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ABSTRACT
Materials informatics (MI) research, which is the discovery of new materials through machine 
learning (ML) using large-scale material data, has attracted considerable attention in recent 
years. However, in general, the large-scale material data used in MI are biased owing to 
differences in the targeted material domains. Moreover, most studies on MI have not clearly 
demonstrated the influence of data bias on ML models. In this study, we clarify the influence of 
data bias on ML models by combining the concept of the applicability domain and clustering 
for large-scale experimental property data in the Starrydata2 material database previously 
developed by our group. The results show that data bias influences the error and reliability of 
the predictions made by the ML model. The predictions of the ML model within the applic-
ability domain are highly reliable compared to those made outside the domain. This indicates 
that the material space that can be reliably discovered by the constructed ML model is limited. 
Nonetheless, we apply the ML model to a large dataset comprising various material classes and 
find that new materials similar to known materials can be proposed within a limited space. 
Thus, our findings demonstrate the importance of considering data bias when constructing 
and evaluating ML models in MI.
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1. Introduction

With the rapid development of computer technology 
and machine-learning algorithms in information 
science, research on material informatics (MI), which 
integrates materials science and information science, 
has attracted considerable attention. In particular, stu-
dies have actively focused on the discovery of new 
materials through machine learning (ML) using large 
material datasets, and applications in various material 
fields have been reported, such as magnetic 

refrigeration materials [1], energy materials [2,3], 
shape memory alloys [4], and superalloys [5]. In gen-
eral, the holdout method or k-fold cross-validation 
method, in which the training data and validation 
data are randomly divided, is used to evaluate the 
performance of ML models. These validation methods 
evaluate the performance assuming that the unknown 
data are similar to the known data because the feature 
spaces of the validation data and the training data are 
similar. For example, in the case of predicting a user’s 
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movie preferences, performance evaluation using 
these methods is effective because we can assume 
that most users have a feature space similar to that of 
many others. However, in the case of MI, unknown 
materials exhibiting properties that have never been 
seen before can be often discovered, i.e. properties that 
are not similar to those of known materials. However, 
extrapolative predictions are technically difficult. 
Therefore, the material space in which reliable inter-
polative predictions are possible must be clearly 
indicated.

In addition, the large material datasets generally 
used in MI have data bias owing to differences in the 
material domain of interest. Figure 1 shows 
a histogram of the average atomic mass and electro-
negativity based on the chemical composition of the 
material datasets used in MI [1,6–8]. Even in the same 
material-science field, data bias exists based on the 
dataset used [9]. For example, the thermoelectric 
material (TE) dataset of Starrydata2 includes semicon-
ductors containing heavy metals known to exhibit 
high-thermoelectric performance, whereas ICSD 
includes many insulators containing light elements, 
as can be observed from their respective density dis-
tributions. Moreover, the frequency counts of the ele-
ments in the chemical compositions (Figure S1 in 
Supplemental Materials) confirm that the distribution 
of the major elements in each data set differs. 
Therefore, performance evaluation of ML models in 
MI should consider the data bias of the dataset used 
and clearly indicate the material space evaluated. 
Nevertheless, MI studies often evaluate the perfor-
mance of ML models in an ambiguous material space 
that shows only the names of the datasets used. Some 
studies [10,11] have made the material space explicit 
by artificially focusing on the research scope (e.g. 
material families); however, the diversity of the new 
materials that must be discovered is lost.

We focus on the applicability domains (ADs) used 
in quantitative structure – activity relationship studies 
[12]. AD mechanically defines the material space to 
which the ML model can be applied based on its 
similarity with the known materials used for training. 
This implies defining a material space that can be 
interpolated with high-reliability. However, AD not 
only lacks human interpretability because it is defined 
mechanically, but also limits the scope of discovery for 
new materials. In this study, we define a wide AD 
using a large-scale dataset containing various material 
families, and provide human interpretability by clus-
tering within the AD. The obtained interpretability is 
used to clarify the influence of data bias on the ML 
model and evaluate the possibility of discovering new 
materials within the AD. The contribution of this 
study is the demonstration of the importance of con-
sidering data bias in MI for constructing and evaluat-
ing ML models.

2. Methods

2.1 Data preparation and construction of the 
machine learning model

We used experimental property data from Starrydata2, 
a material database developed by our group [8,13], 
comprising 42,005 samples and 2,236,338 records 
extracted from 7,698 papers as on 27 September 2021 
[14]. This is the largest dataset that includes the tem-
perature dependence of the experimental properties in 
the field of thermoelectric materials, worldwide. 
Although there is a data bias toward the thermoelec-
tric field (Figure 1), this dataset has a comprehensive 
collection of experimental data for various material 
families, performances, and temperature ranges, 
which reduces the selection bias compared to other 
experimental value databases [15,16]. All the data 
from Starrydata2 are available for free on GitHub 
[14]. This includes two types of data: The first is raw 
data extracted directly from the figures in a paper; 
the second includes data extracted only from the phy-
sical property values where the x-axis denotes the 
temperature, and each property value is interpolated 
by a 5-th order polynomial for every 50 K temperature 
point. In this study, the data in Starrydata2 as on 
27 September 2021, interpolated by the 5-th order 
polynomial, were used for training and validation. In 
particular, only thermoelectric property data (294,616 
records) from 6,594 papers on thermoelectric materi-
als were used in this study.

The performance of thermoelectric materials was 
evaluated as a dimensionless figure of merit, zT=S2σ/κ, 
where S is the Seebeck coefficient, σ is the electrical 
conductivity, κ is the thermal conductivity, and T is 
the temperature. The discovery of high-performance 
thermoelectric materials involves searching for 

Figure 1. Histograms and density distributions of the averaged 
(a) atomic masses and (b) electronegativities based on the 
chemical compositions in the widely used datasets in MI.
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materials with a high-power factor (PF = S2σ) and low 
κ. For several years, degenerate semiconductors based 
on heavy metals such as Bi, Pb, Te, and Sb have been 
the mainstream materials exhibiting high zT. 
Numerous other material systems, such as skutteru-
dite and clathrate compounds, Zintl phase and 
Heusler compounds, and oxides and silicide com-
pounds, have been reported as thermoelectric materi-
als and are included in the dataset used in this study.

Because the data in Starrydata2 are extracted from 
previously published papers, numerous errors exist in 
the papers themselves and in the extraction process. 
Therefore, the data were strictly preprocessed using 
the following two procedures. These procedures are 
expected to provide reasonable values for T, S, σ, κ, 
and zT.

(1) Remove the records in which at least T, S, σ, κ, 
or zT is missing (63,405 records).

(2) Remove the records for which the mean abso-
lute percentage error rate (MAPE) between 
zTcalc calculated from T, S, σ, and κ, and zT 
extracted directly from the paper is greater than 
5% (35,393 records).

The input vectors used for ML included 26 feature 
values based on the chemical composition and the 
(measured) temperature T. The features were the cal-
culated mean, variance, and difference (maximum 
value-minimum value within the major elements) of 
the ‘group’, ‘period’, ‘atomic number’, ‘Mendeleev 
number’, ‘atomic radius’, ‘atomic weight’, ‘electro 
negativity’, and ‘VEC’ of the containing elements, 
and ‘number of containing elements’ and ‘number of 
major elements’. Here, the major elements were those 
with a ratio of 0.1 or greater in the chemical composi-
tion such that the overall ratio was unity [17]. It is 
interesting to note that as Starrydata2 records the 
temperature dependence of the experimental physical 
properties, the temperature can be added to the input 
vector. Features other than the temperature, are simi-
lar to the Magpie/Matminer [18,19] feature set. 
However, for the material in Starrydata2, several 
small amounts of additive elements are often intro-
duced to modulate the carrier concentration or reduce 
lattice thermal conductivity. Moreover, there are com-
plex chemical compositions consisting of up to 10 
elements. The ‘range’, ‘minimum’, and ‘maximum’ 
attributes in the Magpie/Matminer feature set may 
overestimate the effect of these additive elements, 
and were therefore excluded from the input vector. 
In addition, the electronic structure attributes and ab 
initio calculated attributes were excluded from our 
feature set to avoid overcomplicating the feature 
space. Records that could not be converted into fea-
ture vectors were deleted (35,332 records). The Python 
library for material analysis, pymatgen [20], was used 

to create records of various features. The target vari-
ables were thermoelectric properties S, σ, κ, and zTcalc. 
The training and test data were split based on the 
publication year of the paper rather than the usual 
random split. Data published before 2020 were used 
as training data (21,775 records), whereas those from 
2021 onward were used as test data (563 records). 
Thus, the problem was set as predicting materials in 
2021 that were unknown before 2020. Because the 
materials up to 2020, which would normally have 
been included in 2021, are completely removed, the 
test data include only completely unknown chemical 
compositions. Note that the test data is used to evalu-
ate the generalization performance, and is different 
from the validation data used to optimize the 
hyperparameters.

For the ML method, we used the random forest 
algorithm. This is an ensemble learning algorithm, 
which combines multiple decision trees to improve 
the generalization performance. In addition, it is 
robust to noise and overfitting, and has often been 
used in previous research in materials science 
[21,22]. The hyperparameters were optimized using 
the grid search provided by Scikit-learn [23]. The 
MAPE and root mean squared logarithmic error 
(RMSLE) were used to evaluate the prediction 
accuracy. 

MAPE ¼
100
n

Xn

i¼1

ti� yi

yi

�
�
�
�

�
�
�
�; (1) 

RMSLE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
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2
r

;

(2) 

where n is the number of test data points, t is the 
experimental value, and y is the predicted value. As 
target variables S and σ are physical properties with 
a wide range of variation in the order of magnitude, 
the absolute error and root mean square error, which 
are generally used, are not used in this study.

In order to propose new materials, the ML model 
constructed in this study was applied to the chemical 
compositions recorded in the Materials Project [7] to 
predict various thermoelectric properties. We used all 
the Materials Project data as on 18 October 2018 
(83,989 records). Note that only the chemical compo-
sitions of stable materials (energy above hull > = 15 
meV), including known metastable materials, and the 
materials included in the AD were used.

2.2 Clustering of material families

To clarify the material space of the dataset, soft 
clustering using variational Bayesian estimation of 
Gaussian mixture distribution was used. In materi-
als science, the use of soft clustering is reasonable 
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because some materials belong to multiple material 
family clusters. For variational Bayesian estimation 
of the mixture Gaussian distribution, we used an 
algorithm provided by the Python ML library, 
Scikit-learn [23]. The variance-covariance matrix 
of the Gaussian distribution was used as the com-
mon variance-covariance matrix for each cluster 
(tied type) [24], and the number of clusters was 
set to 15. The input vector used for clustering is 
the vector described in Section 2.1. The number of 
clusters was arbitrarily determined as a value that 
could be identified by thermoelectric material 
experts. To clarify the characteristics of each cluster, 
the elements contained in the materials within the 
clusters were counted, and the top three elements 
with the highest number of occurrences were 
assigned labels.

2.3 Applicability domain using the k-nearest 
neighbor method

There are various types of ADs, such as Bounding Box, 
Convex Hull, Clustering, and the k-nearest neighbor 
method, depending on how the domain is defined 
[12,25]. Bounding Box is the simplest and fastest 
method for defining an n-dimensional hyper- 
rectangle as an AD based on the maximum and mini-
mum values of each descriptor. However, due to the 
simple box of the defined feature space, several false 
positive domains are generated when the data points 
are nonuniformly distributed. Convex Hull is a method 
that improves on the Bounding Box using the smallest 
convex domain of the feature space as the AD; how-
ever, false positives may occur in concave regions when 
non-convex domains exist in the feature space. In 
addition, this method is computationally 
expensive. AD using Clustering, such as k-means, is 
computationally less expensive, and the definition of 
the AD is not as crude as that of the Bounding Box. 
Therefore, this method is effective for defining the AD 
in cases where reasonable clustering can be achieved. 
Moreover, in terms of clearly defining the learned 
range by Clustering, it is similar to the leave-one- 
cluster-out (LOCO) cross-validation proposed by 
Bryce Meredig et al [26]. Therefore, it is also an effec-
tive tool for evaluating extrapolation. However, false 
positive domains may occur when the training data 
points are non-uniformly distributed and the cluster 
center of the gravity point is not in a data dense 
domain. AD with k-nearest neighbors is a method 
that defines regions using the average distance from 
the k nearest neighbors in all training data points as the 
threshold. This method is more rigorous than its other 
counterparts because the AD is clearly defined by the 
distance between each training data and the test data. 
In this study, we focused on the AD with the k-nearest 
neighbor method to rigorously discuss the effects of 

data bias. Clustering in Section 2.2 was not used to 
define AD but only to identify material families for the 
purpose of providing human interpretability.

Among the k-nearest neighbor methods, we used the 
approach proposed by Sahigara et al [27]. In general, 
a single threshold (e.g. the 95th percentile) is determined 
based on the average distance around k for all the data 
points. However, a single threshold may be determined 
to be biased toward data points in regions of high data 
point density (e.g. existing high-performance materials) 
and may not fit regions of low data point density (e.g. 
new materials). In the methods proposed by Sahigara 
et al., thresholds are set for each data point, and AD is 
determined individually. In addition, the value of the 
number of neighbors, k, is important for determining 
the AD using the k-neighborhood method. A low value 
of k leads to overly strict limitations, while a high value 
unnecessarily expands the AD. Therefore, k is deter-
mined by maximizing the percentage of validation 
data retained in the AD using the Monte Carlo method. 
In this study, we determined the optimal k by randomly 
dividing the AD 1,000 times such that 20% (4,355 
records) of the training data (21,775 records) became 
the validation data, and obtained the percentage of data 
retained in the AD for each different k.

3. Results and discussion

Figure 2 shows a stacked face chart of the number of 
training data for each year of publication. The colors 
on the faces represent the results of clustering using 
variational Bayesian estimation of the Gaussian mix-
ture distributions. Interestingly, despite the clustering 
being performed by unsupervised learning, existing 
thermoelectric material families, such as skutterudite 
and silicide compounds, Zintl and Heusler phases, 
clathrate compounds, and oxides, were identified as 
clusters. This indicates that the input vectors used for 

Figure 2. Dependence of the number of training data on the 
publication year of the paper. The number of training data is 
stacked with the results of material family clustering.
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clustering and property predictions include the neces-
sary features for distinguishing the representative 
material families in the thermoelectric materials field. 
The Starrydata2 dataset contains numerous Te-based 
and skutterudite compounds. Note that Figure 2 does 
not accurately represent the history of the material 
families in thermoelectric materials because it is 
a clustering result obtained using the preprocessed 
dataset.

The results of the Monte Carlo method are shown 
as box plots in Figure 3. For a low k, less data are 
retained in the AD, leading to a reduction in the data 
diversity. The size of the box (quartile range) decreases 
with an increase in k. Because the box is small and 
the AD can hold a large amount of data, a k value of 
nine or more is optimal. Finally, to avoid unnecessary 
expansion of the AD, we set k = 9.

Figure 4 indicates the relationship between the 
experimental and predicted values of the various ther-
moelectric properties using the test data. The distribu-
tion around the diagonal line indicates that the 
prediction accuracy is higher. The darker color of the 
plots indicates that the number of adjacent known 
materials in the AD is larger. The number of adjacent 

known materials has been explained as the reliability 
of prediction in previous studies [27]. The prediction 
error for the test data within the AD is less than or 
equal to that for the test data outside the AD (Table S1 

Figure 3. Box-And-Whisker plot of the test samples (%) 
retained within the AD for different k-values during 
k-optimization.

Figure 4. Actual vs. predicted TE properties for the test data. The darker the plot color, the more are the number of neighboring 
known materials in the AD.
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in Supplemental Materials). This is in good agreement 
with the fact that the data outside the AD 
(‘Outside AD’ in Figure 4) are distributed farther 
from the diagonal; the data within the AD 
(‘Inside AD’ in Figure 4) are distributed on the diag-
onal as the number of adjacent known materials 
increases. This indicates that the defined AD is appro-
priate and the constructed ML model correctly pre-
dicts within the AD. In Figure 4(c), data points can be 
observed away from the diagonal, which are the half- 
Heusler alloys ZrCoSb0.9-xSn0.1Tex [28]. The reason 
for the large prediction error is that there are several 
other half-Heusler alloys that show high-thermal con-
ductivity, and the number of training data is less.

Figure 5 shows the dependence of (a) MAPE and 
(b) RMSLE on the number of adjacent known materi-
als in the AD, and a stacked plane graph (second axis) 
of the number of test data (unknown materials). The 
test data used for evaluation is from 2021. All the 
chemical compositions in the test data are not 
included in the training data. The number of unique 
chemical compositions is 176. The chemical composi-
tions with the highest number of adjacencies are 
mostly derived from studies on skutterudite and Te- 
base (such as SnTe [29] and PbTe [30]), which have 
the highest number of recordings in Figure 2. The 
chemical compositions with fewer adjacencies are 
relatively new material groups such as Mg3Sb2-Mg3 

Bi2 alloy [31] and Zn2Cu3In3Te8 [32]. As shown in 
Figure 5(a), the MAPE decreases with the increase in 
the number of known neighboring materials, but the 
diversity of the material families also decreases. This 
indicates that reliable predictions can be made for 
material families with a large amount of training 
data; however, there is a risk of unreliable predictions 
for material families with a small amount of training 
data. This also implies that the existence of clusters 
with high-data density may increase the apparent pre-
diction accuracy when the general performance is 
evaluated, where the training and test data are 

randomly divided. In the case of ML models propos-
ing new materials from diverse material families, the 
prediction accuracy and reliability are likely to be low. 
In addition, we can confirm that the error in σ is larger 
than those of the other properties. This is clearly 
shown in Figure 5(b), which depicts the log scale 
error. Because the order of magnitude of σ signifi-
cantly varies depending on the material, the prediction 
error is considered to be larger than that of the other 
properties. PF and zT, which contain σ, also have 
larger errors.

Figure 6 shows the heat map of S in descending 
order at each temperature (300–900 K) applied to the 
ML model constructed for the chemical compositions 
of the Materials Project data included in the AD. The 
chemical compositions contained in the training data 
are masked in gray. The predicted materials at 300 
K and 900 K have fewer adjacencies than those pre-
dicted at the other temperatures. This is due to the 
small number of data recorded below 300 K and 
above 900 K in Starrydata2. The reason for the large 
number of data from 400 K to 800 K can be explained 
in terms of the temperature range of common measure-
ment equipment and material stability. In addition, 
most materials predicted to have high-S are materials 
with a bandgap. This result agrees well with the char-
acteristics of materials showing high-S. Li2Ti3VO8 and 
Mg11Ti25O60 are considered to be new materials that 
are not derivatives of the known materials in the train-
ing data, although the prediction errors are large due to 
the small number of adjacencies. InAgSe2 is not 
included in the training data; however, other chalco-
pyrite material families such as CuInSe2 are included 
and therefore, there is a higher number of adjacencies. 
The Seebeck coefficient of Ag1+xInSe2 measured by 
Pengfei Qiu et al. in 2017 [33] is in approximate agree-
ment with the predictions. The heat map shows only 
the Seebeck coefficient, which has the least prediction 
error; however, it can be created for the other proper-
ties as well. Although there are certain limitations in the 

Figure 5. Dependence of (a) MAPE (line chart) and (b) RMSLE (line chart) on the number of adjacent known materials in the AD and 
the number of test data (unknown materials) on the stacked surface graph (second axis). The colors of the faces are identical to 
those of the material system clusters in Figure 2.
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temperature range and material families when applying 
the AD, it is demonstrated that various new materials 
can be proposed using a large dataset containing 
a variety of material families.

4. Conclusions

In this study, the influence of data bias on the ML 
model was clarified using a combination of the con-
cept of AD and clustering for a large-scale experimen-
tal physical property dataset recorded in Starrydata2, 
a web system originally developed by our group. We 
confirmed that our ML model could make reliable 
predictions for unknown materials similar to Te- 
based compounds and skutterudite, included in 
many of the currently available material datasets. The 
prediction accuracy significantly decreased outside the 
defined AD, and the error decreased within the AD as 
the number of neighboring known materials 
increased. These results suggest that the existence of 
data bias influences the error and prediction reliability 
of ML models. However, despite the limitations of 
the AD, it was possible to propose various new mate-
rials using a large dataset containing a variety of 
material families. The combined analysis of AD and 
clustering in this study effectively clarified the influ-
ence of bias. The results of this study not only show 
the importance of constructing and evaluating ML 
models considering the data bias but also the impor-
tance of creating diverse and large-scale material data 
with less bias. The python codes implemented in this 

study are available on https://github.com/kumagal 
lium/matCL-knnAD.
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