

青山健太郎,橋本武志 北海道大学 理学院

はじめに

- ・火山熱水系の比抵抗構造は、間隙率や間隙水の導電率のほか、
 スメクタイトの含有量に大きく影響を受けると考えられる.
- しかし、スメクタイトの含有量と比抵抗の定量的な関係は、十分にモデル化されていない。
- ・バルクの導電率から、スメクタイトの含有量を推定することを 目的として、スメクタイトを含む岩石に適用可能な等価回路モ デルの開発に取り組んだ。
 - Levy et al. (2018)の実験データを用いた.

スメクタイトの構造

- スメクタイトはシート状の珪酸塩鉱物 が層状に重なった構造をしている.
 - Si⁴⁺がAl³⁺やMg²⁺に置換されたことによる 負電荷 (層電荷)を持つ.
 - シートの間にNa⁺やCa²⁺などの陽イオンが 濃集することで,電気的中性が保たれる.

スメクタイトの結晶構造 (https://pubs.usgs.gov/of/2001/of01-041/htmldocs/clays/smc.htm)

Waxman & Smits (1968)の式

 Waxman & Smits (1968)は,粘土鉱物を多く含む岩石に適用 可能なバルク導電率の計算式として,以下の式を提案した.

$$\sigma_{
m bulk} = rac{1}{F} \, \left(\sigma_{
m w} + B Q_{
m v}
ight)$$

(
$$Q_{
m v}=
ho_{
m g}\;rac{(1-\phi)}{\phi}{
m CEC}$$
)

 σ_{bulk} :岩石のバルク導電率 (S/m) σ_w :間隙水の導電率 (S/m) B:交換性陽イオンの移動度 (m²/V・s) Q_v :交換性陽イオンの電荷量 (C/m³) F:地層比抵抗係数 Φ :間隙率 ρ_g :粒子の密度 (g/m³) CEC:陽イオン交換容量 (C/g)

Levy et al. (2018)の式 (1)

 ・スメクタイトの層間を通る電流を考慮して、以下の等価回路が 提案された.

Levy et al. (2018)の式 (2)

 ・最小二乗法によるフィッテングを行った結果,実験データと整合する 結果が得られた.

スメクタイトの質量分率が32wt%の 試料 (L31)におけるフィッテング結果

スメクタイトの 層間を通るイオ ンの模式図

L31のSEM画像

Levy et al. (2018)の式の問題点

- 1. スメクタイトの固相を通る電流の経路を想定している点.
 - スメクタイトの固相 (Si₄O₁₀四面体や, Al-O八面体) は, イオン結合また は共有結合的であるため, 絶縁体に近いと考えられる (e.g., 渡辺, 2005).
- 2. 表面伝導項が, スメクタイトが寄与する項と, それ以外の粘土鉱物が寄与する項に分離されていない点.
- 3. スメクタイトの層間を通る経路の複雑さが考慮されていない点. • Archie則 : $F = \varphi^{-m}$

$$\sigma_{\text{bulk}} = \frac{\sigma_{\text{w}}}{F} + \sigma_{\text{EDL-interface}} + \sigma_{\text{intra-solid}}$$
 Levy et al. (2018)の式

新たな式の考案

• Levy et al.(2018)の式を一部修正し,以下の式を考案した.

•
$$\vec{\mathrm{xt}}$$
 : $\sigma_{bulk} = \frac{1}{F} \left(\sigma_w + \sigma_{EDL,other} \right) + \frac{1}{F'} \left(\sigma_w + \sigma_{EDL,smec} \right)$

 $\sigma_{EDL,other}$:スメクタイト以外の粘土鉱物が寄与する表面伝導項 $\sigma_{EDL,smec}$:スメクタイトが寄与する表面伝導項 F:地層比抵抗係数 F':スメクタイトの層間を通る経路の複雑さ ※お詫びと訂正 上の式の σ_w は,正しくは以下の通りです。 不備があり申し訳ありませんでした。 第一項の $\sigma_w o \varphi \sigma_w$ (φ :間隙率) 第二項の $\sigma_w o X_w \sigma_w$ (X_w :スメクタイト中の液相の体積分率)

 $\sigma_{w,intra}/F'$ $\sigma_{EDL,smec}/F'$ $\sigma_{EDL,smec}/F'$

修正前と後の式の比較

修正前の式:

$$\sigma_{bulk} = \frac{\sigma_{W}}{F} + \sigma_{EDL-interface} + \sigma_{intra-solid}$$

 $\frac{\sigma_{W}}{F} = \frac{\sigma_{W}}{\varphi^{-m}}$
 $\sigma_{EDL-interface} = B'Smec\% \frac{1-\varphi}{\varphi^{1-m}}$
 $\sigma_{intra-solid} = \frac{\varphi'(1-\varphi')}{\varphi'\sigma_{W}+(1-\varphi')\sigma_{sol}} \frac{\rho_{soil}}{\rho_{smec}} (1-\varphi)Smec\%$
• 変数: $\sigma_{W}, \varphi, \rho_{soil}, Smec\%$
• 定数: $m, B', \varphi', \sigma_{sol}, \rho_{smec}$ (5つ)
 φ : 間隙率
 m : 膠結定数
 B' : 定数
 $\varphi': スメクタイトの体積に占める微小空隙の割合$
 $\rho_{soil}: 土粒子の平均密度$
 $\rho_{smec}: スメクタイトの密度$
 $Smec\%: スメクタイトの西夏量分率$

※お詫びと訂正 下の式の σ_w は,前頁同様,正しくは以下の通りです。 不備があり申し訳ありませんでした。 第一項の $\sigma_w \rightarrow \varphi \sigma_w$ (φ :間隙率) 第二項の $\sigma_w \rightarrow X_w \sigma_w$ (X_w :スメクタイト中の液相の体積分率)

$$\sigma_{bulk} = \frac{1}{F} \left(\sigma_w + \sigma_{EDL,other} \right) + \frac{1}{F'} \left(\sigma_w + \sigma_{EDL,smec} \right)$$

$$F = \varphi^{-m}$$

$$F' = \left\{ \frac{\rho_{soil}}{\rho_{smec}} (1 - \varphi) Smec\% \ \varphi' \right\}^{-m'}$$

修正後の式・

変数: σ_w, φ, ρ_{soil}, Smec% (修正前と同じ)
 定数: m, m', φ', ρ_{smec}, σ_{EDL,smec}, ρ_{smec}, σ_{EDL,other} (6つ)

m':スメクタイトの微小空隙を通る経路の膠結定数

各式の定数は最小二乗法 (Levenberg-Marquardt法)によ り求めた.

バルク導電率の予測結果

- 各式の定数を最小二乗法により求め, バルク導電率の予測精度を比較した.
- 修正により,決定係数とAICが改善された.

スメクタイト質量分率の予測結果

 各式を、それぞれスメクタイト質量分率について解き、スメクタイト質量分率の予測 精度を比較した。

11

・修正により,決定係数とAICが改善された.

フィッテング結果

<u>定数</u>	<u>バルク導電率の</u> <u>予測式</u>	<u>スメクタイト質量分率</u> <u>の予測式</u>	制約条件
m	1.91	4.58	[1,∞]
B'	36.7	7.19	[0, ∞]
Φ'	0.45	0.95	[0.45,0.95]
σ _{sol}	24.7	636	[0 , ∞]
ρ _{smec}	2.60	2.00	[2,2.6]

修正前

修正後

12

<u>定数</u>	<u>バルク導電率の</u> <u>予測式</u>	<u>スメクタイト質量分率</u> <u>の予測式</u>	制約条件
m	3.77	4.03	[1,∞]
m'	3.28	1.24	[0,∞]
Φ'	0.70	0.95	[0.45,0.95]
$\sigma_{EDL,other}$	0.74		[0,∞]
$\sigma_{EDL,smec}$	16.4	753	[0,∞]
ρ _{smec}	2.60	2.60	[2,2.6]

議論

- ・今回の修正には、以下の問題がある.
 - $\sigma_w \geq \sigma_{bulk}$ の非線形的な関係が再現できなくなった点.
 - σ_{EDL,smec}の値が, 753 S/m と大きすぎる点.

- Levy et al. (2018)の式を物理的に妥当な形に修正し, スメク タイトが含まれる岩石に適用可能な等価回路モデルを得た.
- その結果、バルク導電率とスメクタイトの質量分率を高い精度 で予測できた。
- 修正後の式は,間隙水の導電率とバルク導電率の非線形的な
 関係を再現できないなどの問題があるため,今後さらに修正を
 行う必要がある.

今後の計画

- ・実験データは,測定誤差を含む他,数が限られる.
- 今後は、有限要素法を用いたシミュレーションにより、実験データ
 を人工的に作成し、それを用いて等価回路モデルの開発を進める。
 - 1. 要素ごとに、スメクタイトや間隙水に応じた導電率を設定する.
 - 2. 静電場を与える.
 - 3. 系の静電エネルギーを最小にする電位の分布を求める.
 - 4. 取り出される電流から, バルクの導電率を計算する.

- Garboczi, E. J. 1998 NIST Internal report 6269
- L Lévy, B Gibert, F Sigmundsson, ÓG Flóvenz, GP Hersir, P Briole, PA Pezard, The role of smectites in the electrical conductivity of active hydrothermal systems: electrical properties of core samples from Krafla volcano, Iceland, Geophysical Journal International, Volume 215, Issue 3, December 2018, Pages 1558–1582
- Shen, L. C. and Liu, C., J. Korringa, K. J. Dunn, Computation of conductivity and dielectric constant of periodic porous media
- 渡辺了, 2005, 岩石の電気物性-レビュー,地学雑誌, 114(6) 837-861
- Waxman M.H., Smits L.J.M., 1968. Electrical conductivities in oil-bearing shaly sands, Soc. Pet. Eng. J., 8, 107–122..10.2118/1863-A

謝辞

本研究は、JST 次世代研究者挑戦的研究プログラム JPMJSP2119 の支援を受けたものです。 ここに感謝いたします。