オホーツク海の海氷変動に及ぼす熱帯海洋からの遅延効果

*竹端 光希¹, 立花 義裕¹, 安藤 雄太^{2,3} 1) 三重大院生物資源, 2) 新潟大院自然科学, 3) 鈴鹿高専

1. 研究背景

オホーツク海は世界で最も低緯度に海氷 が拡大する特異な海である.オホーツク海の 海氷面積は顕著な年々変動をしており、その 変動要因は様々である. ローカルな影響とし ては冬季のシベリアからの北西風や、オホー ツク海付近の気温の低下などが知られてい る[1].また、遠隔影響としてエルニーニョ現 象の年にオホーツク海の海氷面積が多くな ることが指摘されている[2]. しかし, この先 行研究ではオホーツク海の海氷変動と同時 期のエルニーニョ現象との関係しか見てい ない. 遠隔影響には同時期の影響だけでなく 遅延影響も存在している.よく知られたもの としてインド洋コンデンサー効果^[3]がある. これはインド洋の海面水温(SST)がエルニ ーニョ領域に対して2,3ヶ月遅れて変動し ているというものである.このように熱帯海 洋からの遅延影響は知られているがオホー ツク海への遅延影響を考察した研究は存在 しない. そこで本研究では、熱帯海洋からオ ホーツク海の海氷変動への遅延影響は存在 するのか,またどのようなメカニズムで影響 を及ぼしているのかについて考察すること を目的とする.

2. 使用データ・解析手法

a) 使用データ

オホーツク海の海氷データには、気象庁の 最大海氷域面積を使用した.SSTのデータに は HadISST^[4]を、大気場、陸面のデータには JRA-55 再解析データ^[5]を使用した.また、対 流活動の指標としてアメリカ海洋大気庁の 外向き長波放射 (OLR)を使用した.いずれ も月平均のデータで解析期間は1982-2021年 の 40 年間である.数値モデルは大気大循環 モデル (AFES ver.4.1)^[6]を用いた. b) 解析手法 まず,オホーツク海の海氷データからオホ ーツク海の海氷インデックスを作成した(図 1). 続いて,Niño 3 海域(5°S-5°N,150°W-90°W)のSSTを3ヶ月の領域平均したNiño 3インデックスを作成した.各インデックス それぞれ線形トレンド除去と標準化を行っ ている.そして海氷インデックスに対して Niño 3 インデックスを作成する月を1ヶ月 ずつずらしていき,両者の間の相関係数の時 系列を作成した.また,Niño3インデックス と大気場や陸面データとの時間ラグ線形回 帰分析を行った.さらに,熱帯のSSTに対す る大気の応答を確認するため数値モデルに よる実験を行った.

3. 結果 考察

<u>a) 熱帯海洋とオホーツク海の海氷との1年</u> 遅れの相関

海氷インデックスに対して,同時期の冬 (12-2月)のNiño3インデックスとの相関 は0.14となった(図2).この結果は先行 研究^[2]と異なっているが,先行研究とは解 析期間が違うため,近年は気候場の変化に よりオホーツク海の海氷変動と同時期のエ ルニーニョ現象との関係が弱くなったと考 えられる.一方,1年前の冬(12-2月)の Niño3インデックスとの相関は-0.33となっ た(信頼係数95%で有意).この結果は, ラニーニャ現象が起こった翌冬には,オホ ーツク海の海氷が発達することを示唆して いる.

b)遅延影響のプロセス

1年間の過程を考察するため、以下のプロセスでラグ回帰を行った.

- i) ラニーニャ(1年前の12-2月)
- ii) フィリピン海の対流(6-8月)
- iii) PJ パターン (6-8 月)
- iv) シベリアの土壌温度(6-8月)

v) シベリアの土壌温度(11-1月)

vi)オホーツク海の海氷

1年前の12-2月のNiño3インデックスを 6ヶ月後の 6-8 月の OLR に回帰したとこ ろ、フィリピン海付近に活発な対流活動が 見られた(図略). その領域で OLR のイン デックスを作成し, 6-8 月の 850hPa 面のジ オポテンシャル高度に回帰すると、フィリ ピン海付近に低気圧偏差,日本付近に高気 圧偏差という正の太平洋・日本 (Pacific-Japan:PJ) パターン^[7]の気圧配置が確認され た(図 3a).この結果は、エルニーニョ/ラ ニーニャ現象の半年後の夏に PJ パターンが 発生するという先行研究[3]と整合的であ る. また, PJ パターンに伴いシベリア付近 では低気圧偏差が見られており, OLR のイ ンデックスを 6-8 月の土壌温度に回帰する とシベリア付近は低温偏差となっていた (図 3b). その領域で土壌温度のインデッ クスを作成し自己ラグ相関を調べると、5 ヶ月後の11-1月まで有意な相関が持続して いた(図4).11-1月のシベリアが低温偏 差であると北西風によってオホーツク海に 寒気がもたらされるため、持続したシベリ アの低温偏差がオホーツク海の海氷を増や したのではないかと考えられる.

c)再解析と数値モデルの比較

AFES を用いて 1) ラニーニャラン (12 月の Niño 3 インデックスの下位 4 年の SST/ 海氷), 2) ノーマルラン (12 月の Niño 3) インデックスの±0から5年ずつのSST/海 氷),3)熱帯変化ラン(熱帯域(25°S-25°N) をラニーニャラン, それ以外をノー マルラン)の3種類の実験を行った.それ ぞれ最初の2年間を spinup とし73年間で 積分した.また、ラニーニャ後の夏のフィ リピン海の対流が活発であるという条件を 加えるため、1)と3)は夏に対流が活発な 事例を、2)は不活発な事例を抽出しその差 を見た.1)と2)の差の結果より,PJパタ ーンとシベリア付近の低気圧偏差が確認さ れた(図5).これによりラニーニャ時の SST 偏差と夏のフィリピン海の対流がシベ リア付近の低気圧偏差に寄与することが示 唆された.また3)と2)の差の結果より、 シベリアの低気圧偏差は熱帯の SST の影響 が大きいと考えられる(図6).

4. まとめ

本研究では、オホーツク海の海氷変動に 及ぼす熱帯海洋からの遅延影響について統 計解析を用いて調べた.結果、オホーツク 海の海氷変動と1年前のラニーニャ現象と の間に有意な相関関係があることを示し た.1年間のプロセスとして、ラニーニャ 後の夏のフィリピン海の活発な対流活動に よる PJ パターンやそれに伴うシベリア付近 の低気圧偏差、土壌の低温偏差の持続が効 いている可能性を示唆した.数値モデルに よる実験から、熱帯の SST がシベリア付近 の低気圧偏差の形成に寄与していることを 示した.

参考・引用文献

[1] 山崎孝治,2000:オホーツク海の海氷 面積と冬の大気循環との相互作用. *日本雪 氷学会誌*,62,345-354.

[2] 西尾文彦,長幸平,1996:オホーツク 海海氷の変動. *日本リモートセンシング学 会誌*,16,26-31.

[3] Xie, S.-P. et al. 2009 : Indian Ocean Capacitor Effect on Indo-Western Pacific Climate during the Summer following El Niño. Journal of Climate, 22(3), 730-747 [4] Rayner, N. A. et al. 2003: Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature since the Late Nineteenth Century. J. Geophys. Res., 108(14),.4407-4410 [5] Kobayashi, et al. 2015: General Specifications and Basic Characteristics. J. Meteor. Soc. Japan., 93, 5-48. [6] Ohfuchi, et al. 2004 : 10-km Mesh Mesoscale Resolving Simulations of the Global Atmosphere on the Earth Simulator:Preliminary Outcomes of AFES (AGCM for the Earth Simulator. J. Earth Simulator, 1, 8-34 [7] Nitta, T. 1987: Convective activities in the tropical western Pacific and their impact on the northern hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373-390

図 2. オホーツク海の海氷インデックスと Niño 3 インデックスの相関係数の時系列 赤線:信頼係数 95%

図 3. 6-8 月のフィリピンの OLR インデックスと(a) 6-8 月の 850hPa 面のジオポテンシャル高度 (b) 6-8 月の土壤温度との回帰.

(対流が活発な場を示すため OLR インデックスの符号は反転させている) 等値線:回帰係数(m), (℃), 陰影:信頼係数 90%以上

図4. 土壌温度インデックスの自己ラグ相関の時系列

図 5. ラニーニャランとノーマルランの 6-8 月の 850hPa 面のジオポテンシャル高度の差 等値線:差(m),陰影:信頼係数 90%以上

図 6. 熱帯変化ランとノーマルランの 6-8 月の 850hPa 面のジオポテンシャル高度の差 等値線:差(m),陰影:信頼係数 90%以上