令和3年8月の豪雨をもたらした熱帯-中高緯度間共鳴の力学機構の考察

倉持将也(筑波大学理工情報生命学術院),植田宏昭(筑波大学生命環境系), 本田明治(新潟大学理学部),高谷康太郎(京都産業大学理学部)

1. はじめに

令和3年(2021年)8月は、日本周辺で停滞した 前線に伴って全国的に多雨であった(図1;気象庁 2021). 全球的な気候システムの視点から、こうした 東アジアにおける夏季の豪雨の背景要因として、熱 帯からの影響と中高緯度からの影響が論じられてき た. 熱帯域の主な要因として, 熱帯海洋変動に影響さ れた北西太平洋亜熱帯高気圧(Northwestern Pacific subtropical high: NWPSH) の強化が挙げられる. NWPSH の変動は、エルニーニョ/南方振動 (ENSO) の位相 (e.g., Wang et al. 2000) やそれに伴う熱帯イン ド洋・西部太平洋におけるキャパシタ (Indo-western Pacific Ocean capacitor: IPOC) 効果に支配される(Xie et al. 2016). 一方,中高緯度域の要因として,偏西風 波動の影響を挙げることができる. 例えば, アジアジ エット上の準定常ロスビー波束の伝播によって特徴 づけられるシルクロードパターン (Enomoto et al. 2003) が,過去の豪雨時に発現していたことが報告さ れている (Shimpo et al. 2019; Horinouchi et al. 2021). 朝鮮半島付近のトラフは力学的上昇流を励起するこ

とで大雨の発生に寄与する (Yokoyama et al. 2020).また,亜 寒帯ジェットの東シベリア付近で の蛇行に関連した下層のオホーツ ク海高気圧 (Okhotsk high: OH)の 顕在化も梅雨前線活動に伴う大雨 の要因となり得る.こうした熱帯 域と中高緯度域の変動が同時に生 じることで,東アジアにおける降 水変動が規定される (Kosaka et al. 2011; Hirota and Takahashi 2012). 本研究では,令和3年8月の事例 を対象に,熱帯-中高緯度循環の 共変動の力学的メカニズムについ て調査を行った.

2. データと手法

解析には、大気再解析データセット JRA-55 の 6 時 間データ(Kobayashi et al. 2015), COBE-SST の月平 均海面水温(SST)データ(Ishii et al. 2005)を1991 年から 2021 年の期間で用いた.また,Global Precipitation Climatology Project (GPCP; Huffman et al. 2001)の日降水量データを1997 年から 2021 年の期 間で用いた.降水量の観測データとして気象庁のア メダスを使用した.気候値を解析期間全体の平均値, 偏差を気候値からのずれで定義する.観測降水量が 気候値を上回った 2021 年 8 月 5 日から 20 日を「豪 雨期間」と定義し(図 1),主にこの期間の偏差場に ついて解析を行った.

定常ロスビー波の伝播の解析には Takaya and
 Nakamura (2001)の波活動度フラックスを使用した.
 対流圏中上層の寒冷渦およびトラフの検出には,
 Kasuga et al. (2021)の cut-off low (COL) インデック
 スを利用した.また,対流圏上層と下層の関係を調べ

図1:(a) 関東, 関西, 九州におけるアメダス降水量時系列. 色線は気候 値を示す. 矢印は灰色で梅雨期間, 黒で豪雨期間を示す. (b, c) 豪 雨期間における降水量偏差(陰影; mm/day). 図 c の白等値線は気 候値に対する比(%), 色の点はアメダス地点を示す.

図 2:豪雨期間における大気場の偏差.(a) SLP(陰影; hPa),500 hPa ジオポテンシャル高度(等値線;m).
(b) 925 hPa 水蒸気フラックス(矢印;m/s) とその 発散(陰影;/s).等値線は SLP 偏差.(c) 200 hPa ジ オポテンシャル高度(陰影;m)と波活動フラックス (矢印;m²/s²).緑等値線は東西風の気候値.(d)東半 球で帯状平均した 200 hPa 東西風(実線:2021年, 点線:気候値;m/s).

るために, Nakamura and Fukamachi (2004) および Takaya and Nakamura (2005) と同様の渦位反転法 (PV インバージョン)を用いた. さらに, 熱帯の非断熱加 熱偏差に対する NWPSH の応答を診断するために, 線形傾圧モデル (LBM; Watanabe and Kimoto 2000) を 用いた. LBM の空間解像度は T42, σ 系鉛直 20 層と した. 外力として与えられた熱源によって強制され, 定常応答まで時間積分する. 詳細な実験設定は 3.4 節 を参照されたい.

3. 結果

3.1 気候偏差場

図2に豪雨期間における大気循環場の偏差を示す. 海面更正気圧(SLP)は、日本の南と北にそれぞれ正 偏差を示しており、それぞれ NWPSHとOHの強化 が読み取れる.また、500hPaのジオポテンシャル高 度は、対応する高高度偏差に加えて、朝鮮半島上に低 気圧偏差(朝鮮トラフ)を示す.NWPSHの西縁を回 るように水蒸気フラックス偏差が現れ、西日本を中 心にそれらが収束している (図 2b). 200 hPa の 循環偏差は北欧からアジアジェット中を伝播 するロスビー波を伴った波列パターンが見ら れ,シルクロードパターンと認識できる (図 2c).東半球の偏西風は平年よりも南偏してい た (図 2d).

海洋の状況を確認すると(図3), La Niňa 的 な SST 偏差分布になっていることが分かる. また, Niňo3.4 インデックスの時系列は, この La Niňa が 2020/21 年冬から 2021/22 年冬へと 継続したものであることを示す. 熱帯インド 洋に着目すると,東部の正偏差と西部の負偏 差から成る負のインド洋ダイポール的な分布 を示す. SST 偏差に対応し,熱帯インド洋東部 から海洋大陸付近で対流活動の正偏差が現れ, 北西太平洋や赤道中央太平洋では抑制されて いる(図 1b).

これらの大規模大気場の偏差は,東アジアに おける豪雨の主要因として認識されるもので ある.これらは,時間平均のみに限らず,日変 動スケールで同時に増幅していることも確認できた (図省略).以下では,この熱帯-中高緯度間の共変 動に内包される力学的メカニズムについて考察する.

図 3: (a) 2021 年 8 月の SST 偏差(K). (b) Niño3.4, インド洋ダイポール(IOD) 指数, インド洋全域昇温(IOBW) 指数の月ごとの 時系列.

図 4:200 (陰影) および 500 hPa (等値線) における AS+の分布 (m/100 km). (a) 2021 年豪雨期間, (b) 気候値, (c) 偏差. (d) 8/13 に朝鮮半島付近に存在した凹みのトラッキング. 点で位置と強度 (S₀),色の円で寒冷渦 (青) および

トラフ(緑)の大きさ(r_o)を示す.

3.2 寒冷渦とブロッキング高気圧

図 4a には、COL インデックスで定義される等ジオ ポテンシャル高度面における凹み具合をあらわす AS⁺の豪雨期間における分布を示す.中央アジアと 朝鮮半島付近、アリューシャン列島に AS⁺の極大が 見られ、寒冷渦の存在が多く、強度が強かったことを 示す.極大の分布は概ね気候値(図 4b)と合致する. 偏差では上記の極大に対応する正偏差の北側に負偏 差を伴う(図 4c).AS⁺の0以下もしくは負偏差の領 域は、ブロッキング高気圧やリッジ場に対応する AS⁻ の極大域に合致し(図省略)、東シベリアにはブロッ キング高気圧が存在したことを示す(図 2c).東シベ リアのブロッキング高気圧とその南に位置する朝鮮 トラフの関係が示唆される.

図4dは、日本域における降水量ピークであった8 月13日に朝鮮半島付近に存在した凹み(depression) の発生から消滅までの経路と強度を示す.この凹み は8月2日に西シベリアで寒冷渦として生じ、大陸 上を東へ移動し、朝鮮半島に数日ほど停滞したこと が分かった.このような総観規模の寒冷渦の停滞が 停滞性の朝鮮トラフの形成に重要な役割を果たした ことが示唆される.また、総観規模の寒冷渦の動きは、 渦ー渦相互作用の観点から東シベリアの
 砕波や定常の朝鮮トラフとの関係が考え
 られる(Yamazaki and Itoh 2013).

3.3 下層 NWPSH と上層高気圧性偏差の関係

北西太平洋における下層の NWPSH(図 2a) と朝鮮トラフから発出したロスビー 波束伝播によって形成された上層の高気 圧偏差(図 2c)の関係について PV イン バージョンを用いて調査した.北半球全 体の 200 hPa の渦位(図 5a;ここでは日 本周辺域のみ描画)から励起される 1000 hPa の循環を図 5b に示す.北西太平洋上 の高気圧性循環による東風偏差は,気候 値の東西温度傾度により,この領域で寒

気移流をもたらす(図 5c).下層寒気は高気圧性渦位 として振舞うことから,同領域では高気圧性循環の 傾向が形成され(図 5d),これはNWPSHの領域と概 ね一致する.この結果は,上層の低渦位偏差が下層の NWPSHを形成・維持するように働いたことを示す. この際,循環偏差は北に傾く構造を示す(図 2).

 図 5: (a) 豪雨期間の 200 hPa 準地衡風渦度偏差.
 (b) 励起される 1000 hPa 循環偏差(矢印; m/s).赤等値線は気温の気候値.(c) 励起され た東西風による気温移流,(d) それによる流 線関数傾向.

3.4 熱帯加熱偏差に対する NWPSH の応答

図6には、LBM を用いた NWPSH の形成に対する 熱帯の加熱偏差の寄与を示す. 10°×10°のグリッドご とに加熱(鉛直構造を持ち, σ=0.45 で~1.7 K/day) を与え、準定常状態に達する15日目まで積分した際 の北西太平洋[15°-30°N, 130°-155°E]で領域平均した SLP の値を、与えた加熱のグリッドにプロットして いる. JRA-55 から得た背景場を6月,7月,8月ごと に実行した.全体として、インド洋の正の値、太平洋 の負の値が目立つ.熱帯インド洋における正の値は, この場の加熱が NWPSH を形成・強化するように働 くことを意味しており,赤道ケルビン波が励起する エクマン発散メカニズム (Xie et al. 2009) で解釈でき る.一方,日付変更線付近の赤道中央太平洋上の負の 値は、対流活動の抑制に伴う冷却偏差が NWPSH の 形成・強化に寄与することを意味し、松野-ギル型の 熱源応答の北西象限(Matsuno 1966; Gill 1980)に NWPSH が当たるものと解釈できる.

8月背景場の LBM 実験結果(図 6c)と2021 年豪 雨期間の降水量偏差(図 1b)を比較すると,概ね合 致することから,この豪雨期間においてインド洋東 部の対流活発と赤道西部〜中央太平洋の対流抑制の 両方が強化された NWPSH の維持に寄与したことが 示唆される.

4. まとめ

本研究では、2021 年 8 月に日本において発生した 前線の停滞に伴う豪雨時の大気循環場の特徴,およ びそれらの物理的関係について調査した.豪雨期間 中の大気循環場は、OH,朝鮮トラフ,NWPSHによ って特徴づけられ、それらは以下の一連のメカニズ ムによって力学的に関係していた可能性が示された. 下層の OH は東シベリアのブロッキング高気圧と関 係する.ブロッキング高気圧の南側を総観規模の寒 冷渦が選択的に移動し、朝鮮半島付近で停滞したこ とが朝鮮トラフの形成に寄与する.加えて、シルクロ ードパターンも朝鮮トラフの形成・維持に重要であ る.さらに朝鮮トラフから南東方向へ射出したロス

図 6:NWPSH の形成に対する熱帯加熱の寄与. 各グリッド熱源に対する北西太平洋[15°-30°N,130°-155°E]で領域平均した SLP 応答を 色でプロットしている.背景場は(a)6月, (b)7月,(c)8月.

ビー波は,北西太平洋の対流圏上層に高気圧偏差を 励起する.この高気圧偏差は東西温度傾度を感じた 熱郵送によって下層の NWPSH を強化・維持するよ うに働いた可能性がある.同時に,熱帯インド洋東部 で活発化した対流活動,および熱帯西部から中央太 平洋における対流抑制が強化された NWPSH を支持 した.こうした一連の熱帯-中高緯度間の共変動が この年の豪雨の要因となったと考えられる.

参考文献

- Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. *Quart. J. Roy. Meteor. Soc.*, **129**, 157–178.
- Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. *Quart. J. Roy. Meteor. Soc.*, 106, 447–462.
- Hirota, N., and M. Takahashi, 2012: A tripolar pattern as an internal mode of the East Asian summer monsoon.

Clim. Dyn., **39**, 2219–2238.

- Horinouchi, T., Y. Kosaka, H. Nakamigawa, H. Nakamura, N. Fujikawa, and Y. N. Takayabu, 2021: Moisture supply, jet, and Silk-Road wave train associated with the prolonged heavy rainfall in Kyushu, Japan in early July 2020. SOLA, 17B, 1–8.
- Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. *J. Hydrometeorol.*, 2, 36–50.
- Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. *Int. J. Climatol.*, 25, 865–879.
- JMA (2021) Press Release "Climate characteristics and factors behind record-heavy rain in Japan in August 2021".

https://www.data.jma.go.jp/tcc/tcc/news/press_2021 0924.pdf. Accessed 30 Dec 2022

- Kasuga, S., M. Honda, J. Ukita, S. Yamane, H. Kawase, and A. Yamazaki, 2021: Seamless detection of cutoff lows and preexisting troughs. *Mon. Wea. Rev.*, 149, 3119–3134.
- Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori, C. Kobayashi, H. Endo, K. Miyaoka, and K. Takahashi, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5–48.
- Kosaka, Y., S.P. Xie, and H. Nakamura, 2011: Dynamics of interannual variability in summer precipitation over East Asia. J. Climate, 24, 5435–5453.
- Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 25–43.
- Nakamura, H., and T. Fukamachi, 2004: Evolution and dynamics of summertime blocking over the Far East and the associated surface Okhotsk high. *Quart. J. Roy. Meteor. Soc.*, **130**, 1213–1233.
- Shimpo, A., K. Takemura, S. Wakamatsu, H. Togawa, Y. Mochizuki, M. Takekawa, S. Tanaka, K. Yamashita, S. Maeda, R. Kurora, H. Murai, N. Kitabatake, H. Tsuguti, H. Mukougawa, T. Iwasaki, R. Kawamura, M. Kimoto, I. Takayabu, Y. N. Takayabu, Y. Tanimoto, T. Hirooka, Y. Masumoto, M. Watanabe, K. Tsuboki, and H. Nakamura, 2019: Primary factors behind the heavy rain event of July 2018 and the subsequent heat wave in Japan. SOLA, 15A, 13–18.
- Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 85, 608–627.
- Takaya, K., and H. Nakamura, 2005: Mechanisms of

intraseasonal amplification of the cold Siberian high. *J. Atmos. Sci.*, **62**, 4423–4440.

- Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536.
- Watanabe, M., and M. Kimoto, 2000: Atmosphere-ocean thermal coupling in the North Atlantic: a positive feedback. *Quart. J. Roy. Meteor. Soc.*, **126**, 3343– 3369.
- Xie, S.P., K.M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747.
- Xie, S.P., Y. Kosaka, Y. Du, K.M. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. *Adv. Atmos. Sci.*, **33**, 411– 432.
- Yamazaki, A., and H. Itoh, 2013: Vortex–vortex interactions for the maintenance of blocking. Part I: The selective absorption mechanism and a case study. *J. Atmos. Sci.*, **70**, 725–742.
- Yokoyama, C., H. Tsuji, and Y. N. Takayabu, 2020: The effects of an upper-tropospheric trough on the heavy rainfall event in July 2018 over Japan. *J. Meteor. Soc. Japan*, **98**, 235–255.