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Abstract

Development in attosecond technologies has been realizing real-time control of electronic dynamics. As
a useful means for real-time monitoring of radical bond-rearrangement reactions, we introduce spin flux
to track the dynamics of spin density in them. As an illustrative example, we show the spin flux in
the course of the basic radical reaction H· + H2 molecule. It is demonstrated that spin flux induces
spin-polarization in the molecular target (H2) to weaken the covalent bond, thus leading to possible bond
cleavage. The mechanism shown here is in harmony with the three-stage mechanism in radical reactions
by Nagase et al.
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1. Introduction

Spin current is among the hottest topics in material sciences. In solid-state physics, magnetic fields
applied externally and/or spontaneously generated in bulk or surface of solid state materials give births
to characteristic effects like the spin Hall effect that modulate the paths and amounts of current of spin,
thereby the control of them sets an intense aim in spintronics [1], topological materials [2] an so on.5

In chemical reaction dynamics, on the other hand, studies on dynamical flows of spin density seem by
far rare to the best of our knowledge. However the dynamical change of spin distribution in molecular
systems, such as ultrafast electronic spin-state rearrangement in relaxation and open-shell reactions like
radical chemical reactions [3, 4], electronic-state relaxation, and so on, must be of critical importance in
the present and future stage of physics chemistry, in which ultrafast dynamics of spin densities is to be10

tracked and monitored in real time.
Spin current in a molecule is quantified in terms of the spin flux, which is the quantum-mechanical

flux [5] associated with the spin density. Spin flux vanishes in even electron systems with a certain
spin symmetry. For example, analogous to the parity-selection rule for the dipole operator, the spin flux
vanishes between states that transform to themselves with the same sign under time-reversal symmetry [6].15

Despite such restriction and others, spin flux has an important role in monitoring spin polarization [7],
which can cleave the singlet pairing in chemical bonds associated with bond-rearrangement in radical
reactions.

There are larger number of studies on the electronic flux in the sense of charge flux, which is now
regarded as among the critical quantities that characterize the dynamics of molecular electrons [8–22].20

Flux analysis has now become a standard tool for the analysis of excited state. Those studies on the
dynamics of electrons within and in between molecules attain more and more importance beyond the
Born-Oppenheimer paradigm. This progress has been greatly enhanced by the progress in experimental
techniques such as ultrafast laser [23], which realizes real-time observation of electronic dynamics [24] and
its control [25]. It is therefore of importance to re-realize that chemical changes like reactions are primarily25

dominated by the time propagation of electronic states. In particular, nonadiabatic electron dynamics
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induces many phenomena one needs to explore including the finding of a quantum mechanical origin
to break molecular optical symmetry in the Schrödinger dynamics [26], real-time dynamics of charge
separation in photo-excited states in many substances and in the ground state of Mn4CaO5 in Photo
System II [27], dynamics in highly quasi-degenerate electronic-state manifolds leading to novel chemical30

reactions, which is referred to as chemistry without notion of the potential energy surface [28], theory of
relativity for electronic states in the space-time domain of nonadiabatic electron dynamics [29, 30], and
many more as partly cited in recent review articles [31, 32]. In addition, we here are penetrating deep in
electron dynamics of open-shell systems such as radical reactions.

In this paper we investigate electron spin dynamics associated with a bond-rearrangement by the35

means of spin flux. As an illustrative study, we work on a very basic radical reactions, H· + H2 → H2

+ H·. Despite its seeming simplicity, the present study of the spin flux illustrates dynamical flow of spin
associated with the bond rearrangement or breakage of a spin-singlet pair.

2. Theory of spin flux

The spin flux is among generalized fluxes [12] that conserve under non-relativistic Hamiltonian. It40

makes a contrast with many of preceding works in fluxes [8–21] which are primarily interested in the
dynamics of charge degrees of freedom and/or nuclear wavefunctions. Our study also contrasts against
many of existing studies on spin currents such as Refs. [22, 33] in that we are primarily interested in
microscopic or atomic-scale spin fluxes induced by nuclear dynamics.

2.1. Spin flux to quantify microscopic spin current45

We first introduce the notion of generalized densities and fluxes (see Ref. 12 for more general
discussions) and define a generalized density operator by

ρ̂η(r) ≡ ψ̂σ(r)Mη
στ ψ̂τ (r), (1)

and its associated flux operator by
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whereA indicates the electromagnetic vector potential and η labels the type of density/flux; η = c, η = m,
η = α and η = β represent charge, spin, α electron and β electron fluxes, respectively. The associated50

constant matrix Mη are defined as Mc
στ = δστ , Mm

στ = σδστ/ 2, Mα
στ = δσ,1δστ and Mβ

στ = δσ,−1δστ .
Each pair of density and flux formally conserves in a time evolution under a general non-relativistic
Hamiltonian without spin-orbit coupling Hel (in the Heisenberg representation) in the sense

d

dt
ρ̂η(r) =

1

iℏ

[
ρ̂η(r), Ĥel

]
= −∇ · jη (3)

Hereafter in this paper, we work on field-free dynamics in which A = 0.

2.2. A three-electron doublet model55

As an illustrative case study, we observe spin flux in a model radical exchange reaction H· + H2 →
H2 + H·. As for a basic electronic-state (static) theory about ground-state radical reactions, Nagase et
al. [34] proposed the three-stage mechanism in their unrestricted Hartree-Fock (UHF) study of dominant
electronic state configurations in radical reactions. The first two steps are essentially the requirement in
the frontier orbital theory [35], that is, (i) charge transfer from a closed shell molecule (H2 in our case)60

to the singly occupied orbital (SOMO) on a radical species (here H·), which requires favorable phase-
matching in the HOMO-SOMO interaction, (ii) the back charge transfer from H· to the antibonding
orbital of H2 (here 1σu orbital), which demands favorable SOMO-LUMO interaction. And, beyond the
frontier orbital theory, it finds that (iii) triplet excitation within H2 molecule is crucial for decoupling

2



of the α and β pairing spins, which used to form the tight covalent bond. This decoupling is of course65

necessary for the bond cleavage and for such decoupled β spin electron to begin to form a new coupling
with the incoming α spin electron. In the original work of Nagase, however, the UHF were used to
trace the static reaction course along with the pertubation-theoretic analysis based on the initial (before
reaction) RHF orbitals. Note that the time-ordering of the above three steps (i)–(iii) should depend on
a system under study. No dynamical study has been performed before the present work and we here70

carry out nonadiabatic electron wavepacket dynamics and extract both the electron and spin fluxes as
conserving quantities with which to track the reaction throughout.

We here make a similar analysis to Nagase’s [34] in order to clarify the origin of non-vanishing spin flux
in radical bond-rearrangement reactions. In doing so, we first suppose a general three-electron doublet
model. Let us consider general three mutually orthogonal molecular orbitals (MOs) a, b, c, a, b, c, · · · where75

the alphabetical symbols with and without overlines a, b, c, a, b, c, · · · show spin-orbitals of up and down
spin. We assume that, in the initial state, A and B are bound, whereas a radical C is approaching them.
Denoting the bonding and antibonding orbitals of A-B compound by a and b, and the singly occupied
orbital of C by c, an approximate wavefunction of the system can be expanded as

|Ψ⟩ = f1 |aac C⟩+ f2

∣∣∣∣ 1√
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(
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)
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〉
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6
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3
abc

)
C

〉
+ · · · (4)

where the symbol C represents a closed shells space of doubly occupied orbitals other than a, b and c.80

Ket vectors in Eq. (4) represent configuration state functions (CSFs). Coefficients on CSFs, f1, f2, g1,
and so on in Eq. (4), take complex values; and, unless specified otherwise, single-electron orbitals are real-
valued. We now see that, in Eq. (4), the CSF |aac C⟩ is the SCF ground state of the initial configuration.

The CSF |ab+ba√
2
c C⟩ [ |

(
ab−ba√

6
c−

√
2
3abc

)
C⟩ ] includes a pair of α and β spin excitations with the same

[opposite] sign, which we hereafter refer to as a local singlet [triplet] excitation described as below. All85

the CSFs are subject to the total spin S = 1
2 .

A CSF |Φ1⟩ is termed as a local triplet excitation of the SCF ground state |Φ0⟩, if there is a such pair

of MOs ℓ and m that satisfy ⟨Φ1|â†ℓ↑âm↑|Φ0⟩ = −⟨Φ1|â†ℓ↓âm↓|Φ0⟩. A local singlet excitation is defined
in a similar way. The notion of “local triplet excitation” is not conceptually different from the “spin-
asymmetric excitation” in Ref. 34 or state 2ψ2 in Ref. 36. The only differences are that we expand the90

wavefunction in spin-independent orthogonal MOs, whereas Ref. 34 uses UHF analysis and Ref. 36 uses
valence-bond type nonorthogonal orbitals.

We next evaluate the expectation value of a given single-electron operator Ô by ⟨Ô⟩ = ⟨Ψ|Ô|Ψ⟩, the
flux operator being an example, which is expanded as

⟨Ô⟩ = |f1|2 (Oaa +Oaa +Occ)
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, (5)

where Oξζ , labeled with spin-orbit indices ξ, ζ, is defined by Oξζ ≡
∑

σ′

∫
d3r′φ∗

ξ(r
′, σ′)Ôφζ(r

′, σ′). The95

latter three terms in Eq. (5), with coefficients including both fi and g1, represent contributions of the
cross terms of the local-triplet excitation and the SCF ground state or its local-singlet excitation. We
find that those terms vanish if Ô is a spin-independent observable or a nonlocal operator such as the
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total spin population with Oaa −Obb = 0, whereas they take nonvanishing value in general if Ô is a local

spin-dependent operator such as the spin density, ρ̂m(x) ≡
∑

σ=±1 σψ̂
†
σ(x)ψ̂σ(x)

/
2.100

We next assume that the matrix elements are antisymmetric with respect to the orbital index inter-
change, i.e. Oab = −Oba. Equation (5) then simplifies as

⟨Ô⟩ = 1√
2
(f∗1 f2 − f∗2 f1)

(
Oab +Oab

)
+

1√
6
(f∗1 g1 − g∗1f1)

(
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)
, (6)

where we find that the first [second] term vanishes while the other one remains in general if Ô is a spin
antisymmetric [symmetric] operator and the coefficient f∗1 g1 [f∗1 f2] has nonvanishing imaginary part.
Spin-antisymmetric [-symmetric] observables with respect to the MO index interchange include the spin105

[charge] flux, represented by jm(x) [jc(x)], where the flux operators are defined as
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respectively. We therefore find that, assuming the predominance of the SCF ground state configuration,
hybridization of local triplet excitations with nontrivial complex phase causes nonvanishing spin flux.

In odd-electron systems, spin current also arises from single-electron excitations of the α or β spin110

electron. The most relevant α or the majority spin excitations are excitations of the SOMO, which we
hereafter call as local doublet excitations. On the other hand, the β spin excitation to SOMO means, in
the above example, a charge transfer (CT) from the A-B compound to the radical C. We next consider
inclusion of a local doublet excitation term h1|Φ(ldx)⟩ and a charge transfer term k1|Φ(CT)⟩, defined as

|Φ(ldx)⟩ ≡ |aad C⟩ (9)

and115

|Φ(CT)⟩ ≡ |acc C⟩, (10)

respectively. Inclusion of these terms into the wavefunction Eq. (4), yields the following additional terms

⟨Ô⟩|(ldx) = f∗1h1Ocd + f1h
∗
1Odc, (11a)

and
⟨Ô⟩|(CT) = f∗1 k1Oac + f1k

∗
1Oca, (11b)

where the subscripts |(ldx) and |(CT ) specify the origin of those contributions, local doublet excitation

and the charge transfer, respectively. Notation ⟨Ô⟩|(ldx) [ ⟨Ô⟩|CT ] represents contributions to the oper-120

ator expectation value ⟨Ô⟩ arising from the ground state configuration f1 |aac C⟩ and the local doublet
excitation h1|Φ(ldx)⟩ [ charge-transfer term k1|Φ(CT)⟩ ]. For an operator O antisymmetric with respect
to the orbital index exchange, they further simplify as

⟨Ô⟩|(ldx) = (f∗1h1 − f1h
∗
1)Ocd, (12)

and
⟨Ô⟩|(CT) = (f∗1 k1 − f1k

∗
1)Oac. (13)

If the coefficient (f∗1h1 − f1h
∗
1) or (f∗1 k1 − f1k

∗
1) has a finite imaginary part, Eq. (12) or Eq. (13) takes125

finite value for Ô = jc and Ô = jm. For example, the local doublet excitation contributes the α spin
current jα|(ldx) = ℏ Im (f∗1h1 − f1h

∗
1) (φc∇φd − φd∇φc)/me, which accompanies charge and spin flux as

jc|(ldx) = jα|(ldx) and jm|(ldx) = jα|(ldx)
/
2.
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Thus it is concluded that, while the local doublet excitations and the charge transfer, always accompany
the charge flux in the same or opposite direction with twice the amplitude, but those arising from the local130

triplet excitations is not followed by the charge flux, i.e. these are pure spin fluxes. The above analysis
serves as a useful background to deconvolute the total flux from which states it results. We will show
some of examples in Sec.3.2.4.

3. Flux analysis on the bond rearrangement in H· + H2

3.1. Method of computation135

3.1.1. Electron dynamics

We use the Semiclassical Ehrenfest Theory (SET) [31, 37, 38]. SET is based on the Ehrenfest dynamics,
which combines the time-dependent Schrödinger equation for electronic degrees of freedom

iℏĊI(t) =
∑
J

(
Hel

IJ(Rt)− iℏṘ ·XIJ

)
CJ(t) (14a)

for the electron wavepacket Ψt expanded in CSFs as Ψt =
∑

J CJ(t)ΦJ and the mean-field forces working
on nuclei given by140

M (a)R̈
(a)
t = −⟨Ψt|∇(a)

N Hel(R)|Ψt⟩, (14b)

where Rt represents time-dependent nuclear coordinates in the supervector notation, ∇N ≡ ∂/ ∂R rep-
resents the nuclear coordinate gradient, XIJ ≡ ⟨ΦI |∇N |ΦJ⟩ represents the derivative coupling of CSFs,
Hel(R) represents the electronic Hamiltonian and the superscript (a) in Eq. (14b) specifies the nuclear
index. Its advantage includes robustness, simplicity of implementation and smoothness of the nuclear dy-
namics, whereas it is known to breakdown in case where nuclear path–branching is essential [31, 32]. The145

reactions we work on this paper is essentially adiabatic and free from such branching. Nevertheless, even
for such almost adiabatic reactions it is critically important to explicitly include nonadiabatic coupling
operator in Eq. (14a) to attain the fluxes consistent with the time evolution of the related densities [12].

We have implemented SET into the GAMESS (US-GAMESS) package [39]. Static electronic states at
each time step are calculated using the restricted open-shell Hartree Fock (ROHF) calculation followed by150

the graphical unitary group approach (GUGA) configuration interaction (CI) calculations. Our dynamical
electronic wavefunctions are represented in a linear combination of the configuration state functions
(CSFs) obtained in the CI calculation and evolves in time through operation of Hamiltonian and other
matrices in CSF representation (see Eq. (14a)). MOs are expanded in a set of atomic orbitals (AOs)
{χν(r)} as φℓ(r) =

∑
µ χµ(r)Cµ

ℓ with Cµ
ℓ representing the MO coefficients.155

To evaluate the spin-dependent observables such as density matrices ρηµν with η = α, β,m, we apply
the method given in Ref. 40 to rewrite each CSF to a linear combination of Slater determinants.

At each time step, in addition to the CI calculation, we perform the coupled perturbed Hartree-Fock
(CPHF) calculation to obtain MO coefficient derivative matrices Uℓm, defined as

Uℓm ≡
∑
µν

Cµ
ℓ Sµν∇NCν

m, (15)

with Sµν representing the AO overlap matrix, in order to calculate the MO derivative coupling xℓm ≡160

⟨φℓ|∇N |φm⟩ through
xℓm = Gℓm +Uℓm, (16)

where Gℓm is a transformation of the AO derivative coupling xµν ≡ ⟨µ|∇N |ν⟩ in the sense Gℓm ≡∑
µν C

µ
ℓ ⟨µ|∇N |ν⟩Cν

m. We also perform numerical differentiation of the CI Hamiltonian to obtain the
gradient of Hamiltonian operator required for calculation of Eq. (14b) through the relation

⟨ΦI |∇NH|ΦJ⟩ = ∇NHIJ −
∑
K

(HIKXKJ −XIKHKJ) . (17)

The nuclear equation of motion shown in Eq. (14b) was integrated using the fourth order Gear165

integrator [41] with a fixed stepsize δtN , whereas the electronic equation of motion, Eq. (14a) were
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integrated with the 6th order Runge-Kutta integrator [42] with a stepsize δtel. Stepsizes δtN and δtel are
specified later for each model.

We note the careful construction of the CI expansion in order to compromise flux conservation and
the computational cost for the CI expansion, and practically we used full-CIS (fCIS) scheme proposed in170

Ref. [12].

3.2. H· + H2 in collinear configuration

We below study radical reactions H· + H2. The reaction has been regarded as one of the simplest
prototypes of chemical reactions and has been extensively studied [43, 44] using advanced techniques
including the quantum mechanical reactive scattering analysis. Here we do not work on reproducing175

accurate cross sections but concentrate on clarifying the flow of electrons upon bond rearrangement. In all
these calculations, radical H· works as a projectile and is given a fixed initial velocity toward the molecular
target. We define an initial reference geometry as the target molecule in the optimized geometry and the
projectile located at a fixed spatial position with a predetermined initial velocity. The initial geometry
of each trajectory is then constructed from the reference geometry by adding vibrational displacements180

and velocities on the target molecule setting randomly chosen initial phases on each vibration mode,
thereby mimicking the zero-point vibrations. Yet, the resultant analyses presented below are to be made
on the single trajectory basis but not in terms of a statistical average of multiple trajectories. Use of
such distributed initial conditions is intended not for statistical sampling but for confirmation that the
selected trajectory are not pathological. Each trajectory is therefore characterized by a set of initial185

nuclear coordinates and velocities.

3.2.1. Basis set

We suggested before that polarization functions should be included in the basis set used to minimize
numerical flux nonconservation [12]. We here use the doubly polarized 3-21G basis [12], which is derived
from the Pople’s 3-21G basis set [45] by full uncontraction and augmentation by two sets of polarization190

functions with the same orbital exponents.

3.2.2. Dynamics

We first discuss the reaction of H· + H2 in the collinear geometry, which is one of the simplest low-
dimensional models of radical reactions. The projectile hydrogen radical is given the initial velocity along
the collinear axis corresponding to the kinetic energy 1.0eV (see Fig. 1(a)). The integration stepsizes195

were δtN = 0.0375 fs and δte = δtn/ 200. Such excessively small stepsizes were chosen to take account of
oscillatory nature of fluxes [12].

3.02 Bohr
 (1.60 A)

KE=1.0eV

1.39 Bohr
 (0.737 A)

C B A

(a)

3.78 Bohr

 (2.0 A)

1.
39

 B
oh

r
 (0

.7
37

 A
)

C

A

BKE=2.0eV

(b)

Figure 1: Initial geometry for the collision of (a) collinear and (b) triangular configurations.
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Here we label MOs in the increasing order of orbital energy as φ1, φ2, · · · , and define four types of
CSF; the SCF ground state, |ΦI0⟩ = |φ1φ1φ2⟩, the charge-transferred (CT) state |ΦCT ⟩ = |φ1φ2φ2⟩,
the local doublet excited states, |Φndx⟩ = |φ1φ1φ2+n⟩ (n = 1, 2, · · · ), the local singlet excited states,200

|Φnsx⟩ = |
√

1
2 (φ1φ2+n − φ1φ2+n)φ2⟩ (n = 1, 2, · · · ), and the local triplet (in the sense we discussed in

Sec. 2) excited state |Φntx⟩ = |
√

1
6 (φ1φ2φ2+n + φ1φ2φ2+n)−

√
2
3φ1φ2φ2+n⟩ (n = 1, 2, · · · ). At t = 0, the

lowest three MOs are characterized as the bonding MO of H2, hydrogen 1s-like orbital of the projectile
and antibonding orbital of H2, respectively. The above characterization of the state-components is valid
only for the initial few femtoseconds though each MOs smoothly varies along the time evolution. However,205

the existence of the above extra electronic configurations such as |ΦCT ⟩, |Φndx⟩, |Φnsx⟩, and so on with
phase, is necessary for the non-vanishing spin fluxes to emerge.

3.2.3. Spin flux and the dynamics of spin density

Figure 2 shows the behaviors of the charge and spin fluxes along with the corresponding densities
projected on the plane including the initial bond axis on it. As the spin density transfers from the210

projectile to the hydrogen atom in the other end, the current of spin is seen to flow from the projectile
to the atom at the other end of molecule. It is also seen that the target hydrogen atom closer to the
projectile attains negative spin density, which indicates cleavage of the original H2 bond. The effect
observed here is in harmony with the role of spin polarization discussed in much details in Ref. 46.

In the initial stage of dynamics, the electron flow tend to originate by α−spin flux from a doublet215

excitation. Meanwhile, both the α and β spin flows in the opposite direction should have arisen from
local triplet excitations. What we observe in this calculation is consistent with chemical intuition and
with the basic scenario of the three-stage mechanism [34].

3.2.4. Spin flux assigned to electronic configurations

Before proceeding, we illustrate how the total spin flux can be deconvoluted to its components of the220

electronic configurations. According to the general method discussed in Sec. 2.2, the matrix elements for
the spin flux arise between the SCF ground state configuration, |ΦI0⟩, and the higher configurations. Here
we show the dominant four types of components given by the lowest energy, which are |Φ1dx⟩ (the local
doublet excitation), |ΦCT ⟩, |Φ1sx⟩ (the local singlet excitation) and |Φ1tx⟩ (the local triplet excitation).
See Fig. 3, in which we find that each contributes flux proportional to φj∇φℓ −φℓ∇φj , with (j, ℓ) being225

(2, 3), (1, 2), (1, 3) and (1, 3) for |Φ1dx⟩, |ΦCT ⟩, |Φ1sx⟩ and |Φ1tx⟩, respectively. In Fig. 3 are depicted the
spatial distribution of jj,ℓ(r) ≡ φj∇φℓ − φℓ∇φj , with (j, ℓ) given above. Panel (b) in Fig. 3 particularly
clarifies how the β spin flow is generated.

3.3. H· + H2 in non-collinear configuration

We next study a non-collinear dynamics of the same system H· + H2. As is shown in Fig. 1(b), the230

projectile is given an initial velocity corresponding to the kinetic energy 2.0 eV along a line that passes
through the critical point, where the projectile makes an equilateral triangle with the target molecule at
the reference geometry. The integration stepsizes were again set δtN = 0.0375 fs and δte = δtn/ 200.

We first exemplify one of the calculated trajectories, which is referred to as trajectory A, along
which bond-rearrangement undergoes. Figure 4 shows the snapshots of four types of fluxes and the235

corresponding densities calculated on the plane containing the triangle on it. We find that the spin
current flows from the projectile C to the hydrogen atom A in the target molecule passing through the
atom B (refer to Fig. 1(b).) It polarizes H2 and there appears negative spin polarization around the atom
B, which weakens the covalent bond between A and B. The behavior is therefore analogous to that found
in the collinear dynamics. It is interesting to see that the intramolecular spin flow starts at earlier stage240

of the dynamics, t ≲ 6 fs. In this time range, the atom C has not reached the equilateral point and is
always closer to B. We can also confirm, in the second row of Fig. 4 corresponding to t = 3.0 fs, that all
three types of spin flows suggested in Ref. 34 are taking place.

Since the quantum flux is a differential quantity, we often integrate it to attain information accumu-
lated over wider areas and longer time, which is a standard practice in the study of electron current [47].245
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Figure 2: Snapshots of fluxes and densities in collinear bond rearrangement collision of H· + H2.Panels to the left [right]
show the snapshots of spin [charge] flux and density; black arrows show spin [charge] flux vectors which are overlaid on
color plot of the spin [charge] density. Panels (a.1) to (a.6) [(b.1) to (b.6)] are the snapshots taken at time points t = 0.15,
3.0, 6.0, 9.0, 12.0 and 15.0 fs, respectively. The spin [charge] fluxes are evaluated on the spatial grid with spacing 0.3 Bohr
and those with projected vector norm less than 2.5 × 10−4 a.u. [5.0 × 10−4 a.u.] are neglected. The remaining projected
flux vectors, shown with black arrows, are scaled by a constant factor 1000 [500] to make them easier to see.
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(a) <�0| j� |�1dx> (b) <�0| j� |�CT>

(c) <�0| jc |�1sx> (d) <�0| jm |�1tx>

Figure 3: Schematic images of the fluxes arising from |Φ1dx⟩ (a), |ΦCT ⟩ (b), |Φ1sx⟩ (c) and |Φ1tx⟩ (d). Arrows in each
panel show the vector field jj,ℓ(r) defined in the main text. To make them easier to see, the vector fields in panels (a)-(d)
are scaled by a constant factor, 100, −100, 200 and 100, respectively. Colors of the arrows, red, blue, orange and gray are
representing α, β, charge and spin fluxes, respectively. The vector field jj,ℓ(r) is overlaid on the isocontour surfaces of the
corresponding MOs, φj and φℓ. Blue green and light green surfaces show the isocontour surfaces of φ1 and φ2, whereas
blue-violet and red-violet surfaces show positive and negative isocontours of φ3.

For instance, the following integrals

IηA ≡ −
∫ t

0

dt′
∫
∂VA

dS · jη(r, t′) (18)

are among them, where ∂VA indicates a surface surrounding a space volume VA. The flux conservation
that ∆Qη

A(t) ≡ Qη
A(t) − Qη

A(0) should equal to IηA(t), where Q
η
A(t) ≡

∫
VA
d3rρη(r). We in fact have

carried out those numerical integrations by setting three dividing surfaces as ∂VA of three partitioned
subspace surrounding the relevant atoms A, B, and C, individually. (Figures are not presented here due250

to space limitation.) The qualitative outcomes from these integrals are as follows. In the stage of the
dynamics earlier that 9.0 fs, the α spin population increases in the region surrounding A atom, decreases
in that surrounding C atom but stays almost constant in the region surrounding B atom. The relevant
flux data shows that there is nonvanishing flux from the area of C atom to that of B atom, and that of
B atom to that of A atom. We therefore see that the α spin flows from the area surrounding atom C to255

that of A through the B area. Secondly, the β spin, on the other hand, flows in the opposite direction.
In the initial ∼ 4.5 fs, cancellation between the α and β electron flows results in vanishing charge flux.
The scenario is hence analogous to the collinear case. This behavior is expected, since the atom C is
always closer to B than A . Weak coupling between A and C polarizes A and transfers β spin to region
surrounding C atom.260

We next pick another trajectory, referred to B, which starts from the same reference geometry as A
with a different set of vibrational displacement of H2. A major qualitative difference is that B does not
result in bond rearrangement after collision, in which the atom C comes closest to the target molecule
at around 6 to 9 fs, but it gets scattered without bond rearrangement. We can then confirm, up to ∼ 4
fs, the β spin flows from the region surrounding A atom to that surrounding C atom, either directly or265

via region surrounding B atom, whereas the α spin flows in approximately opposite direction, resulting
in spin flow from the area of C to that of A (figure for it is not presented). In the later time, however,
the β spin flux change the direction to reduce the spin polarization. The flow in the later stage becomes
pure charge current without spin current arising from the nuclear motion. A clear difference between the
trajectories A and B is found in that only a smaller spin polarization has appeared along the trajectory270

B, which should have resulted in the failure of bond rearrangement.

4. Summary

We have shown the spin flux as a promising means to monitor dynamics of bond-rearrangement
reactions. We showed, in Sec. 2, a microscopic mechanism of non-vanishing spin fluxes associated to bond
rearrangement. Our formal theory was then demonstrated in illustrative sample radical reactions through275
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Figure 4: Snapshots of fluxes and densities in H· + H2 along a trajectory A of non-collinear configuration, the quantities
being projected on the triangular (molecular) plane. The alphabetical index on each panel distinguishes the type of
flux/density; a to d corresponds to α, β, spin and charge, respectively, whereas the numerical index, specifies the time point
of the snapshot; 1 to 6 correspond t = 0.3, 3.0, 6.0, 9.0, 12.0 and 15.0 fs, respectively. The color mapping of the density of
each type is shown in the color bar on the top of each vertical row. Fluxes, evaluated on the spatial grid with spacing 0.3
Bohr and projected on the xy plane, are shown in arrows. The α β and spin fluxes [charge fluxes] with projected vector
norm less than 2.5 × 10−4 a.u. [5.0 × 10−4 a.u.] are neglected. The remaining projected flux vectors, shown with black
arrows, are scaled by factor 1000 [500] for easier visualization.
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ab initio nonadiabatic dynamical calculations. Dynamical flow of spin in those reactions clarified roles of
electron dynamics that modulate the local spin-state structures and bonding properties in molecules.

In this paper we treated the spin current as a theoretical issue, yet it is however worthwhile to briefly
discuss possibility of experimental observation of the spin flux discussed in this paper. While there are a
large number of reports [33] on observation of macroscopic spin currents in solids, observation techniques280

of microscopic fluxes in reacting molecules are not yet established. Observation of the latter should
require, in addition to spin-resolved analysis, ultrashort time resolution of order femtoseconds or shorter
and spatial resolution of atomic scale. We leave this problem to future studies. Yet, we are optimistic
about future realization as there are pioneering studies of direct observation of charge currents using
time-resolved X-ray scattering [48, 49] We believe the spin-flux analysis is also anticipated to shed light285

on the study of ultrafast spin dynamics.
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