1. はじめに

冬季の北極域には放射冷却によって生成 された寒冷で乾いた寒気が蓄積され,寒気ド ームを形成している.高緯度の寒気の分布は 異常気象と密接に関連しており,高緯度での 寒気の減少は高緯度に暖冬を,中緯度に寒冬 をもたらす (Kanno et al., 2015). Kanno et al. (2015)は北緯 45 度以北・以南の寒気総 量の変動を示したが,北極域のシグナルは弱 く,北極域での寒気の変動は分かっていない.

そこで本研究は、北極域において寒気が 極端に減少するイベントが発生したときの 大気循環場を明らかにする.また、イベント 発生時に寒気が中緯度のどこへ移動したの かを明らかにする.

2. 利用データと解析手法

本研究では,JRA-55 大気再解析データ (Kobayashi et al., 2015)から6時間間隔の 気圧面データを1958年12月から2021年3 月までの期間使用した.北半球の冬季として 12月から2月を解析の対象とした.

北極域の寒気の指標として,次式で定義 される特定温位 280 K 面以下の寒気容量を 使用した (Iwasaki et al., 2014).

 $NHC \equiv \int_{p(\theta_T)}^{p_s} (\theta_T - \theta) dp.$

ここで、 p_s は地上気圧、 θ は温位、 $\theta_T = 280$ Kは特定温位を表す.

北極域の寒気が極端に減少するイベント を北極寒気放出イベントと呼ぶ.このイベン トを次のように定義した.はじめに,90日 のハイパスフィルタを用いて季節変化と温 暖化傾向を除いた北緯 70 度以北で積分した 寒気容量の時系列を作成した.作成した時系 列から、3日以上連続して日々の変動の1標 準偏差を下回るイベントを北極寒気放出イ ベントと定義した.この定義によって、169 のイベントを抽出した.

抽出したイベントにおいて北緯70度以北 で最も寒気容量の少ない日をピーク日とし, ピーク日における北緯 50 度から北緯 70 度 の寒気容量の分布を階層クラスタリングす ることで寒気の流出先を分類した.

3. 気候学的分布と最大イベント

図 1 に冬季の寒気容量の気候学的分布を 示す. 寒気容量は緯度とともに増加し, 北極 域では 7000 K・hPa に達する.

抽出した 169 の北極寒気放出イベントの

図1 冬季北半球における寒気容量の気 候学的分布.

図2 (上段)北極寒気放出最大イベントにおける寒気容量(陰影)と寒気容量フラックス(ベクトル)と,(下段)温位320 K面の渦位と風速(黒ベクトル;100 m/s以上)と発散風ベクトル(黄ベクトル). 左から最大イベントの8日前,6日前当日.

うち,ピーク日に北緯 70 度以北の寒気容量 が最も少ないのは 1964 年 12 月 20 日であっ た.その8日前,6日前,当日の寒気容量の 分布を図2に示す.寒気流出の10日前には 北極に最大12000 K・hPa 寒気容量が存在し ていたが,ピークの8日前からユーラシア大 陸上へ一部分裂した.6日前には分裂が更に 進み,ピーク日には沿海州付近と北米東岸の バッフィン湾へ寒気が分裂し,北極域には寒 気容量が2500 K・hPa しか存在しなかった. 対流圏下層の寒気の分裂は対流圏上層の極 渦の分裂と同時に発生する(図2下段).ユ ーラシア大陸への分裂時には,太平洋北部で 低渦位の空気塊が高緯度へ侵入する.また, ピーク日には太平洋北部に加えて大西洋北 部でも低渦位の空気塊が侵入する.この低渦 位の空気塊は多量の水蒸気を伴い,低緯度の 暖湿気の極への侵入に対応する.

4. 寒気放出先の分類

前章に示した北極寒気放出の最大イベン トは沿海州とバッフィン湾への寒気の分裂 であったが,他の事例ではどこへ寒気が流出 しているのだろうか.ピーク日における中緯 度(北緯50度から北緯70度)の寒気容量の 分布に対して階層クラスタリングを行うこ

図3 クラスタ解析から得られたデンドログラム.括弧内数値は事例数.

とで、寒気の流出先を分類した.分類結果の

デンドログラムを図3に示す.各クラスタ間 の距離から、4 つのクラスタに分類された. 各クラスタにおける90日のハイパスフィル タを施した寒気容量のコンポジット平均を 図4に示す.寒気放出イベントの11.2%と 12.4%を占めるクラスタ1とクラスタ3は、 分裂型の寒気放出に分類された.クラスタ3 はバイカル湖の北とバッフィン湾で寒気容 量の増加が見られた.クラスタ1では、ウラ ル山脈の西とカナダ北西部を中心に寒気容 量の増加が見られた.北極寒気放出イベント の33.1%を占めるクラスタ2では北米へ寒 気がシフトする.残りの43.2%はクラスタ4

図4 各クラスタのコンポジット平均した 90 日ハイパスフィルタを施した寒気容量.

図 5 クラスタ 1 のコンポジット平均 Z500 (陰影) と Z70 (等値線). Z500 と Z70 は 90 日のハイパスフィルタを施して いる.

に分類された. クラスタ4のコンポジット平 均は北極域に寒気容量の減少が見られるの みで, 中緯度での寒気容量の増加シグナルは 見られない. クラスタ4には1から3まで のクラスタに分類されなかった事例が入る. 中緯度での寒気容量の増加が様々な場所で 見られ, コンポジット平均すると打ち消し合 いのために明瞭なシグナルは見られなかっ た.

図 5 にクラスタ 1 のコンポジット平均し た Z500 と Z70 を示す. 寒気容量の増加した ウラル山脈の東とカナダ北西部では Z500 と Z70 の減少が見られ, その位置関係は等価順 圧な構造である. また, 寒気容量の増加する 北極域のボーフォート海上空では Z500 と Z70 の増加が見られた. この結果は寒気の分 裂が対流圏-成層圏結合現象であることを示 唆する. 5. まとめ

北極域で寒気容量が極端に少なくなる北 極寒気放出イベント発生時の大気循環場と 寒気の移動先を調査した.最も強力な北極寒 気放出イベントでは北極域の寒気が 80%近 く減少し,沿海州とバッフィン湾に寒気が分 裂していた.クラスタ解析より,北極寒気が分 出イベントの 23%がユーラシア大陸と北米 へ寒気が分かれる分裂型,北米側へ寒気が移 動する寒気シフト型は 33%であることが明 らかになった.クラスタ1のコンポジット解 析から,寒気分裂イベントは対流圏-成層圏 結合イベントである可能性が示唆された.

今後はラグコンポジット解析から北極寒 気放出イベントの時間発展を解析し,成層圏 が先駆的に変動するのか,対流圏の変動に従 って成層圏の変動が起こるのかを明らかに する.

参考文献

- Iwasaki, T., et al., 2014: Isentropic Analysis of Polar Cold Airmass Streams in the Northern Hemispheric Winter. J. Atmos. Sci., 71(6), 2230-2243.
- Kanno, Y., et al. 2015: Charge and discharge of polar cold air mass in northern hemispheric winter. *Geophys. Res. Lett.*, 42(17), 7187-7193.
- Kobayashi, S., et al. 2015: The JRA-55 Reanalysis: General Specifications and Basic Characteristics. *J. Meteor. Soc. Japan*, 93(1), 5-48.