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Abstract

Natural language is the medium through which humans mainly communicate and

store their knowledge to pass it on. Manual analysis and handling of such massive

quantities is beyond human capabilities. Consequently, Natural Language Pro-

cessing (NLP) has been an active and fruitful field, as automatically processing

such information yields immense benefits to many applications such as machine

translation, text summarization, and question answering (QA).

Searching for information is typically done by asking questions in search en-

gines and going through the returned results to find a specific piece of information

in mind, which can be tiresome and time-consuming. A trained QA model can

automatically read those documents and return the exact answer immediately,

making our lives easier. Furthermore, QA systems inherently reflect the reason-

ing capabilities and the level of various natural language understanding (NLU)

tasks. Enhancing QA systems promotes the advancement of all these related

tasks. Therefore, in this thesis, we focus on the QA task.

Based on complexity, the QA task is divided into two categories: single-hop

QA, which requires a single reasoning step, and multi-hop QA, which necessitates

more than one reasoning step. On the other hand, based on context utilization,

the QA task is divided into open-book QA and closed-book QA. The former

involves always providing the context documents of the question to the model,

while the latter only inputs a question. Both scenarios have their strengths and

weaknesses, and each can be suitable for certain use cases. For example, using

context permits accurate answer extraction but is bottlenecked by the accuracy

of document retrieval systems. On the other hand, a closed-book setting is not

limited by the quality or speed of retrieval systems as it can memorize much
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factual knowledge during pre-training and consequently is faster; however, it is

vulnerable to hallucinations. Therefore, it is important to investigate and improve

both scenarios.

This thesis studies both scenarios. First, we focus on the setting of multi-hop

questions in open-book QA, as single-hop performance already surpasses human

performance. Multi-hop models are required to identify and collect important

pieces of information from the provided context documents to achieve the an-

swer. Researchers have developed models that utilize the identified supporting

sentences; however, we find that they do so ineffectively. We propose a method to

focus on such information more effectively and find additional beneficial signals

from the context documents.

Second, we investigate the setting of closed-book QA. Previous studies con-

firmed and measured the amount of factual knowledge that models memorize dur-

ing pre-training, yet the mechanism and inner workings are not investigated. We

address this shortcoming by investigating how models memorize factual knowl-

edge, the responsible parts inside a model, if the knowledge is concentrated in

certain places, and applying such information by experimenting with pruning less

concentrated areas to reduce the model size without performance loss.

Finally, we study and improve multi-hop QA in a closed-book setting. Previ-

ous work has focused on single-hop questions for studying models in closed-book

QA. To close the gap, we concentrate on multi-hop QA and its improvements via

question decomposition. We decompose the complex question into sub-questions

explicitly, or implicitly by the chain-of-thoughts of a model. We also detect

promising tips for further improvement.
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Chapter 1

Introduction

1.1 Background

Most of today’s knowledge is stored in natural language using many mediums, like

blogs, news articles, and books. Automatically processing these huge amounts of

text provides significant advantages, as humans cannot manually analyze such

quantities of text. Therefore, natural language processing (NLP) has been a hot

topic recently.

Within the last decade, machines have become more and more powerful and

accelerated. Not only allowing for faster analysis but also enabling newer model

architectures. Specifically, neural network-based models have become feasible.

While the predominant methods for NLP depended on the statistical analysis of

the text, the new model architectures caused a start of a new era of neural NLP.

Early neural architectures mainly consisted of feed-forward networks (Bengio

et al., 2000); however, such models had no notion of sequentiality. Newer ar-

chitectures that focus on sequential input are recurrent neural networks (RNNs)

(Mikolov et al., 2010), and its descendant, long-short term memory networks

(LSTMs) (Graves, 2012). They permitted the training of an impactful model

called sequence-to-sequence (Seq2Seq), which takes a sequence of items, like words

or characters, and outputs another sequence. Seq2Seq is effective for machine

translation and chatbot applications.

A limitation of RNNs is that they have to squeeze the features of a whole sen-

1
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tence into one hidden state to represent it. Generating the output sequence could

only access this hidden state to generate the output sentence. To address this,

one of the most significant core innovations is the attention mechanism (Bahdanau

et al., 2015), which allows the model to focus on other text parts selectively, not

limiting the model to one hidden state. The Transformer (Vaswani et al., 2017)

is a recent outstanding emergent architecture based on the attention mechanism.

Typically, models like BERT (Devlin et al., 2019) and GPT-2 (Radford et al.,

2018) are constructed by stacking Transformer blocks. While GPT-2 excels at

Language Modeling, where it predicts the next word given the previous words,

BERT is primarily known for Masked Language Modeling, a task where it pre-

dicts masked or hidden words within a given context. After the language models

are trained on billions of words of natural text, they learn how to understand the

natural text and produce output that often matches human-level performance.

Then these foundation models are fine-tuned with labeled data for downstream

tasks. Such a paradigm unlocked improvements in many applications, such as

machine translation, text summarization, and question-answering (QA).

1.2 Question Answering

1.2.1 Importance of the QA Task

QA is a particularly interesting task as it is the main way people look for in-

formation. When using search engines, we’re often looking for a certain piece of

information, and we are faced with many matching web pages which we have to

go through to find the desired answer. A trained QA model would read those

documents automatically and return the exact answer directly, saving us time

and effort.

Another practical case is to use it as part of a chatbot that extracts information

from documents or articles of frequently asked questions (FAQs) for a certain

organization. This keeps the knowledge management effort low while providing

straightforward and natural access to the stored knowledge. QA systems can

also help with the decision-making process by providing relevant information to

support making a well-informed decision. This can be applicable in domains such
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QA Model

With what body must a pharmacy technician register?  

Pharmacy Technicians

+

General Pharmaceutical Council

Figure 1.1: An example of single-hop QA.

as healthcare, finance, and the legal field.

QA systems require a deep understanding of context, making them a good

testbed to evaluate natural language understanding (NLU). This deep under-

standing spans a lot of NLU tasks that a QA model needs to be skilled at, for

example, coreference resolution, named entity recognition, textual entailment, etc.

Therefore, promoting improvements in QA systems intrinsically advances these

tasks.

The QA tasks can be divided by question complexity to single-hop QA and

multi-hop QA and by the availability of external resources to open-book QA and

closed-book QA. We explain each task in detail.

1.2.2 Single-hop QA

A straightforward way of using a QA model is to provide the context document

alongside the question as input to the model and let it predict an answer. When

questions are simple in nature, requiring a single document to extract the answer

without the need for complex reasoning or multi-step inference, it is called single-

hop QA. Nonetheless, even with simple questions, the models should be able to

grasp subtle contextual nuances and handle ambiguities that may arise within the

given text. Figure 1.1 shows an example of single-hop QA.

Earlier studies primarily focused on addressing simple questions. In spite

of their relative simplicity, the remarkable improvements in the accuracy and

effectiveness of the models have paved the way for practical applications in various

domains.
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QA Model

Is the school where Aaron Parrett currently teaches

English Literature public or private?

Aaron Parret

+

private

University of

Providence

Reasoning steps:

< nd where Aaron Parret teaches>

< nd if that university is public or private>

Figure 1.2: An example of multi-hop QA.

Models for reading comprehension of single-hop questions have learned to sur-

pass human-level performance (Lan et al., 2020; Zhuang et al., 2021) on datasets

like SQuAD (Rajpurkar et al., 2018), even without additional complex archi-

tecture other than the pre-trained Transformers. However, leading models for

single-hop questions are found to lack the intended reasoning abilities and fail

when tested on more complex questions requiring more than one reasoning step,

called multi-hop questions (Yang et al., 2018).

1.2.3 Multi-hop QA

To explore the complexity of addressing complex questions, researchers have in-

troduced several multi-hop QA datasets (Yang et al., 2018; Ho et al., 2020; Trivedi

et al., 2022). One prominent example of such a dataset is called HotpotQA (Yang

et al., 2018), which challenges models to tackle multi-hop questions that necessi-

tate evidence gathering from two or more paragraphs to derive the final answer.

Figure 1.2 illustrates an example of a multi-hop question.

Unlike single-hop questions that provoke the development of direct question-

matching skills for extracting answers from a single context document, multi-hop

questions demand more sophisticated reasoning abilities from the QA models.

The models must not only identify relevant information from the initial question

but also traverse multiple paragraphs to collect supporting evidence sentences
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essential for arriving at the correct answer. This requirement fosters the devel-

opment of advanced reasoning mechanisms, enabling models to perform complex

inferences. Addressing multi-hop questions comes with its own set of challenges.

The models must effectively deal with coreference resolution, entity linking, and

context-dependent information extraction to accurately gather relevant evidence

across paragraphs.

Furthermore, some datasets, like HotpotQA, encourage models to not merely

predict the final answer but also identify and provide the sentences within the

context that justify their predictions. This feature contributes to enhancing the

transparency and explainability of the model’s decision-making process, which is

crucial in real-world applications where trust and understanding of the model’s

outputs are of utmost importance.

1.2.4 Open-book QA

Typically, QA systems append the context documents to the input question to ex-

tract the answers. The context documents can be provided directly as in SQuAD

dataset (Rajpurkar et al., 2016), in which case they are fed alongside the question

to reader modules like BERT (Devlin et al., 2019), ALBERT (Lan et al., 2020)

or other reader modules.

Another setting is that the system must also find the required documents from

a more massive collection of documents or a small pool of candidate documents

(e.g., ten). In the case of a huge collection, like the whole Wikipedia, systems

would require information retrieval modules to retrieve the related documents.

The top related documents are concatenated together (Beltagy et al., 2020) or

they are used as context individually/in pairs (Tu et al., 2020b) alongside the

question. The answering model then identifies the pieces of the context that best

hold the answer for the question and generates a well-formed answer along with its

probability. In the case of a one-by-one context, the answer with the highest score

is selected as the final answer. Single-hop datasets for this setting include Natural

Questions (Kwiatkowski et al., 2019) and TriviaQA (Joshi et al., 2017), while

multi-hop datasets include HotpotQA (Yang et al., 2018) and 2WikiMultiHopQA

(Ho et al., 2020).
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The accuracy of those QA systems is bottlenecked by the quality of the in-

formation retrieval module’s accuracy and the continuous availability of textual

knowledge. This setting is called open-book QA.

In this thesis, we are concerned with the reasoning part of QA systems without

considering information retrieval modules. Therefore, we focus on the open-book

setting where the candidate documents are provided.

1.2.5 Closed-book QA

Recent studies have found that models could learn the factual knowledge present

in the training data during their pre-training. Petroni et al. (2019) introduced a

probe that evaluates how highly models rank the missing word from fact triples

formed into cloze-style templates. They concluded that factual knowledge could

be recovered remarkably well. Roberts et al. (2020) assessed the amount of knowl-

edge stored in LMs in a closed-book setting. They concluded that LMs could at-

tain competitive performance on open-domain QA benchmarks without reliance

on context or external knowledge. In other words, those models could answer

questions without requiring the context documents. This phenomenon would in-

crease the speed of answering questions, as there is no information retrieval delay

overhead. It would also eliminate the error propagation from wrongly retrieved

documents and enhance mobility as only the model is required to answer ques-

tions. This setting is called closed-book QA.

Some recent well-known models demonstrating this phenomenon are ChatGPT

and GPT-3 (Brown et al., 2020b). Their capabilities and potential make the set-

ting of closed-book QA even more intriguing. Intuitively, as multi-hop questions

are more complex, their performance lags behind simpler single-hop questions. A

desirable trait of such systems is to have the performance of answering multi-hop

questions close to the level of answering single-hop questions.

1.3 Motivation and Approach

Considering the importance of the QA task (Section 1.2.1) and that QA is an

indicator of models’ capacity for logical thinking, in this thesis, we focus on the
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problem of QA. Improvements in QA translate into improvements in logical rea-

soning abilities, which would benefit numerous NLP applications.

As discussed earlier, depending on the utilization of context information, QA

can be classified into two main categories: open-book QA and closed-book QA.

While the closed-book QA setting appears advantageous, it does come with certain

limitations. An example is that models learn factual knowledge from the data it

was trained on. Any question about newer events after the training has concluded

would be unanswerable without access to a real-time knowledge source. Another

drawback is that such closed-book QA models are susceptible to what is called

“hallucinations” where a model would output a made-up answer that looks legit.

In these cases, allowing access to a retrieved context about the question would

permit the model access to more updated information. It would allow it to make

concrete predictions about the answer instead of hallucinating answers, which is

a key strength of open-book QA. Furthermore, open-book QA relieves the model

from the burden of memorization and focuses on advancing the reasoning abilities

of the model.

As both open-book and closed-book settings have their benefits and use cases,

we must consider advancing and enhancing the precision of QA in both open-

book and closed-book scenarios. In the case of open-book, given that single-hop

models already exceed human-level performance, we focus on multi-hop questions.

Previous studies attempted to utilize signals and supporting sentences from the

context documents to find the correct answer. However, these systems did not

exploit such information efficiently. As for the closed-book setting, previous work

has studied this basic phenomenon without examining the internal mechanisms

and without studying and considering improvements for multi-hop questions in

this setting.

In this thesis, we aim to address the aforementioned shortcomings. We first

start with multi-hop QA in an open-book setting. We seek to understand how

the reasoning chain works and how the predicted supporting sentences affect an-

swering the multi-hop question. We also improve answering multi-hop questions

in the open-book setting by detecting useful hints in the contexts that benefit the

multi-hop QA models (Alkhaldi et al., 2021).
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Multi-hop Question +

Answer

Improving Open-book Multi-hop QA

Single-hop Question

Answer

Investigating Closed-book QA

Model  Parameters

Multi-hop Question

Answer

Improving Closed-book Multi-hop QA

Model

+ Decompose(Multi-hop Question)Multi-hop Question

+

+

Figure 1.3: Overview of our work.

Subsequently, we shift our focus to closed-book QA. There is still a lot of

mystery around this setting, and although studies have investigated the amount

of knowledge learned (Petroni et al., 2019; Roberts et al., 2020), the inner work-

ings and behavior of the internal parts of the models in this setting are poorly

understood. Specifically, how do models memorize factual knowledge, and how

is this knowledge stored inside the parameters of the model? What part of the

Transformer block is the most crucial for answering questions? Do encoders and

decoders have different roles? If the knowledge is concentrated in certain places,

can we safely prune the other places of the model to reduce the model’s size while

keeping the performance? We conducted experiments to answer these questions

(Alkhaldi et al., 2022).

As we learned more about closed-book QA, we move to enhancing it. Im-

proving multi-hop QA in a closed-book setting is a novel endeavor; the studies on

closed-book QA principally focused on simple, one-step reasoning questions, while

studies on multi-hop QA were conducted in an open-book setting. We empirically
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reveal the gap between single-hop and multi-hop QA in the closed-book setting.

We proposed two methods for improvement using question decomposition. We

also find useful insights on how to improve multi-hop QA in the closed-book set-

ting further (Alkhaldi et al., 2023). We summarize our work in Figure 1.3.

1.4 Outline of the Thesis

In this thesis, we address three topics related to question answering: Open-book

multi-hop QA, factual knowledge memory in closed-book QA, and answering

multi-hop questions in a closed-book setting.

In Chapter 2, we present a detailed review of pivotal neural advancements

and concepts that hold significant relevance not only in NLP as a whole but also

specifically within the context of our thesis.

In Chapter 3, we present our work on improving multi-hop QA in an open-

book setting. Models solving single-hop questions learned to be adept at pattern

matching, therefore, inadequate to assess models’ reasoning abilities. In contrast,

multi-hop questions proved to be a better estimation of such abilities. We first

introduce an overview and previous work on single-hop and multi-hop QA, then

discuss the model architecture and our proposals. After finding supporting sen-

tences related to the question, we flexibly focus on them to help guide the model’s

reasoning. We also show the benefit of tagging the entities bridging different para-

graphs required for the answer.

In Chapter 4, we introduce our investigations and experiments on a Trans-

formers model in a closed-book setting. The goal is to understand how knowledge

is stored inside such a model and to analyze which parts are most responsible. We

explain the task and the inner components of Transformers, and then we study

visualized maps of gradients. We apply noise to different components to examine

their contribution to finding the answer. Then we compare different strategies and

propose a new one for assigning scores to attention heads inside the Transformer

block. We present experiments using these scores to prune parts of the model

that retain the most knowledge while keeping a comparable performance.

In Chapter 5, we focus on improving multi-hop QA in a closed-book setting
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through question decomposition. With recent trends in language models acting

as offline search engines, the ability to improve answering complex multi-hop

questions became more beneficial. We describe the decomposition methods we

use, and we show the results of experimenting on three datasets. We explain

promising future research directions to further improve the accuracy.

In Chapter 6, we conclude this thesis with a comprehensive review of our work

and explain future research prospects.



Chapter 2

Review of NLP Advancements

We provide an overview of the historical progression of neural network research

up to the latest developments in deep learning within the context of NLP.

2.1 Language Modeling

A very basic task that is the core of today’s NLP progress is the task of language

modeling. A language model learns the probability of the next work given the

previous words. Concretely, if y1, y2, ..., yn are tokens in a sentence, the probability

of seeing those tokens in order is:

P (y1, y2, ..., yn) =
n∏

i=1

P (yi|y1..., yi−1) (2.1)

They are trained on huge amounts of unlabeled text, which is significantly

more accessible compared to labeled data. This extensive training allows the

models to learn the language’s nuances and semantics, and to understand the

context of words and sentences. As an output of the training, these language

models became powerful at recognizing if sentences are plausible or not and have

many real-life applications, such as natural language generation and autocomple-

tion. An example of autocompletion is in Figure 2.1.

Language models are also able to generalize to data that has not appeared in

the training text. This is due to the fact that, unlike older non-neural models,

words are converted into continuous space representations or vectors that are

11
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Cats love to chase _____

mice

dogs

cars

...

Figure 2.1: An example of how language models learn to distinguish plausable

sentences.

called word embeddings. When those embeddings are learned and optimized,

the embeddings of words would have the feature that similar words have closer

embeddings. Models then learn that similar words can fit in a certain context,

even if it had never seen those words in this specific context before.

2.2 Recurrent Neural Networks (RNNs)

Early feed-forward networks were insufficient to deal with language data as lan-

guage is sequential in nature, while the feed-forward networks had no notion of

sequentiality. RNNs (Mikolov et al., 2010) were introduced to mitigate this prob-

lem by incorporating loops in their architecture by feeding the output of certain

layers into the same layers in subsequent time steps, hence referred to as recurrent.

At every time step, it updates a memory (also referred to as its state). RNNs

leverage their loops to produce continuous space representations for sequences of

varying lengths, and because of their recurrent nature, they can be considered as

deep with respect to the time sequence.

This architecture allows RNNs to capture long-distance relationships within

a sequence and proved to be promising in predicting the subsequent word of a

sequence in the language modeling task. An example of RNN is illustrated in

Figure 2.2.

As the vanilla RNN architecture suffered from problems such as vanishing or

exploding gradients, a new successor was introduced called long short-term mem-

ory network (LSTM) (Graves, 2012), which is a modification of RNNs. LSTMs

facilitate improved retention of previous data in memory, which effectively ad-
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RNN
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RNN
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mice

RNN

mice

<EOS>

Figure 2.2: An example of how language models learn to distinguish plausible

sentences.

dresses the vanishing or exploding gradient problem. It introduced multiple gates

to the input, memory, and output layers. These gates serve to filter out irrelevant

input or memory information while preserving essential data.

2.3 RNN-Based Encoder-Decoder Models

Considering the task of predicting a sequence given an input sequence, also re-

ferred to as sequence-to-sequence (Seq2Seq), a model of two RNNs corresponding

to an encoder and decoder became popular. The encoder’s job is to calculate the

embeddings of the input or “source” sequence, while the decoder generates the

output or “target” sequence using the encoded state.

An illustration of the flow is shown in Figure 2.3, and it goes as follows:

The input sentence ending with an end-of-sentence <EOS> token is fed into

the encoder. The last state of the encoder’s RNN represents the contextualized

embedding of the input sentence. This state is then fed into the decoder, and

starting with a beginning-of-sentence <BOS> token, it starts to generate the

output sentence until it predicts an <EOS> token.

Another variation of the above model is to feed the encoder state to the decoder

at every time step, not only at the beginning, which allows it always to have the

ability to look at the encoded input sentence information. This Seq2Seq model is

effective for machine translation tasks and dialogue applications.

The above encoder-decoder model has a major limitation; it encodes the whole

input sentence into a single fixed-length state which is used to decode the output.

For longer sentences, it is difficult to squeeze all the information about the input

sentence into a fixed-length vector. Therefore, the decoder struggles when it
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RNN
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RNN
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RNN
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RNN

chase

RNN

mice

RNN

ططقلا

بحت

RNN

بحت

RNN

ةدراطم

نارئفلا

RNN

نارئفلا

<EOS>

RNN

<EOS>

ةدراطم

Encoder State

RNN

<BOS>

ططقلا

Figure 2.3: An example of an encoder-decoder model translating an English sen-

tence into Arabic.

attempts to recover all input information from a single state vector.

To remedy this limitation, the attention mechanism was introduced (Bahdanau

et al., 2015). When attention is applied to the encoder-decoder model above, the

decoding process looks for the positions in the source sentence that are most

relevant for the current time step. Then to predict the next word, in addition

to the previously generated target words, it uses a combination of the context

vectors associated with the related positions it found. This way, a context vector

tailored for each time step is used, allowing the model to focus on different parts

of the input adaptively each time.

2.4 Transformer

One of the drawbacks of RNNs is their sequential nature. For example, when

an RNN wants to encode a sentence, it has to do so word by word, as it has to

wait for the state of the previous timestep to calculate the next one. This is a

bottleneck when training or inferencing.

The recently introduced Transformer (Vaswani et al., 2017) solves this problem

by self-attention. It is a technique where the model attends to different parts
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Figure 2.4: An example of a word attends to other words in self-attention.

within its input sentence to capture dependencies and relationships between words

better. Figure 2.4 shows an example of applying self-attention to a sentence.

For self-attention to work, the input sequence is transformed into three differ-

ent vectors: Query (Q), Key (K), and Value (V). These vectors are obtained by

applying learnable linear transformations to the original input sequence. In other

words, by multiplying the input embeddings with a learnable weight matrix. This

step projects the input sequence into a higher-dimensional space, which enables

the model to capture more complex relationships.

Then, to compute the similarity (or compatibility) between each query and

each key element, the dot product is calculated between the Q of an element and

the K of all elements in the sequence to represent attention scores. The products

are scaled to avoid excessively large values to prevent instability during training.

The resulting scores indicate how relevant each element is to the current query.

The computed attention scores are passed through a softmax function for

normalizing the scores to ensure they sum to 1, representing a valid probability

distribution. Those final attention weights are multiplied with their corresponding

V vectors and summed. This produces the final attended (or contextualized)

embeddings of the input sequence, which contain the most relevant information

in the context of the current query.

This attention sub-layer can consist of multiple heads, where they have sep-

arate learnable parameters, and learn different features. They allow the model
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Figure 2.5: The Transformer’s architecture.

to independently attend to different parts of the sequence in parallel, resulting in

improved performance time and quality. The final multiple contextualized em-

beddings from different heads are concatenated and then passed through a linear

transformation to get a single contextualized embedding.

The Transformer block consists of self-attention and feed-forward sub-layers.

The blocks are stacked to form an encoder and decoder with N layers. The decoder

additionally has a cross-attention sub-layer that attends to the encoded inputs.

More specifically, this cross-attention calculates the Q vectors from the output

sequence but takes K and V from the encoded input sequence in the encoder. An

illustration of the Transformer’s architecture is in Figure 2.5.

So far, Transformers cannot handle sequential information as they have no

inherent sense of words’ position or order. The input sequence is treated as a

bag of words. Therefore, positional encoding is necessary, especially in tasks or

languages where word order is important.

The Transformer architecture adds positional information by summing posi-

tional encodings for each input embeddings at the beginning of the encoder and

decoder stacks. Every position index is mapped to different positional features.

They use sine and cosine functions of different frequencies to assign the values

of the position encodings because the model can easily distinguish the relative
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The rabbit ate the [MASK] because it was hungry

carrot

lettuce

apple

...

Figure 2.6: An example of the masked language modeling objective.

location based on the value of these functions.

2.5 Transformer-Based Encoder Models

Highly influential work built upon Transformer architecture is “Bidirectional En-

coder Representations from Transformers” (BERT) (Devlin et al., 2019). It

achieved many state-of-the-art results in many NLP tasks, such as natural lan-

guage inference and question answering.

The main idea is that BERT pre-trains powerful bidirectional representations

from raw, unlabeled text. It considers both the left and right context simulta-

neously across all layers. After pre-training on a language modeling objective,

the model learns the language structures and can be fine-tuned to specialize in

downstream tasks without significant changes in the architecture.

In typical language modeling tasks, the goal is to predict the next word given

the previous words. However, bidirectional models are made to understand the

surrounding text from both sides for richer contextual information, therefore,

requiring a different modeling objective. They introduce a task called masked

language modeling (MLM). In this task, certain words or tokens in the input

sequence are randomly masked, and the model’s objective is to predict the original

masked words based on the surrounding context. An example is shown in Figure

2.6.

When pre-training BERT, another task known as next sentence prediction

(NSP) was simultaneously employed. The main objective of NSP is to train a

language model to predict whether one sentence naturally follows another in a

given text corpus. In other words, the model learns to understand the relation-
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Figure 2.7: An overview of the BERT masked language model.

ship between two consecutive sentences in a document. Positive examples for

training are pairs of consecutive sentences from the original corpus, while for neg-

ative examples, a second sentence is selected randomly from the corpus that does

not follow the first sentence. This task helps comprehend the contextual flow of

language and understand the connections between sentences.

The pre-train then fine-tune paradigm, also known as transfer learning, has

emerged as a powerful approach for NLP and other machine learning. It is called

transfer learning in the sense that it transfers the knowledge it learned from all the

unstructured text it pre-trained on into the downstream tasks. This is especially

useful as the downstream tasks often require labeled or annotated data that is

significantly more expensive and harder to obtain. The transfer learning relieves

the model from having to learn the language structure from the limited available

labeled data and to only focus on the downstream task-related patterns. Transfer

learning also helps with robust generalization across different domains.

The output of BERT can be utilized in various ways. Even without a classi-

fication layer on top, the output embeddings on capture valuable contextualized

representations of the input sentence. For example, the special token [CLS] is

usually added at the beginning of the sentence to capture the embedding of the

whole sentence and to help with sentence-wise classification tasks. An illustration

of the BERT paradigm is shown in Figure 2.7.

Those sentence embeddings can be employed for several tasks such as semantic

similarity, where the model measures how similar are two sentences or documents
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by computing the similarity between their embeddings. Another example is clus-

tering, which involves using sentence embeddings in algorithms to group similar

sentences or documents together.

By adding a classification layer on top, BERT can be fine-tuned for handling

other document-level tasks such as sentiment analysis (determining if the sentence

is positive, negative, or neutral), spam detection, or topic classification. BERT

can also be used for word or token-level classification tasks. For example, named

entity recognition (NER), where the model learns to detect named entities like

person names, organizations, and locations. One way to do that is to predict for

each token the entity class and if it’s the beginning token in a named entity (B),

intermediate (I), or not a named entity (O).

Another important task that BERT can solve is question answering. By uti-

lizing its contextual understanding, BERT is capable of predicting the start and

end positions of the answer span within a provided context paragraph. Based on

the [CLS] token, it can also predict if the paragraph contains an answer or not.

It is worth noting that variations of BERT improved on it in various ways. For

example, RoBERTa (Liu et al., 2019) enhanced the performance by training with

more optimized hyperparameters such as batch size and training steps. ALBERT

(Lan et al., 2020) uses parameter-reduction techniques to reduce BERT’s size,

allowing it to scale better. This is effective as BERT’s model parameter size has

been shown to impact the performance directly.

BERT-based models explained so far have one strict limitation, the maximum

context length. Models commonly can only process up to 512 sequence lengths,

which makes them inadequate for handling long documents. Naively increasing

the context size with the same architecture would result in quadratically growing

memory and computational requirements because of the self-attention compo-

nents.

Various techniques are introduced to allow increasing the context length with-

out the computational overhead. Some work (Beltagy et al., 2020) incorporates

special tokens that represent sentences and only does self-attention with a limited

context window called local attention. Then, in addition to the local attention, all

special tokens attend to each other in what is called global attention. This allows
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the model to reach information from far-away contexts that are summarized in

the embeddings of those global tokens.

Another method (Wang et al., 2020) achieves similar improvement by com-

pressing the attention matrix using low-rank factorization, which reduces the

number of parameters and computations required during attention calculations.

By significantly reducing memory and computation overhead, they enable trans-

former models to process longer sequences more efficiently without significantly

sacrificing performance.

The increased sequence length limit is useful for several cases like document

classification or document summarization. The benefit does not only come from

the ability to let words focus on a broader context but also as a more efficient

approach than splitting long documents, simplifying preprocessing, and allowing

parallelism.

2.6 Transformer-Based Encoder-Decoder Models

Fine-tuning BERT-based models requires a customized classification layer, tai-

lored training loss objective, and hyperparameters to handle downstream tasks.

Avoiding these constraints, an encoder-decoder model called Text-to-text Transfer

Transformer (T5) was introduced (Raffel et al., 2020).

The T5 was pre-trained in an objective similar to masked language model-

ing, where they randomly masked 15% of the input and trained the model to

generate the masked words. After pre-training, they transformed all NLP tasks

into textual input and output and continued the training. This greatly unifies

the training across tasks, as models now do not require specialized architectural

changes or hyperparameter changes to adapt to different tasks. Another benefit

is the ability to easily switch tasks by prompting. For example, starting the text

with “Translate this from X to Y language: ”, the model performs machine trans-

lation. When the prompt starts with “Summarize this document: ...” document

summarization is done.

Another encoder-decoder model is BART (Lewis et al., 2020). They employ

a different pre-training techinque in which they corrupt the input and teach the
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Encoder Encoder-Decoder Decoder

Figure 2.8: An overview of attention connections in different model architectures.

model to predict the original input. Corruptions include randomly shuffling the

sentences’ order, token masking and deletion, and span masking. However, unlike

T5, the fine-tuning stage still used classifiers on top of the final embeddings for

different tasks like sequence and token classification.

2.7 Transformer-Based Decoder Models

Another family of models is decoder-only models. These generally excel at gener-

ating natural text and are often called generative pre-trained Transformers (GPT).

One difference between encoders and decoders is the tokens on which they apply

attention. In encoders, it is typically done bidirectionally, that is, from left-to-

right and right-to-left. For decoders, they only attend on the tokens already

generated from the left, in other words, left-to-right only. Figure 2.8 shows an

illustration of attention connections in different model architectures.

Because decoders are unidirectional and attend only to left tokens, they do

not undergo pre-training with masked language modeling. Instead, they are pre-

trained with a standard language modeling objective, as elaborated in Section

2.1.

As the effect of a model’s size was shown to correspond to its performance,

researchers have been scaling models from GPT-2 (Radford et al., 2018), which

has 1.5 billion parameters to GPT-3 (Brown et al., 2020b) of a staggering 175

billion parameters. Although managing and supporting models of this magnitude

is challenging and costly, they have demonstrated remarkable capabilities.
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Few-shot prompt

Input: Analyze the sentiment of movie reviews, only outputting

the sentiment word.

Review: This movie is fantastic!

Sentiment: Positive

Review: I disliked the film’s ending.

Sentiment: Negative

Review: The acting was brilliant, but the plot was weak.

Sentiment: Neutral

Review: The movie was confusing.

Sentiment:

Output: Negative

Table 2.1: Example of few-shot prompting.

One emerging powerful capability is the ability to learn from context, also

referred to as in-context learning. This paradigm is helpful if there is a new task

we want the model to solve, but we have not trained it on that task before. To

teach the model this task without additional training or parameter updates, we

can explain the task and give examples of the desired input and output, and the

model can solve it. This method is called few-shot prompting because it only

depends on a few examples. It is also useful even if the model knows the task but

is interested in guiding it to respond in a specific way or format. An example is

shown in Table 2.1.

Another ability is zero-shot prompting, where the model is presented with an

unfamiliar prompt that is not included in its training data, but the model can

still generate the desired output.

In regards to explainability, one advantage of a large enough model like GPT-

3 is that it can explain its reasoning process, or chain-of-thoughts (CoT), in a

human-readable way. It’s an improvement over the long-held view of black-box

neural models. When instructed with ”Let’s think step-by-step.” after the desired
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question, the generated explanation can even help the model itself with reason-

ing, especially in math-related questions. However, it is still prone to errors and

hallucinations in explanations and the final answer.



Chapter 3

Enhancing Multi-hop QA in

Open-Book Setting

With the help of the detailed annotated question answering dataset HotpotQA,

recent question answering models are trained to justify their predicted answers

with supporting facts from context documents. Some related works train the

same model to find supporting facts and answers jointly without having special-

ized models for each task. The others train separate models for each task, but do

not use supporting facts effectively to find the answer; they either use only the

predicted sentences and ignore the remaining context, or do not use them at all.

Furthermore, while complex graph-based models consider the bridge/connection

between documents in the multi-hop setting, simple BERT-based models usually

drop it. We propose FlexibleFocusedReader (FFReader), a model that 1) Flexibly

focuses on predicted supporting facts (SFs) without ignoring the important re-

maining context, 2) Focuses on the bridge between documents, despite not using

graph architectures, and 3) Jointly learns predicting SFs and answering with two

specialized models. Our model achieves consistent improvement over the baseline.

In particular, we find that flexibly focusing on SFs is important, rather than ig-

noring remaining context or not using SFs at all for finding the answer. We also

find that tagging the entity that links the documents at hand is very beneficial.

Finally, we show that joint training is crucial for FFReader.

The task of question answering (QA) is to find an answer to a natural language

24
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question from a given text (Rajpurkar et al., 2016). With the goal of training sys-

tems to apply reasoning and inference on text, and measuring their performance

quantitatively, many datasets have been introduced. One of the early large-scale

ones includes SQuAD (Rajpurkar et al., 2016), where questions were designed to

be answered from a single paragraph, and thus called single-hop QA. Systems

achieved human performance, without achieving the sought-after reasoning skill

(Clark et al., 2018; Yang et al., 2018), as questions could mostly be answered

from a single sentence which encouraged the systems to focus more on matching

information between the question and text (Welbl et al., 2018).

To stimulate models to use more complex reasoning, the task of multi-hop QA

was introduced. In this task, reasoning over multiple documents is required to

find an answer (Welbl et al., 2018). A popular dataset for this task is HotpotQA

(Yang et al., 2018) which, in addition to the answer, has per-sentence annotations

for which sentences are supporting facts (SFs). The goal of asking models to

predict answers and supporting facts is to encourage models to explain how they

reach an answer.

Models that are recently introduced for this task generally divide into two

architectures: Graph-based models that use some form of Graph Neural Networks

(GNNs) (Scarselli et al., 2009) like (Fang et al., 2020; Tu et al., 2020a; Shao et al.,

2020), and non graph-based models that are a pipeline of BERT-based (Devlin

et al., 2019) models like (Glass et al., 2020; Beltagy et al., 2020). Some models use

predicted answers to find the SFs (Asai et al., 2020; Shao et al., 2020), or use SFs

prediction as a second task on the same model that predicts the answers (Fang

et al., 2020; Qiu et al., 2019) (not using any predicted SFs as input to find the

answer; i.e. Unfocused Reader), or only feed the predicted SFs to the answering

model, ignoring the remaining context (Glass et al., 2020; Groeneveld et al., 2020)

(i.e. Strict Focused Reader).

We think that the healthy way to find an answer is by reasoning on the SFs,

however ignoring the remaining context might leave out important information,

either due to annotation problems or sub-optimal SFs prediction. It will also limit

the model to answer only from within the SFs. We propose a novel way of focusing

on the SFs; we tag them while keeping the remaining context, thus allowing our
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Figure 3.1: High-level comparison between our proposed model with similar non-

graph-based related work models. With a question and a paragraph pair as input,

our model uses SFs annotations effectively and does not ignore the bridge link

between the paragraphs. The reader module is jointly trained with the SFF

module. Here, Sj i represents sentence i of paragraph j. Strict Focused Reader

means that the model only uses the predicted SFs as input to the reader, while

Unfocused Reader does not use SFs to predict the answer.

reader model to predict correct answers even from outside of the SFs as we show

in Section 3.6.

We also identify and tag entities that link paragraph pairs, as we find it is an

important cue that non-graph-based models lack. Models incorporate complex1

GNNs to include this link, while we keep our model simple and still include it.

In order to benefit from both sub-task signals, previous models (Fang et al.,

2020; Tu et al., 2020a; Beltagy et al., 2020) have jointly trained the same model to

both answer and predict SFs. As observed by Beltagy et al. (2020), this training

method hurts the reader’s performance, likely due to less capacity and not being

specialized in each sub-task. To avoid this, we train a specialized reader and an

1Complexity can be in graph construction and keeping information of nodes and edges for

every example (which includes recognizing named entities in some models like (Fang et al.,

2020)), or in performance, where the run overhead depends on the number of nodes/edges, and

the number of message passing iterations
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SF finder modules jointly.

We show a comparison of our work and previous work in Figure 3.1. Our final

model achieves clear improvement over the baseline and non-graph-based models

and achieves comparable results with the more complex state-of-the-art models.

We show that when jointly trained, flexibly focusing on SFs benefits from the

SFs annotations for finding the answer without limiting the answer space. Our

proposal of tagging SFs to focus on them (instead of only using them or ignoring

them at all) is a general recommendation for QA tasks, and it can be applied even

to datasets that do not have SFs supervision like SQUAD (Rajpurkar et al., 2016);

we can still predict SFs and use them.2 Furthermore, we show that identifying and

tagging bridge entities is important for multi-hop QA, and we expect this finding

to be applicable to any other Wikipedia-based multi-hop QA dataset where we

can benefit from the hyperlinks between articles like WikiHop (Welbl et al., 2018)

and HybridQA (Chen et al., 2020).

3.1 Related Work

3.1.1 Single-hop QA

Questions in single-hop QA datasets like SQuAD (Rajpurkar et al., 2016), We-

bQuestions (Berant et al., 2013a), SimpleQuestions (Bordes et al., 2015) and Nat-

uralQuestions (Kwiatkowski et al., 2019) can be answered using a single paragraph

or document as context. Since the introduction of Transformers (Wolf et al., 2020)

and BERT (Devlin et al., 2019), best-performing systems have been extensions of

such pre-trained models like RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,

2020) and ELECTRA (Clark et al., 2020), with a typical span prediction head on

top. The task of mere span prediction from a single document was not enough

to let the models learn to answer more complex questions that require reasoning

across multiple documents, and so multi-hop QA was considered as the next step.

2The investigation of such application is left for future work.
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3.1.2 Multi-hop QA on Knowledge Bases

Some datasets focus on enabling QA over knowledge bases (KBs). The WebQues-

tions semantic parses (WebQSP) dataset (Yih et al., 2016) provides semantic

parses of questions answerable from Freebase (Bollacker et al., 2008) and they re-

quire up to 2-hop reasoning. ComplexWebQuestions (CWQ) (Talmor and Berant,

2018) provides crowd-sourced compositional natural language questions answer-

able from Freebase, and also requiring multi-hop reasoning. Some models for

multi-hop knowledge base QA (KBQA) decompose complex questions into sim-

pler questions and do reasoning depending on intermediate answers (Talmor and

Berant, 2018) or use two networks for finding answers from the KB and deciding

better intermediate reasoning (He et al., 2021). Knowledge bases, however, can

be hard to maintain and noisy to generate automatically.

3.1.3 Multi-hop QA on Text

Multi-hop QA over text datasets like HotpotQA (Yang et al., 2018) and WikiHop

(Welbl et al., 2018) were introduced to encourage systems to learn more complex

reasoning as the pieces of evidence to answer a question are scattered among dif-

ferent documents, as opposed to single-hop QA datasets and KB-based datasets.

HotpotQA also includes SFs annotations to encourage models to explain their

reasoning.

Graph vs Non-graph Based Models

Multi-hop QA requires the model to hop between documents that are usually

connected by a link to find the answer. This bridge connection is ignored by non-

graph-based models (Glass et al., 2020; Beltagy et al., 2020) where they encode the

concatenated question and context and perform classifications on top of the trans-

formers (Vaswani et al., 2017) output. To make use of the connection between

sentences and documents, some models incorporate GNNs (Kipf and Welling,

2017; Velickovic et al., 2018). SAE (Tu et al., 2020a) predicts answers directly

from transformers output but applies GNNs on top of the generated sentence em-

beddings to predict SFs. HGN (Fang et al., 2020) constructs a hierarchical graph



3.1. RELATED WORK 29

of multiple levels of granularity (paragraphs, sentences, and entities), and predicts

answers and SFs on top of this GNN. Shao et al. (2020) argue that graph struc-

ture might not be necessary for multi-hop question answering when pre-trained

transformers are fine-tuned, and that graph attention can be considered as a spe-

cial case of self-attention. In our model, we follow the simplicity of Longformer

(Beltagy et al., 2020) but without sacrificing the bridge connection signal between

documents. BigBird (Zaheer et al., 2020) is a very similar model to Longformer,

with the main difference being the addition of either random attention or external

tokens for global attention.

Utilization of Supporting Facts Annotations

HGN and DFGN (Qiu et al., 2019) models use SFs annotations implicitly in a

multi-task setting. QUARK (Groeneveld et al., 2020) and TAP2 (Glass et al.,

2020) explicitly use predicted SFs as the only context available to the answer-

finding model. This strictness is harmful as not only the accuracy of the SF

prediction is not optimal, but also the golden annotation itself has the problem

of leaving out important related sentences, as discussed in Section 3.6.10. We

circumvent this by tagging the predicted SFs while keeping the remaining context.

Joint Training

Models that apply joint training like HGN, DFGN, QFE (Nishida et al., 2019)

and Longformer 1-stage version, do it in a multi-task way on the same model.

The official HotpotQA baseline model (Yang et al., 2018) adds several layers on

top of its SFs prediction module but its model still shares the same low-level

representations, therefore joint training still happens on the same model. As

Longformer’s results show, the 2-stage mode (2 separate models for answer and

SFs prediction) is better than the 1-stage mode, because having separate models

for each task means more capacity and specialized models. In our model, we

jointly train separate specialized models. We also experiment with additional

settings like different ratios of loss combination and pre-initialization for joint

fine-tuning as discussed in Section 3.6.8 and 3.6.6.
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Question Type train dev

Comparison 17,456 1,487

Bridge 72,991 5,918

Total 90,447 7,405

Table 3.1: Statistics showing the amount of question types for each data split in

HotpotQA. Note that the test split is hidden in the distractor setting.

3.2 The HotpotQA Distractor Task

3.2.1 Task Description

We use the HotpotQA dataset (Yang et al., 2018), which has two settings: Dis-

tractor and fullwiki. In this paper, we focus on the distractor setting as it is only

concerned with the reader model part of the problem, not the information retrieval

part. In the distractor setting, 10 paragraphs from 10 different Wikipedia docu-

ments are given, and only 2 paragraphs are related to the question to be answered

and explained. The two sub-tasks are: 1) Answer prediction, and 2) Supporting

facts prediction. They are evaluated with exact match (EM) and partial match

(F1) metrics. The final performance is evaluated with a joint EM and F1 score.

The questions in this dataset have two types: “Bridge” and “Comparison.”

“Bridge” questions are anchored around a bridge entity (i.e., a hyperlink) that con-

nects the paragraphs, while “Comparison” questions are about two paragraphs,

not necessarily connected by a link. Table 3.1 shows statistics about the percent-

age of each question type in the dataset, and we see that “Bridge” type questions

are the majority.

3.2.2 Data Preparation

Each question with its 2 gold and 8 distractor paragraphs is considered an exam-

ple. In training, we generate 3 paragraph pairs for each example: 2 gold, 1 gold

1 distractor, and 2 distractor paragraphs. In evaluation, we consider all possible

paragraph pairs, and we choose the pair with the highest score as shown in Section

3.3.4.
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As alternative preparation settings, we also experiment with only using 2

gold paragraphs, or with 2 gold and 1 gold and 1 distractor without 2 distractor

paragraphs, but we find that the performance degrades in both cases. Related

work methods are either not concretely explained or not applicable to our model;

Longformer (Beltagy et al., 2020) inputs 10 paragraphs at once, while HGN (Fang

et al., 2020) selects several paragraphs using string-matching heuristics together

with a trained ranker when needed, and uses them for training. SAE (Tu et al.,

2020a) uses only gold paragraphs and uses a trained ranker to retrieve the top 2

paragraphs.

3.3 Model Flow

We show an overview of our model in Figure 3.2. We first explain the model flow,

then talk about our contributions in Section 3.4.

3.3.1 LongRoBERTa

The basic unit in our model is a long version of RoBERTa (Liu et al., 2019), which

is constructed in a similar way to Longformer, with the difference being in the

maximum token length. LongRoBERTa and Longformer are different from plain

RoBERTa mainly because of using global attention, which we set only on selected

tokens as explained in Longformer (Beltagy et al., 2020). Following Longformer

authors’ instructions of continuing pretraining after the construction of a longer

RoBERTa, we pre-trained on Wikitext103 (Merity et al., 2017) for 3k steps. Long-

former inputs 10 paragraphs at once as context with a maximum token length of

4,096. This can be noisy as paragraphs from different documents are not coherent,

and it is difficult to focus on links between paragraphs as there can be many links.

Therefore, we only consider 2 paragraphs at a time with a maximum token length

of 1,024, reducing noise and allowing us to do bridge tagging. LongRoBERTa is

used for the reader module and the SFs finder module. We do not use the plain

512 tokens RoBERTa to avoid truncating or complex splitting into windows. We

show the effects of using a plain RoBERTa versus LongRoBERTa in Section 3.6.7.
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Q: The telenova "El Ardiente Secreto" was based ona novel published under what pen name?

T1: El Ardiente Secreto
El Ardiente Secreto (English The impassioned secret) is a 
telenovela made by Mexican TV network Televisa. This 
telenovela was broadcast in 1978. This soap opera was 
televised on weekends only. It was based on the Charlotte 
Brontë's novel Jane Eyre.

T2: Jane Eyre
Jane Eyre (originally published as Jane Eyre: An 
Autobiography) is a novel by English writer Charlotte 
Brontë. It was published on 16 October 1847, by Smith, 
Elder & Co. of London, England, under the pen name 
"Currer Bell". The first American edition was published the 
following year by Harper & Brothers of New York.

Answer: Currer Bell

[CLS] [q] Q [/q] [t] T1 [/t] El Ardiente ... network Televisa [/s] ... Brontë's novel [BE] Jane Eyre [/BE] [/s] [t] T2 [/t] ...  

SFF Module
... ... ... ...

... ... ...

Paragraph Classifier Sentence Classifier

[CLS] [q] Q [/q] [t] T1 [/t] ... weekends only. [SF] ... novel [BE] Jane Eyre [/BE] [/SF] ... [SF] ... name Currer Bell [/SF] ...

Reader Module
... ...

... ...

Answer Classifier start end

span | no_answer | yes | no

(Tag Reader input with predicted supporting facts)

Figure 3.2: A detailed diagram that shows our model’s architecture. The question,

paragraphs, and their titles are concatenated, with the bridge entity tagged with

a [BE] tag (tokens are shown in blue color). The [t] tags represent the paragraphs

and are passed to the “Paragraph Classifier” to calculate the score Pj of paragraph

j as in Eq. 3.4. The [/s] tags represent the sentences and are passed to the

“Sentence Classifier” that classifies each sentence as an SF or not. In the input

to the reader module, the sentences that are predicted to be SFs are tagged with

[SF] tags (tokens are shown in green color). The start and end of a candidate

answer span are then predicted, along with a classifier on the [CLS] token deciding

whether to use this predicted span (tokens are shown in red color), give a yes/no

answer, or decide that no answer is available. Note that Joint training is not

depicted in this figure for clarity.
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3.3.2 Supporting Facts Finder (SFF) Module

We concatenate the question with the paragraph pair after tagging them with spe-

cial tokens as follows: “[CLS] [q] question [/q] [t] title1 [/t] sent1_1

[/s] sent1_2 [/s]...[t] title2 [/t] sent2_1 [/s]...[SEP]” where special

tokens [q] and [/q] are question boundaries, [t] and [/t] are paragraph title

boundaries, and [/s] is sentence ends. We consider [t] to represent the whole

paragraph, and [/s] to represent the sentence, and we only assign [t] and [/s]

tokens to have global attention, all following Longformer. Also similar to Long-

former, we apply two-layer feedforward networks on top of the LongRoBERTa

output of [t] and [/s] tokens to calculate the binary scores of the relatedness

of paragraph j (opara j) and sentence i of paragraph j (osent j i):

opara j = MLP1(Pj) (3.1)

osent j i = MLP2(Sj i) (3.2)

where MLP(·) denotes Multi Layer Perceptron (MLP), Pj is the embedded output

of token [t] of paragraph j, and Sj i is the embedded output of token [/s] of

sentence i of paragraph j. From the two scores in opara j (related and not related),

we denote Pj to be the logit of paragraph j being related to the question. We use

cross entropy to get the final loss of this module, SFFloss:

SFFloss = CE(opara,ypara) + CE(osent,ysent)

where opara and osent are vectors of binary scores for every paragraph and sen-

tence, ypara and ysent are the labels of the paragraph being related or sentence

being a supporting fact, respectively. CE() represents the cross-entropy loss func-

tion. Note that in ypara, a paragraph is given label 1 if it contains at least 1

SF.

3.3.3 Reader Module

We pass the prepared input without [/s] tokens to another instance of Lon-

gRoBERTa, with global attention for all question tokens only. Following a typical

QA model (Devlin et al., 2019), we predict the start and end tokens from context
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outputs and apply a multi-class classifier on top of the embedded output of the

[CLS] token (HCLS) with 4 classes as:

oianswer = WaHCLS , (3.3)

where Wa is a learnable weight matrix, and for paragraph pair i, oianswer ∈ R1×4

represents the logits of the 4 classes: [span, no ans, yes, no], where they mean the

answer is the span predicted by start and end logits, or no answer is found in the

current paragraph pair, or yes and no answers to “Comparison” type questions,

following Asai et al. (2020). The final loss, Readerloss is calculated as:

Readerloss = CE(ostart,ystart)

+ CE(oend,yend)

+ CE(oanswer,yanswer)

where ostart and oend are the logits of the start and end positions of the predicted

span in the range of all possible indices. ystart, yend and yanswer are the labels of

the start, end positions, and the answer class, respectively.

3.3.4 Evaluation Time Paragraph Pair Selection

In evaluation time, we select the paragraph pair i that has the highest score Pairi

as follows:

Pairi =
∑
j∈Si

Pj − no ansilogit (3.4)

where Si is the set of the selected paragraphs in pair i according to the binary

score defined in Eq. 3.1, no ansilogit is the no answer logit for paragraph pair i as

explained in Section 3.3.3.

3.4 Our Proposal

3.4.1 Overview

With the flow described in Section 3.3, we add our contributions that manifest in

1) Flexibly focusing on SFs, that are usually not used in predicting the answer,
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or used in a strict, non-flexible way, 2) Tagging bridge entities (“Jane Eyre” in

the example) that are usually ignored with non-graph-based systems, and 3) Joint

training the SFF module with the reader module which proves to be crucial for the

flexibly focusing on SFs. We explain each contribution in detail in the following

sections.

3.4.2 Flexibly Focusing on Predicted SFs

When preparing the input for the reader module (Section 3.3.3), we focus on pre-

dicted SFs by tagging related sentences as “[SF] sent1_2 [/SF],” while keeping

the tagged bridge entities. We call our model that uses this technique: “Flexible-

FocusedReader” (FFReader). We consider the baseline to be “UnfocusedReader”

which is similar to our model except that it does not tag any SFs. We also com-

pare against “StrictFocusedReader” (SFReader), where only predicted SFs are

included as context, ignoring remaining sentences.

3.4.3 Bridge Entity Tagging (BET)

We use the raw Wikipedia text with hyperlinks to extract links and their indices

and save everything in an indexed database. For each paragraph in the input

pair, we retrieve available links and match them against the other paragraph in

the pair. If the paragraphs are linked, we tag the tokens of the bridge entity

as [BE] hyperlink text [/BE]. This tagging is important mostly in “Bridge”

question types. Since they are the majority (as shown in Section 3.2.1), the

importance of this proposal is well reflected in practice (Section 3.6).

3.4.4 Joint Training

We jointly train the SFF and reader modules by combining their losses as follows:

Loss = SFFloss ∗ λ + Readerloss ∗ (1 − λ) (3.5)

where λ ∈ [0, 1] is a hyperparameter to control the importance of each module.

We find in our experiments that the optimal λ is 0.5. Detailed λ comparison

can be found in Section 3.6.8. While this joint training is crucial for the reader
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module, we find that it does not improve the SFF module. In fact, it degrades

its performance; therefore, in our final model, we use a separately trained SFF

module + the jointly trained reader module. We also experiment with a joint

training setting where we initialize the modules with separately trained ones and

only fine-tune them, but we did not gain major improvement. We give more

details in Section 3.6.6.

3.5 Experiments

3.5.1 Implementation Details

We use Transformers library (Wolf et al., 2020) in our implementation with base

and large versions of RoBERTa (Liu et al., 2019). Both base and large versions are

extended to have max tokens of 1,024 (originally 512) following the instructions

of Beltagy et al. (2020) for building “long” version of pre-trained models. The

difference between them is: 12-layer, 768-hidden and 12-heads for base vs 24-layer,

1,024-hidden and 12-heads for large. For both base and large, we use the Adam

optimizer with warmup equal to 0.1 of the total steps and linear decay. We use a

learning rate of 5e-5 with a batch size of 32. For base joint experiments, we use

a learning rate of 2e-4 with a 512 batch size with Adasum (Maleki et al., 2021).

We train base versions for 10 epochs, while large for 20 epochs, and use λ = 0.5

for both versions of joint experiments.

3.5.2 Results

We show the test results of our large model on the distractor setting of the Hot-

potQA dataset in Table 3.2. “Ans” and “Sup” refer to the tasks of finding answers

and supporting facts, respectively. “Joint” refers to the joint evaluation where for

each question, the answer and the supporting facts should be correct to get the

EM score, or partially correct to get the F1 score. We see that our model out-

performs all non-graph-based models and several graph-based ones for the “Ans”

task, and achieves comparable scores with sophisticated graph-based models on

both tasks.
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Model Categories
Ans Sup Joint

EM F1 EM F1 EM F1

Non graph-based

TAP2 (Glass et al., 2020) 64.99 78.59 55.47 85.57 39.77 69.12

Longformer (Beltagy et al., 2020) 68.00 81.25 63.09 88.34 45.91 73.16

ETC-large* (Zaheer et al., 2020) 68.12 81.18 63.25 89.09 46.40 73.62

FFReader-large
68.89 82.16 62.10 88.42 45.61 73.78

(Ours)

Graph-based

SAE-large (Tu et al., 2020a) 66.92 79.62 61.53 86.86 45.36 71.45

SEGraph † 68.03 81.17 61.70 87.43 44.86 72.40

C2F Reader (Shao et al., 2020) 67.98 81.24 60.81 87.63 44.67 72.73

BFR-Graph † 70.06 82.20 61.33 88.41 45.92 74.13

HGN-large (Fang et al., 2020) 69.22 82.19 62.76 88.47 47.11 74.21

Unknown arch.

GSAN-large † 68.57 81.62 62.36 88.73 46.06 73.89

SpiderNet-large † 70.15 83.02 63.82 88.85 47.54 74.88

AMGN+ † 70.53 83.37 63.57 88.83 47.77 75.24

Table 3.2: Test scores on the distractor setting of HotpotQA. We split the top

models in the leaderboard into categories based on their architectures. Ours

denotes our FFReader-large model. Models with † sign lack any details other

than the test scores on the official leaderboard (https://hotpotqa.github.io/) as of

January 28th, 2021. (* ETC-large is the name reported on the official leaderboard,

but the actual full name is BigBird-ETC.)
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We think the reason Longformer and BigBird-ETC have better EM scores

(and F1 for BigBird-ETC) in predicting SFs in the “Sup” task is probably because

when they concatenate all 10 paragraphs, they have a lot of negative sentences to

look at and train on. One possible future work is to experiment with even more

negative sampling settings than discussed in Section 3.2.2.

In the “Sup” task in Table 3.2, EM and F1 scores represent the precision and

recall of SFs, respectively. Even though in the training data, we make sure the

answer is in the gold SFs, our FFReader is flexible and does not require the answer

to be in the predicted SFs, as we show in Table 3.11- Question 2. Therefore, we do

not suffer from the necessity of having a huge recall on the SFs to make sure the

answer is included, as in an SFReader. For example, the SFReader-based model

TAP2 (Glass et al., 2020) selects SFs using a fixed threshold to make sure their

recall (F1 score) is high since it is more important than precision (EM score)

because if the SF containing the answer is missed, there is no way to answer

correctly.

In our SFF module, we do not actually explicitly control the threshold for se-

lecting an SF, we follow Longformer by predicting a binary score for each sentence

[score 0, score 1]; if score 1 is larger than score 0, the sentence is considered an

SF. Therefore, there is no precision/recall balance hyper-parameter that we tune.

Related work of graph-based architectures usually applies Graph Neural Net-

works (GNNs) (Velickovic et al., 2018) on top of a Transformers (Vaswani et al.,

2017) model to do SFs prediction and answering. To use our flexible focusing on

SFs proposal, they need to first identify the SFs, then answer. Therefore they

need two separate versions of their model for each sub-task. This would mean

their final architecture would be as follows: “(Transformer model + GNNs) �
SFs + (Transformer model + GNNs) � Answer.” Our model however would just

be “(Transformer model) � SFs + (Transformer model) � Answer.” In this sense,

the double addition of GNNs is an added complexity and performance cost.3

We detail the sources of our improvement through an ablation study on the

base version of our model. The ablation was done using the base version instead of

3Adding GNNs on top of Transformers is orthogonal to our work, and can still be added to

close the gap between our model and graph-based models.
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the large version of RoBERTa because of computation and time constraints. The

base version fits into our smaller, more available GPUs, while the large version

needs a longer time on our limited number of larger GPUs.

3.6 Discussion

3.6.1 Reader Module

In Table 3.3, we compare the performance of our proposed reader module against

different readers as described in Section 3.4.2. Using predicted SFs in “SFReader”

and “FFReader” hurts the performance compared to “UnfocusedReader” because

the accuracy of the SFF module is not optimal. When we use gold SFs (optimal

SFF), we see clear improvement over the “UnfocusedReader” baseline. When

joint training “FFReader” with the SFF module, we see that it alleviates the

inaccuracy of SFs. We hypothesize that the improvement comes from SFs being

dynamic, and not treated as sub-optimal gold annotations. Joint training did not

give any noticeable improvement when applied on the “UnfocusedReader,” likely

because it does not use any SFs, thus independent from the SFF module.

When joint training, even though the gradients pass through SFF and Reader

modules separately, the amount of loss is what is impacted. When the Reader

makes a wrong prediction based on wrong SFs, it is penalized more than if the

predicted SFs were correct. This adjusts the Reader’s dependence/confidence on

the predicted SFs. In Table 3.3, we see that if gold SFs are used, there is no need

for joint training.

3.6.2 BET with SFF Module

In Table 3.4, we show the effect of BET on our SFF module. We also evaluate on

gold paragraphs to see the upper bound of the SFs prediction, while unaffected by

the accuracy of selecting correct paragraphs. The difference between gold and non-

gold evaluation is smaller with BET (2.58/1.91 vs 1.82/1.36), suggesting that the

proposed BET not only improves the SFs predictions but also paragraph selection.

We think BET is an important signal because of the way HotpotQA examples are
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collected; “Bridge” type questions, which are the majority, are anchored around

the bridge entity connecting the paragraphs.

3.6.3 Effect of Joint Training on SFF Module

We see that joint training slightly harms the performance of the SFF module if

BET is used, while improves it without BET. We think that it might be because

even when a bridge entity is present in the training instances, there is no guarantee

that there is an answer (the instances other than 2 gold paragraphs as explained

in Section 3.2.2), which may give conflicting signals for the BET existence. Even

with this negative effect, the benefit of using BET outweighs the benefit of joint

training the SFF module without BET.

3.6.4 Performance Per Question Type

We separate the results in Tables 3.3 and 3.4 by question type, and we indeed see

that BET benefits the “Bridge” question types much more than the “Comparison”

types. In some cases, it slightly harms “Comparison” types, likely because there is

usually no hop between comparison paragraphs, so bridge entities act as distrac-

tions. As one possible future work, we can add a classifier to predict the question

type and only tag bridge entities when the question is not a “Comparison” type.

Compared to the jointly trained FFReader, we see from Table 3.3 that there is

almost no difference in the score of the “Comparison” question types when using

gold SFs. This suggests that the flexible focusing on SFs is most important in

“Bridge” question types.

3.6.5 Paragraph Pair Scoring

In addition to the method in Eq. 3.4, we experiment with two other alternative

paragraph pair scoring methods as follows:

Pairi =
∑
j∈Si

Pj (3.6)

Pairi = −no ansilogit (3.7)
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Scoring method
Ans Sup Joint

EM / F1 EM / F1 EM / F1

−no ansilogit 63.32 / 76.88 46.08 / 79.23 31.88 / 62.96∑
i∈Si

Pi 64.55 / 78.23 61.04 / 87.16 42.42 / 69.81∑
i∈Si

Pi − no ansilogit64.80 / 78.46 61.19 / 87.39 42.48 / 70.08

Table 3.5: Comparison between pair scoring methods in evaluation time using the

base version of our final model (Jointly trained FFReader module + separately

trained SFF module + BET).

where we either only use paragraph classification scores from the SFF module, or

we only use the no answer score from the reader module. We show a comparison

between the three methods in Table 3.5. We notice that the paragraph classi-

fication score in the SFF module is more important than no anslogit from the

reader module, but their combination gives the best paragraph pair classification

accuracy.

3.6.6 Initialization of Joint Training Experiments

All joint training experiments presented in this paper are fresh runs, meaning that

the parameters of SFF and reader modules were initialized randomly. We also

experiment with another type of training where those two modules were initialized

with weights of separately trained SFF and reader modules. We fine-tune the

initialized modules for fewer epochs and several learning rates, but we find that

such training barely improves the reader. We compare the best-performing trial

against separate and fresh joint training in Table 3.6.

As mentioned in Section 3.6.1, FFReader suffers without joint training because

it is trained with predicted SFs which are sub-optimal (Compared to the results

in Table 3.3 where it is trained with gold SFs). Now fresh joint training alleviates

this by using dynamic SFs, and also, the loss of the SFs misprediction helps the

reader module become less dependent on the SFs when necessary (when they are

wrong). The reader module in joint fine-tuning is initialized by a reader that was

trained with sub-optimal SFs, and it only has limited training to fix its confidence
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Score of
Separate training Fresh joint training Joint fine-tuning

EM / F1 EM / F1 EM / F1

SFF 62.86 / 88.52 61.58 / 88.30 62.53 / 88.56

FFReader 62.57 / 76.40 65.39 / 79.01 62.94 / 76.77

Joint - / - 42.48 / 71.07 42.16 / 69.40

Table 3.6: Comparing joint fine-tuning with fresh joint training and separate

training. We use BET with the base version of the model, and we evaluate only

on gold paragraphs.

Data split Examples Count > 512 > 768 > 1,024

Training with neg. 270,817 19,693 1,830 371

Development 7,405 164 5 0

Table 3.7: Length statistics about the input of different data splits. Training with

neg. means adding negative samples of paragraph pairs to the 2 gold paragraph

pair as described in Section 3.2.2. We use this split in our actual training.

in the sub-optimal SFs. We see that in the small improvement in Table 3.6 where

reader performance only improves about 0.35 EM/F1 scores.

3.6.7 Plain RoBERTa versus LongRoBERTa

To justify the use of 1,024 tokens instead of 512 of a plain RoBERTa, we show

statistics of input lengths in Table 3.7. We see that 7% of our training instances

(Training with neg.) and 2.2% of gold paragraph pairs in the dev split go over the

512 limit. To further study the effect of truncating those examples, we train our

model using a plain RoBERTa instead of a LongRoBERTa as the basic encoding

unit and show the results in Table 3.8. We find that the performance drops about

1.0/0.7 EM/F1 for the reader module, which shows the benefit of using longer

sequences. In Table 3.2, models that outperform our model while only using 512

tokens also use GNNs, which explains their performance boost.
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Score of
Plain RoBERTa LongRoBERTa

EM / F1 EM / F1

SFF 62.5 / 88.89 61.58 / 88.30

FFReader 64.32 / 78.31 65.39 / 79.01

Joint 42.80 / 70.85 42.48 / 71.07

Table 3.8: A comparison between using our model with plain RoBERTa versus

LongRoBERTa.

3.6.8 Joint Training Hyperparameter λ

We experiment with different λ values in Eq. 3.5 and we show the details in Table

3.9. We see that for all values, SFF performs worse than the separately trained

SFF module, thus we opt for the λ value that most improves our reader module,

which is 0.5.

3.6.9 Case Study

In Table 3.11, we show some examples that are improved by our FFReader and

BET proposals. We show links that are tagged with [BE][/BE] as underlined,

wrong answers in {brackets}, correct answers in bold, and supporting facts in

italic.

Questions 1 and 2 demonstrate the effectiveness of our FFReader. In Question

1, Unfocused Reader tries to find a time span that can be the answer to the

question from both paragraphs with no guidance on what sentences are important,

while FFReader used the tagged SFs and showed how focusing on SFs helps to

find the answer. Question 2 shows how our model can still predict answers outside

the predicted SFs, while SFReader models like TAP2 and QUARK are limited to

answers within the SFs. In this example, both SFReader and FFReader have the

same predicted SFs, but SFReader can only see the SFs, so the only driver name

it can give is “Sergio Pérez,” while FFReader considers the SFs but chooses the

correct answer outside of them.

Questions 3 and 4 demonstrate the effect of our BET proposal. In question

3, we see that the Unfocused Reader without BET gives a correct answer type (a
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language), but the wrong answer. Without using BET, the system did not consider

the importance of the second paragraph, and it just guessed one language near

the word “Padosan.” However, with the bridge clearly marking the importance of

the linked document, the system was able to find the correct answer. In Question

4, FFReader without BET chose “Tunisian” as the answer because it appeared

before “historian” which matches the question, without considering the other

paragraph. With BET, the system paid more attention to the related paragraph

and found the correct answer.

3.6.10 Problems in HotpotQA Annotations

In this section, we show that another reason why robustness in dealing with SFs

is important is because annotations in HotpotQA can sometimes be inconclusive;

they do not actually cover all the required sentences for reasoning. In Table 3.10,

we show an example of HotpotQA SFs annotation issue that we think hurts the

training of the SFF module. We see that the sentence S2 1 is not considered a

gold SF, even though it includes the name of one of the entities in the question.

If the meaning of “supporting facts” is that they are the only sentences required

for reasoning to arrive at the answer, then if the reader has access only to these

sentences, there is no way to resolve the pronoun “He” in sentence S2 1. This would

be considered an annotation mistake, and we encountered many such annotations.

If the meaning of “supporting facts” is that they are the core sentences required

for making the final reasoning decision (not necessarily including all pronoun

resolutions), then there is a logical annotation mistake, because the sentence that

contains the answer is always a supporting fact, while other sentences that could

have been the answer are not. An example of why this hurts the performance

is as follows: S1 1 and S2 1 are equally important; they just define the players.

If our SFF module predicts S2 1 as an SF, it would get penalized, even though

this is a totally logical prediction. In order to have the SFF module achieve

100% EM accuracy, it would need to know the answer before predicting the SFs.

After sampling 20 examples, we found 5 examples with this problem, which means

around 25% of questions have this issue.
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Question: Which tennis player won more Grand Slam titles, Henri

Leconte or Jonathan Stark?

Answer: Jonathan Stark

Paragraph: Jonathan Stark

[Gold SF] S1 1 Jonathan Stark (born April 3, 1971) is a former professional

tennis player from the United States.

[Gold SF] S1 2 During his career he won two Grand Slam doubles titles (the

1994 French Open Men’s Doubles and the 1995 Wimbledon

Championships Mixed Doubles).

Paragraph: Henri Leconte

S2 1 Henri Leconte (born 4 July 1963) is a former French profes-

sional tennis player.

[Gold SF] S2 2 He reached the men ’s singles final at the French Open in

1988, won the French Open men ’s doubles title in 1984,

and helped France win the Davis Cup in 1991.

Table 3.10: Example from HotpotQA where SFs annotations are inconclusive.
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Question 1: When was the Western Germanic language spoken from which

the small settlement situated on the river Leda opposite Leer

derives its name?

Gold Answer: between the 8th and 16th centuries

Paragraph: Leda (river)

[SF] The Leda is a river in north-western Germany in the state

of Lower Saxony. [/SF]

It is a right tributary of the Ems and originates at the confluence

of the Sagter Ems and the Soeste (Dreyschloot) near the town

of Barßel.

The Leda flows into the Ems near the town of Leer.

[Gold SF] [SF] On the southern bank of the Leda, in the ”Overledingen

Land” (Overledingen=”country over the Leda”), opposite Leer,

lies the small settlement of Kloster Muhde (”Muhde” from the

Old Frisian ”mutha” meaning ”(river) mouth”) [/SF].

The total length of the river is 29 km , of which the lower 1.9

km are navigable for sea-going vessels.

Paragraph: Old Frisian

[Gold SF] [SF] Old Frisian is a West Germanic language spoken between

the 8th and 16th centuries in the area between the Rhine and

Weser on the European North Sea coast. [/SF]

The Frisian settlers on the coast of South Jutland (today’s North-

ern Friesland) also spoke Old Frisian but no medieval texts of this

area are known.

The language of the earlier inhabitants of the region between the

Zuiderzee and Ems River (the Frisians mentioned by Tacitus) is

attested in only a few personal names and place-names.

Old Frisian evolved into Middle Frisian, spoken from the {16th

to the 19th century}.

Answer of UnfocusedReader with BET: 16th to the 19th century

([SF] tags were not used in UnfocusedReader)
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Answer of FFReader with BET: between the 8th and 16th

centuries

Question 2: Which other Mexican formula one race car driver has held the

podium besides the Force India driver born in 1990?

Gold Answer: Pedro Rodŕıguez

Paragraph: Forumula One drivers from Mexico

There have been six Formula One drivers from Mexico who have

taken part in races since the championship began in 1950.

[Gold SF] Pedro Rodŕıguez is the most successful Mexican driver being

the only one to have won a Grand Prix.

[Gold SF] [SF] Sergio Pérez, the only other Mexican to finish on the

podium, currently races with Sahara Force India F1 team. [/SF]

Paragraph: Sergio Pérez

[Gold SF] [SF] {Sergio Pérez} Mendoza (; born 26 January 1990) also

known as ”Checo” Pérez, is a Mexican racing driver, currently

driving for Force India. [/SF]

Answer of SFReader with BET: Sergio Pérez

Answer of FFReader with BET: Pedro Rodŕıguez

Question 3: Padosan had a supporting actor who is known as a successful

playback singer in what language?

Gold Answer: Hindi

Paragraph: Padosan

Padosan (Hindi: ””, {English}: lady Neighbour ) is a 1968 Indian

comedy film.

Directed by Jyoti Swaroop.

It was produced by Mehmood, N. C. Sippy and written by Ra-

jendra Krishan.

It was a remake of the Bengali film ”Pasher Bari” (1952) starring

Bhanu Bandyopadhyay and Sabitri Chatterjee.

The movie stars Sunil Dutt and Saira Banu in lead roles.

[Gold SF] Kishore Kumar, Mukri, Raj Kishore and Keshto Mukherjee

played the supporting roles.
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Mehmood as the South Indian musician and rival to Sunil Dutt

is among the highlights of the film.

It was considered as one of the best comedy movies ever made

in Hindi film history.

Mehmood’s portrayal of a south Indian music teacher was one of

his all time best and noted performances and a key highlight of

the film.

Kishore Kumar’s character of a comical theater director was also

well received.

”Indiatimes Movies” ranked the movie amongst the ”Top 25

Must See Bollywood Films”.

Music was composed by R.D. Burman and was a huge hit.

Kishore Kumar sang for himself while Manna Dey sang for

Mehmood.

Paragraph: Kishore Kumar

Kishore Kumar (4 August 1929 – 13 October 1987) was an In-

dian playback singer, actor, lyricist, composer, producer, direc-

tor, and screenwriter.

[Gold SF] He is considered one of the successful playback singers in the

Hindi film industry.

Answer of UnfocusedReader without BET: English

Answer of UnfocusedReader with BET: Hindi

Question 4: Georges-Henri Bousquet translated the work of a historian who

is of what heritage?

Gold Answer: North African Arab

Paragraph: Georges-Henri Bousquet

Georges-Henri Bousquet (21 June 1900, Meudon – 23 January

1978, Latresne) was a 20th-century French jurist, economist and

Islamologist.

He was Professor of law at the Faculty of Law of the University

of Algiers where he was a specialist in the sociology of North

Africa (Berbers, Islam).
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[Gold SF] He is also known for his translation work of the great Muslim au-

thors, Al-Ghazali, a theologian who died in 1111 and {Tunisian}
historian Ibn Khaldun (1332-1406).

He was known as a polyglot, spoke several European languages

(Dutch, his second mother tongue, English, German, Italian, but

also Spanish, Danish, Norwegian ...) and Eastern ones (Arab,

Malay ...).

Paragraph: Ibn Khaldun

[Gold SF] Ibn Khaldun ( ; Arabic: , ”Abū Zayd‘ Abd ar-Rahman ibn

Muhammad ibn Khaldūn al-Hadrami” ; 27 May 1332 – 17 March

1406) was a North African Arab historiographer and histo-

rian.

Answer of FFReader without BET: Tunisian

Answer of FFReader with BET: North African Arab

Table 3.11: Examples from the development split of HotpotQA distractor set-

ting. We compare the results of several systems that are shown in Table 3.3 as

follows: Question 1) UnfocusedReader v.s. FFReader. Question 2) SFReader v.s.

FFReader. Question 3) UnfocusedReader with and without BET. Question 4)

FFReader with and without BET. All FFReader models were trained with joint

training while using a separately trained SFF module, as explained in Section

3.4.4.

3.7 Summary of This Chapter

In this chapter, we propose a multi-hop QA model that: 1) Uses supporting facts

to answer questions in a novel way, 2) Tags bridge entities that connect paragraph

pairs, and 3) Jointly train separate modules for answer, and supporting facts

prediction. Our model outperforms all non-graph-based models in answer finding

and achieves comparable scores with state-of-the-art graph-based models. For

future work, we want to explore applying global attention to entities to explore if

it can mimic the GNNs that are applied to entities.



Chapter 4

Investigating the Factual

Knowledge Memory in

Closed-Book Setting

Recent research shows that Transformer-based language models (LMs) store con-

siderable factual knowledge from the unstructured text datasets on which they are

pre-trained. The existence and amount of such knowledge have been investigated

by probing pre-trained Transformers to answer questions without accessing any

external context or knowledge (also called closed-book question answering (QA)).

However, this factual knowledge is spread over the parameters inexplicably. The

parts of the model most responsible for finding an answer only from a question

are unclear. This study aims to understand which parts are responsible for the

Transformer-based T5 reaching an answer in a closed-book QA setting. Further-

more, we introduce a head importance scoring method and compare it with other

methods on three datasets. We investigate important parts by looking inside the

attention heads in a novel manner. We also investigate why some heads are more

critical than others and suggest a good identification approach. We demonstrate

that some model parts are more important than others in retaining knowledge

through a series of pruning experiments. We also investigate the roles of encoder

and decoder in a closed-book setting.

52
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Neural language models (LMs) store knowledge from the unstructured text

on which they are pre-trained (Roberts et al., 2020; Petroni et al., 2019; Jiang

et al., 2020). Such a phenomenon of storing knowledge is interesting and valuable

because LMs are trained on unstructured text and are easy to query. Previous

work investigated the existence and amount of such knowledge in Transformer-

based models, such as BERT (Devlin et al., 2019) and T5 (Raffel et al., 2020),

and how to effectively query models to find the stored knowledge.

Querying these models is a form of question answering (QA), and it is con-

sidered a direct interface to the knowledge stored in LMs. Given that using

context to answer questions makes it difficult to know if the model has retrieved

this knowledge from within or from the context, we focus on analyzing this phe-

nomenon using closed-book (QA) (Section 4.1). This setting is used by Roberts

et al. (2020) to feed T5 models open-domain questions with no context to measure

the amount of knowledge stored. In open-book QA, models are either fed con-

text that contains the answer (Rajpurkar et al., 2016) or allowed to use external

knowledge sources (Chen et al., 2017). However, in closed-book QA, the model

only depends on the question and “look up information” stored in its parameters

to find the answer. Therefore, closed-book QA is essential to estimate the amount

of stored knowledge. For example, only feeding “What is the capital of Japan?”

is sufficient for the model to generate the answer.

Although the amount of knowledge stored after pre-training is estimated using

closed-book QA (Roberts et al., 2020), how this knowledge is stored and which

parts of the T5 model are responsible for reaching answers remains poorly un-

derstood. This study aims to understand how knowledge is stored inside T5 in a

closed-book QA setting while also studying the importance and role of different

parts of the model (Section 4.2). We also present head importance scoring meth-

ods for pruning the model to verify the distribution of knowledge (Section 4.3).

Understanding the inner workings and the crucial parts of the model allows for

several benefits, such as guided pruning, where the size of LMs is reduced while

preserving learned knowledge, aiding better design choices, and providing hints

about how to integrate external knowledge with LMs better.

The contributions of this study are three-fold:
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• After a novel investigation of the components of attention, we find that the

query component is the most important, as it is almost the only component

that changes when back-propagation is calculated.

• We find that the encoder finds the embedding space of the desired answer

entity, and the decoder generates the textual representation of that entity.

• We compare different attention-head importance scoring methods on three

datasets and find that the stored knowledge is not evenly distributed in the

model.

4.1 Preliminary

4.1.1 Task

This study aims to understand how QA Transformer-based T5 models generate

answers to factual questions in a closed-book setting. It also attempts to find

whether parts of the model are more important than others in reaching answers

and then identify them.

In a closed-book QA setting, the model is given a question and is expected to

provide an answer without accessing context or external knowledge. The model

must “memorize” the answers given during the pre-training or fine-tuning. How

Transformers work in this setting is principally different than other tasks. In other

settings, the model generally uses attention to focus on some parts of the provided

context. For instance, the model can extract answers from a context paragraph

in a normal QA setting (Devlin et al., 2019) or align words between source and

target languages as in translation tasks. However, because only the question is

provided in a closed-book QA setting, the model can only focus on the question

tokens, and how it decides the answer is unclear.

4.1.2 Datasets

Following Roberts et al. (2020), we use three open-domain QA datasets: Natural

Questions (NQ) (Kwiatkowski et al., 2019), WebQuestions (WQ) (Berant et al.,

2013b), and TriviaQA (TQA) (Joshi et al., 2017). NQ and WQ are both datasets
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of questions from web queries, while TQA is a collection of questions from quiz

league websites. All questions are accompanied by context of different forms to

help find the answer. However, to use the datasets as closed-book QA datasets,

all context is ignored, and only the questions are considered.

Our analysis uses the T5 (Raffel et al., 2020) models provided by Roberts

et al. (2020). In particular, we use three variants of T5: T5-Large, T5-11b, and

T5v1.1-xxl. Details about them are explained in Section 4.3.3.

4.1.3 Transformer Architecture

We briefly describe the Transformer architecture (Vaswani et al., 2017), which

comprises the T5 model while focusing on the attention mechanism therein.

The Transformer is a model architecture with blocks of two stacked sub-layers:

multi-head self-attention and feed-forward (FF) networks. Given an input se-

quence x = x1, ...,xn ∈ Rdmodel , for each attention head h, a query Qh, a key Kh,

and a value V h are computed from the input x as follows:

Qh = xW h
q

Kh = xW h
k

V h = xW h
v

(4.1)

where W h
q , W h

k , and W h
v are parameter matrices for the head h. Qh, Kh and

V h matrices contain qh, kh, and vh vectors of different input tokens. Then, the

attention scores αh are computed as:

αh = softmax(
QhKhT

√
dk

) (4.2)

where dk is the key dimensionality. Then, the contextualized Zh is computed by

scaling V h by attention scores as follows:

Zh = αhV h (4.3)

with Zh containing zh vectors of the input tokens. The heads are then combined

to produce Z as follows:



56 CHAPTER 4. UNDERSTANDING T5 IN CLOSED-BOOK QA

Z = concatHh=1(Z
h)Wo (4.4)

where concatHh=1 is a function that concatenates Zh of all H heads and Wo is a

parameter matrix.

Next, the group of attended vectors Z is passed to the next component, a FF

network. Vaswani et al. (2017) proposed using a two-layer network with ReLU

activation. The final model has N layers of such blocks. When using the block

in the decoder instead of the encoder, an additional sub-layer of cross-attention

is added after the self-attention. This additional sub-layer receives its K and V

from the output of the encoder.

4.2 Understanding Transformer-Based T5 in Closed-

Book QA

The main component of Transformers is the attention mechanism; therefore, we

start by looking into its components. Then, we verify the findings and finally

investigate the role of the encoder/decoder as a whole.

4.2.1 Dissecting Attention Components

Initially, we look at the gradients (or error back-propagation) resulting from the

mismatch between the model prediction and the golden answer. They represent

where the model attempts to fix itself to predict the correct answer. Areas with

high gradients represent important parts responsible for reaching the answer. We

gather these gradients and attempt to find interesting patterns.

Gathering Gradients

We evaluate the model on the validation set of NQ while calculating loss and

applying a backward pass to obtain the gradients without updating the parameters.

The loss is calculated against the gold labels for all tokens in one go using the

built-in loss function in the T5 implementation of the Transformers library (Wolf

et al., 2020). We reduce the calculated gradients for each example (consisting
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Figure 4.1: Visualization of the averaged gradients of the attention and FF pa-

rameters for T5-Large over the validation split of the NQ dataset.

of a question and a golden answer) by averaging each parameter matrix. The

attention parameter matrices reduced are:

W h
q ,W

h
k ,W

h
v ∈ Rdk×dmodel

Wo ∈ RH·dk×dmodel

where W h
q , W h

k , W h
v and Wo are from the attention sub-layer as explained in

Section 4.1.3. For completeness, we also analyze the FF matrices:

W T
ff1,Wff2 ∈ Rffsize×dmodel

where Wff1 and Wff2 are the learnable matrices of the two-layer FF networks of

each block. We then average the reduced results from all the examples.

Visualizing Gradients

We use the T5-Large provided by Roberts et al. (2020) with the NQ dataset to

gather gradients, as explained previously. Figure 4.1 visualizes the reduced gra-

dients of the three attention types: Encoder.SelfAttention, Decoder.SelfAttention

and Decoder.CrossAttention (shortened to EncSA, DecSA, and DecXA, respec-

tively), each having 24 layers. Each row represents a layer and consists of the
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Figure 4.2: Evaluation of T5-large on NQ dataset with noise of magnitude λ added

to different attention components and FF output.

16 heads of T5-Large. We also visualize the FF parameters of the encoder and

decoder.

Interestingly, as shown in Figure 4.1, almost only Wq is changed in all attention

types. While later layers are changed more in the EncSA and DecXA, the middle

layers have the most change for DecSA. We notice minor changes in Wv from

Figure 4.1 and almost no change in the FF network parameters. This implies

that, when the model predicts a wrong answer and the gradients are applied to

fix the prediction, almost only q vectors are changed. We apply a similar analysis

to other variants of T5 (T5-11b and T5v1.1-xxl) and find similar results.

Confirming the Importance of Q

Having shown the importance of Q for correcting wrong predictions, we conduct

another experiment to confirm the importance and the applicability to correctly

predicted answers. We add a normal noise N(0.0, σ) to q, k, v, or FF vectors and

observe the performance change, where σ is the standard deviation. A larger σ

represents a more substantial noise.

We evaluate T5-large on the NQ dataset with noise added to one attention



59

Wq Wk Wv Wo

6

12

18

6

12

18

6

12

18

24

24

24

0.02

0.04

0.06

0.08

Attention parameter name

L
a

y
e

rs

Encoder

SelfAttn

Decoder

SelfAttn

Decoder

CrossAttn

4 12 168 4 12 168 4 12 168 4 12 168

Encoder

Feedforward

Decoder

Feedforward

W�1 W�2

6

12

18

6

12

18

24

24

FF parameter name

Figure 4.3: Visualization of the averaged gradients of the attention parameters

for T5-Large over the validation split of the NQ dataset after shuffling all target

answers to random answers of a different named entity type.

component or FF at a time. We show the results in Figure 4.2 and compare

them to the baseline of T5-large with no noise, which is 29.03 exact match (EM).

Applying noise to q vectors degrades the performance substantially faster than

other components, affirming the importance of the query component for wrongly

and correctly predicted answers. The FF networks were most resilient to noise

because of the drop-out training.

We assume the following: (1) The behavior of not changing Wk, Wv, or Wo is

related to the fact that changes required to fix predictions are typically small. (2)

A drastic change in the expected answer invokes more changes in, for example,

Wv. These assumptions can be answered by considering the type of predictions

and golden answers.

We use SpaCy (Honnibal et al., 2020) to apply named entity recognition (NER)

on all answers and compare the types of pairs of {prediction, gold} answers.

The majority are of the same type (e.g., (GPE, GPE) or (DATE, DATE)). We

then shuffle the golden answers, replacing each with a random golden answer of

a different type. This would introduce many type mismatches, and the model

would require bigger gradients/changes to fix the predictions. Then, we evaluate
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and gather the gradients again, as in Section 4.2.1 and show them in Figure 4.3.

Interestingly, the only change between Figs. 4.1 and 4.3 was slightly brighter Wq,

with almost no change to the other attention parameters.

To verify whether Wk and Wv are changed during fine-tuning, we fine-tune a

raw version of T5 on the NQ dataset and apply the gradient analysis explained

earlier. While still only Wq was highly changed, at 50 and 250 steps, the decoder

had significantly more gradients than the encoder, whereas, at 1k and 2k, the

encoder had higher gradients. The results in Figure 4.1 are after fine-tuning

ends. The lack of change in Wk and Wv during fine-tuning implies that they were

changed (and probably learned optimally) during the pre-training phase.

Difference Between Q and K

Although Qh and Kh are computed by the same input and formula (except the

weights), only Wq receives high gradients. This gradient difference comes from

the matrix multiplication order. To calculate the weight ah, we do QhKhT , where

the resulting matrix has rows that correspond to the queries and the columns to

keys. Then, we take softmax on the last dimension, that is, by row. The softmax

lets the row sum to 1.0, which would be the weights sum of our current query

word attending to all other key words. The model learns this distinction between

queries and keys and learns to change the queries rather than the keys.

How Knowledge Is Stored Inside T5

As experiments (Figs. 4.1 and 4.2) show that q vectors are the most crucial com-

ponent for fixing predictions or reaching answers, we conclude that the following

is how T5 stores knowledge.

In Eqs. 4.2 and 4.3, the role of q vectors is only to calculate a score that

represents how much v to take from each token. Multiplying a scaling score with

a vector does not change its direction, but only the norm of that vector. The

z vectors are only composed from combining differently weighted v vectors (Eq.

4.3). For easier imagination, v vectors can be considered pointers or arrows of

different lengths that point somewhere in the embedding space. When z vectors

are combined cumulatively (over layers), they point to a place in the embedding
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Prune Prune

Encoder.SelfAttention Decoder.SelfAttention

Southern Egypt Jason Flemyng

Panama Jason Fle

Sheryl Crow Century City, Los Angeles

Elton John Century City, California

Dob Robertson a victim’s dilemma

Robert Kelly a victim of a distress signal

Subway John Kramer

Eleven Madison Park John C. J. Miller

Table 4.1: Patterns of the differences in predictions when only pruning EncSA

vs DecSA. Each row’s first and second lines show the prediction before and after

pruning.

space that represents the desired answer. In summary, Qh is a map that guides

the V h arrows/pointers to this final point in the embedding space.

4.2.2 Role of Encoder/Decoder

Until now, we have discussed attention head components as parts of the en-

coder–decoder model. Encoders and decoders usually have straightforward roles

in other tasks, such as focusing on source/target languages and performing align-

ment in translation tasks, or selecting text spans in open-book QA. However, in

a closed-book QA setting, their role is unclear. To investigate their role in a

closed-book QA setting, we remove attention heads from one attention type at a

time (e.g., EncSA) or FFs from the encoder or decoder and check the differences

in predictions before and after a significant drop in performance. The procedure

for removing heads is introduced in Section 4.3. We apply the same procedure

for removing FFs. Comparing the results by removing EncSA heads and DecSA

heads presented in Table 4.1, the role of the encoder is finding the correct entity

while the decoder generates the textual representation of that entity. We did not

witness special patterns when removing heads only from DecXA.

Table 4.2 shows a quantitative comparison of how predictions change before
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EM
Textual

Overlap

No Textual

Overlap

Only pruning heads in encoder 36.70% 10.39% 52.91%

Only pruning FFs in encoder 43.32% 11.16% 45.51%

Only pruning heads in decoder 54.49% 23.74% 21.77%

Only pruning FFs in decoder 46.15% 25.51% 28.34%

Table 4.2: Quantitative comparison between the predictions before and after sub-

stantial pruning (not accuracy against gold answers).

and after substantial pruning (with about 10 EM points drop). All predictions

after pruning can either match predictions before pruning (EM), differ but with

textual overlap, or become different with no overlap. Pruning the decoder heads

does not change many predictions (high EM with predictions before pruning).

It produces more wrong but textually overlapping predictions because the entity

space has been decided in the encoder. However, harming the encoder heads re-

sults in predicting about 30% more non-textually overlapping predictions (i.e.,

different entities). Pruning the FFs in the encoder and decoder has a more negli-

gible effect than pruning heads, but still follows the same trend.

4.3 Head Importance for Pruning

In a closed-book QA setting, the model must generate the correct answer with

only access to the question tokens. The “knowledge” about the correct answer

is within the model’s parameters. We hypothesize that such “knowledge” is not

distributed equally in the model, but there are areas that are significantly more

important than others in retaining that knowledge.

To verify that some heads of the model are more important than others in re-

taining knowledge, we perform a series of pruning tests on attention heads accord-

ing to different importance scoring methods. We explore pruning least-important

heads first or most-important heads first. The former provides a practical advan-

tage where pruning models and reducing their parameter count while preserving

their knowledge allows for faster and lighter models. Because FF networks do



4.3. HEAD IMPORTANCE FOR PRUNING 63

not store factual knowledge, as discussed in Section 4.2.1, we exclude them from

further pruning experiments.

We explain the pruning settings and methods, visualize different importance

maps, and compare them via pruning experiments on different datasets.

4.3.1 Pruning Flow

An importance score is given for each attention head. Then, the least/most 10%

important heads are masked iteratively by adding a mask variable ξh following

Michel et al. (2019), changing Eq. 4.3 as follows:

Zh = ξhαhV h (4.5)

where the values of ξh are either 0 or 1. After each masking round, the model is

re-evaluated, and a new head importance map is calculated for the next masking

round until we reach a threshold.

4.3.2 Importance Scoring Methods

For each of the three attention types (EncSA, DecSA, and DecXA), a head im-

portance map is generated using one of the following methods:

Random

Heads are given random importance scores. This represents a counter hypothesis

that knowledge is distributed equally in all of the model.

Gradients of Mask Gates (attn)

The importance score for a head is the gradient of the mask variable ξh. This

method, introduced by Michel et al. (2019), focuses on the value of the atten-

tion score αh. When the attention score is high, the gradient of ξh is also high;

therefore, this method is called attn.
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Summed Gradients of Attention Parameters (grad avg)

Looking at the analysis result in Section 4.2.1, we introduce a new method of

calculating the importance score by summing the reduced gradients of the param-

eter matrices in attention heads. More specifically, for each head h, we calculate

scores gradhavg as follows:

gradhavg = avg(g(W h
q )) + avg(g(W h

k )) + avg(g(W h
v ))

where g() is the function that obtains the gradients of a parameter matrix, and

avg is a function that obtains the average of a matrix.1 Since almost only Wq

has high gradients among attention components (as shown in Figure 4.1), adding

the gradients of Wk and Wv has almost no effect on the final importance map.

Therefore, we can consider that the importance of an attention head is equivalent

to the importance of only the query component of that head. However, in this

method, we still add the gradients of all components for completeness.2

Norm of zh Vectors (norm)

This method does not depend on the gradients but on the norm of zh vectors.

Kobayashi et al. (2020) used the norm for analyzing alignment in machine trans-

lation. We use it as a scoring method; for each head, h, the importance score

normh is calculated as follows:

normh =

n∑
t=1

||zht ||

where zht is the contextualized vector zh of token t, and || · || denotes the Euclidean

norm.

1We also experimented with max for scoring; however, we excluded it because its performance

was poor.
2We calculated the KL-divergence between importance maps with the gradients of all com-

ponents, and maps of only Wq gradients. As the KL-divergence was 0.0001, confirming similar

distributions, we exclude the latter maps.
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Model d model #heads d kv d ff

T5-Large 1,024 16 64 4,096

T5-11b 1,024 128 128 ∼65k

T5v1.1-xxl 4,096 64 64 ∼10k

Table 4.3: Main differences between used models. d model is the dimension of the

word embeddings, #heads is the number of heads, d kv is the hidden dimension

of the query, key, and value vectors, and d ff is the dimension of the FF networks

after the attention sub-layer.

4.3.3 Pruning Settings

Importance Sorting

• Local: To mask 10% of the heads, the importance scores are sorted per

attention type independently. Then, the 10% are divided equally between

the EncSA, DecSA, and DecXA attention types.

• Global: The maps of the three attention types are concatenated, and all

the importance scores are sorted before selecting 10% to mask. Here, more

heads might be masked from DecSA than EncSA, for example.

Normalization

• Layer normalization: Michel et al. (2019) normalize importance scores by

layer using the ℓ2 norm. We use this as the default.

• No layer normalization: We skip the layer normalization and denote the

setting as nln.

Used Pre-trained Models

We use three variants of T5 released by Roberts et al. (2020)3: T5-large, T5-

11b, and T5v1.1-xxl. They all have 24 layers but differ in several aspects, as

3The pre-trained models can be downloaded from: https://github.com/google-

research/google-research/tree/master/t5 closed book qa
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Figure 4.4: Head Importance score maps for different scoring methods with T5-

large on the NQ dataset. “nln” means no layer normalization and “ln” means

layer-normalized.

shown in Table 4.3. T5v1.1 also differs from other models as it has no parameter

sharing between embedding and classifier layers, and it was pre-trained on C4

(Raffel et al., 2020) only without mixing in the downstream tasks. It also uses

GatedGelu instead of Relu for activations. Both T5v1.1-xxl and T5-11b have

around 11 billion parameters.

All models had additional pre-training with salient span masking (Guu et al.,

2020) before being fine-tuned. In this objective, salient spans (named entities

and dates) are mined beforehand and then used in the pre-training as masks. A

fine-tuned model is released for each of the three datasets (NQ, WQ, and TQA),

except T5-large, which only has a version fine-tuned on NQ.

4.3.4 Visualizing Head Importance Maps

Figure 4.4 shows the head importance maps generated with T5-large from the

validation set of the NQ dataset for each scoring method. In “nln”, all methods

assign more importance to later layers in the EncSA but have different assessments

about the DecSA. For DecXA, all methods agree on the importance of certain



4.3. HEAD IMPORTANCE FOR PRUNING 67

6

12

18

24

6

12

18

24

6

12

18

24
16 48 6432 80 112 12896

Heads

L
a
y
e
rs

T5-11b

6

12

18

24

6

12

18

24

6

12

18

24
16 48 6432

Heads

T5v1.1-xxl

WebQuestions

TriviaQA

0.02

0.04

0.06

0.08

NaturalQuestions

Figure 4.5: Comparing head importance visualizations of the encoders of T5-11b

and T5v1.1-xxl models between different datasets, using grad avg with “nln”

heads in the last layer. Although there are differences in general between methods,

the importance patterns are very similar across datasets, as shown in Figure

4.5. This is likely because even though models were fine-tuned separately on the

datasets, they all share the same pre-training, which is the actual source of the

stored knowledge. This similarity is verified by pruning experiments in Section

4.3.5.

4.3.5 Experiments

We experiment with different scoring methods and settings with T5-large on the

NQ dataset for speed. Then, we apply the best settings on the huge T5-11b and

T5v1.1-xxl variants on the other datasets. We focus on “least-important heads

first” in our experiments as it has a more practical benefit.

Least-Important Heads First (LIF)

We prune the least important heads first and do not expect to see a large change

in performance. We stop pruning when the EM score reaches below 90% of the

original score. In Figure 4.6, we show scoring methods compared to the random

baseline. The global sorting setting is usually ineffective and achieves below the

random baseline; therefore, we ignore it in further experiments. Layer normaliza-

tion also hurts the importance scores; however, we notice different trends on huge

models. We discuss the reasons later. Furthermore, since the attn method’s per-
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Figure 4.6: Comparing pruning experiments with different settings and methods

against the random baseline. We compare attn, grad avg and norm methods in-

troduced in Section 4.3.2. In the legend, “ local” and “ global” mean local and

global sorting explained in Section 4.3.3, while “ nln” means “no layer normaliza-

tion” as explained in Section 4.3.3.

formance is closer to the random baseline than other methods, we exclude the attn

method from comparison. The attn method showed relatively reasonable pruning

performance in machine translation tasks (Michel et al., 2019) because focusing on

which source/target language tokens are attended is essential. Kobayashi et al.

(2020) found that only focusing on attention score ignores the norm aspect of

vectors.4

We run the remaining settings with the huge variants (T5-11b and T5v1.1-

xxl) on all datasets and show the results in Figure 4.7. While the best pruning

method in T5-large is the non-layer-normalized grad avg as shown in Figure 4.6,

T5v1.1-xxl brings the performance of the norm method closer to grad avg. In

T5-11b, the norm method outperforms the non-layer-normalized grad avg and

slightly outperforms the grad avg.

We think the reason is that the standard deviation between examples for the

norm scores of heads is mostly lower than that for the grad avg method, especially

in the areas of low importance. However, small models have a more uniform

importance map when normalized, as shown in Figure 4.4. Such distribution

leads the pruning toward a more random selection process. In models with many

4Experiments of attn on other datasets and variants were also conducted, but because of poor

performance, we exclude it from graphs for visibility.
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Figure 4.7: Least-important first pruning experiments on three datasets with T5-

11b and T5v1.1-xxl models, using the best-performing settings and methods.

heads, layer normalization produces less uniform maps.

Figs. 4.6 and 4.7 show that for grad avg, layer normalization becomes more im-

portant as the number of heads in a model increases. We find that non-normalized

importance maps tend to assign more importance to later layers as models increase

in size, and least important heads just become “heads of earlier layers.” However,

when normalized by layer, the least important heads from all layers are pruned.

This is not a problem in small models because when the number of heads is small

(e.g., 16), heads of medium importance are not condensed only in later layers. We

focus on heads of medium importance here because we notice in Figure 4.7 that

the sharpest drop between normalized and non-normalized experiments is when

50–60% of heads are remaining.

To understand the intuition of why performance does not decrease much at

the beginning of the pruning, we point out that removing the least important

heads in the norm method is akin to removing the least impactful z vectors, as

vectors with a small norm value are closer to a zero vector. Intuitively, smaller

vectors contribute less than longer ones in reaching the embedded location of an

answer when combined. For the grad avg method, the least changed heads mean
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large on the NQ dataset.

correcting the vectors in those heads was not necessary to find the correct answer.

Therefore, they are probably not crucial for finding the answer.
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Figure 4.9: Most-important first pruning experiments on three datasets with T5-

11b and T5v1.1-xxl models, using the best-performing settings and methods.

Most-important Heads First (MIF)

In this mode, we prune important heads first and expect to see a rapid drop in

performance. We stop pruning when 50% of heads are pruned. We show a method
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comparison in Figure 4.8 only with the “nln” setting, as we find that normalizing

by layer loses valuable information about important heads. The norm method

finds important heads better in T5-large; however, we find that, although this

behavior is consistent between datasets, it differs with model changes. In T5-11b,

grad avg and norm have similar performance, while in T5v1.1-xxl, grad avg drops

faster than norm. We show the graphs in Figure 4.9. An exception to the pattern

of T5-11b is the TriviaQA dataset, where the norm method performs worse. We

think this is because the size of the evaluation set is over three times that of the

other two datasets. This causes the norm scores of heads to be averaged more

flatly over the 128 heads, with the data distribution being another possible factor.

As the main change in behavior (i.e., grad avg and norm methods swapping

places in which one drops the performance faster) is between T5-large and T5v1.1-

xxl, we look at all the differences explained in Section 4.3.3. Then, list the main

differences directly influencing the scoring methods between the models and dis-

cuss their likelihood of being the responsible change:

• Hidden model size (d model): T5-large has d model of 1, 024, while T5v1.1-

xxl has 4, 096. While Zh ∈ Rd kv did not change between the models, the

grad avg was performed on 64× 4, 096 instead of 64× 1, 024, giving a better

hint at what is important because of viewing more gradients, making this

change likely responsible.

• The number of heads: T5-large has 16 heads, while T5v1.1-xxl has 64 heads.

This increase in heads may not be the reason for the change because T5-11b

has 128 heads, yet the two methods perform similarly.

• Feed-forward layers size (d ff): For T5-large it is 4, 096, while for T5v1.1-xxl

it is 10, 240. This change is not responsible for two reasons: T5-11b has a

more significant FF layer size of 65, 536 with no drastic behavior change,

and the gradients in the FF parameters are negligible, as shown in Figure

4.1.

Therefore, we conjecture that the reason for the behavior change is the d model

size. However, many experiments (changing each factor and observing the perfor-

mance change) are required to prove all hypotheses. Because their computational
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costs are unaffordable for a university research lab, this verification is left for

future work.
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Figure 4.10: Most-important first pruning experiments on three datasets with

T5-11b and T5v1.1-xxl models, using grad avg with “nln” and the importance

maps that were calculated on different datasets.

Head Similarity Between Datasets

Figure 4.5 showed that models have similar head importance maps across different

datasets because of the underlying pre-training phase. We prove this similarity in

this section.

We generate three importance maps for each model, one for each dataset

(nqo map, wqo map, tqao map) using the grad avg method explained in Section

4.3.2. For example, nqo map of T5-11b is a head importance map generated by

evaluating the T5-11b on the NQ dataset, while the wqo map is generated with

the WQ dataset, and so on. We then apply important-first pruning on a model

and a dataset using each of the generated maps (the one generated on the dataset

itself and on other datasets as well) and compare the results against a baseline

of random head importance, random map. The results are shown in Figure 4.10.

The important heads for one dataset are also important for the others because of
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the shared knowledge in the pre-training phase.
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Figure 4.11: Distribution of knowledge inside T5-large attention heads depending

on the named entity type of the target answer, calculated using the grad avg

method.

4.3.6 Distribution of Knowledge per Answer Type

In Section 4.3.5, we showed that the knowledge stored in T5 is not evenly dis-

tributed and that some attention heads store more knowledge than others. How-

ever, a question arises: are there heads that are specialized in certain types of

questions? To investigate the distribution of different types of questions (who,

where, when, etc.), we analyze the named entity type of the target answer (per-

son, location, date, etc.).

We used SpaCy to do NER on all target answers, and we separated the

grad avg importance map with “nln” calculated in Section 4.3.4 by named en-

tity type. The results are shown in Figure 4.11. Different named entities have

different patterns of importance. To determine the similarity of importance maps

between entity types, we sum the importance of each type per area (EncSA,

DecSA, or DecXA).5 Then, we calculate the Kullback-Leibler (KL) divergence

between different entity types and show the results in Figure 4.12. We sort the

entity types by similarity and notice the correlation with the KL-divergence. In

general, similar entity types are stored in similar locations. For example, geopolit-

5We calculated divergence per head and layer, but the results were not meaningful, as one

head or layer may not hold enough information about many types to deduce similarity.
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Figure 4.12: KL-divergence of importance maps per area between named entity

types. Lower divergence represents higher similarity.

ical entity (GPE), location (LOC), and facilities (FAC) have similar distribution

because they are essentially locations. CARDINAL, QUANTITY, and ORDINAL

are similar because they are all related to numbers. DATE and TIME are both

related to time.

We note that the results in Section 4.3 might be dependent on the three ex-

perimented datasets. In future work, we want to experiment with other datasets,

including ones with different domains.

4.4 Related Work

4.4.1 Confirming the Existence of Knowledge

Several works investigating knowledge probing are surveyed by Liu et al. (2023):

Petroni et al. (2019) have introduced the LAMA probe that tests the factual and

common-sense knowledge in LMs. Using four knowledge sources, they convert
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the fact triples or question-answer pairs into cloze templates, and they evaluate

models on how highly they rank the ground truth token. They found that factual

knowledge can be recovered “surprisingly well” from pre-trained LMs. Some work

explored continuous template learning instead of discrete prompt template search.

Also tested on the LAMA benchmark, Zhong et al. (2021) proposed a model

OptiPrompt that optimizes in continuous embedding space to find prompts, rather

than being limited to a space of discrete tokens.

Roberts et al. (2020) estimated how much knowledge is stored in LMs by

evaluating T5 models on open-domain QA in a closed-book setting. Compared to

other competing models, they show that LMs can achieve competitive results on

open-domain QA benchmarks without access to context or external knowledge.

Different from previous work, we investigate how Transformer-based T5 stores

knowledge for closed-book QA.

4.4.2 Methods of Importance Scoring

Michel et al. (2019) found that a percentage of heads can be removed with no sig-

nificant impact on the performance. Their criteria for assigning the importance

of heads are explained in Section 4.3.2. They effectively give a higher importance

score if the attention score is high, which, as presented in Section 4.3.5, is insuf-

ficient. Voita et al. (2019) also focused on the translation task and used several

scoring methods: head “confidence” is the average of its maximum attention score

over tokens in a sentence. As this method focuses on the “maximum” attention

score, it will have similar problems as the attn method in Section 4.3.2. They also

used a method called layer-wise relevance propagation (LRP), which has similar

behavior to the “confidence” method. They also performed pruning experiments

based on stochastic gates and relaxed L0 penalty criteria. However, their pruning

method requires fine-tuning to prune heads, and their results coincide with that

of their LRP analysis. Hence, we exclude their methods from our comparison. In

this work, we introduce other methods and compare them with the attn method.

While we only focus on attention head pruning, Prasanna et al. (2020) exper-

imented with other techniques, such as magnitude pruning, where sparse weights

are pruned according to their magnitude and whole layers pruning. However,
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these techniques are not informative as they are either quite fine-grained or overly

general.

4.5 Summary of This Chapter

This chapter provided insight into how Transformer-based T5 operates in a closed-

book QA setting. We showed what components of the T5 are important in re-

trieving the factual knowledge within. We explored the importance of heads in

retaining knowledge via pruning while using different settings and scoring meth-

ods. In the future, we will investigate other Transformer-based LMs, and how

they work on NLP tasks with context, such as open-book QA.



Chapter 5

Improving Multi-Hop QA in

Closed-Book Setting

Transformer-based language models (LMs) have been shown to perform question

answering (QA) competitively even when removing context and using only ques-

tions as input (called closed-book QA). Previous work that studied closed-book

has mainly used simple questions that require a single reasoning step (i.e., single-

hop questions). In this study, we find that using multi-hop questions requiring

multiple reasoning steps drastically drops the performance. We investigate how

to close this gap using two methods: fine-tuning with explicit question decom-

position using three decomposition systems, or few-shot learning with chain-of-

thoughts (CoT) for implicit question decomposition. We experiment on three

multi-hop datasets, considering different multi-hop questions types (i.e., compo-

sitional, comparison, etc.). We demonstrate when the methods fail and identify

future directions that are most promising to closing the gap between single-hop

and multi-hop closed-book QA. We will make the code publicly available.

Closed-book QA is a setting where only questions, without accessing con-

text or external knowledge, are used to obtain answers (Roberts et al., 2020).

Models must answer using the knowledge they stored in their parameters dur-

ing pre-training. Recent work shows that LMs in a closed-book setting achieve

competitive performance on single-hop datasets (questions requiring a single rea-

soning step) compared to open-book (i.e., using context) (Roberts et al., 2020).

77
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Figure 5.1: Overview of our task. SH-Q is a single-hop question, while MH-Q is

a multi-hop question.

For multi-hop questions (requiring multiple reasoning steps), previous work exper-

iments in an open-book setting (Fang et al., 2020, Alkhaldi et al., 2021). However,

it is unclear if multi-hop questions have a similar trend to single-hop questions in

a closed-book setting.

This study aims to investigate the gap between single-hop and multi-hop ques-

tions in a closed-book setting using three representative multi-hop datasets. We

compare this task with previous work in Figure 5.1. As single-hop performance is

found to be considerably higher, we attempt to improve the accuracy for multi-

hop questions by decomposing into single-hop sub-questions (SQ) explicitly, or im-

plicitly via generating CoT before answering; this should facilitate finding which

reasoning steps to perform. To the best of our knowledge, this is the first study

that attempts to improve the accuracy of multi-hop questions in a closed-book

QA setting. We investigate closing the gap between single-hop and multi-hop

questions in a closed-book setting by explicitly including the reasoning steps with

the question in the shape of single-hop decompositions or CoT, using a proposed

fine-tuning method or a few-shot learning method, and compare results on three

datasets.
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5.1 Related Work

Jiang et al. (2022) also investigate multi-hop reasoning via decomposition; how-

ever, different from our work, they use golden decompositions for training and

dev splits, and focus on T5. We experiment with three decomposers in addition

to gold SQs and their answers. We also experiment on GPT-3 in addition to T5.

Our T5 experiments are not directly comparable to theirs because, in addition to

using different datasets, the setting difference; they fine-tune models with single-

hop and multi-hop questions, then answer SQs sequentially and compare with

answering multi-hop questions. Also, they fine-tune on concatenated SQs to show

that they are a good approximation to fine-tuning on multi-hop questions. The

improvement they attempt is on a single-hop baseline, while we aim to improve

the multi-hop baseline.

Previous work on CoT (Wei et al., 2022; Kojima et al., 2022) experiment on

datasets that mainly do not require external factual knowledge to achieve answers

(e.g., math or multiple-choice datasets).

5.2 Task

We do fine-tuning and inference on multi-hop questions without context (i.e.,

closed-book). When a multi-hop question is given as input to an LM, it generates

an answer text. We use sequence-to-sequence (Seq2Seq) LMs whose inputs and

outputs are text, as opposed to LMs without a decoder like BERT (Devlin et al.,

2019). Seq2Seq models are necessary for a closed-book QA setting because BERT-

like models assume the availability of context from which to select text spans as

output, while Seq2Seq models can generate text. As no context is provided,

Seq2Seq LMs generate answers by looking only at questions.

5.3 Decomposers

DecompRC Introduced by Min et al. (2019), this method relies on selecting

text spans from the question to form SQs. They train span prediction models

using 400 annotations and show that it achieves reasonable performance. Different
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question types have different models. They use trained models for CL and I types,

while heuristic rules for the C type.

MuSiQue-based Decomposer We train a T5-large1 (Raffel et al., 2020) to

learn the gold decompositions provided by MuSiQue with 14,376 and 1,252 train

and dev questions, respectively. The input is the full question, while the target

is the two SQs. Example input: What year saw the creation of the region

where the county of Hertfordshire is located? Target: [sq1] In which

state is Hertfordshire located? [sq2] When was #1 birthed? The ac-

curacy on the held-out split is 79.6 F1. This decomposer only supports CL type

as MuSiQue only contains CL questions. We also compare against using gold

MuSiQue decompositions in fine-tuning and inference and using intermediate gold

answers to replace the answer placeholder.

ModularQA Introduced by Khot et al. (2021), it is a next-question generation

(NQG) system that sequentially generates SQs given the full question and previous

SQs with their predicted answers. They first train a model to generate questions

given context, the answer, and hints that are keywords from the question. Then

using this model, they generate decompositions for multi-hop questions that could

lead to likely intermediate answers. They use these SQ sequences to train the

NQG. At inference time, the NQG first generates SQ1, then a single-hop-trained

sub-model answers it. Then, the full question, SQ1, and its answer are provided

to NQG to produce SQ2. In CL question types, SQ2 includes the answer of SQ1,

so we find the answer and replace it with #1 placeholder. This decomposer is not

limited to any question type.

5.4 Method

An overview of the baseline, our proposed fine-tuning method, and a few-shot

CoT method are in Figure 5.2.

1We also tried T5-11b but achieved similar accuracy.
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MH-Q

Answer

Baseline

MH-Q [sq1] SQ1 [sq2] SQ2

Answer

DecompFT

MH-QFS : CoTFS; MH-Q

Answer
Few-shot CoT

CoT

MH-QFS : CoTFS + AnswerFS; 

MH-Q + CoT

Seq2Seq LMSeq2Seq LM

Seq2Seq LMSeq2Seq LM

Figure 5.2: Methods overview. SQ1 and SQ2 are the decomposed SQs, [sq1] and

[sq2] are special tokens.

5.4.1 Baseline

We use multi-hop questions as input to the LM, and answers as targets for fine-

tuning and evaluating BaselineFT, and for prefixing (question, answer) pairs as

few-shot examples for evaluating another BaselineFS.2 We do not use any context

or external knowledge. This is the basic evaluation setting for closed-book QA.

5.4.2 Decomposition Fine-Tuning (DecompFT)

In the pre-processing step, we decompose the multi-hop question into two single-

hop SQs: SQ1 and SQ2, using one of the decomposers explained in Section 5.3.

If SQ2 depends on the answer of SQ1, the answer is replaced by the placeholder

#1. Then both SQs are concatenated with the full question to form the input for

the LM. An example is in Table 5.1.

5.4.3 Few-shot CoT In-Context Learning (CoT)

We prefix multi-hop questions with few-shot examples of (MH-QFS : CoTFS) pairs,

similar to (Wei et al., 2022), in the following format: {Q: MH-QFS\nA:CoTFS...}.

However, as our target is a free-form text, models had difficulty constantly gen-

2We tried zero-shot mode but without few-shot examples, the LM gave a full sentence as the

answer, mismatching the target. Therefore, we exclude zero-shot experiments.
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DecompFT

Input: When was the university Elizabeth Harwood attended formed? [sq1]

What university did Elizabeth Harwood attend? [sq2] When was #1 formed?

Output: 1972

FS CoT - step 1

Input: Q: When was the institute that owned The Collegian founded? Let’s

think step by step.

A: The Collegian was owned by Houston Baptist University. Houston Baptist

University was founded in 1960.

...

Q: Who is the spouse of the Rabbit Hole’s producer? Let’s think step by step.

A:

Output: The producer of Rabbit Hole is Nicole Kidman. Nicole Kidman’s spouse

is Keith Urban.

Table 5.1: Example of Input/Output for DecompFT and few-shot (FS) CoT meth-

ods. A full example for CoT is in Table 5.2.

erating parsable short answers.3 Therefore, we follow Kojima et al. (2022) in

applying a two-step prompting. One for generating CoT with the multi-hop

question prefixed with few-shot examples, as explained above, and another for

generating the answer with each few-shot example appended its answer, and the

CoT generated in the first step appended to the multi-hop question, as shown in

Figure 5.2. In the first prompting step, the few-shot examples are of the for-

mat: Q: <Multi-hop example question1> Let’s think step by step.\nA:
<CoT>, before appended with our question as Q: <MH-Q>\nA:. Then for the sec-

ond step, we add after every few-shot example’s Cot the phrase: Therefore,

the answer is followed with the target for the few-shot examples. We show an

example of the few-shot prompt in Table 5.2. We used 4 few-shot examples, with

temperature 0 for decoding. 4

3Previous work experimented on datasets whose answers were numerical, yes/no, or multiple

choice.
4We used OpenAI API with Completion mode.
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First prompting step Second prompting step

Q: When was the institute that owned

The Collegian founded? Let’s think

step by step.

A: The Collegian was owned by Hous-

ton Baptist University. Houston Bap-

tist University was founded in 1960.

Q: When was the institute that owned

The Collegian founded? Let’s think

step by step.

A: The Collegian was owned by Hous-

ton Baptist University. Houston Bap-

tist University was founded in 1960.

Therefore, the answer is 1960.

Q: Jan Šindel’s was born in what

country? Let’s think step by step.

A: Jan Šindel’s birthplace is Hradec

Králové. Hradec Králové is in Czech

Republic.

Q: Jan Šindel’s was born in what

country? Let’s think step by step.

A: Jan Šindel’s birthplace is Hradec

Králové. Hradec Králové is in Czech

Republic. Therefore, the answer is

Czech Republic.

Q: What city is the person who

broadened the doctrine of philosophy

of language from? Let’s think step

by step.

A: The person who broadened

the doctrine of philosophy of lan-

guage is Søren Kierkegaard. Søren

Kierkegaard is from the city of

Copenhagen.

Q: What city is the person who

broadened the doctrine of philosophy

of language from? Let’s think step

by step.

A: The person who broadened

the doctrine of philosophy of lan-

guage is Søren Kierkegaard. Søren

Kierkegaard is from the city of

Copenhagen. Therefore, the answer

is Copenhagen.
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Q: Who was thee first president of

the association that wrote the code

of ethics for psychology? Let’s think

step by step.

A: The American Psychological As-

sociation wrote the code of ethics for

psychology. The first president of The

American Psychological Association

is G. Stanley Hall.

Q: Who was thee first president of

the association that wrote the code

of ethics for psychology? Let’s think

step by step.

A: The American Psychological As-

sociation wrote the code of ethics for

psychology. The first president of The

American Psychological Association

is G. Stanley Hall. Therefore, the an-

swer is G. Stanley Hall.

Q: Who is the spouse of the Rabbit

Hole’s producer? Let’s think step by

step.

A: The producer of Rabbit Hole

is Nicole Kidman. Nicole Kid-

man’s spouse is Keith Urban.

Q: Who is the spouse of the Rabbit

Hole’s producer? Let’s think step by

step.

A: The producer of Rabbit Hole is

Nicole Kidman. Nicole Kidman’s

spouse is Keith Urban. Therefore, the

answer is Keith Urban

Table 5.2: Example of the two-step prompts for few-shot CoT. The text in bold

is the output of GPT-3 Davinci model.

5.5 Experiments

5.5.1 Datasets

We use three multi-hop datasets: HotpotQA (Yang et al., 2018), constructed by

crowdsourcing 2-hop questions based on two connected Wikipedia articles; 2Wiki-

MultiHopQA (Ho et al., 2020) (2Wiki), constructed from structured and unstruc-

tured data of Wikipedia using predefined templates; and MuSiQue (Trivedi et al.,

2022), 2-4 hop questions made from seed questions from 5 existing single-hop

datasets. We only use 2-hop questions as other datasets are only 2-hop. MuSiQue
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also includes gold decompositions and intermediate answers for SQ1. We show

statistics in Table 5.3.

5.5.2 Question Types

Datasets have different multi-hop question types, with some common types across

datasets. We list the types.

Compositional/Bridging (CL) It is composed of two questions connected by

a bridge entity. Finding the entity is required to solve the question. Example:

Where was the director of film Ronnie Rocket born? MuSiQue consists only of

this type.

Comparison (C) Requires comparing two entities, where the two entities are

mentioned explicitly in the question. Example: Who died first, Fleetwood Shep-

pard or George William Whitaker?

Bridge-Comparison (BC) Similar to the previous type, but requires finding

the entities first before comparing them. Example: Which film has the director

born first, Once A Gentleman or The Girl In White? This type only exists in

the 2Wiki dataset. We consider this to be in the same category as “Comparison”

because of similarity.

Intersection (I) Requires finding an entity that satisfies different conditions.

Example: Which college football team for the University of Oregon did Enoka

Lucas play for? This type only exists in HotpotQA. Min et al. (2019) identified

this type and only classified the dev split accordingly. As both “Bridging” and

“Intersection” types are labeled as “Bridge” in HotpotQA, we fine-tune on them

together but evaluate CL and I separately.

Inference (Inf) Requires inferring the bridge entity using common-sense and

logical rules. It is different than the CL type in that it is not explicit to find the

bridge entity. Example: Who is the paternal grandmother of King Kang Of Zhou?

This type only exists in the 2Wiki dataset.
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PERSON DATE ORG misc GPE CARDINAL

475 139 130 114 113 106

LOC NORP WORK OF ART PERCENT EVENT ORDINAL

40 33 31 17 15 10

FAC QUANTITY LAW TIME MONEY –

8 7 6 4 2 –

Table 5.4: Statistics about named entity types of answers for the dev split of

MuSiQue dataset.

5.5.3 Selecting Few-shot Examples Based on Answer Types

Named entity types of answers correspond to the type of the WH question. For

example, answers of type (PERSON, LOCATION, DATE, etc.) correspond to

(who, where, when, etc.) questions. For the few-shot examples explained in

Section 5.4.3, we select them to represent different types of answers, and we use

that few-shot set with all questions. An alternative way is to select the few-shot

examples based on the question. Questions about people would have few-shot

examples with answers of type person, while a question about locations would

have examples with answers of type GPE, etc.

To test if such a setting improves the performance, we apply this technique by

selecting several few-shot example groups based on the gold answer entity type.

We did not use a classifier on the question because we want to check the upper

bound. We use the SpaCy framework to do named entity recognition on the

answers of the dev split of the MuSiQue dataset, we report the statistics of entity

types in Table 5.4.

We collect few-shot example groups for the following types: PERSON, DATE,

GPE, ORG, CARDINAL. If the answer entity type is other than those types, we

use the mixed few-shot example group used in the other experiments.

5.5.4 Experimental Settings

The used models are a pre-trained T5-large (T5-L) with 770M parameters, and

two GPT-3 versions (Brown et al., 2020a); Curie and Davinci with 13B and 175B
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parameters, respectively. We only fine-tune T5-L and apply few-shot prompting

to GPT-3. We evaluate both models on three datasets, and we use two accuracy

metrics: EM = exact match, and F1 = partial match.

We manually search for hyper-parameters, and after some trials, we run all

experiments using the best-found ones. We used a learning rate of 5e-5 and a

batch size of 64, except for MuSiQue; because of the small size, we used a batch

size of 8 and a learning rate of 1e-5. We found that a high learning rate like 1e-3

harms performance. We used Adafactor optimizer with no learning rate decay

or warm-up, and a max gradient norm of 1.0. We used early stopping, where

we stop training after 15 epochs of no improvement in the validation score. We

report scores of single runs. We did not fine-tune T5-11b for all experiments due

to computational limitations, instead, we report some T5-11b results in Table

5.7. Fine-tuning T5-L time depends on the dataset and the GPU type, but an

experiment, on average takes approximately 10 hours. We mostly used NVIDIA

GeForce RTX 3090 and Tesla A100 GPUs.

5.5.5 Results

Roberts et al. (2020) evaluated three single-hop datasets in a closed-book set-

ting: NaturalQuestions (Kwiatkowski et al., 2019), WebQuestions (Berant et al.,

2013a), and TriviaQA (Joshi et al., 2017). T5-L achieved 28.5, 30.6, and 28.7

EM, respectively. We consider these as a reference for single-hop closed-book

performance.

From Table 5.5, we see an expected large gap in performance between multi-

hop and single-hop baselines in types CL and Inf for all models, and in type I for

T5-L and Curie models, demonstrating the difficulty of multi-hop questions. An

exception is the C type; the answer is present in the question itself, therefore the

LM can generate it with ease.

Summary of Findings We find that even though GPT-3 is more than two

orders of magnitude larger than T5-L, fine-tuning T5-L is superior under two

conditions: enough training data is provided, and the questions are truly multi-

hop and not guessable from one-hop like type I questions. In addition, we find
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Data Split Model BaselineFT/FS DFT or CoT

HotpotQA
(CL)

T5-L 8.45 / 15.94 8.65 / 16.51

Curie 7.25 / 14.49 4.94 / 10.50

Dvnc 17.90 / 27.32 22.52 / 34.28

2Wiki
(CL)

T5-L 16.31 / 18.62 16.31 / 18.56

Curie 2.90 / 5.48 1.99 / 3.97

Dvnc 6.46 / 10.65 9.19 / 15.82

MuSiQue
(CL)

T5-L 2.40 / 8.48 3.22 / 9.02

Curie 2.80 / 9.56 2.24 / 6.84

Dvnc 6.56 / 15.31 14.48 / 25.05

HotpotQA
(C)

T5-L 53.87 / 60.38 52.80 / 58.77

Curie 36.32 / 43.57 35.64 / 40.57

Dvnc 51.11 / 58.73 60.93 / 68.94

2Wiki
(C+BC)

T5-L 50.56 / 52.05 50.26 / 51.68

Curie 43.31 / 44.31 42.86 / 44.11

Dvnc 44.78 / 45.22 58.95 / 59.31

HotpotQA
(I)

T5-L 11.22 / 19.63 10.82 / 19.54

Curie 10.57 / 18.97 7.022 / 14.44

Dvnc 25.02 / 37.35 25.75 / 38.82

2Wiki
(Inf)

T5-L 10.85 / 30.99 10.40 / 29.38

Curie 1.81 / 21.50 1.55 / 21.08

Dvnc 5.62 / 27.47 8.65 / 30.45

Table 5.5: Comparing the baselines against DecompFT/CoT methods. For T5-L

rows, BaselineFT and DecompFT (DFT) are used, while for Curie/Davinci rows,

BaselineFS and few-shot CoT are used. For DecompFT, we used the highest-

performing decomposition method. Full DecompFT results in Table 5.6. All

results are shown in EM / F1 format. We group the question type splits of the

datasets together.
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that predicting a correct bridging entity/answer to SQ1 (we call it SA1) is more

important than correct SQs. We explain more in detail.

Analysis of Baselines Davinci’s high performance for type I is because of the

nature of questions that allow the answers to be guessed without other reasoning

hops (like single-hop questions). For example: Based on a True Story is an album

by which country music star, with the single My Eyes?. The T5-L performance on

MuSiQue is especially low due to small training data. Another factor is that the

dataset was designed to be harder by reducing shortcuts and artifacts that occur

in other models (Trivedi et al., 2022). The 2Wiki Inf split is smaller, however,

upon investigation, most question formats are: Who is the grandparent of X? and

a large portion of the answers overlap greatly with the question. This explains

the high F1 score compared to other splits. The high T5-L performance for 2Wiki

CL split is because of the sufficiently large training data. The high performance

of GPT-3 on the HotpotQA CL split is likely due to wrongly included type I

questions because we used the type prediction by Min et al. (2019), as mentioned

in Section 5.5.2. For types C and Inf, the T5-L baseline outperforms GPT-3

because of fine-tuning.

Analysis of DecompFT We discuss adding SQs to help the model explicitly

do multi-hop reasoning. As a quantitative quality analysis of the question decom-

positions, we compare DecompFT using different decomposers with BaselineFT in

Table 5.6, and we see no improvement, and sometimes degradation due to decom-

position failures; DecompRC failed to decompose C type for 2Wiki 28.5% of the

time. This suggests that the quality of predicted SQs is not sufficient.

However, when we use gold decompositions, we see a boost, albeit small, in

Table 5.7. To test DecompFT with predicted SA1, we train a single-hop T5-

L and T5-11b using gold SQ1 and SQ2 scoring 6.15 / 14.07 and 16.65 / 25.51,

respectively. Table 5.7 shows that plugging low-quality predicted SA1 to the

gold decompositions hurts the performance, while T5-11b’s better quality SA1

improves it. Gold SA1 expectedly provides remarkable improvement where the

scores outperform the single-hop accuracy, confirming that the DecompFT method
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Dataset split Baseline MuSiQue-based DecompRC ModularQA

HotpotQA (CL) 8.45 / 15.94 8.29 / 15.71 8.65 / 16.51 7.94 / 16.03

2Wiki (CL) 16.31 / 18.62 16.31 / 18.56 16.25 / 18.40 15.10 / 17.24

MuSiQue (CL) 2.40 / 8.48 2.88 / 9.35 2.80 / 8.56 3.22 / 9.02

HotpotQA (C) 53.87 / 60.38 – 52.80 / 58.77 52.69 / 59.36

2Wiki (C+BC) 50.56 / 52.05 – 47.85 / 48.89 50.26 / 51.68

HotpotQA (I) 11.22 / 19.63 – 10.49 / 18.96 10.82 / 19.54

2Wiki (Inf) 10.85 / 30.99 – – 10.40 / 29.38

Table 5.6: Results of comparing the baseline against DecompFT using different

decomposers on three datasets. All results are shown in EM / F1 format.

Setting T5-L T5-11b

No decomps 2.40 / 8.48 4.31 / 12.20

+ gold decomps 3.35 / 9.64 5.03 / 12.66

+ pred SA1 2.56 / 8.33 5.91 / 14.34

+ gold SA1 7.19 / 16.39 18.53 / 29.80

Table 5.7: Comparison with using gold decompositions on MuSiQue (CL), and

between using predicted and gold SA1, all in both fine-tuning and inference.

is viable, and the importance of SA1.

A more fine-grained analysis is possible on the MuSiQue dataset because we

have golden decompositions and gold SA1. For our trained decomposer using

the MuSiQue-provided decompositions (Section 5.3), we evaluate the generated

SQ1 for the dev split of MuSiQue on our single-hop fine-tuned model, we get the

following scores: 4.71/10.31. The scores for the gold SQ1 on the same split and

single-hop model are 7.27/12.87. As a qualitative analysis, we show a sample of the

decompositions in Table 5.8 on the MuSiQue split, as it has golden decompositions

which can be used as reference.

The boost of using gold decompositions without SA1 in Table 5.7 could be

higher as about half of the gold SQs are not in natural language, but in a shortened

format, which might hurt the performance of our trained decomposer and the

oracle results.
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Impact of CoT’s Quality CoT, by default, includes the equivalent of SA1

(i.e. the bridging entity). Curie’s generated CoT degrades its performance. Upon

examining the quality of the generated CoT, we found that the problem mainly

is not with the logic, as the case with the previously experimented decomposers,

but rather with the bridging entity. Predicting the wrong entity harshly harms

the performance, as seen in Table 5.5. However, while the phrasing of Davinci’s

CoT is similar to that of Curie’s, the bridging entities are different. Predicting

the correct entity essentially transforms the original question into a single-hop

one, increasing the performance. Nonetheless, Curie occasionally makes logical

mistakes in comparison steps and fails to decompose the question.

We show a comparison of the generated CoT by Curie and Davinci models in

Table 5.9. We see that in 2W (CL), MSQ (CL), HP (I), and 2W (Inf), Curie’s

reasoning steps begin correctly, but it fails to produce the bridging entity or last

answer correctly; which is a fault of the factual knowledge capability of Curie.

Curie also struggles with comparison logic; in HP (C), it predicts the information

about the entities correctly but fails to know that American == American. In 2W

(C+CB), Curie’s logic starts good but it predicts wrong entities, and at the end,

it compares when movies were made instead of the birth date of the directors.

Data Split CoT output

Q: The director of the romantic comedy ”Big Stone

Gap” is based in what New York city? (Gold answer:

Greenwich Village, New York City)

HP (CL) Curie A: The director of the romantic comedy ”Big Stone

Gap” is based in New York City. New York City is

in the United States of America.

Davinci A: Adriana Trigiani is the director of the roman-

tic comedy ”Big Stone Gap”. Adriana Trigiani is

based in New York City.

Q: What nationality is the director of film World And

Time Enough? (Gold answer: United States)
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2W (CL) Curie A: The director of film World And Time Enough is a

British national.

Davinci A: The director of film World And Time Enough is

John Frankenheimer. John Frankenheimer is

American.

Q: The Unwinding author volunteered for which or-

ganisation? (Gold answer: Peace Corps)

MSQ (CL) Curie A: The Unwinding author, George Packer, volun-

teered for the New York Times. George Packer vol-

unteered for the New York Times in the early 2000s.

Davinci A: The Unwinding author is George Packer.

George Packer volunteered for the Peace Corps.

Q: Were Scott Derrickson and Ed Wood of the same

nationality? (Gold answer: yes)

HP (C) Curie A: Scott Derrickson was of American nationality. Ed

Wood was of American nationality. Scott Derrickson

and Ed Wood were not of the same nationality.

Davinci A: Scott Derrickson is an American film director,

screenwriter and producer. Ed Wood was an Amer-

ican filmmaker, actor, writer and editor. Scott Der-

rickson and Ed Wood were both American.

Q: Which film has the director who was born later,

El Extraño Viaje or Love In Pawn? (Gold answer:

yes)

2W (C+CB) Curie A: The director of the film El Extraño Viaje is Ale-

jandro González Iñárritu. He was born in 1969.

The director of the film Love In Pawn is Abbas

Kiarostami. He was born in 1941. El Extraño Viaje

was made later than Love In Pawn.



5.5. EXPERIMENTS 95

Davinci A: El Extraño Viaje was directed by Fernando

Fernán Gómez. He was born on December 5,

1921. Love In Pawn was directed by George Cukor.

He was born on July 7, 1899. Fernando Fernán

Gómez was born after George Cukor.

Q: What American professional Hawaiian surfer born

18 October 1992 won the Rip Curl Pro Portugal?

(Gold answer: John John Florence)

HP (I) Curie A: Kelly Slater won the Rip Curl Pro Portugal in

2016. Kelly Slater is an American professional Hawai-

ian surfer.

Davinci A: John John Florence is an American professional

Hawaiian surfer born 18 October 1992. He won the

Rip Curl Pro Portugal.

Q: Who is Catherine Of Pomerania, Countess Pala-

tine Of Neumarkt’s father-in-law? (Gold answer:

Rupert)

2W (Inf) Curie A: Catherine Of Pomerania, Countess Palatine Of

Neumarkt was the wife of John I, Count Pala-

tine Of Neumarkt. John I, Count Palatine Of

Neumarkt was the son of Otto I, Count Palatine Of

Neumarkt.

Davinci A: Catherine Of Pomerania, Countess Palatine Of

Neumarkt was the wife of John I, Count Palatine

Of Neumarkt. John I, Count Palatine Of Neu-

markt’s father was Rupert I, Elector Palatine.

Table 5.9: Comparison of the generated CoT’s quality between Curie and Davinci.

Bridging entities are highlighted in bold.

Analysis of NER-based Few-shot Examples We find that using different

few-shot examples for different questions, as explained in Section 5.5.3, improves
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the Curie with CoT performance on the MuSiQue dev split to 2.56 / 9.25, and

the Davinci with CoT to 14.96 / 25.69. The reason for the great improvement in

the F1 for Curie but only slight improvement for Davinci is that specialized few-

shot examples were helpful to Curie as it already had bad CoT quality so those

specialized examples helped to get better CoT. Davinci is already good enough

to generate good CoT, so those specialized examples did not help much.

5.6 Summary of This Chapter

We revealed a large gap between single-hop and multi-hop questions in the closed-

book QA setting. We proposed two methods, fine-tuning question decomposi-

tions, or few-shot generation of CoT to facilitate teaching LMs to “hop,” and

find answers. We demonstrated that decomposing multi-hop questions without

or wrongly predicting the bridging entity does not improve performance, while

correctly predicting it boosts the performance. We also found that when enough

data is provided, fine-tuning a small model like T5-L is enough to outperform

few-shot GPT-3 on real multi-hop questions. In the future, we will investigate

more effective ways of selecting few-shot examples for the few-shot CoT method.



Chapter 6

Conclusion

6.1 Summary

In this thesis, we addressed three QA topics: Improving multi-hop QA in an

open-book setting, investigating model workings in a closed-book setting, and

improving multi-hop QA in a closed-book setting.

In Chapter 3, we proposed ideas to improve answering multi-hop questions

in an open-book setting. The goal of the task is to identify both the answer and

supporting facts from multiple paragraphs that are necessary to answer the multi-

hop question. We first identified the supporting facts and tagged them, keeping

the remaining context accessible for the model. Then we tagged the keywords

linking different paragraphs together. With joint training of the module for finding

supporting facts and the answering module, we were able to raise the accuracy by

allowing the model to flexibly focus on the detected supporting facts, withstanding

possible erroneous fact predictions, and additionally focus on possible bridging

entities to find the answer.

In Chapter 4, we showed experiments on the inner workings of the Transformer-

based T5 model in a closed-book QA setting. After corrupting components with

noise and observing the outcome, we found that the query component in the at-

tention mechanism is the most responsible for finding the answer. Moreover, we

pruned parts of the encoder and decoder in turns and monitored the differences.

We concluded that the encoder was responsible for finding the broad entity em-
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bedding, while the decoder found the exact entity. Furthermore, using different

head-scoring techniques, we demonstrated that certain areas in the model retain

more information about factual knowledge than others. Also, we showed that

related entity types are generally clustered in similar areas in the model.

In Chapter 5, we investigated the gap between single-hop and multi-hop

questions in a closed-book setting and improved answering multi-hop questions

through explicit and implicit question decomposition. The goal of the task is to

improve the multi-hop QA baseline in a closed-book setting. We learned from

Chapter 3 that showing the reasoning steps explicitly is beneficial to the answer-

ing model. We applied this finding to a closed-book setting and improved the

performance. We also identified several possible points for further improving the

multi-hop baseline.

6.2 Future Work

6.2.1 Flexibly Focusing with Virtual GNNs

In this thesis, we used Longformer as the base of our reader and supporting facts

finder modules for the open-book experiments. Recent research using GNNs like

HGN (Fang et al., 2020) has proved to be effective at modeling relations between

text segments; however, using the simpler Longformer models lacks using these

features. An interesting way to include these features in our simpler architecture is

to use global attention on special tokens representing different textual granularity

to act as virtual GNNs, mimicking the actual GNNs used by Fang et al. (2020).

This would allow for easier and more efficient focusing flexibly on the supporting

facts using our proposal, as in addition to computational overhead, there would

be architecture changes needed to distinguish the predicted supporting facts to

focus on them, as opposed to our method, which tags them with special tokens.

6.2.2 Investigating Reasoning Paths in Closed-book QA

In this thesis, we visualized the Transformer heads when a single-hop question

was provided to the Transformer-based T5 model in a closed-book setting. We

established that the information retaining factual knowledge is concentrated in
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certain areas in the model and found which parts are most responsible. For multi-

hop questions, an appealing research direction is to investigate the visualization

and responsible parts for the reasoning path, which consists of a decomposed

multi-hop question into multiple single-hop questions. Also, identifying if the

embeddings of the intermediate entity are triggered in the process of answering

the multi-hop question would be an insightful study.

6.2.3 Investigating Important Attention Components in Other

Tasks and Their Applications

After demonstrating the importance of the Q component of attention in the con-

text of closed-book QA, a natural question about the applicability of this result

to other tasks arises. For closed-book QA, the role of Q is to guide the model

to correctly combine the V values of the input question tokens to point at the

answer’s embedding space. It is difficult to imagine the role of Q when the task

is open-book QA or a completely different task like document summarization or

sentiment analysis. Pinpointing important components allow for several benefits,

including building more optimized architectures. For example, one future direc-

tion for closed-book QA could be training a model with larger Q and K values,

which might enhance the performance. Alternatively, Keeping Q and K values

but using a smaller V might decrease the parameter’s count without performance

loss. Other tasks might reveal different component behaviors, unlocking new rec-

ommendations.

6.2.4 Improving CoT via Question Decomposition and Vice Versa

With the importance of providing the reasoning steps of the answer in the form of

decompositions or CoT, an intriguing future investigation is to evaluate if adding

the automatically decomposed questions to the input for GPT-3 would improve

CoT’s quality and the final answer and if including CoT in the fine-tuning of T5-L

(including training a CoT generator in a supervised way) would yield improve-

ments.
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6.2.5 Combining a Knowledge Model with a Reasoning Model

We observed in our work that predicting the intermediate entity correctly gives a

large boost to answering the multi-hop question in a closed-book setting. Com-

pared to smaller models like T5-L, models like GPT-3 possess a larger amount

of factual knowledge but are harder to fine-tune. We found that, given enough

data, fine-tuning the much smaller T5-L outperforms few-shot GPT-3. Consid-

ering these findings, an interesting future direction is to let an expert in factual

knowledge (like GPT-3) provide the intermediate answer for decomposed ques-

tions while a fine-tuned reasoning expert takes the decompositions and the inter-

mediate answer to find the final answer. The high accuracy of the intermediate

answers would provide the large boost observed in our work.

6.2.6 Investigating the inners of generative large language models

(LLMs)

Despite the recent popularity of generative LLMs, they are still considered black-

boxes, as their inner workings and decision-making process are poorly understood.

Also, although these models are capable of many tasks, the way they decide on the

task based on instructions is still unclear. Shedding the light on the inner work-

ings of these powerful models transforms them from blackboxes into interpretable

and trustable tools.

An important aspect of the investigation involves exploring the instruction-

related embedding spaces and parameters within LLMs, which has the potential

to unlock valuable insights for facilitating transfer learning between tasks.

Another essential aspect to investigate is the internal decision-making process

of LLMs. This process can be traced by identifying intermediate keywords of

sample examples, then attempting to find where the embeddings of these keywords

are triggered inside the model. By gaining a deeper understanding of how these

models arrive at their predictions, we can gain valuable hints and insights into

when to trust their outputs. This knowledge is invaluable, particularly in real-

world applications where the reliability and interpretability of model predictions

are crucial.
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