% 91.250000 85.000000 73.000000 71.500000 80.250000 378.500000

max 97.000000 92.000000 100.000000 96.000000 97.000000 436.000000

16 Academic Use of Python Next Chapter Table of Contents

226

Program 16-6 use_read_csv.py

Row Source code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

import␣numpy␣as␣np
import␣pandas␣as␣pd
import␣os

#␣Navigate␣to␣the␣folder␣with␣the␣data

#␣pandas␣does␣not␣handle␣Japanese␣file␣names␣well

print("Current folder: "+os.getcwd())
folderpath␣=␣input("Enter␣folder␣path:␣")
os.chdir(folderpath)
df␣=␣pd.read_csv("sample.csv")

#␣Sum␣horizontally␣(axis␣=␣1)␣and␣create␣a␣column␣called␣Total
df['Total']␣=␣df.sum(axis=1␣numeric_only=True)
#␣Display␣the␣DataFrame␣df
print(df)
#␣Display␣summary␣statistics␣for␣DataFrame␣df
print(df.describe())

 Display summary statistics
The describe method can be used to display summary statistics.

 Plotting Data in Pandas
Plotting in Pandas is done by calling the plot method in the DataFrame. (use_DadaFrame_plot.py)

df.plot() # Line graph

df.plot.bar(stacked=True) # stacked bar graph

df.plot.scatter('Japanese','English') # Scatter plot with defined columns

df['Japanese'].plot.hist() # Histogram with defined columns

16 Academic Use of Python Next Chapter Table of Contents

227

Figure 16-7 Graphing with pandas

Program 16-7 use_DadaFrame_plot.py

Row Source code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

import␣numpy␣as␣np
import␣pandas␣as␣pd
import␣os
import␣matplotlib
matplotlib.use('tkagg')
import␣matplotlib.pyplot␣as␣plt

#␣Navigate␣to␣the␣folder␣with␣the␣data

#␣set␣adequate␣path␣for␣your␣environment
folderpath␣=␣input("Enter␣folder␣path:␣")
os.chdir(folderpath)

df␣=␣pd.read_csv("sample.csv")

#␣Line␣graph

16 Academic Use of Python Next Chapter Table of Contents

228

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

df.plot()
print("Close␣window␣to␣proceed")
plt.show()

#␣Stacked␣bar␣graph

df.plot.bar(stacked=True)
print("Close␣window␣to␣proceed␣")
plt.show()

#␣Scatter␣plot

df.plot.scatter('Japanese','English')
print("Close␣window␣to␣proceed␣")
plt.show()

#␣Sum␣horizontally␣(axis␣=␣1)␣and␣create␣a␣column␣called␣Total
#␣Specify numeric_only␣parameter␣to␣skip␣ID␣column.
df['Total']␣=␣df.sum(axis=1␣numeric_only=True)

#␣Histogram

df['Total'].plot.hist()
print("Close␣window␣to␣proceed␣")
plt.show()

16.6 Practice task
np_matplotlib.py is a program that uses Numpy and matplotlib to draw graphs of powers of 1 to 4.

Exercise 16-1 Modify it to draw a approximation of a saw wave with sum of trigonometric

functions.
In Numpy (np) you can use np.pi for pi and np.sin() for the sine function.

16 Academic Use of Python Next Chapter Table of Contents

229

Figure 16-8 A power graph and an approximation of a sawtooth wave by summing
trigonometric functions

Program 16-8 Drawing graphs of powers of 1 to 4 with Numpy and Matplotlib
(use_matplotlib_power_function.py)

Row Source code Notes
1
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19

20
21
22
23
24
25

#␣Example␣of␣plotting␣data␣in␣Numpy
import␣matplotlib
matplotlib.use('tkagg')
import␣matplotlib.pyplot␣as␣plt
import␣numpy␣as␣np
#␣For␣Windows
matplotlib.rc('font',␣**{'family':'Yu␣Gothic'})
#␣For␣Campus␣PC␣Terminal
#matplotlib.rc('font',␣**{'family':'IPAPGothic'})
#␣For␣macOS
#matplotlib.rc('font',␣**{'family':'Hiragino␣Maru␣Go
thic␣Pro'})

#␣Plot␣x␣to␣the␣1st␣to␣4th␣power

steps␣=␣100
order␣=␣4
maxx␣=␣2

#␣Create␣a␣matrix␣with␣a␣steps␣row␣and␣order␣column␣
with␣element␣values␣set␣to␣0

datalist␣=␣np.zeros((steps,␣order))

#␣List␣for␣the␣legend

legend_label=[]

Preparing␣matplotlib

Preparing␣numpy
Setting␣the␣font␣in␣matpl
otlib

Power of X Fourier approximation of a saw wave
Sum up to term 1

Sum up to term 2

Sum up to term 3

Sum up to term 4

Sum up to term 5

Sum up to term 6

Sum up to term 7

Sum up to term 8

Angle

1st power

2nd power

3rd power

4th power

Am
pl

itu
de

16 Academic Use of Python Next Chapter Table of Contents

230

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

#␣Create␣a␣value␣for␣x␣in␣linspace

x␣=␣np.linspace(0,maxx,steps)

#␣For␣each␣column,␣calculate␣everything␣at␣once
#␣
for␣j␣in␣range(1,order+1):
␣␣␣␣datalist[:,j-1]␣=␣x**j
␣␣␣␣legend_label.append('Power␣of'␣+␣str(j))

#␣Plot

plt.plot(x,␣datalist)
plt.title('Power␣function␣of␣x')
plt.xlabel('x')
plt.ylabel('x**n')
plt.legend(legend_label)
plt.show()

References
 Wes McKinney: Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython,

O'Reilly Media, 2nd Ed. (2017)
The tutorial pages on the following sites are helpful.

 NumPy website
http://www.numpy.org/index.html

 Pandas website
https://pandas.pydata.org/

 Matplotlib website
https://matplotlib.org/

 TkAgg button controls, etc. (hard to find)
https://matplotlib.org/users/navigation_toolbar.html

17 Review, and Where to Go From Here Next Chapter Table of Contents

231

17. Review, and Where to Go From Here

17.1 Learning goals of this chapter
1. This is the last part of the course. In this chapter, we will look back at what we have learned so

far.

2. We learned how to use the IDLE integrated environment with Python exercises. We chose IDLE
because it has limited functionality and is easy to learn, but we will also learn about what else is
available here.

3. We will then think about how to apply what you have learned.

17.2 Reflection
Please reflect on your learning by comparing your skills before and after this class.

• What are you now able to do?
• How was it different from your expectations before the course?

• What kind of learning objectives will you set in the future?

17.3 Shuhari (three stages of mastery) - “Obey,
Digress, Separate”

At the end of the semester, we asked students who had taken this class for their opinions. Several of
them said, “I can read Python programs now, but I don't feel like I can write them myself.” In fact,
“being able to read” is a big step forward, and if you can run the program while understanding it, it
will be easy to modify it a little. As you gain more experience, you will gradually be able to write
your own programs.
In Japanese martial arts, we use the term Shuhari (lit. “Obey, Digress, Separate”). In programming, if
you read the programs written by your predecessors, execute them, play around with them by
changing them slightly, and apply them, you will accumulate knowledge and eventually be able to do
creative programming.

17.4 Python environments
In this class, we used IDLE as an integrated Python environment because of its simple structure and
ease of use for beginners. IDLE is said to be a “throw-away” environment because of its simplicity.
Python, on the other hand, has a variety of usage environments.

• Jupyter Notebook and Spider are included in Anaconda.

• These environments run in IPython, a more interactive execution environment than the
Python shell.

• A style of editors and command line execution suited to Python (python, IPython) is also

17 Review, and Where to Go From Here Next Chapter Table of Contents

232

used.

17.5 Adding modules
One of the main features of Python is that many people have developed a variety of libraries in the
language. There is a lot of information on the web and elsewhere about specific application
examples, but in order to use them you need to add live modules: in Anaconda you can use the conda
command to add modules that are not covered by anaconda, or the pip command if you use Python
as a distribution package. In Anaconda, use the conda command, and if you are using Python as a
distribution package, use the pip command to add modules.

17.6 Topics not covered in this book
Python is a programming language with a wide range of applications, but each application requires
knowledge of the relevant area of application. NumPy and pandas, which were introduced in this
book, cannot be used without knowledge of numerical computation and statistical processing. For
this reason, we have not covered some topics that require knowledge of related fields. The following
are some examples.
While the World Wide Web (WWW) is a very important area to apply one's programming skills, this
requires knowledge of different programming languages such as HTML to write Webpages or SQL
to manipulate databases. As such, WWW is not covered here as it can cause confusion for beginner
students learning Python.
When thinking of specific things related to programming, things like the following come to mind:
Python boasts a host of libraries with thorough and widely-publicized documentation and tutorials.
Students should study things that align with their interests.

 Network and web-related topics

 Multimedia topics such as image processing

 Topics related to databases

 Topics related to the IoT as it pertains to microcomputer boards and electronic manufacturing

 Programming for geographical information systems

 Topics related to artificial intelligence such as machine learning

17.7 Gratitude and repayment - how to make use of
what you have learned

There are many people who do carpentry at home. If you can do carpentry, you can solve problems
in your home by making simple furniture and other DIY things. On the other hand, working with
metal, which requires machines such as drilling machines, lathes, and milling machines, can be a bit
more challenging. So, there are not many people who try to make DIY metal products19F20F

1.

1When I was in junior high school, me and a friend of mine whose family owned an ironworks thought about making a bicycle

together. What you think that you can do depends on the environment you are in.

17 Review, and Where to Go From Here Next Chapter Table of Contents

233

If you are able to program computers, not just in Python, we believe that you will be able to look at
things in a way that says, “I should be able to do this with a computer.” If this is the case for you,
we urge you to think about how you can contribute to society through computers and programming.
Computers, programming languages, and other software, including Python, are “other people’s
creations;” they are a gift from many engineers and programmers, so to speak. If you enjoy
programming, be thankful for this and try to give back.

References
We will suggest a few publications to help students continue their studies. Being able to write
programs that are easy to read is a very important skill. Reference [24] teaches how to do that while
also introducing various tools that help support Python programming. One of Python's most
attractive features is the wealth of libraries for all sorts of applications. Reference [25] serves as a
good introductory guide to these libraries. In this book, we also dealt with an example where we
created voice files back in the column section of the chapter that dealt with trigonometric functions.
Reference [26] covers how to handle sounds in Python and explains the acoustics knowledge and
digital signal treatment methods necessary for doing so.

 Al Sweigart: Beyond the Basic Stuff with Python，No Starch Press (2020)

 松田晃一：Python ライブラリの使い方 第 2 版，カットシステム (2023, in Japanese)

 青木直史：Python で始める音のプログラミング，オーム社 (2022, in Japanese)

18 Appendix: Useful notes on Python and IDLE Next Chapter Table of Contents

234

18. Appendix: Useful notes on Python and IDLE

18.1 Useful notes on Python
 help() function:Allows you to read the description of a module or function supplied as an

argument.
 globals(): Displays globally defined variables and other information.
 id(x): Shows the identity of object x. You can check if different variables point to the same

object.
 type(x): Shows the type of object x. You can check what type of object is assigned to the

variable.

18.2 Pay attention to file names
Do not create files with file names that are the same as modules to be imported.
Python searches for modules in a specific folder. The same folder as the file to be executed is the
target of the module search. For example, if you are using the turtle module and you have a file
named turtle.py, Python will incorrectly assume that this file is a module.

18.3 IDLE notes: Python shell hotkeys
 Ctrl-C: Stop a running program
 Ctrl-D: (when input in the terminal) End file
 Note: In the shell interactive mode, this will exit the shell.

 TAB key:Smart indent
 If pressed after a character, it will display auto-complete suggestions

 ALT-P: Go back in history (you can reuse lines you have already typed, etc. P stands for
previous)

 ALT-N: Go forward in history (you can reuse lines you've already typed; N stands for next)
 Script execution
 After executing a script created in the editor, the environment will be in the interactive

mode. You can call functions and check global variables in the script.

18.4 IDLE notes: Editor

Hotkeys
 Ctrl-]: Indent the selected range
 Ctrl-[: Unindent the indentation of the selected range

18 Appendix: Useful notes on Python and IDLE Next Chapter Table of Contents

235

 ALT-3: Comment out the selected range
 ALT-4: Undo comment out for the selected range
 Ctrl-BS: Delete the word to the left
 Ctrl-Del: Delete the word to the right

The following hotkey operations generally available in Windows are also useful.
 Ctrl-X: Cut
 Ctrl-C: Copy
 Ctril-V: Paste

 Show Line Number
Since Python 3.8, the IDLE editor can show line numbers next to the source code, by selecting Show
Line Number from either the Options menu, or by selecting it under the General tab in Configure
IDLE menu.

Also, command line arguments can now be passed at runtime by selecting the Run ... Customized
menu. (Command line arguments are not explained in this text.)

19 Appendix: How to Read Error Messages in IDLE/Python Next Chapter Table of Contents

236

19. Appendix: How to Read Error Messages in
IDLE/Python

As a program gets more complex, even a simple mistake in copying and executing the source code
can result in a variety of errors. There are two ways that errors are displayed in IDLE:
 Syntax errors in the source code displayed by the IDLE editor
 Run-time errors displayed by the Python shell

Let's take a look at some of the most common errors and what they mean1. An error occurs when the
computer that interprets and executes the program is unable to continue processing. In many cases,
the error occurs in a different place than the actual error caused by the programmer. You need to read
error messages and think about what they mean.

19.1 Errors displayed by the IDLE editor

Syntax errors are checked before execution and displayed by the IDLE editor.

 Example Program 1 - Missing Colon
Program 19-1 missing_colon_error.py

Row Source code Notes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

#␣This␣code␣will␣give␣you␣some␣experience␣with␣errors
#␣There␣is␣no␣colon␣(:)␣at␣the␣end␣of␣line␣11

def␣func1(x):
␣␣␣␣x␣=␣x*x
␣␣␣␣return␣x

#␣There␣is␣no␣colon␣(:)␣at␣the␣end␣of␣the␣next␣line

def␣func2(y,␣x)
␣␣␣␣xx␣=␣func1(x)
␣␣␣␣return␣y␣+␣xx

#␣Main␣from␣here
a␣=␣1
b␣=␣2
print(a,␣b,␣func2(a,␣b))

You need to use a colon
(:) at the end here

In this example, the dialog “expected ‘:’ ” will be displayed and the offending part of the code will be

1 Shown messages may depend on the versions of Python and IDLE. Examples given in this chapter uses Python

3.10.12 and IDLE Shell 3.10.12．

19 Appendix: How to Read Error Messages in IDLE/Python Next Chapter Table of Contents

237

shown in red, as shown in the following figure.

 Example Program 2 - Missing Parentheses
Program 19-2 missing_parentheses_error.py

Row Source code Notes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

16
17
18

#␣This␣code␣will␣give␣you␣some␣experience␣with␣errors
#␣Missing␣a␣closing␣parenthesis

def␣func1(x):
␣␣␣␣x␣=␣x*x
␣␣␣␣return␣x

#␣

def␣func2(y,␣x):
␣␣␣␣xx␣=␣func1(x)
␣␣␣␣return␣y␣+␣xx

#␣The␣main␣part␣starts␣here;␣the␣last␣line␣is␣missing␣a␣cl
osing␣parenthesis
a␣=␣1
b␣=␣2
print(a,␣b,␣func2(a,␣b)

Missing a closing
parenthesis

In this example, the dialog “’(’ was never closed ” is shown, and the corresponding part is displayed
in red, as shown in the following figure.

19 Appendix: How to Read Error Messages in IDLE/Python Next Chapter Table of Contents

238

 Example Program 3 - Indentation Offset (Insufficiency)
Program 19-3 insufficient_indentation_error.py

Row Source code Notes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

#␣This␣code␣will␣give␣you␣some␣experience␣with␣errors
#␣Indentation␣offset

def␣func1(x):
␣␣␣␣x␣=␣x*x
␣␣␣␣return␣x

#␣The␣indent␣of␣line␣13␣is␣offset

def␣func2(y,␣x):
␣␣␣␣xx␣=␣func1(x)
␣␣␣return␣y␣+␣xx

#␣Main␣from␣here
a␣=␣1
b␣=␣2
print(a,␣b,␣func2(a,␣b))

This indent needs one more
space

In this example, the indentation of line 13 is missing one character, so the message “unindent does
not match outer indentation level” is displayed. It warns that the indentation is insufficient, and that
there is no matching level.

19 Appendix: How to Read Error Messages in IDLE/Python Next Chapter Table of Contents

239

 Example Program 4 - Indentation Offset (Excess)
Program 19-4 excess_indentation_error.py

Row Source code Notes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

#␣This␣code␣will␣give␣you␣some␣experience␣with␣errors
#␣Indentation␣offset

def␣func1(x):
␣␣␣␣x␣=␣x*x
␣␣␣␣return␣x

#␣The␣indent␣of␣line␣13␣is␣offset

def␣func2(y,␣x):
␣␣␣␣xx␣=␣func1(x)
␣␣␣␣␣return␣y␣+␣xx

#␣Main␣from␣here
a␣=␣1
b␣=␣2
print(a,␣b,␣func2(a,␣b))

There is an extra space
here

This time the indentation has one character too many, so the error says “unexpected indent.” This can
be interpreted to mean that the indentation is unexpected because there is no block that requires
further indentation.

19 Appendix: How to Read Error Messages in IDLE/Python Next Chapter Table of Contents

240

19.2 Errors displayed in Python shell when executing
code

 Example Program 5 - Referencing an Undefined
Variable

Program 19-5 referencing_undefined_variable_error.py

Row Source code Notes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

#␣This␣code␣will␣give␣you␣some␣experience␣with␣errors
#␣Line␣6␣refers␣to␣a␣variable␣that␣is␣not␣defined

def␣func1(x):
␣␣␣␣x␣=␣xx␣#␣This␣variable␣does␣not␣exist
␣␣␣␣return␣x

def␣func2(y,␣x):
␣␣␣␣xx␣=␣func1(x)
␣␣␣␣return␣y␣+␣xx

#␣Main␣from␣here
a␣=␣1
b␣=␣2
print(a,␣b,␣func2(a,␣b))

Refers to undefined
variable xx

In this example, the Python shell displays the following. Since the error is occurring in the function
definition, the traceback will follow the call to the error location. On line 6, it says “NameError:
name 'xx' is not defined. Did you mean: 'x'?,” indicating that the variable called xx is not defined.

19 Appendix: How to Read Error Messages in IDLE/Python Next Chapter Table of Contents

241

Traceback (most recent call last):
 File "M:\Documents\Python Scripts\error-ex1.py", line 16, in <module>
 print(a, b, func2(a, b))
 File "M:\Documents\Python Scripts\error-ex1.py", line 10, in func2
 xx = func1(x)
 File "M:\Documents\Python Scripts\error-ex1.py", line 6, in func1
 x = xx # This variable does not exist
NameError: name 'xx' is not defined. Did you mean: 'x'?
>>>

 Example Program 6 - Wrong Argument Type
Program 19-6 wrong_argument_type_error.py

Row Source code Notes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

#␣This␣code␣will␣give␣you␣some␣experience␣with␣errors
#␣When␣calling␣math.sin(),␣the␣argument␣is␣a␣string

import␣math
def␣func1(x):
␣␣␣␣xx␣=␣math.sin(x)
␣␣␣␣return␣xx

def␣func2(y,␣x):
␣␣␣␣xx␣=␣func1(x)
␣␣␣␣return␣y␣+␣xx

#␣Main␣from␣here
a␣=␣1
b␣=␣"2"
print(a,␣b,␣func2(a,␣b))

The value of x is the
string "2".

set b a string "2" and
pass to func2

In this example, the string “2” is passed as an argument to call math.sin(), and the message
“TypeError: must be real number, not str” is displayed.

Traceback (most recent call last):
 File "M:\Documents\Python Scripts\error-ex2.py", line 17, in <module>
 print(a, b, func2(a, b))
 File "M:\Documents\Python Scripts\error-ex2.py", line 11, in func2
 xx = func1(x)
 File "M:\Documents\Python Scripts\error-ex2.py", line 7, in func1
 xx = math.sin(x)
TypeError: must be real number, not str
>>>

19 Appendix: How to Read Error Messages in IDLE/Python Next Chapter Table of Contents

242

 Example Program 7 - Incorrect Indentation in a Class
Program 19-7 incorrect_indentation_in_class_error.py

Row Source code Notes
1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20
21

#␣This␣code␣will␣give␣you␣some␣experience␣with␣errors
#␣Indentation␣within␣a␣class

import␣math
import␣tkinter␣as␣tk
class␣MyFrame(tk.Frame):
␣␣␣␣def␣__init__(self,␣master=None):
␣␣␣␣␣␣␣␣super().__init__(master)
␣␣␣␣␣␣␣␣self.b␣=␣tk.Button(self,␣text="Try!",command=self.do)
␣␣␣␣␣␣␣␣self.b.grid(row=0,␣column=0)

#␣The␣indent␣below␣is␣one␣level␣too␣deep

␣␣␣␣␣␣␣␣def␣do(self):
␣␣␣␣␣␣␣␣␣␣␣␣self.b.configure(text="Did")

root=␣tk.Tk()
f␣=␣MyFrame(root)
f.pack()
tk.mainloop()

This method will
end up in the
definition of the
__init__ method.

This example uses a tkinter class definition that extends the Frame class, but the
indentation of the “do” method is one level too deep. This is why MyFrame is
assumed to have no attribute called do when called as a button callback
function. Also, the creation of the button widget b fails, so only the window of
tkinter is displayed, as shown on the right.

Traceback (most recent call last):
 File "M:/Documents/Python Scripts/error-ex3.py", line 20, in <module>
 f = MyFrame(root)
 File "M:/Documents/Python Scripts/error-ex3.py", line 10, in __init__
 self.b = tk.Button(self, text="Try!", command=self.do)
AttributeError: 'MyFrame' object has no attribute 'do'. Did you mean: '_do'?
>>>

19 Appendix: How to Read Error Messages in IDLE/Python Next Chapter Table of Contents

243

 Example Program 8 - Incorrect Optional Argument
Program 19-8 incorrect_optional_argument_error.py

Row Source code Notes
1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18

#␣This␣code␣will␣give␣you␣some␣experience␣with␣errors
#␣Incorrect␣widget␣option

import␣math
import␣tkinter␣as␣tk
class␣MyFrame(tk.Frame):
␣␣␣␣def␣__init__(self,␣master=None):
␣␣␣␣␣␣␣␣super().__init__(master)
␣␣␣␣␣␣␣␣self.b␣=␣tk.Button(self,␣text="Try!",␣commend=self.do)
␣␣␣␣␣␣␣␣self.b.grid(row=0,␣column=0)
␣␣␣␣def␣do(self):
␣␣␣␣␣␣␣␣self.b.configure(text="Did")

root=␣tk.Tk()
f␣=␣MyFrame(root)
f.pack()
tk.mainloop()

it says "commend"

This example uses a class definition that extends the Frame class in tkinter, but
the optional argument for the button widget in line 10 is spelled incorrectly. The
creation of the button widget b will fail, so only the tkinter window will be
displayed as shown in the figure on the right. It is difficult to see where the error
occurs because it is in the tkinter module, but from the error code ‘unknown
option “-commend”’ you can see that the error occurs when calling line 10, and
that an option is wrongly specified.

Traceback (most recent call last):
 File "M:/Documents/Python Scripts/error-ex4.py", line 17, in <module>
 f = MyFrame(root)
 File "M:/Documents/Python Scripts/error-ex4.py", line 10, in __init__
 self.b = tk.Button(self, text="Try!", commend=self.do)
 File "M:\anaconda3\lib\tkinter__init__.py", line 2645, in __init__
 Widget.__init__(self, master, 'button', cnf, kw)
 File "M:\anaconda3\lib\tkinter__init__.py", line 2567, in __init__
 self.tk.call(
_tkinter.TclError: unknown option "-commend"
>>>

Traceback (most recent call last):
 File "M:/Documents/Python Scripts/error-ex4.py", line 17, in <module>
 f = MyFrame(root)
 File "M:/Documents/Python Scripts/error-ex4.py", line 10, in __init__

19 Appendix: How to Read Error Messages in IDLE/Python Next Chapter Table of Contents

244

 self.b = tk.Button(self, text="Try!", commend=self.do)
 File "M:\anaconda3\lib\tkinter__init__.py", line 2645, in __init__
 Widget.__init__(self, master, 'button', cnf, kw)
 File "M:\anaconda3\lib\tkinter__init__.py", line 2567, in __init__
 self.tk.call(
_tkinter.TclError: unknown option "-commend"
>>>

 Example Program 9 - Errors within Functions
Program 19-9 error-in-function.py

Row Source Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

#␣Error␣that␣occurs␣where␣the␣function␣is␣called
def␣fun1(x):
␣␣␣␣"Returns␣the␣absolute␣value"
␣␣␣␣return␣abs(x)
def␣fun2(x,␣y):
␣␣␣␣"Returns␣the␣absolute␣value␣of␣the␣sum␣of␣the␣two␣arguments"
␣␣␣␣z␣=␣x␣+␣y
␣␣␣␣return␣fun1(z)
#␣Main␣program␣starts␣here
#␣This␣works␣properly
a␣=␣1
b␣=␣-5
print(a,␣b,␣fun2(a,␣b))
#␣The␣sum␣of␣a␣string␣of␣characters␣can␣be␣calculated,␣but
#␣one␣cannot␣take␣its␣absolute␣value
a=␣"X"
b␣=␣"Y"
print(a,␣b,␣fun2(a,␣b))

In this example, the function fun2 calls the function that calculates absolute values and then returns
the absolute value of the sum of the two arguments. The function fun2 is read in 13th row, but no
issue is encountered because both arguments are integers. On the other hand, the two arguments on
18th row are character strings, so while the sum can be calculated, the absolute value written on 4th
row cannot.
The results of running this problem can be seen below. The 17th row is run which then leads to 8th
row being run. Within that, one can see that the error arises upon trying to run 4th row.
Even when using functions from modules one can easily pinpoint where the function is being called
which makes it easier to find errors.

1 -5 4
Traceback (most recent call last):
 File "C:/Users/hjkit/Documents/Python Scripts/func-err.py", line 17, in <module>
 print(a, b, fun2(a, b))

19 Appendix: How to Read Error Messages in IDLE/Python Next Chapter Table of Contents

245

 File "C:/Users/hjkit/Documents/Python Scripts/func-err.py", line 8, in fun2
 return fun1(z)
 File "C:/Users/hjkit/Documents/Python Scripts/func-err.py", line 4, in fun1
 return abs(x)
TypeError: bad operand type for abs(): 'str'

>>>

	Table of Content
	Table of Figures
	Table of Tables
	Table of Programs
	Table of Exercises
	0. Foreword
	0.1 Learning goals of this chapter
	0.1.1 Objectives
	0.1.2 Goals

	0.2 Reasons for writing an entirely new textbook
	0.3 Humanities majors: you can do it!
	0.4 Regarding the organization of this text
	0.5 Notation
	0.6 Warning regarding copying and pasting
	0.7 Edits for later versions (2023 and later)
	Notes for English Version
	Acknowledgements

	1. Computers and Programming
	1.1 Learning goals of this chapter
	1.2 Computers and programs
	1.2.1 Machines that are run by programs
	1.2.2 Computers are composed of “switches” that run by electricity

	1.3 Computer structure
	1.3.1 Stored-program computer
	1.3.2 The Components of Computers and Their Functions

	1.4 Programming languages
	1.4.1 Various programming languages
	1.4.2 Composition of a language processor
	1) Compiler
	2) Interpreter
	3) Intermediate representation (IR)

	1.5 Python
	1.5.1 History of Python
	1.5.2 Characteristics of Python
	1.5.3 Python distribution packages

	1.6 Various applications
	1.6.1 Applications for personal computers (PCs)
	1.6.2 Other applications

	1.7 How to learn programming
	1.7.1 Reasons why programming is difficult
	1) The concepts that compose programming languages are hard to understand
	2) Unable to deal with errors
	3) Unable to add the feature that you wish to implement
	4) The program becomes too complicated to understand
	5) There are techniques for writing large programs

	1.7.2 How to learn programming
	1) Motivation: you should work with things that interest you
	2) Lots of reading and writing is fundamental to learning programming
	3) Reading aloud/Read while interpreting
	4) Tinkering: play around with programming exercises.
	5) Tracing
	6) Become able to deal with errors
	7) Look up information

	1.7.3 Characters used in programs

	1.8 The fundamental concepts used in programming
	1.9 What part of the program do you write?
	References

	2. Python: Execution Environment and How to Use It
	2.1 Learning goals of this chapter
	2.2 Assumptions regarding the learning environment
	2.3 Setup
	2.4 Launching IDLE
	2.5 Python Shell
	2.5.1 Confirming that it launched
	2.5.1 Executing Python commands

	2.6 Writing and running scripts
	2.6.1 Creating a new file
	2.6.2 Verifying the IDLE editor
	2.6.3 Coding, saving, and running a Python program

	2.7 Setting the working directory with the Anaconda Prompt
	2.8 IDLE keyboard shortcuts
	2.9 Executing Python commands
	2.10 Creating a good environment for learning Python
	2.11 For Mac users
	2.11.1 Installing Python and launching IDLE on Mac
	1) Installing Anaconda
	2) Launching IDLE
	3) Navigating IDLE
	4) Japanese input in IDLE
	5) Inputting backslashes in IDLE
	6) Closing IDLE

	2.11.2 Problems with Tkinter on Mac.

	References

	3. Assigning and Operating on Variables
	3.1 Learning goals of this chapter
	3.2 Flow of execution and information in programs
	3.2.1 Sequential execution
	3.2.2 Flow of information through variables

	3.3 Variable naming
	3.3.1 Programs also use variable names with multiple characters
	3.3.2 Variable naming rules
	3.3.3 Use variable names that are easy to understand
	1) Taking mathematics as an example
	2) How to name variables in Python programs

	3.4 Variable assignment and evaluation
	3.5 Assignment operators
	3.6 Data types used in Python
	3.7 A more accurate understanding of Python variables
	3.8 Assigning multiple variables
	References

	4. Exercise: Find the Square Root
	4.1 Learning goals of this chapter
	4.2 The square root hiding in plain sight
	4.3 Calculation procedure
	4.4 Python program
	4.5 Be careful when using division
	4.6 Notation to make equations easy to read

	5. Lists
	5.1 Learning goals of this chapter
	5.2 Learning with the Python shell
	5.3 What is a list?
	5.4 Generating lists
	5.4.1 Generation by specifying elements
	5.4.2 Combining with the range() function
	5.4.3 Generating lists from strings

	5.5 Methods
	5.6 Accessing elements in a list
	5.7 Negative indices and slicing
	5.7.1 Negative indices
	5.7.2 Slicing

	5.8 Adding to and combining lists
	5.8.1 append method
	5.8.2 extend method

	5.9 List assignment and duplication
	5.10 Mutable and immutable objects
	5.10.1 Numbers and strings are immutable (unchangeable) objects
	5.10.2 Lists are mutable objects

	5.11 Shallow and deep copying
	5.12 Visualizing lists
	5.13 Keeping Calculation Results in a List
	5.14 Tuples and dictionaries
	5.14.1 Tuple
	5.14.2 Dictionaries
	5.14.3 Notation for lists, tuples, and dictionaries

	6. Control Flow
	6.1 Learning goals of this chapter
	6.2 Repeated processing using for-loops
	6.2.1 Performing a fixed number of repetitions using a for-loop and the range() function
	6.2.2 Writing for-loops5F6F13F
	6.2.3 Blocks in Python
	6.2.4 Controlling the processing within a for-loop
	6.2.5 range() function
	6.2.6 Calculating sums
	6.2.7 Nested for-loops
	6.2.8 Using for-loops to manage lists
	1) How to combine list length with the range function
	2) How to directly use lists with a for-loop
	3) How to use the enumerate function

	6.2.9 List comprehension using for-loops

	6.3 Repetition using while-loops
	6.3.1 Calculating the square root with specified accuracy
	6.3.2 Calculating the square root with an infinite loop
	6.3.3 Structure of a while-loop
	6.3.4 Infinite loops

	6.4 Branching using 'if' statements
	6.4.1 Structure of an 'if' statement
	6.4.2 How to write conditional expressions
	1) Comparing numerical values
	2) Comparing strings
	3) Logical operations
	4) Prioritizing operations with ()

	6.4.3 Nested 'if' statements

	6.5 Termination of the Python program
	6.6 Input from the terminal
	6.7 Handling errors
	6.7.1 Structure of a 'try' statement
	6.7.2 Always be suspicious of external input

	6.8 Mathematical functions in Python
	6.9 Converting numbers and strings; Combining strings
	6.10 Format specification when displaying a number

	7. Making Kyoto Intersections
	7.1 Learning goals of this chapter
	7.2 Creating Kyoto’s intersections
	7.3 List of lists and how to scan them
	7.3.1 Using indices
	7.3.2 Handling the list directly with 'for' statements
	7.3.3 Creating a table of Kyoto intersections
	7.3.4 Displaying the table of intersections
	1) Outputting lists

	8. Test of skills
	8.1 Learning goals of this chapter
	8.2 Fine tuning the square root calculation
	8.3 Calculating Pi
	8.3.1 Leibnitz Formula
	8.3.2 Calculating Pi using the Leibnitz formula
	8.3.3 Hint

	8.4 Generating a deck of cards
	8.4.1 Set of cards
	8.4.1 Generating a deck of cards
	8.4.2 Random sorting of the list components

	8.5 Intersections in Heian-kyō
	8.5.1 Oji (main streets) in Heian-kyō
	8.5.2 Generating Heian-kyō intersections
	8.5.3 Hint

	References

	9. Encapsulation of Processing Using Functions
	9.1 Learning goals of this chapter
	9.2 Let’s make an absolute value function
	9.3 Format for function definitions
	9.4 Parameters and arguments
	9.5 Return values
	9.6 From an exercise in a prior chapter
	9.7 Let’s write the square_root() function
	9.8 Treatment of variables within functions
	9.9 Common uses of functions
	9.10 Function calls and passing function objects
	9.11 Default parameters and keyword parameters
	9.11.1 Default parameters
	9.11.2 Keyword parameters
	9.11.3 Example

	10. Playing with Turtle
	10.1 Learning goals of this chapter
	10.2 Modules
	10.2.1 Where to put 'import' statements
	10.2.2 Importing a module by specifying its name
	10.2.3 Importing a module using a custom name
	10.2.4 Importing elements from within a module
	10.2.1 Be careful not to name programs with the same file name as a module

	10.3 Turtle — The time-honored turtle
	10.4 Python’s turtle module
	10.5 Let’s try it out
	10.6 The major functions in the turtle module
	10.7 Moving multiple turtles
	10.7.1 Example program
	10.7.2 Using Class Objects
	1) 1) Creating a turtle
	2) 2) Manipulating the Turtle
	3) 3) Determining the Turtle's Attributes

	10.8 Tips for creating your project
	10.8.1 Responding to Mouse Clicks
	10.8.2 Converting Coordinates to Angles
	10.8.3 Using Random Numbers
	10.8.4 Drawing Fractals
	10.8.5 Defining the shape of a turtle
	1) The tortoise and the hare25F
	2) Example hare and card suits

	10.9 Turtle Demo
	10.10 Theme: Creating projects with turtle
	10.11 How to take a screenshot
	References

	11. Creating a GUI Application with Tkinter (1)
	11.1 Learning goals of this chapter
	11.2 GUIs and event-driven programming
	11.3 Separating the model and user interface
	11.4 tkinter
	11.4.1 Terms in tkinter

	11.5 A simple exercise
	11.6 tkinter example of calculator (tkdemo_2term.py)
	11.7 Basic structure of a program using tkinter
	11.8 Layout on a grid
	11.9 Writing a callback function using a lambda (λ) notation
	11.10 Configuring the appearance of a widget
	11.10.1 How to set an argument when creating the widget
	11.10.2 Configuring the Appearance of a Generated Widget (Part 1)
	11.10.3 Configuring the Appearance of the Generated Widget (Part 2)

	11.11 How to close tkinter
	11.12 How to extend the Frame class
	11.13 Utilizing images with tkinter
	11.13.1 Card images
	11.13.2 Handling images with tkinter
	11.13.3 Program that displays card images

	References

	12. Creating a GUI Application with Tkinter (2)
	12.1 Learning goals of this chapter
	12.2 Conflicts between autonomous programs and GUIs
	12.3 Analog clock program using tkinter
	12.3.1 Source code
	12.3.2 Key points of this program

	12.4 Coordinating actions using variables

	13. Classes
	13.1 Learning goals of this chapter
	13.2 Object-oriented programming
	13.3 How to write and use classes in Python
	13.3.1 Source code
	13.3.2 Overview of the program

	13.4 Class variables and access restrictions
	13.5 Inheritance
	13.6 Designing classes starting from instances

	14. File Input/Output
	14.1 Learning goals of this chapter
	14.2 How to store data permanently
	14.3 Regarding files
	14.3.1 File Path
	14.3.2 Use of Raw String
	14.3.3 Text Files
	14.3.4 CSV format
	14.3.5 Character Encoding Issues
	14.3.6 Error Handling

	14.4 Let's try to run the code below first.
	14.4.1 Source code
	14.4.2 Program Notes

	14.5 Reading and writing files in Python
	14.5.1 Using the open Function
	14.5.2 Using the 'with' statement - Automating close()

	14.6 Example 1 Wave approximation
	14.6.1 Key points in the example below
	14.6.2 Approximation of Periodic Function by Sum of Trigonometric Functions
	14.6.3 Source code
	14.6.4 Program Notes
	1) Use of tkinter's filedialog (lines 1-25)
	2) Calculation and file output (lines 23 to 53)

	14.7 Example 2 Text Editor

	15. Learning Program Development with Tic-Tac-Toe
	15.1 Learning goals of this chapter
	15.2 Developing a program
	15.3 Design procedure - what to do before using your computer
	15.4 Designing a simple tic-tac-toe program
	15.4.1 Tic-Tac-Toe
	15.4.2 Sentence analysis
	15.4.3 Creating a Game Record (to Prepare for Testing)
	15.4.4 Variable design
	1) The board
	2) Turn
	3) Game record

	15.4.5 Functions concerning the board and turns
	1) Turns
	2) The Board
	3) Game Records
	4) Algorithm for determining the winner

	15.4.6 How to write complex conditional decisions
	15.4.7 Progression of the game

	15.5 Implementation of the program
	1) Source code structure
	2) Example code (tic_tac_toe.py)
	3) Testing the program
	4) Running the program

	15.6 Test of skills
	15.7 Various topics related to program development
	15.7.1 What you can understand from a test
	15.7.2 Refactoring
	15.7.3 The V-model of software development

	16. Academic Use of Python
	16.1 Learning goals of this chapter
	16.2 Using a custom name when importing
	16.3 NumPy
	16.3.1 Generating multi-dimensional arrays
	1) Generating from a list
	2) Create an array in which all elements are zero

	16.3.2 ndarray attributes
	16.3.3 Accessing ndarray elements
	16.3.4 Slicing
	16.3.5 ndarray operations
	16.3.6 Extraction of elements satisfying the conditions
	16.3.7 Matrix Calculations
	16.3.8 Random numbers

	16.4 Matplotlib
	16.4.1 backend: graph output environment
	16.4.2 Text output in Japanese
	16.4.3 Setting the Title, Axis Labels, and Linestyle
	16.4.4 Example
	1) use_matplotlib.py
	2) Drawing a scatter plot
	3) Drawing a Histogram
	4) Drawing Multiple Graphs

	16.5 pandas
	16.5.1 Dataframe
	16.5.2 Create a DataFrame
	1) Create from an array in numpy
	2) Create from a dictionary where the values are lists.

	16.5.3 Importing csv files
	16.5.4 Display summary statistics
	16.5.5 Plotting Data in Pandas

	16.6 Practice task
	References

	17. Review, and Where to Go From Here
	17.1 Learning goals of this chapter
	17.2 Reflection
	17.3 Shuhari (three stages of mastery) - “Obey, Digress, Separate”
	17.4 Python environments
	17.5 Adding modules
	17.6 Topics not covered in this book
	17.7 Gratitude and repayment - how to make use of what you have learned
	References

	18. Appendix: Useful notes on Python and IDLE
	18.1 Useful notes on Python
	18.2 Pay attention to file names
	18.3 IDLE notes: Python shell hotkeys
	18.4 IDLE notes: Editor
	18.4.1 Show Line Number

	19. Appendix: How to Read Error Messages in IDLE/Python
	19.1 Errors displayed by the IDLE editor
	19.1.1 Example Program 1 - Missing Colon
	19.1.2 Example Program 2 - Missing Parentheses
	19.1.3 Example Program 3 - Indentation Offset (Insufficiency)
	19.1.4 Example Program 4 - Indentation Offset (Excess)

	19.2 Errors displayed in Python shell when executing code
	19.2.1 Example Program 5 - Referencing an Undefined Variable
	19.2.2 Example Program 6 - Wrong Argument Type
	19.2.3 Example Program 7 - Incorrect Indentation in a Class
	19.2.4 Example Program 8 - Incorrect Optional Argument
	19.2.1 Example Program 9 - Errors within Functions

