
Novel Methods for Chemical

Compound Inference Based on

Machine Learning and Mixed Integer

Linear Programming

Jianshen Zhu

Novel Methods for Chemical Compound

Inference Based on Machine Learning and

Mixed Integer Linear Programming

Jianshen Zhu

Department of Applied Mathematics and Physics

Graduate School of Informatics

Kyoto University

Kyoto, Japan

K
Y
O
T

O
UNIVER

S
IT
Y

F
O

U
N
DED

1
8

9
7

KYOTO JAPAN

August 6, 2023

Doctoral dissertation

submitted to the

Graduate School of Informatics, Kyoto University

in partial fulfillment of

the requirement for the degree of

DOCTOR OF INFORMATICS

Preface

Analysis of the activities and properties of chemical compounds is one of the

important applications of intelligent computing. The problem of computational

prediction of chemical activities from their structural data has been studied for

several decades under the name of quantitative structure activity relationship

(QSAR). Also, inference of chemical structures with desired chemical activities

under some constraints is an important task not only for chemical science but also

for biological science because of its potential applications to drug design. This

problem has been studied under the name of inverse quantitative structure ac-

tivity relationship (inverse QSAR). However, most of the existing approaches for

this problem including many Artificial Neural Network (ANN)-based approaches

do not guarantee exact or optimal solutions due to inherent difficulties.

This research work aims to design a novel inverse QSAR method that can

(i) predict chemical activities and properties of chemical compounds from their

structural data (especially from their graph structure) with a good performance,

(ii) infer new chemical structures with desired chemical activities or properties

and guarantee the exact or optimal solutions or show that such a solution does

not exist by using mixed integer linear programming (MILP) to formulate the

problem, and (iii) generate many candidate solutions in a relatively short time.

We first extend one of the existing frameworks which was designed for the

restricted case such that the chemical compounds are represented by trees to the

case of “rank-2 chemical compounds”, where the graph rank is defined to be the

minimum number of edges whose removal makes the graph acyclic. We manage

to treat three kinds of different rank-2 polymer topologies together in one MILP

formulation. We show that the inverse problem can be solved efficiently with up

to 30 non-hydrogen atoms.

We then extend the framework to the case of any arbitrary graph topolo-

gies with at least one cycle when the abstract graph topology is given. Also, a

flexible way of specifying the topological structure of target chemical graphs is

introduced to allow the possibility to include domain knowledge in the way of

specifying graph structures. This entirely new mechanism of inferring chemical

graphs together with a new mechanism to enumerate chemical graphs conserv-

ing certain constraints can generate chemical graphs with up to 50 non-hydrogen

atoms in around 20 minutes, and later improved to around 20 times faster with

i

a more sophisticated MILP formulation.

Finally, to improve the learning performance of QSAR phase of the model,

we include not only ANN but also other machine learning methods like linear re-

gression, a newly-proposed method called adjustive linear regression, and multiple

linear regression by using quadratic terms with feature reduction. The inverse

problems of all those methods can be formulated as an MILP formulation and

thus be integrated into the framework of the two-layered model, an extended

MILP-based inverse QSAR model that can treat both the case of graph topolo-

gies of at least one cycle and the case of a tree. By applying these methods,

we improved the learning performance of QSAR drastically for some chemical

property datasets while the capable size of inferred chemical compounds and the

time efficiency of solving MILP formulation was preserved.

We believe that the work described in the thesis will help develop the related

fields in both theoretical and application aspects.

Kyoto, June 2023

Jianshen Zhu

ii

Acknowledgement

This thesis would not have been possible without the help, support, and guidance

of many others.

First of all, I would like to express my sincere and heartfelt gratitude to

Professor Hiroshi Nagamochi for accepting me into the Discrete Mathematics

Laboratory. Throughout the three and a half years as my supervisor, his unwa-

vering support, dedication to academic research, problem-solving approach, and

unique perspective on overcoming challenges have greatly influenced and shaped

my growth as a researcher. Our thorough discussions and his continuous encour-

agement have played an instrumental role in my development. I am truly honored

and privileged to have had the opportunity to learn from him, and I look forward

to continuing to benefit from his wisdom throughout my life.

I would also like to extend my sincere thanks to Associate Professor Kazuya

Haraguchi, who became my supervisor following Professor Hiroshi Nagamochi’s

retirement. His precise feedback on my thesis and invaluable guidance during the

preparation phase has been immensely valuable. I hope to continue benefiting

from his expertise in the following years.

I am deeply grateful to Professor Nobuo Yamashita and Professor Tatsuya

Akutsu for being part of my dissertation review committee. Their insightful

comments and suggestions have significantly contributed to improving the quality

of my work and its presentation in various aspects.

Special appreciation goes to former Assistant Professor Aleksandar Shurbevski

for his academic support and guidance during my initial days in the laboratory.

His extensive experience in programming skills proved invaluable, providing sig-

nificant assistance throughout my research process.

I extend my utmost gratitude to the Japan Society for the Promotion of

Science (JSPS) for their generous fellowship awards and research grants. These

funding opportunities were particularly crucial during the challenging period of

the COVID-19 pandemic, enabling me to carry out my research effectively.

I would also like to express my sincere thanks to all the other members of

the laboratory during my four-year tenure, especially Dr. Naveed Ahmed Azam.

Their advice and assistance have contributed to making my research experience

more enriching and fulfilling.

Lastly, I would like to convey my deepest appreciation to my family in China.

iii

Their unwavering support and encouragement have been the foundation of my

academic journey. Without them, I would not have had the opportunity to pursue

my studies and research at Kyoto University.

iv

Contents

1 Introduction 1

2 Preliminaries 7

2.1 Graphs . 7

2.2 Modeling of Chemical Compounds 10

2.3 Machine Learning . 11

3 A Framework for the Inverse QSAR 13

3.1 A Framework for the Inverse QSAR 13

3.1.1 Phase 1 . 13

3.1.2 Phase 2 . 14

4 An Inverse QSAR Method for Rank-2 Chemical Compounds 17

4.1 Introduction . 17

4.2 Preliminary . 18

4.2.1 Multigraphs and Graphs . 18

4.2.2 Modeling of Chemical Compounds 20

4.3 Representing Rank-2 Chemical Graphs 22

4.4 Experimental Results . 26

4.5 Concluding Remarks . 34

5 An Inverse Method for Arbitrary Cyclic Chemical Compounds 35

5.1 Introduction . 35

5.2 Preliminary . 38

5.2.1 Modeling of Chemical Compounds 38

5.3 Specifying Target Chemical Graphs 39

5.4 An MILP Formulation for Stage 4 45

5.5 A New Mechanism for Stage 5 . 48

5.6 Experimental Results . 50

5.7 Concluding Remarks . 57

6 Two-Layered Model with Linear Regression 59

6.1 Introduction . 59

6.2 Two-layered Model . 60

v

6.2.1 A Full Description of Descriptors 62

6.2.2 Topological Specification . 64

6.3 Linear Regression . 65

6.4 Experimental Results . 67

6.5 Concluding Remarks . 77

7 Two-Layered Model with Adjustive Linear Regression 79

7.1 Introduction . 79

7.2 Constructing Prediction Functions 80

7.2.1 Linear Prediction Functions 80

7.2.2 ANNs for Linear Prediction Functions 80

7.2.3 Adjustive Linear Regression 81

7.2.4 MILP Formulation for the Inverse Problem 84

7.3 Experimental Results . 86

7.4 Concluding Remarks . 91

8 Two-Layered Model with Quadratic Descriptors 93

8.1 Introduction . 93

8.2 Quadratic Descriptors . 95

8.2.1 Methods for Reducing Descriptors 95

8.3 Compute a Quadratic Term in an MILP 98

8.4 Experimental Results . 99

8.4.1 Results on the First Phase of the Framework 99

8.4.2 Results on the Second Phase of the Framework 106

8.5 Concluding Remarks . 110

9 Conclusion 111

Appendix 123

A Appendix for Chapter 4 123

A.1 All Constraints in an MILP Formulation for Rank-2 Chemical

Graphs . 123

A.1.1 Applicability Domain . 123

A.1.2 Construction of Scheme Graph and Tree-Extension 125

A.1.3 Specification for Chemical Graphs with Rank 2 127

A.1.4 Selecting A Subgraph . 128

A.1.5 Assigning Multiplicity . 129

A.1.6 Assigning Chemical Elements and Valence Condition 130

A.1.7 Descriptors for Mass, the Numbers of Elements and Bonds 131

vi

A.1.8 Descriptor for the Number of Specified Degree 132

A.1.9 Descriptor for the Number of Adjacency-Configurations . . 133

A.1.10 Descriptor for 1-Path Connectivity 135

A.1.11 Constraints for Left-Heavy Trees 138

B Appendix for Chapter 7 139

B.1 An LP formulation for Adjustive Linear Regression 139

B.2 A Procedure for Constructing a Prediction Function with ANNs . 140

List of the Author’s Work 141

vii

List of Figures

1.1 (a) An acyclic chemical graph; (b) A monocyclic chemical graph. . 3

2.1 An illustration of rank-2 graphs Hi, i = 1, 2, 3. Core vertices are

illustrated with white squares, non-core vertices with circles, where

gray circles depict 2-branches. 8

3.1 An illustration of Stage 1: A data set Dπ of chemical graphs Gi,

i = 1, 2, . . . ,m in a class G of graphs whose values a(Gi) of a

chemical property π are available. 14

3.2 An illustration of Stage 2: Each chemical graph G ∈ G is mapped

to a vector f(G) in a feature vector space Rk for some positive

integer k. 14

3.3 An illustration of Stage 3: A prediction function ψN from the

feature vector space Rk to R is constructed based on an ANN N . 15

3.4 An illustration of Stage 4: Given a target value y∗ ∈ R, solving
MILP M(x, y, g; C1, C2) either delivers a set F ∗ of vectors x∗ ∈
A ∩ D such that (1 − ε)y∗ ≤ ψN (x∗) ≤ (1 + ε)y∗ or detects that

no such vector x exists. 16

3.5 An illustration of Stage 5: For each vector x∗ ∈ F ∗, all chemical

graphs G∗ ∈ G such that f(G∗) = x∗ are generated. 16

4.1 An illustration of the three rank-2 polymer topologiesM1,M2,M3 ∈
PT (2, 4). 19

4.2 An illustration of the least simple graphs of the rank-2 polymer

topologies M1,M2,M3 ∈ PT (2, 4) in Figure 4.1 and a scheme

graph (K, E): (a) S(M1); (b) S(M2); (c) S(M3); (d) a scheme

graph (K = ({u1, u2, u3, u4}, E), E = (E1, E2, E3)) where each

edge uiuj is directed from one end-vertex ui to the other end-

vertex uj with i < j, and E1 = {a1 = (u1, u4), a2 = (u2, u3), a3 =

(u2, u4)}, E2 = {a4 = (u1, u2), a5 = (u3, u4)} and E3 = {a6 =

(u1, u2), a7 = (u3, u4)}, and the edges in E1 (resp., E2 and E3) are

depicted with dashed (resp., dotted and solid) lines. 20

ix

4.3 An illustration of a tree-extension, where the vertices in V (K) are

depicted with gray circles: (a) The structure of the rooted tree

Ss rooted at a vertex us,1; (b) the structure of the rooted tree

Tt rooted at a vertex vt,1; (c) the (a, b, c)-tree-extension of the

scheme graph in Figure 4.2(d) for a = t∗ = 3, b = ch∗ = 2 and

c = dmax = 4. 24

4.4 (a) An example of an extension of the scheme graph; (b) an ex-

ample of a rank-2 graph H with n(H) = 21, cs(H) = 9, ch(H) = 2

and θ(H) = 1, where the labels of some vertices and edges in-

dicate the corresponding vertices and edges in the (t∗, ch∗, dmax)-

tree-extension for cs∗ = cs(H), ch∗ = ch(H), s∗ = 4, t∗ = cs∗ − s∗

and dmax = 3; (c) a subgraph H ′ of (t∗ = 5, ch∗ = 2, dmax = 3)-

tree-extension isomorphic to the rank-2 graph H in (b). 24

4.5 An illustration of inferred rank-2 chemical graphs G∗ with θ = −2:

(a) y∗Kow = 5, θ = −2, n = 30, core size = 16, core height = 3,

dmax = 4; (b) y∗Mp = 150, θ = −2, n = 30, core size = 16, core

height = 2, dmax = 3; (c) y∗Bp = 250, θ = −2, n = 25, core size =

17, core height = 4, dmax = 3; (d) y∗Kow = 5, y∗Mp = 150, y∗Bp = 250,

θ = −2, n = 22, core size = 14, core height = 3, dmax = 3. 33

4.6 An illustration of inferred rank-2 chemical graphs G∗: (a) y∗Kow =

5, θ = 0, n = 30, core size = 14, core height = 2, dmax = 3;

(b) y∗Mp = 150, θ = 0, n = 30, core size = 16, core height = 2,

dmax = 4; (c) y∗Bp = 250, θ = 0, n = 25, core size =17, core heigh

t= 2, dmax = 3. 33

4.7 An illustration of inferred rank-2 chemical graphs G∗: (a) y∗Kow =

5, θ = 2, n = 30, core size = 15, core height = 5, dmax = 4;

(b) y∗Mp = 150, θ = 2, n = 30, core size = 17, core height = 2,

dmax = 3; (c) y∗Bp = 250, θ = 2, n = 25, core size = 17, core height

= 3, dmax = 3. 34

5.1 (a) A seed graph GC; (b) A σco-extension C with cs(C) = 22; (c) A

(σco, σnc)-extension H with Cr(H) = C, n(H) = 43, ch(H) =

5, and bl2(H) = 3; (d) A (σco, σnc, σαβ)-extension G of GC in

Fig. 5.1(a). ©2021 IEEE. 40

5.2 An illustration of a scheme graph SG: (a) A seed graph GC; (b) A

tree Ci, i ∈ [1, tC] rooted at a core-vertex vCi,0 ∈ VC; (c) A path

PT of length tT−1; (d) A tree Ti, i ∈ [1, tT] rooted at a core-vertex

vTi,0 ∈ VT; (e) A path PF of length tF − 1; (f) A rooted tree Fi,

i ∈ [1, tF] rooted at a ρ-internal vertex vFi,0 ∈ VF. ©2021 IEEE. . 45

x

5.3 An illustration of a new mechanism to Stage 5, where a given chem-

ical graph G† is decomposed into chemical trees T †
i , i = 1, 2, . . . ,m

based on a set VB = {u1, u2} of core-vertices and a chemical tree T ∗
i

such that f(T ∗
i) = x∗i is constructed for each vector x∗i = f(T †

i),

before a new target graph G∗ is obtained as a combination of

T ∗
1 , . . . , T

∗
m. ©2021 IEEE. 49

5.4 An illustration of seed graphs: (i) A monocyclic graph G1
C; (ii) A

rank-2 cyclic graphG2
C with two vertex-disjoint cycles; (iii) A rank-

2 cyclic graph G3
C with two disjoint cycles sharing a vertex; (iv) A

rank-2 cyclic graph G4
C with three cycles. ©2021 IEEE. 52

5.5 An illustration of chemical compounds: (a) GA: CID 24822711;

(b)GB: CID 59170444; (c)GA: CID 10076784; (d)GB: CID 44340250;

(e) G† inferred from Ic with y
∗ = 0.82 of Kow; (f) G† inferred from

Id with y∗ = 220 of Bp. ©2021 IEEE. 54

6.1 An illustration of a hydrogen-suppressed chemical graph ⟨C⟩ ob-

tained from a chemical graph C with r(C) = 4 by removing all

the hydrogens, where for ρ = 2, V ex(C) = {wi | i ∈ [1, 19]} and

V int(C) = {ui | i ∈ [1, 28]}. 61

6.2 The set T (C) of 2-fringe-trees C[ui], i ∈ [1, 28] of the example C
in Figure 6.1, where the root of each tree is depicted with a gray

circle and the hydrogens attached to non-root vertices are omitted

in the figure. 62

6.3 (a) An illustration of a seed graph GC with r(GC) = 5 where the

vertices in VC are depicted with gray circles, the edges in E(≥2)

are depicted with dotted lines, the edges in E(≥1) are depicted

with dashed lines, the edges in E(0/1) are depicted with gray bold

lines and the edges in E(=1) are depicted with black solid lines;

(b) A set F = {ψ1, ψ2, . . . , ψ30} ⊆ F(Dπ) of 30 chemical rooted

trees ψi, i ∈ [1, 30], where the root of each tree is depicted with a

gray circle, where the hydrogens attached to non-root vertices are

omitted in the figure. 64

6.4 An illustration of chemical rooted trees ψ1, ψ1 and ψ3 that are

selected in Lasso linear regression for constructing a prediction

function to property Vd, where the root is depicted with a gray

circle. 70

6.5 (i) Seed graph G1
C for I1b and Id; (ii) Seed graph G2

C for I2b; (iii)

Seed graph G3
C for I3b; (iv) Seed graph G4

C for I4b. 71

xi

6.6 An illustration of chemical compounds for instances Ic and Id: (a)

CA: CID 24822711; (b) CB: CID 59170444; (c) CA: CID 10076784;

(d) CB: CID 44340250, where hydrogens are omitted. 71

6.7 (a) C† with η(f(C†)) = 13703.3 inferred from Ic with (y∗, y∗) =

(13700, 13800) of Hc; (b) C† with η(f(C†)) = 21.62 inferred from

I2b with (y∗, y∗) = (21, 22) of Vd; (c) C† with η(f(C†)) = 70.9

inferred from I4b with (y∗, y∗) = (70, 71) of OptR; (d) C† with

η(f(C†)) = 1198.8 inferred from Id with (y∗, y∗) = (1190, 1210)

of IhcLiq; (e) C† with η(f(C†)) = 1.880 inferred from I3b with

(y∗, y∗) = (1.85, 1.90) of Vis; (f) C† inferred from I4b with lower

and upper bounds on the predicted property value ηπ(f(C†)) of

property π ∈ {Kow, Lp, Sl} in Table 6.9. 74

7.1 An illustration of the process in ANNs with no hidden layers: (a)

An ANN N that represents a linear prediction function η with

a hyperplane (w, b); (b) an ANN Nϕ with activation functions

ϕj , j ∈ [0,K] at all nodes. 81

8.1 (a) C† with η(f(C†)) = 344.98 inferred from Ic with (y∗, y∗) =

(340, 350) of Bp; (b) C† with η(f(C†)) = 0.558 inferred from Ia

with (y∗, y∗) = (0.55, 0.60) of Dc; and (c) C† with η(f(C†)) =

3.199 inferred from Id with (y∗, y∗) = (3.15, 3.20) of Dc. 108

xii

List of Tables
4.1 The results of Stage 1 in Phase 1. 28

4.2 The results of Stages 2 and 3 in Phase 1. 28

4.3 Results of Stages 4 and 5 with dmax = 3 and θ = −2. 30

4.4 Results of Stages 4 and 5 with dmax = 4 and θ = −2. 30

4.5 Results of Stages 4 and 5 with dmax = 3 and θ = 0. 31

4.6 Results of Stages 4 and 5 with dmax = 4 and θ = 0. 31

4.7 Results of Stages 4 and 5 with dmax = 3 and θ = 2. 32

4.8 Results of Stages 4 and 5 with dmax = 4 and θ = 2. 32

5.1 Example 3 of a chemical specification σαβ. ©2021 IEEE. 44

5.2 Data Sets for Stage 1 in Phase 1. ©2021 IEEE. 51

5.3 Results of Stages 2 and 3 in Phase 1. ©2021 IEEE. 51

5.4 Features of test instances, where Λ = {C, O, N} for all instances.

©2021 IEEE. 53

5.5 Results of Stages 4 and 5 for Kow. ©2021 IEEE. 55

5.6 Results of Stages 4 and 5 for Bp. ©2021 IEEE. 55

5.7 Results of Stages 4 and 5 for Mp. ©2021 IEEE. 56

5.8 Results of Stage 4 for instance Ia and property Mp. ©2021 IEEE. 57

6.1 Results in Phase 1. 69

6.2 Results of Stages 4 and 5 for Hc using Lasso linear regression. . . 72

6.3 Results of Stages 4 and 5 for Vd using Lasso linear regression. . . 73

6.4 Results of Stages 4 and 5 for OptR using Lasso linear regression. . 73

6.5 Results of Stages 4 and 5 for IhcLiq using Lasso linear regression. 73

6.6 Results of Stages 4 and 5 for Vis using Lasso linear regression. . . 74

6.7 Running time of Stage 4 for Hc, Vd and OptR using ANN. . . . 75

6.8 Running time of Stage 4 for IhcLiq and Vis using ANN. 75

6.9 Results of Stage 4 for instances Iib, i = 2, 3, 4 with specified target

values of three properties Kow, Lp and Sl using Lasso linear

regression. 76

7.1 Results in Phase 1 for monomers. 89

7.2 Results in Phase 1 for polymers. 90

7.3 Results of Stages 4 and 5 for Hv. 91

xiii

8.1 Results of setting data sets for monomers. 101

8.2 Results of setting data sets for polymers. 102

8.3 Results of constructing prediction functions for monomers. 105

8.4 Results of constructing prediction functions for polymers. 106

8.5 Results of inferring a chemical graph C† and generating recombi-

nation solutions for Bp with Λ7. 107

8.6 Results of inferring a chemical graph C† and generating recombi-

nation solutions for Dc with Λ7. 107

8.7 Results of generating neighbor solutions of C†. 110

xiv

List of Algorithms
1 LLR-Reduce(C, D) . 96

2 BS-Reduce(C, D, p) . 97

3 Select-Des-set(C, D) . 97

xv

1 Introduction

Background In recent years, extensive studies have been done on the design of

novel molecules using various machine learning techniques [31, 50]. Computa-

tional molecular design has also a long history in the field of chemo-informatics,

and has been studied under the name of quantitative structure activity relationship

(QSAR) [10, 44], and inverse quantitative structure activity relationship (inverse

QSAR) [24, 33, 40]. Analysis of the activities and properties of chemical com-

pounds is important not only for chemical science but also for biological science

because chemical compounds play important roles in metabolic and many other

pathways.

The purpose of QSAR is to predict chemical activities from given chemical

structures [10]. In most of the existing QSAR studies, a chemical structure is

given as an undirected graph called chemical graphs, and represented as a vec-

tor of real numbers called descriptors and correspond to feature vectors in ma-

chine learning. A prediction function is usually obtained from existing structure-

activity relation data. To this end, various regression-based methods and machine

learning-based methods, including artificial neural network (ANN)-based meth-

ods, have been utilized recently [31, 50].

Conversely, the purpose of inverse QSAR is to predict chemical structures

from given chemical activities [24, 33, 40], where additional constraints may of-

ten be imposed to effectively restrict the possible structures. Inference of chemical

structures with desired chemical activities under some constraints is also impor-

tant because of its potential applications to drug design. Traditionally, a feature

vector is firstly computed by applying some optimization or sampling method to

the prediction method obtained by usual QSAR and then reconstruct the chem-

ical structures from the feature vector. However, the reconstruction itself is not

an easy task because the number of possible chemical graphs is huge [9]. For

example, the number of chemical graphs with up to 30 atoms (vertices) C, N,

O, and S may exceed 1060 [9]. Indeed, the problem to infer a chemical graph

from a given feature vector is known as a computationally difficult problem (pre-

cisely, NP-hard) except for some simple cases [3]. Due to this inherent difficulty,

most existing methods employ heuristic methods for reconstructions of chemical

structures and thus do not guarantee the optimality or exactness of the solutions.

1

2 Chapter 1 Introduction

On the other hand, Artificial Neural Networks (ANN) and deep learning tech-

nologies have recently been applied to inverse QSAR because generative models

are available [16]. Furthermore, graph-structured data can be directly handled

by using graph convolutional networks [28]. Therefore, it is reasonable to try

to apply ANNs to inverse QSAR [55]. Indeed, various ANN-based models have

been proposed, which includes variational autoencoders [17], recurrent neural

networks [41, 57], grammar variational autoencoders [29], generative adversar-

ial networks [12], and invertible flow models [32, 42]. In these approaches, new

chemical graphs are generated by solving a kind of inverse problems on neural

networks, where neural networks are trained using known chemical compound

property datasets. However, two important expected properties of the solutions,

optimality, the quality of the solution for the inverse problem of the learning

method, or exactness, whether the solution admits a valid chemical graph, is not

yet guaranteed by these methods.

For example, recently Takeda et al. [47] proposed an approach for inverse

molecular design. They encoded every chemical compound into a feature vector

based on the frequencies of a variety of subgraphs, namely substructures, in the

corresponding chemical graph. They constructed one ANN for the QSAR phase

(namely encoder), and the inverse QSAR phase (namely decoder), respectively.

The output of the decoder is a feature vector, and they thus combinatorically

generated chemical graphs with such a feature vector based on a branching algo-

rithm. We note that, in this approach, neither the optimality of the solution, i.e.

whether the feature vector will obtain the desired property value when served

as the input for the encoder, nor the exactness, i.e. whether there exists a valid

chemical graph corresponding to the output feature vector from the decoder, is

guaranteed. Also, as mentioned above, the construction from a feature vector to

a chemical graph itself is a difficult problem. The computational experimental

results showed that it took an average of six minutes to generate one chemical

graph with around 10 non-hydrogen atoms, which was not very efficient.

There are many studies that do not utilize feature vectors but that deal with

the graph more directly. For example, Shi et al. [42] proposed GraphAF, a flow-

based autoregressive model to generate a chemical graph. In this approach, the

input of the encoder and output of the decoder are directly a chemical graph and

thus it is unnecessary to design a feature vector for a chemical compound. It

iteratively samples random variables to map them to atom/bond features during

the procedure of generating chemical graphs. However, the exactness of the

solution, here the validity of the output graph as a chemical graph, is still not

guaranteed theoretically. According to the experimental results shown by the

3

(a) (b)

Figure 1.1. (a) An acyclic chemical graph; (b) A monocyclic chemical graph.

authors, only around 70% of the generated graphs are valid when extra checks for

validity are not utilized. The optimality of the solutions is not guaranteed either.

Moreover, as a method that uses random sampling during the process, the same

chemical graph can be output for different trials of generating. Finally, because

of the complexity of this proposed model, it requires an expensive computation

environment and a huge running cost.

In order to guarantee the optimality for the inverse problem of ANNs, a novel

approach has been proposed by Akutsu and Nagamochi [1] for ANNs with ReLU

activation functions and sigmoid activation functions. They manage to formulate

this inverse problem as a mixed integer linear programming (MILP) to guarantee

the optimality of the solution theoretically, by simulating the process of ANN

in the terms of linear constraints of some real and integer variables. In their

approach, activation functions on neurons are efficiently encoded as piece-wise

linear functions so as to represent ReLU functions exactly and sigmoid functions

approximately. Based on this approach, several methods have been proposed [4,

11, 59, 60] based on an MILP formulation designed especially for acyclic chemical

compounds (see Figure 1.1(a) as an example). Afterward, Ito et al. [25] designed

a method of inferring monocyclic chemical graphs (chemical graphs with cycle

index or rank 1, see Figure 1.1(b) as an example) by formulating a new MILP

and using an efficient algorithm for enumerating monocyclic chemical graphs [46].

Contributions Although several methods have been proposed based on this

framework for the case of acyclic chemical compounds [4, 11, 59, 60] and mono-

cyclic chemical graphs [25], it is still far from being complete. The ratio of acyclic

4 Chapter 1 Introduction

and monocyclic chemical graphs in the chemical database PubChem [27] is only

2.91% and 16.26%, respectively. Motivated by the existing methods and applica-

tions, we apply this framework to a broader range of chemical compounds, which

can cover most (nearly 97%) of the chemical graphs in PubChem.

The learning performance of the QSAR phase plays an important role in the

quality of the inferred chemical compounds, but ANN sometimes cannot give a

satisfactory performance because of its intrinsic complexity for finding a good lo-

cal optimum. The issue of overfitting is also a serious problem when using ANN

as the learning method for the QSAR [16], and one reason for this is that the

dataset size may be too small to apply an ANN for some chemical properties.

Considering this issue, we include the usage of several machine learning meth-

ods other than ANN inside this framework to manage to improve the learning

performance for various chemical property datasets.

The rest chapters are organized as follows:

• In Chapter 2, we define some basic notations and terminologies for graphs,

chemical graphs, and machine learning;

• In Chapter 3, we briefly review the framework for inferring chemical com-

pounds proposed in [4]. This framework is based on ANNs and MILPs, and

the optimality and exactness of the solutions are guaranteed.

• From Chapters 4 to 5, we extended the MILP-based approach in [4] for

broader classes of chemical graphs:

– Chapter 4: The class of “rank-2 chemical compounds” (chemical graphs

with cycle index or rank 2);

– Chapter 5: The class of arbitrary cyclic chemical compounds;

We note that the MILP formulations in Chapter 5 can be even improved

based on a characterization of a chemical acyclic graph [62].

• From Chapters 6 to 8, we apply machine learning methods other than ANN

into the recently proposed two-layered model [43], which is an extended

version of this MILP-based framework that can treat both the case of graph

topologies of at least one cycle and the case of a tree:

– Chapter 6: Lasso linear regression;

– Chapter 7: Adjustive linear regression, a newly-proposed machine learn-

ing method;

5

– Chapter 8: Multiple linear regression with quadratic descriptors where a

heuristic for feature reduction is applied, where we also utilize a method

called grid neighbor search [6] to systematically find more solutions of

the MILP formulation;

We note that some other machine learning methods like decision tree [49]

can also be applied into the two-layered model.

• In Chapter 9, we give some conclusion remarks.

While this study mainly takes the small chemical compounds called monomers

as the targets, we note that it is also possible to apply the framework to the kind

of molecules called polymers [23], which also have a wide range of applications in

both medical science and material science.

We put the detailed MILP formulations for Chapter 4 in Appendix A. Some

details for Chapter 7 can be found in Appendix B.

Most of the contents in Chapters 4 to 8 have appeared as [1, 2, 5, 6, 7] in List

of Author’s Work, respectively.

2 Preliminaries

In this chapter, we give some notions and terminology that will be used through-

out Chapters 3 to 8.

Let R, R+, Z and Z+ denote the sets of reals, non-negative reals, integers

and non-negative integers, respectively. For two integers a and b, let [a, b] denote

the set of integers i with a ≤ i ≤ b. For a vector x ∈ Rp, the j-th entry of x is

denoted by x(j), j ∈ [1, p].

2.1 Graphs

Graphs When using the term graph G, we will always assume G as a connected

simple graph. Given a graph G, let V (G) and E(G) denote the sets of vertices

and edges, respectively. For a subset V ′ ⊆ V (G) (resp., E′ ⊆ E(G)) of a graph

G, let G − V ′ (resp., G − E′) denote the graph obtained from G by removing

the vertices in V ′ (resp., the edges in E′), where we remove all edges incident

to a vertex in V ′ in G − V ′. An edge subset E′ ⊆ E(G) in a connected graph

G is called separating (resp., non-separating) if G − E′ becomes disconnected

(resp., G− E′ remains connected). The rank or cycle index r(G) of a connected

graph G is defined to be the minimum |F | of an edge subset F ⊆ E(G) such

that G − F contains no cycle, where r(G) = |E(G)| − |V (G)| + 1. Observe that

r(G − E′) = r(G) − |E′| holds for any non-separating edge subset E′ ⊆ E(G).

An edge e = u1u2 ∈ E(G) in a connected graph G is called a bridge if {e} is

separating, i.e., G− e consists of two connected graphs Gi containing vertex ui,

i = 1, 2. For a vertex v ∈ V (G), the set of neighbors of v in G is denoted by

NG(v), and the degree degG(v) of v is defined to be the number of times an edge

in E(G) is incident to v; i.e., degG(v) = |NG(v)|.
A vertex designated in a graph G is called a root. In this thesis, we designate

at most two vertices as roots, and denote by Rt(G) the set of roots of G. We call

a graph G rooted (resp., bi-rooted) if |Rt(G)| = 1 (resp., |Rt(G)| = 2), where we

call G unrooted if Rt(G) = ∅. For a graph G possibly with roots, a leaf is defined

to be a non-root vertex v ∈ V (G) \ Rt(G) with degree 1.

A rooted tree is defined to be a tree where a vertex is designated as the root.

The height ht(v) of a vertex v in a rooted tree T is defined to be the maximum

7

8 Chapter 2 Preliminaries

u6

(b) H2

(a) H1

(c) H3

u1

u2

u4

u1

u2

u3

u1

u2
u3

u10

u7

u11

u4

u12

u8

u13

u5

u14

u9

u7

u16

u5

u9u6

u3
u10u7

u4
u8u5

u6

v1

v2

v4

v1

v2

v3

v1

v2v3

v10

v7

v11

v4

v12

v8

v13

v5

v14

v9
v6

v10

v7

v11 v12

v8

v16

v5

v15

v9

v6

v3

v10

v7

v11

v4 v12

v8

v17

v5
v9 v6

u15

u17

u18

u11

u8

u10

u9

u12
u11

u13

Figure 2.1. An illustration of rank-2 graphs Hi, i = 1, 2, 3. Core vertices are

illustrated with white squares, non-core vertices with circles, where gray circles

depict 2-branches.

length of a path from v to a leaf u, and the height ht(T) of T is defined to be

the height ht(r) of the root r. For positive integers a, b and c with b ≥ 2, let

T(a, b, c) denote the rooted tree such that the number of children of the root is

a, the number of children of each non-root internal vertex is b, and the distance

from the root to each leaf is c. In the rooted tree T(a, b, c), we denote the vertices

by v1, v2, . . . , vn (n = a(bc − 1)/(b−1) + 1) with a breadth-first-search order, and

denote the edge between a vertex vi with i ∈ [2, n] and its parent by ei. For each

non-leaf vertex vi in T(a, b, c), let Cld(i) denote the set of indices j such that vj

is a child of vi when i ∈ [1, a(bc−1 − 1)/(b−1) + 1], and for each non-root vertex

vi in T(a, b, c), let prt(i) denote the index j such that vj is the parent of vi when

i ∈ [2, n].

2.1 Graphs 9

Core in Cyclic Graphs Let H be a connected simple graph with rank at least

1. The core Cr(H) of H is defined to be an induced subgraph Cr(H) = (V co =

V ′
1 ∪ V ′

2 , E
co) such that V ′

1 is the set of vertices in a cycle of H , V ′
2 is the set of

vertices each of which is in a path between two vertices u, v ∈ V ′
1 , and E

co is the

set of edges between vertices in V co. A vertex (resp., an edge) in H is called a

core-vertex (resp., core-edge) if it is contained in the core Cr(H) and is called a

non-core-vertex (resp., non-core-edge) otherwise. The core size cs(H) is defined

to be the number of core-vertices in the core of H.

Let H − Eco denote the graph obtained from H by removing all core-edges.

We call a connected component T with at least one edge in H −Eco an exterior-

tree, which contains exactly one core-vertex v in Cr(H), where T is regarded as

a rooted tree rooted at the core-vertex v. The core height ch(H) is defined to

be the maximum height ht(T) of an exterior-tree T of H. Fig. 2.1 illustrates

three examples of rank-2 graphs Hi, i = 1, 2, 3, where cs(H1) = 17, ch(H1) = 6,

cs(H2) = 12, ch(H2) = 3, cs(H3) = 12 and ch(H3) = 5.

Branch-parameter Azam et al. [7] introduced “branch-parameter,” a positive

integer ρ to measure the “agglomeration degree” of trees.

A non-core vertex v is called a ρ-internal vertex (resp., a ρ-external vertex) if

ht(v) ≥ ρ (resp., ht(v) < ρ). A non-core-edge e is called a ρ-internal edge if e is

not incident to any ρ-external vertex, and called a ρ-external edge otherwise. A

ρ-internal vertex v is called a ρ-branch if the number of ρ-internal edges incident

to v is not 2, and a ρ-branch v is called a leaf ρ-branch if ht(v) = ρ (i.e., the

number of ρ-internal edges incident to v is 1).

A ρ-fringe-tree is defined to be a maximal subtree T ′ of an exterior-tree T

such that the edge set of T ′ consists of ρ-external edges. The ρ-branch-leaf-number

blρ(H) of H is defined to be the number of leaf ρ-branches in H.

We call a graph H ρ-lean if the set of ρ-internal edges in each exterior-tree T

forms a single path from its root to a leaf ρ-branch. For ρ = 2, nearly 97% of the

cyclic chemical compounds with up to 100 non-hydrogen atoms in PubChem [27]

are 2-lean. For the graph H1 in Fig. 2.1(a), u1 and u12 are the leaf 2-branches,

and H1 is 2-lean. For the graph H2 in Fig. 2.1(b), u1 and u2 are the two leaf

2-branches of the exterior tree rooted at vertex v7. There are two paths from the

root vertex v7 to a leaf 2-branch, v7 to u1, and v7 to u2, and therefore H2 is not

2-lean. For the graph H3 in Fig. 2.1(c), u1 is a 2-branch that is not a 2-branch

leaf. Again, in the exterior tree rooted at vertex v3 there are two paths from the

root to a leaf 2-branch vertex, that are v3 to u2 and v3 to u6, and we see that H3

is not 2-lean.

10 Chapter 2 Preliminaries

2.2 Modeling of Chemical Compounds

Chemical GraphsWe introduce a set of chemical elements such as H (hydrogen),

C (carbon), O (oxygen), N (nitrogen) and so on to represent a chemical compound.

To distinguish a chemical element a with multiple valences such as S (sulfur), we

denote a chemical element a with a valence i by a(i), where we do not use such a

suffix (i) for a chemical element a with a unique valence. Let Λ be a set of chemical

elements a(i). For example, Λ = {H, C, O, N, P, S(2), S(4), S(6)}. Let val : Λ → [1, 6]

be a valence function. For example, val(H) = 1, val(C) = 4, val(O) = 2, val(P) = 5,

val(S(2)) = 2, val(S(4)) = 4 and val(S(6)) = 6. For each chemical element a ∈ Λ,

let mass(a) denote the mass of a.

To represent a chemical compound, a chemical graph is defined to be a tuple

C = (H,α, β) of a simple, connected undirected graph H and functions α :

V (H) → Λ and β : E(H) → [1, 3]. The chemical element assigned to a vertex

v ∈ V (H) is represented by α(v) and the bond-multiplicity between two adjacent

vertices u, v ∈ V (H) is represented by β(e) of the edge e = uv ∈ E(H). We say

that two tuples (Hi, αi, βi), i = 1, 2 are isomorphic if they admit an isomorphism

ϕ, i.e., a bijection ϕ : V (H1) → V (H2) such that uv ∈ E(H1), α1(u) = a, α1(v) =

b, β1(uv) = m ↔ ϕ(u)ϕ(v) ∈ E(H2), α2(ϕ(u)) = a, α2(ϕ(v)) = b, β2(ϕ(u)ϕ(v)) =

m. When Hi is rooted at a vertex ri, i = 1, 2, (Hi, αi, βi), i = 1, 2 are rooted-

isomorphic (r-isomorphic) if they admit an isomorphism ϕ such that ϕ(r1) = r2.

For a notational convenience, we use a function βC : V (H) → [0, 12] for a

chemical graph C = (H,α, β) such that βC(u) means the sum of bond-multiplicities

of edges incident to a vertex u; i.e.,

βC(u) ≜
∑

uv∈E(H)

β(uv)

for each vertex u ∈ V (H). For each vertex u ∈ V (H), define the electron-degree

eledegC(u) to be

eledegC(u) ≜ βC(u)− val(α(u)).

For each vertex u ∈ V (H), let degC(u) denote the number of vertices adjacent to

the vertex u in C.
For a chemical graph C = (H,α, β), let Va(C), a ∈ Λ denote the set of vertices

v ∈ V (H) such that α(v) = a in C and define the hydrogen-suppressed chemical

graph ⟨C⟩ to be the graph obtained fromH by removing all the vertices v ∈ VH(C).
We use a hydrogen-suppressed model because hydrogen atoms can be added at

the final stage.

We introduce a total order < over the elements in Λ and we write a < b for

chemical elements a, b ∈ Λ. Choose a set Γ< of tuples γ = (a, b, k) ∈ Λ×Λ× [1, 3]

2.3 Machine Learning 11

such that a < b. For a tuple γ = (a, b, k) ∈ Λ× Λ× [1, 3], let γ denote the tuple

(b, a, k). Set Γ> = {γ | γ ∈ Γ<}, Γ= = {(a, a, k) | a ∈ Λ, k ∈ [1, 3]} and

Γ = Γ< ∪ Γ=. A pair of two atoms a and b joined with a bond of multiplicity k

is denoted by a tuple γ = (a, b, k) ∈ Γ, called the adjacency-configuration of the

atom pair.

2.3 Machine Learning

In most of existing QSAR studies, the problem of QSAR is usually formulated as

a machine learning problem, particularly, a regression problem between a set of

vectors of real numbers called descriptors or features that represents the chemical

compounds and the corresponding real property values [16].

For an integer K ≥ 1, define a feature space RK . Let X = {x1, x2, . . . , xm}
be a set of feature vectors xi ∈ RK and let ai ∈ R be a real assigned to a feature

vector xi. Let A = {ai | i ∈ [1,m]}. A function η : RK → R is called a prediction

function.

A regression problem is asked to find a prediction function η : RK → R based

on a subset of {x1, x2, . . . , xm} so that η(xi) is closed to the value ai for many

indices i ∈ [1,m].

Typically, for a prediction function η : RK → R, we define an error function:

Err(η;X) ≜
∑

i∈[1,m]

(ai − η(xi))
2

and define the coefficient of determination:

R2(η,X) ≜ 1− Err(η;X)∑
i∈[1,m](ai − ã)2

= 1−
∑

i∈[1,m](ai − η(f(xi)))
2∑

i∈[1,m](ai − ã)2
, for ã =

1

m

∑
i∈[1,m]

ai.

The coefficient of determination R2(η,X) is usually used to evaluate the perfor-

mance of the prediction function η on the dataset X .

Artificial Neural Networks A digraph G = (V,E) is called layered if it does

not contain any directed cycle and the length of any path from a source s ∈ Vin

to a sink t ∈ Vout is a constant, say k, where V is partitioned into k+ 1 disjoints

subsets V0(= Vin), V1, V2, . . . , Vk(= Vout) so that each edge (u, v) satisfies u ∈ Vi

and v ∈ Vi+1 for some i ∈ [0, k − 1]. For each vertex v ∈ V , a vertex u ∈ V

with (u, v) ∈ E is called an in-neighbor of v, and we let N−(v) denote the set of

in-neighbors of v.

Artificial neural network (ANN) is one of the most frequently used tools in

machine learning. Following [1], we consider an ANN N to be a weight system

12 Chapter 2 Preliminaries

(G,w, F) such that G is a layered digraph, where a function fv ∈ F for each

vertex v ∈ V \(Vin ∪ Vout) is called an activation function. One example of the

activation function is the ReLU function, defined to be f(x) := max(x, 0). The

weight function w is a function w : V ∪ E → R on the digraph G, where we

call w(uv) the weight on directed edge (u, v) ∈ E and w(v) the weight on vertex

v ∈ V .

Given a vector (ys)s∈Vin of reals, we calculate the values yv for v ∈ V \Vin as

follows:

yv = fv(
∑

u∈N−(v)

w(uv)yu + w(v)).

The vector (yt)t∈Vout of reals is the output of this ANN.

3 A Framework for the Inverse

QSAR

This chapter reviews the framework that solves the inverse QSAR by using

MILPs [4]. We will follow this framework in Chapters 4 and 5, and make a slight

necessary modification to include other machine learning methods in Chapters 6,

7 and 8.

3.1 A Framework for the Inverse QSAR

For a specified chemical property π such as boiling point, we denote by a(G) the

observed value of the property π for a chemical compound G.

3.1.1 Phase 1

As the first phase, we solve (I) Prediction Problem with the following three

stages.

Stage 1: Let DB be a set of chemical graphs. For a specified chemical property

π, choose a class G of graphs such as acyclic graphs or monocyclic graphs. Prepare

a data set Dπ = {Gi | i = 1, 2, . . . ,m} ⊆ G∩DB such that the value a(Gi) of each

chemical graph Gi, i = 1, 2, . . . ,m is available. See Figure 3.1 for an illustration

of Stage 1.

Stage 2: Introduce a feature function f : G → Rk for a positive integer k. We

call f(G) the feature vector of G ∈ G, and call each entry of a vector f(G) a

descriptor of G. A vector x ∈ Rk is called admissible if there is a graph G ∈ G
such that f(G) = x [4]. Let A denote the set of admissible vectors x ∈ Rk. We

use the range-based method to define an applicability domain (AD) [35] to our

inverse QSAR method. Set xj and xj to be the minimum and maximum values

of the j-th descriptor xj in f(Gi) over all graphs Gi, i = 1, 2, . . . ,m. Define our

AD D to be the set of vectors x ∈ Rk such that xj ≤ xj ≤ xj for the variable

xj of each j-th descriptor, j = 1, 2, . . . , k. See Figure 3.2 for an illustration of

Stage 2.

Stage 3: Construct a prediction function ψN with an ANN N that, given a

vector in Rk, returns a real so that ψN (f(G)) takes a value nearly equal to a(G)

13

14 Chapter 3 A Framework for the Inverse QSAR

: a class of chemical
 graphs

a(G1)

R

a: property
 function

G1

Gm

G2 a(G2)

a(Gm)

. . .

DB

Figure 3.1. An illustration of Stage 1: A data set Dπ of chemical graphs Gi,

i = 1, 2, . . . ,m in a class G of graphs whose values a(Gi) of a chemical property

π are available.

Rk

f : feature
 function

AD

f(G1)

f(G2)

f(Gm)

G1

Gm

G2

. . .

Figure 3.2. An illustration of Stage 2: Each chemical graph G ∈ G is mapped

to a vector f(G) in a feature vector space Rk for some positive integer k.

for many chemical graphs in D. See Figure 3.3 for an illustration of Stage 3.

3.1.2 Phase 2

As the second phase, we solve (II) Inverse Problem for the inverse QSAR by

treating the following inference problems.

(II-a) Inference of Vectors

Input: A real y∗ ∈ [a, a].

Output: Vectors x∗ ∈ A ∩ D and g∗ ∈ Rh such that ψN (x∗) = y∗ and g∗ forms

3.1 A Framework for the Inverse QSAR 15

R

a(G)

 (x)

ANN

 : prediction
 function

Rk

x:=f(G)G

Figure 3.3. An illustration of Stage 3: A prediction function ψN from the

feature vector space Rk to R is constructed based on an ANN N .

a chemical graph G∗ ∈ G with f(G∗) = x∗.

(II-b) Inference of Graphs

Input: A vector x∗ ∈ A ∩ D.

Output: All graphs G∗ ∈ G such that f(G∗) = x∗.

To treat Problem (II-a), we use MILPs for inferring vectors in ANNs [1]. In

MILPs, we can easily impose additional linear constraints or fix some variables

to specified constants. We include into the MILP a linear constraint such that

x ∈ D to obtain the next result.

Theorem 3.1 ([1]). Let N be an ANN with a piecewise-linear activation function

for an input vector x ∈ Rk, nA denote the number of nodes in the architecture and

nB denote the total number of break-points over all activation functions. Then

there is an MILP M(x, y; C1) that consists of variable vectors x ∈ D (⊆ Rk),
y ∈ R, and an auxiliary variable vector z ∈ Rp for some integer p = O(nA + nB)

and a set C1 of O(nA+nB) constraints on these variables such that: ψN (x∗) = y∗

if and only if there is a vector (x∗, y∗) feasible to M(x, y; C1).

To attain the admissibility of inferred vector x∗, we also introduce a variable

vector g ∈ Rq for some integer q and a set C2 of constraints on x and g such that

x∗ ∈ A holds in the following sense: (x∗, g∗) is feasible to the MILP M(x, g; C2)
if and only if g∗ forms a chemical graph G∗ ∈ G with f(G∗) = x∗.

The second phase consists of the next two stages.

Stage 4: Formulate Problem (II-a) as the above MILP M(x, y, g; C1, C2) based
on G and N . Find a set F ∗ of vectors x∗ ∈ A∩D such that (1−ε)y∗ ≤ ψN (x∗) ≤
(1 + ε)y∗ for a tolerance ε set to be a small positive real. See Figure 3.4 for an

illustration of Stage 4.

16 Chapter 3 A Framework for the Inverse QSAR

RRk

x*

MILP

g*

y*: target
 value

 input

output

f(G*)

G*

 (x,y,g; ,)

(x*,g*)

 (x,y;)

 (x,g;)

x*

AD

(1-)y*≦ (x*)≦(1+)y*no G* s.t.
detect

deliver

F*

 ≦≦≦≦≦≦≦≦≦≦≦≦≦≦≦ (((((((

LPLPLPLPLPLPLPLPLP

)))))))))

, , , , , , , ,)))))))

)))))))))))))))))))

Figure 3.4. An illustration of Stage 4: Given a target value y∗ ∈ R, solving
MILP M(x, y, g; C1, C2) either delivers a set F ∗ of vectors x∗ ∈ A ∩ D such that

(1− ε)y∗ ≤ ψN (x∗) ≤ (1 + ε)y∗ or detects that no such vector x exists.

f(G*)i

Rk

x*

AD

F*

G*

G*
1
,G*,...

2

Figure 3.5. An illustration of Stage 5: For each vector x∗ ∈ F ∗, all chemical

graphs G∗ ∈ G such that f(G∗) = x∗ are generated.

Stage 5: To solve Problem (II-b), enumerate all graphs G∗ ∈ G such that

f(G∗) = x∗ for each vector x∗ ∈ F ∗. See Figure 3.5 for an illustration of Stage 5.

4 An Inverse QSAR Method for

Rank-2 Chemical Compounds

4.1 Introduction

Recently, a new inverse QSAR framework has been proposed [4, 11, 59, 60] by

combining two previous approaches; efficient enumeration of tree-like graphs [15],

and MILP-based formulation of the inverse problem on ANNs [1]. Their meth-

ods were applicable only to acyclic chemical graphs (i.e., tree-structured chemical

graphs), where the ratio of acyclic chemical graphs in a major chemical database,

PubChem [27], is only 2.91%. Afterward, Ito et al. [25] designed a method of

inferring monocyclic chemical graphs (chemical graphs with rank 1) by formu-

lating a new MILP and using an efficient algorithm for enumerating monocyclic

chemical graphs [46]. This still leaves a big limitation because the ratio of acyclic

and monocyclic chemical graphs in PubChem [27] is only 16.26%.

To break this limitation, we significantly extend the MILP-based approach for

inverse QSAR so that “rank-2 chemical compounds” can be efficiently handled,

where the ratio of chemical graphs with rank at most 2 in the database Pub-

Chem is 44.5%. Note that there are three different topological structures, called

polymer-topologies over all rank-2 chemical compounds. In particular, we propose

a novel MILP formulation for (II-a) (see Section 3.1.2) along with a new set of

descriptors. One big advantage of this new formulation is that an MILP instance

has a solution if and only if there exists a rank-2 chemical graph satisfying given

constraints, which is useful to significantly reduce redundant search in (II-b). We

conducted computational experiments to infer rank-2 chemical compounds on

several chemical properties.

The rest of this chapter is organized as follows. Section 4.2 introduces some

notions on graphs, a modeling of chemical compounds, and a choice of descriptors.

Section 4.3 introduces a method of modeling rank-2 chemical graphs with differ-

ent cyclic structures in a unified way and proposes an MILP formulation that

represents a rank-2 chemical graph G of n vertices, where our MILP requires

only O(n) variables and constraints when the maximum height of subtrees in G

is constant. Section 4.4 reports the results on some computational experiments

conducted for chemical properties such as octanol/water partition coefficient,

17

18
Chapter 4 An Inverse QSAR Method for Rank-2 Chemical

Compounds

melting point, and boiling point. Section 4.5 makes some concluding remarks.

4.2 Preliminary

This section introduces some notions and terminology on graphs, a modeling of

chemical compounds, and our choice of descriptors.

4.2.1 Multigraphs and Graphs

Multigraphs A multigraph is defined to be a pair (V,E) of a vertex set V and

an edge set E such that each edge e ∈ E joins two vertices u, v ∈ V (possibly

u = v) and the vertices u and v are called the end-vertices of the edge e, and let

V (e) denote the set of the end-vertices of an edge e ∈ E, where an edge e with

|V (e)| = 1 is called a loop. We denote the vertex and edge sets of a multigraph

M by V (M) and E(M), respectively. A path with end-vertices u and v is called

a u, v-path, and the length of a path is defined to be the number of edges in the

path.

Let M be a multigraph. An edge e ∈ E(M) is called multiple (to an edge

e′ ∈ E(M)) if there is another edge e′ ∈ E(M) with V (e) = V (e′). For a vertex

v ∈ V (M), the degree degM (v) of v is defined to be the number of times an

edge in E(M) is incident to v; i.e., degM (v) = |{e ∈ E(M) | v ∈ V (e), |V (e)| =
2}| + 2|{e ∈ E(M) | v ∈ V (e), |V (e)| = 1}|. A multigraph is called simple if it

has no loop and there is at most one edge between any two vertices. We observe

that the sum of the degrees over all vertices is twice the number of edges in any

multigraph M ; i.e.,

2|E(M)| =
∑

v∈V (M)

degM (v).

For a subset X of vertices in M , let M −X denote the multigraph obtained

from M by removing the vertices in X and any edge incident to a vertex in

X. An operation of subdividing a non-loop edge (resp., loop) e ∈ E(M) with

V (e) = {v1, v2} (resp., V (e) = {v1 = v2}) is to replace e with two new edges e1

and e2 such that each ei is incident to vi and a new vertex ve. An operation of

contracting a vertex u of degree 2 in M is to replace the two edges uv and uv′

incident to u with a single edge vv′ removing vertex u, where the resulting edge

is a loop when v = v′. The rank r(M) of a multigraph M is defined to be the

minimum number of edges to be removed to make the multigraph acyclic. We

call a multigraph M with r(M) = k a rank-k graph. Let Vdeg,i(M) denote the set

of vertices of degree i in M . The core Cr(M) of M is defined to be an induced

4.2 Preliminary 19

(b) M2(a) M1 (c) M3

Figure 4.1. An illustration of the three rank-2 polymer topologiesM1,M2,M3 ∈
PT (2, 4).

subgraph M∗ that is obtained from M ′ := M by setting M ′ := M ′ − Vdeg,1(M
′)

repeatedly untilM∗ contains at most two vertices or consists of vertices of degree

at least 2. The core M∗ of a connected multigraph M consists of a single vertex

(resp., two vertices) if and only ifM is a tree with an even (resp., odd) diameter.

A vertex (resp., an edge) in M is called a core vertex (resp., core edge) if it is

contained in the core of M and is called a non-core vertex (resp., non-core edge)

otherwise. The core size cs(M) is defined to be the number of core vertices of

M , and the core height ch(M) is defined to be the maximum length of a path

between a vertex v ∈ V (M∗) to a leaf of M without passing through any core

edge. The set of non-core edges induces a collection of subtrees, each of which

we call a non-core component of M , where each non-core component C contains

exactly one core vertex vC and we regard C as a tree rooted at vC . Let C be a

non-core component of M . The height height(v) of a vertex v in C is defined to

be the maximum length of a path from v to a leaf u in the descendants of v.

A multigraph is called a polymer topology if it is connected and the degree of

every vertex is at least 3. Tezuka and Oike [51] pointed out that a classification of

polymer topologies will lay a foundation for elucidation of structural relationships

between different macro-chemical molecules and their synthetic pathways. For

integers r ≥ 0 and d ≥ 3, let PT (r, d) denote the set of all rank-r polymer

topologies with maximum degree at most d. Figure 4.1 illustrates the three rank-

2 polymer topologies in PT (2, 4).

For a polymer topology M , the least simple graph S(M) of M is defined to

be a simple graph obtained from M by subdividing each loop in M with two new

vertices of degree 2 and subdividing all multiple edges (except for one) between

every two adjacent vertices in M .

The polymer topology Pt(M) of a multigraph M with r(M) ≥ 2 is defined to

be a multigraph M ′ of degree at least 3 that is obtained from the core Cr(M) by

contracting all vertices of degree 2. Note that r(Pt(M)) = r(M). Figures 4.2(a) to

(c) illustrate the least simple graph S(M) of each polymer topologyM ∈ PT (2, 4)

in Figure 4.1, where Figure 4.2(d) illustrates a graph that contains all least simple

20
Chapter 4 An Inverse QSAR Method for Rank-2 Chemical

Compounds

(c) S(M3)

(a) S(M1)

a2

a3

u3 u4u1 u2
a7a6

a2

u3 u4u1 u2
a7a6

a2

a4

a1

a3

a5

u3 u4
u1 u2

a7a6

a2

a1

a3

u3 u4u1 u2
a7a6

(b) S(M2)

(d) (K,E)

Figure 4.2. An illustration of the least simple graphs of the rank-2 polymer

topologies M1,M2,M3 ∈ PT (2, 4) in Figure 4.1 and a scheme graph (K, E): (a)
S(M1); (b) S(M2); (c) S(M3); (d) a scheme graph (K = ({u1, u2, u3, u4}, E), E =

(E1, E2, E3)) where each edge uiuj is directed from one end-vertex ui to the other

end-vertex uj with i < j, and E1 = {a1 = (u1, u4), a2 = (u2, u3), a3 = (u2, u4)},
E2 = {a4 = (u1, u2), a5 = (u3, u4)} and E3 = {a6 = (u1, u2), a7 = (u3, u4)}, and
the edges in E1 (resp., E2 and E3) are depicted with dashed (resp., dotted and

solid) lines.

graphs.

Graphs Let H = (V,E) be a graph with a set V of vertices and a set E of edges.

Define the 1-path connectivity κ1(H) of H to be
∑

uv∈E 1/
√

degH(u)degH(v).

Let H be a rank-2 connected graph such that the maximum degree is at most

4. We see that H contains two vertices va and vb such that either there are three

disjoint paths between va and vb or H contains two edge disjoint cycles C and C ′,

which are joined with a path between va and vb (possibly va = vb). We introduce

the topological parameter θ(H) of rank-2 connected graph H as follows. When

H has three disjoint paths between va and vb, define θ(H) to be the minimum

number of edges along a path between va and vb. When H contains two edge

disjoint cycles C and C ′, which are joined with a path P between va and vb

(possibly va = vb), define θ(H) to be −|E(P)|.

4.2.2 Modeling of Chemical Compounds

Chemical Graphs In this chapter, a chemical graph over a set of chemical

elements Λ and a set of adjacency-configurations Γ is defined to be a tuple G =

(H,α, β) of a graph H = (V,E), a function α : V → Λ and a function β : E →
[1, 3] such that

4.2 Preliminary 21

(i) H is connected;

(ii)
∑

uv∈E β(uv) ≤ val(α(u)) for each vertex u ∈ V ; and

(iii) (α(u), α(v), β(uv)) ∈ Γ for each edge uv ∈ E.

Let G(Λ,Γ) denote the set of chemical graphs over Λ and Γ.

Descriptors In our method, we use only graph-theoretical descriptors for defin-

ing a feature vector, which facilitates our designing an algorithm for constructing

graphs. Given a chemical graph G = (H,α, β), we define a feature vector f(G)

that consists of the following 14 kinds of descriptors:

- n(G): the number of vertices in G;

- cs(G): the core size of G;

- ch(G): the core height of G;

- κ1(G): the 1-path connectivity of G;

- dgi(G) (i ∈ [1, 4]): the number of vertices of degree i in G;

- cecoa (G) (a ∈ Λ): the number of core vertices with chemical element a ∈ Λ;

- cenca (G) (a ∈ Λ): the number of non-core vertices with chemical element

a ∈ Λ;

- ms(G): the average of mass∗ of atoms in G;

- bcok (G) (k ∈ [2, 3]): the number of double and triple bonds in core edges;

- bnck (G) (k ∈ [2, 3]): the number of double and triple bonds in non-core edges;

- accoγ (G) (γ = (a, b, k) ∈ Γ): the number of adjacency-configurations (a, b, k)

of core edges;

- acncγ (G) (γ = (a, b, k) ∈ Γ): the number of adjacency-configurations (a, b, k)

of non-core edges;

- θ(H): the topological parameter of H; and

- nH(G): the number of hydrogen atoms to be included in G; i.e.,

nH(G) ≜
∑

a∈Λ val(a)na(G)

=
∑

a∈Λ val(a)na(G)− 2(n(G) + 1 + bco2 (G) + bnc2 (G) + 2bco3 (G) + 2bnc3 (G)).

The number k of descriptors in our feature vector x = f(G) is k = 2|Λ| +
2|Γ|+ 13.

22
Chapter 4 An Inverse QSAR Method for Rank-2 Chemical

Compounds

4.3 Representing Rank-2 Chemical Graphs

This section introduces a method of modeling rank-2 chemical graphs with dif-

ferent cyclic structures in a unified way and proposes an MILP formulation that

represents a rank-2 chemical graph G of n vertices.

Scheme Graphs and Tree-Extensions

Given positive integers n∗ and p, a graph with n∗ vertices and p edges can be

represented as a subgraph of a complete graph Kn∗ with n∗(n∗ − 1)/2 edges.

However, formulating this as an MILP may require to prepare Ω((n∗)2) variables

and constraints. To reduce the number of variables and constraints in an MILP

that represents a rank-2 graph, we decompose a rank-2 graph G into the core

and non-core of G so that the core is represented by one of the three rank-2

polymer topologies and the non-core is a collection of trees in which the height is

bounded by the core height of G. We do not specify how many subtrees will be

attached to each edge in the polymer topology in advance, since otherwise we

would need a different MILP for a distinct combination of such assignments of

subtrees. Instead we allow each edge in a polymer topology to collect a necessary

number of subtrees in our MILP (see the next section for more detail). In this

section, we introduce a “scheme graph” to represent three possible rank-2 polymer

topologies, an “extension” of the scheme graph to represent the core of a rank-2

graph and a “tree-extension” to represent a combination of the core and non-core

of a rank-2 graph, so that any of the three kinds of rank-2 polymer topologies

can be selected in a single MILP formulation.

Scheme Graphs Formally, we define the scheme graph for rank 2 to be a pair

(K, E) of a multigraphK and an ordered partition E = (E1, E2, E3) of the edge set

E(K). Figure 4.2(d) illustrates the scheme graph (K = ({u1, u2, u3, u4}, E), E =

(E1, E2, E3)). An edge in E1 is called a semi-edge, an edge in E2 is called a virtual

edge and an edge in E3 is called a real edge.

Extensions of Scheme Graphs Based on the scheme graph (K, E), we con-

struct the core of a rank-2 graph H as an “extension,” which is defined as follows.

An extension of the scheme graph (K, E) is defined to be a simple graph obtained

from K by using each real edge e = uv ∈ E3, by eliminating or replacing each

virtual edge e = uv ∈ E2 (resp., semi-edge e = uv ∈ E1) with a u, v-path of

length at least two (resp., 1) in the core of H, where a u, v-path of length 1

means an edge uv. Figure 4.4(a) illustrates an extension Hcore of the scheme

graph (K, E) which is obtained by removing virtual edges a4, a5 ∈ E2 and by

replacing semi-edge a1 ∈ E1 with a path (u1,1, v1,1, v2,1, u4,1), semi-edge a2 ∈ E1

4.3 Representing Rank-2 Chemical Graphs 23

with a path (u2,1, v3,1, v4,1, v5,1, u3,1) and by using semi-edge a3 ∈ E1 and real

edges a6, a7 ∈ E3. The extension Hcore in Figure 4.4(a) is isomorphic to the core

of the rank-2 graph H in Figure 4.4(b). Observe that each of the least simple

graphs S(Mi), i = 1, 2, 3 in Figure 4.2 is obtained as an extension of the scheme

graph (K, E) in Figure 4.2(d).

Tree-extensions Let s∗ = |V (K)| = 4 denote the number of vertices in the

scheme graph. For non-negative integers a, b and c, we consider a rank-2 graph

H such that cs(H) = s∗ + a = 4 + a, ch(H) = b and the maximum degree of

a core vertex is at most c. We define an “(a, b, c)-tree-extension” as a minimal

supergraph of all such rank-2 graphs H. Formally, the (a, b, c)-tree-extension (or

a tree-extension) is defined to be the graph obtained by augmenting the graph K

as follows:

(i) For each vertex us ∈ V (K), s ∈ [1, s∗], create a copy Ss of the rooted tree

T (c − 2, c − 1, b). For each s ∈ [1, s∗], let the root of rooted tree Ss be

equal to the vertex us and denote by us,i the copy of the i-th vertex of

T (c− 2, c− 1, b) in Ss (see Figure 4.3(a)).

(ii) Create a new path (v1,1, v2,1, . . . , va,1) with a vertices, where the edge be-

tween vt,1 and vt+1,1 is denoted by et+1 (see Figure 4.3(c)). For each

t ∈ [1, a], create a copy Tt of the rooted tree T (c − 2, c − 1, b), let the

root of rooted tree Tt be equal to the vertex v1,1 and denote by vt,i the

copy of the i-th vertex of T (c− 2, c− 1, b) in Tt (see Figure 4.3(b)).

(iii) For every pair (s, t) with s ∈ [1, s∗] and t ∈ [1, a], join vertices us,1 and vt,1

with an edge us,1vt,1 (see Figure 4.3(c)).

Figure 4.3 illustrates the (3, 2, 4)-tree-extension of the scheme graph. We

show how a rank-2 graph can be constructed as a subgraph of a tree-extension

with some example. Figure 4.4(b) illustrates a rank-2 graph H with n(H) = 21,

cs(H) = 9, ch(H) = 2 and θ(H) = 1, where the maximum degree of a non-

core vertex is 3. To prepare a tree-extension so that the graph H can be a

subgraph of the tree-extension, we set cs∗ := cs(H), a := t∗ := cs∗ − s∗ = 5,

b := ch∗ := ch(H) = 2 and c := dmax := 3. Figure 4.4(c) illustrates a subgraph

H ′ of the (t∗ = 5, ch∗ = 2, dmax = 3)-tree-extension such that H ′ is isomorphic to

the rank-2 graph H.

MILPs for Rank-2 Chemical Graphs

We present an outline of our MILP M(x, g; C2) in Stage 4 of the framework. For

integers dmax, n
∗, cs∗, ch∗, θ∗ ∈ Z, let H(dmax, n

∗, cs∗, ch∗, θ∗) denote the set of

24
Chapter 4 An Inverse QSAR Method for Rank-2 Chemical

Compounds

v1,1 v2,1
=vt*,1e2

a2
a4

a1

a3

a5

T1 T2

=Ss*

=Tt*

S1 S4
S2 S3

u3,1
u4,1u1,1

u2,1
a7

a6 =us*,1

T3

v3,1e3vt,4 vt,7vt,5 vt,9

vt,2

vt,6

vt,3

vt,8

et,4
et,7

et,5
et,9

et,2

et,6

et,3

et,8

vt,1

Tt=T(2,3,2)

us,4 us,7us,5 us,9

us,2

us,6

us,3

us,8

e’s,4
e’s,7

e’s,5
e’s,9

e’s,2

e’s,6

e’s,3

e’s,8

us,1

Ss=T(2,3,2)=T(dmax-2,dmax-1,ch*) (c) (t*=3,ch*=2,dmax=4)-tree-extension
(a) (b)

Figure 4.3. An illustration of a tree-extension, where the vertices in V (K) are

depicted with gray circles: (a) The structure of the rooted tree Ss rooted at a

vertex us,1; (b) the structure of the rooted tree Tt rooted at a vertex vt,1; (c)

the (a, b, c)-tree-extension of the scheme graph in Figure 4.2(d) for a = t∗ = 3,

b = ch∗ = 2 and c = dmax = 4.

u4,2

e’4,2e’1,2e’1,3

u1,2u1,3 e’2,4e’2,5

u2,4

u2,2

u2,5

e’2,2

e1,4
e1,5

v1,4

v1,2

v1,5

e1,2

e3,4

v3,4

v3,2

e3,2

v5,2

e5,2

v1,1
v2,1

=vt*,1e2

a3

u3,1
u4,1

u1,1
u2,1

a7

a6 =us*,1

v3,1
e4

(c) H’

v5,1

v4,1

e5

(b) H

u3,1

u4,1
u1,1

u2,1

a3 a7a6

v1,1

v2,1

v3,1 v5,1

v4,1

a3

a7
a6

(a) Hcore

v1,1 v2,1

u3,1
u4,1u1,1 u2,1

v3,1 v5,1

v4,1

Figure 4.4. (a) An example of an extension of the scheme graph; (b) an example

of a rank-2 graph H with n(H) = 21, cs(H) = 9, ch(H) = 2 and θ(H) = 1, where

the labels of some vertices and edges indicate the corresponding vertices and

edges in the (t∗, ch∗, dmax)-tree-extension for cs∗ = cs(H), ch∗ = ch(H), s∗ = 4,

t∗ = cs∗− s∗ and dmax = 3; (c) a subgraph H ′ of (t∗ = 5, ch∗ = 2, dmax = 3)-tree-

extension isomorphic to the rank-2 graph H in (b).

rank-2 graphs H such that the degree of each core vertex is at most 4, the degree

of each non-core vertex is at most dmax, n(H) = n∗, cs(H) = cs∗, ch(H) = ch∗

and θ(H) = θ∗. In this chapter, we obtain the following result.

Theorem 4.2. Let Λ be a set of chemical elements, Γ be a set of adjacency-

configurations, where |Λ| ≤ |Γ|, and k = 2|Λ|+ 2|Γ|+ 13. Given integers dmax ∈
{3, 4}, n∗ ≥ 3, cs∗ ≥ 3 ch∗ ≥ 0 and θ∗, there is an MILP M(x, g; C2) that consists
of variable vectors x ∈ Rk and g ∈ Rq for some integer q = O(|Γ|·cs∗ ·(dmax−1)ch

∗
)

and a set C2 of O(|Γ|+cs∗ · (dmax−1)ch
∗
) constraints on these variables such that:

(x∗, g∗) is feasible to M(x, g; C2) if and only if g∗ forms a rank-2 chemical graph

4.3 Representing Rank-2 Chemical Graphs 25

G∗ = (H,α, β) ∈ G(Λ,Γ) such that H ∈ H(dmax, n
∗, cs∗, ch∗, θ∗) and f(G∗) = x∗.

Note that our MILP requires only O(n∗) variables and constraints when the

maximum core height of a subtree in the non-core of G∗ and |Γ| are constant.

We formulate an MILP in Theorem 4.2 so that such a graph H is selected as a

subgraph of the scheme graph.

We explain the basic idea of our MILP. Define

t∗ ≜ cs∗ − s∗,

c∗ ≜ |E1 ∪ E2| for (K, E = (E1, E2, E3)),

ntree ≜ 1+2((dmax−1)ch
∗
−1)/(dmax−2) and nin ≜ 1+2((dmax−1)ch

∗−1−1)/(dmax−2),

where ntree and nin are the numbers of vertices and non-leaf vertices in the rooted

tree T (dmax − 2, dmax − 1, ch∗), respectively. The MILP mainly consists of the

following three types of constraints.

1. Constraints for selecting a rank-2 graphH as a subgraph of the (t∗, ch∗, dmax)-

tree-extension of the scheme graph (K, E);

2. Constraints for assigning chemical elements to vertices and multiplicity to

edges to determine a chemical graph G = (H,α, β);

3. Constraints for computing descriptors from the selected rank-2 chemical

graph G; and

4. Constraints for reducing the number of rank-2 chemical graphs that are

isomorphic to each other but can be represented by the above constraints.

In the constraints of 1, we treat each edge in the tree-extension as a directed

edge because describing some condition forH to belong toH(dmax, n
∗, cs∗, ch∗, θ∗)

becomes slightly easier than the case of undirected graphs. More formally we

prepare the following.

(i) In the scheme graph (K, E), denote the edges in E1 ∪ E2 ∪ E3 by E1 =

{a1, a2, . . . , a|E1|}, E2 = {a|E1|+1, . . . , ac∗} and E3 = {ac∗+1, . . . , am} (where
c∗ = |E1 ∪ E2|), and regard each edge ai = us,1us′,1 ∈ E1 ∪ E2 ∪ E3 as a

directed edge from one end-vertex us,1 to the other end-vertex us′,1 with

s < s′. Let a(i) be a binary variable for each edge ai, i ∈ [1,m].

(ii) In each tree Ss (resp., Tt) in the tree-extension, we regard each edge e′s,i,

i ≥ 2 in the rooted tree Ss, s ∈ [1, s∗] (resp., et,i, i ≥ 2 in the rooted tree

Tt, t ∈ [1, t∗]) as a directed edge from vertex us,prt(i) to vertex us,i (resp.,

from vertex vt,prt(i) to vertex vt,i). Let u(s, i) (resp., v(t, i)) be a binary

variable for vertex us,i, s ∈ [1, s∗] (resp., t ∈ [1, t∗]) and i ∈ [1, ntree];

26
Chapter 4 An Inverse QSAR Method for Rank-2 Chemical

Compounds

(iii) In the path Pt∗ consisting of the roots of trees Tt, [t ∈ 1, t∗], we regard each

edge et, t ∈ [2, t∗] as a directed edge from vertex vt−1,1 to vertex vt,1; and

(iv) We regard each edge us,1vt,1 for s ∈ [1, s∗] and t ∈ [1, t∗] as two directed

edges, one directed from vertex us,1 to vertex vt,1 and the other directed

oppositely. Let e(s, t) (resp., e(t, s)) be a binary variable of directed edge

(us,1, vt,1) (resp., (vt,1, us,1)).

Based on these, we include constraints with some more additional variables

so that a selected subgraph H is a connected rank-2 graph. See constraints

Equations (A.1.10) to (A.1.42) in Appendix A for the details.

In the constraints of 2, we prepare an integer variable α̃(u) for each vertex

u in the tree-extension that represents the chemical element α(u) ∈ Λ if u is in

a selected graph H (or α̃(u) = 0 otherwise) and an integer variable β̃(e) ∈ [0, 3]

(resp., β̂(e) ∈ [0, 3]) for each edge e (resp., e = e(s, t) or e(t, s), s ∈ [1, s∗],

t ∈ [1, t∗]) in the tree-extension that represents the multiplicity β(e) ∈ [1, 3] if e

is in a selected graph H (or β̃(e) or β̂(e) takes 0 otherwise). This determines a

chemical graph G = (H,α, β). Also we include constraints for a selected chemical

graph G to satisfy the valence condition (α(u), α(v), β(uv)) ∈ Γ for each edge

uv ∈ E. See constraints Equations (A.1.43) to (A.1.61) in Appendix A for the

details.

In the constraints of 3, we introduce a variable for each descriptor and con-

straints with some more variables to compute the value of each descriptor in f(G)

for a selected chemical graph G. See constraints Equations (A.1.62) to (A.1.113)

in Appendix A for the details.

With constraints 1 to 3, our MILP formulation already represents a rank-2

chemical graph G and a feature vector x ∈ Rk so that x = f(G) holds. In the

constraints of 4, we include some additional constraints so that the search space

required for an MILP solver to solve an instance of our MILP problem is reduced.

For this, we consider a graph-isomorphism of rooted subtrees of each tree Ss or

Ts and define a canonical form among subtrees that are isomorphic to each other.

We try to eliminate a chemical graph G that has a subtree in Ss or Ts that is not a

canonical form. See constraints Equations (A.1.114) to (A.1.119) in Appendix A

for the details.

4.4 Experimental Results

We implemented our method of Stages 1 to 5 for inferring rank-2 chemical graphs

and conducted experiments to evaluate the computational efficiency for three

4.4 Experimental Results 27

chemical properties π: octanol/water partition coefficient (Kow), melting point

(Mp), and boiling point (Bp). We executed the experiments on a PC with Intel

Core i5 1.6 GHz CPU and 8GB of RAM running under the Mac OS operating

system version 10.14.6. We show 2D drawings of some of the inferred chemical

graphs, where ChemDoodle version 10.2.0 is used for constructing the drawings.

Results on Phase 1.

Stage 1. We set a graph class G to be the set of all rank-2 chemical graphs.

For each property π ∈ {Kow, Mp, Bp}, we select a set Λ of chemical elements

and collected a data set Dπ on rank-2 chemical graphs over Λ provided by HSDB

from PubChem. To construct the data set, we eliminated chemical compounds

that have at most three carbon atoms or contain a charged element such as N+

or an element a ∈ Λ in which the valence is different from our setting of valence

function val.

Table 4.1 shows the size and range of data sets that we prepared for each

chemical property in Stage 1, where we denote the following:

- π: one of the chemical properties Kow, Mp and Bp;

- |Dπ|: the size of data set Dπ for property π;

- Λ: the set of chemical elements over data set Dπ (hydrogen atoms are added

at the final stage); Λ is one of the following 2 datasets:

Λ1 = {C, N, O}, Λ2 = {C, N, O, S, P, Cl}.

- |Γ|: the number of tuples in Γ;

- [n, n]: the minimum and maximum number n(G) of non-hydrogen atoms

over data set Dπ;

- [cs, cs], [ch, ch]: the minimum and maximum core size and core height over

chemical compounds in Dπ, respectively;

- [θ, θ]: the minimum and maximum values of the topological parameter θ(G)

over data set Dπ; and

- [a, a]: the minimum and maximum values of a(G) in π over data set Dπ.

Stage 2. We used a feature function f that consists of the descriptors defined

in Section 4.2.

Stage 3. We used scikit-learn version 0.21.6 with Python 3.7.4 to construct

ANNs N where the tool and activation function are set to be MLPRegressor

and ReLU, respectively. We tested several different architectures of ANNs for

28
Chapter 4 An Inverse QSAR Method for Rank-2 Chemical

Compounds

Table 4.1. The results of Stage 1 in Phase 1.

π |Dπ| Λ |Γ| [n, n] [cs, cs] [ch, ch] [θ, θ] [a, a]

Kow 93 Λ1 9 [9, 31] [7, 16] [0, 13] [−5, 3] [−3.7, 12.2]

Mp 63 Λ1 7 [9, 31] [7, 17] [0, 4] [−6, 3] [−80, 300]

Bp 45 Λ2 9 [9, 25] [7, 15] [0, 7] [−4, 3] [155, 420]

Table 4.2. The results of Stages 2 and 3 in Phase 1.

π k Activation Architecture L-Time Test R2 (ave.) (Best)

Kow 37 relu (37,10,1) 3.92 0.866 0.964

Mp 33 relu (33,10,1) 21.68 0.805 0.916

Bp 43 relu (43,10,1) 11.88 0.802 0.947

each chemical property. To evaluate the performance of the resulting prediction

function ψN with cross-validation, we partition a given data set Dπ into five

subsets D
(i)
π , i ∈ [1, 5] randomly, where Dπ \ D(i)

π is used for a training set and

D
(i)
π is used for a test set in five trials i ∈ [1, 5]. Table 4.2 shows the results on

Stages 2 and 3, where

- k: the number of descriptors for the chemical compounds in data set Dπ for

property π;

- Activation: the choice of activation function;

- Architecture: (a, b, 1) consists of an input layer with a nodes, a hidden layer

with b nodes, and an output layer with a single node, where a is equal to the

number of descriptors;

- L-time: the average time (sec.) to construct ANNs for each trial;

- test R2 (ave.): the average of coefficient of determination over the five test

sets; and

- test R2 (best): the largest value of coefficient of determination over the five

test sets.

For each chemical property π, we selected the ANN N that attained the best

test R2 score among the five ANNs to formulate an MILP M(x, y, z; C1) in the

second phase.

Results on Phase 2. We implemented Stages 4 and 5 in Phase 2 as follows.

4.4 Experimental Results 29

Stage 4. In this stage, we solve the MILP M(x, y, g; C1, C2) formulated based

on the ANN N obtained in Phase 1. To solve an MILP in Stage 4, we use CPLEX

version 12.10. In our experiment, we choose a target value y∗ ∈ [a, a] and fix or

bound some descriptors in our feature vector as follows:

- Fix variable θ that represents the polymer parameter θ(H) to be each integer

in {−2, 0, 2};

- Set dmax to be each of 3 and 4;

- Fix n∗ to be some four integers in {15, 19, 20, 25, 30} for θ ∈ {−2, 0} and

{15, 19, 20, 22, 25} for θ = 2;

- Choose three integers from [7, 16] and fix cs∗ to be each of the three integers;

- Fix ch∗ to be each of the four integers in [2, 5].

Based on the above setting, we generated 12 instances for each n∗. We set

ε = 0.02 in Stage 4.

Tables 4.3–4.8 show the results of Stage 4 for dmax = 3 and 4, respectively,

where we denote the following:

- y∗π: a target value in [a, a] for a property π;

- n∗: a specified number of vertices in [n, n];

- |F ∗|/#I: #I means the number of MILP instances in Stage 4 (where #I=12),

and |F ∗| means the size of set F ∗ of vectors x∗ generated from all feasible

instances among the #I MILP instances in Stage 4;

- IP-time: the average time (sec.) to solve one of the #I MILP instances to

find a set F ∗ of vectors x∗.

Figure 4.5(a) to (c) illustrate some rank-2 chemical graphs G∗ with θ(G∗) =

−2 constructed from the vector g∗ obtained by solving the MILP in Stage 4.

Figure 4.6(a) to (c) illustrate some rank-2 chemical graphs G∗ with θ(G∗) = 0

constructed from the vector g∗ obtained by solving the MILP in Stage 4.

Figures 4.7(a) to (c) illustrate some rank-2 chemical graphs G∗ with θ(G∗) = 2

constructed from the vector g∗ obtained by solving the MILP in Stage 4.

Stage 5. In this stage, we modified the algorithms proposed by Tamura et al. [48]

and Yamashita et al. [56] to enumerate all rank-2 graphs G∗ ∈ G such that

f(G∗) = x∗ for each x∗ ∈ F ∗. We stop the execution when either the total num-

ber of graphs inferred over all vectors x∗ ∈ F ∗ exceeds 100 or the execution time

exceeds one hour.

Tables 4.3–4.8 show the results on Stage 5 for dmax = 3 and 4, respectively,

30
Chapter 4 An Inverse QSAR Method for Rank-2 Chemical

Compounds

Table 4.3. Results of Stages 4 and 5 with dmax = 3 and θ = −2.

π y∗
π n∗ |F ∗|/#I IP-Time #G∗ G-Time

Kow 5 15 12/12 9.96 100 2236.0

Kow 5 20 12/12 30.38 12 >1 h

Kow 5 25 12/12 47.57 12 >1 h

Kow 5 30 12/12 69.38 12 >1 h

Mp 150 15 12/12 9.52 100 2069.0

Mp 150 20 12/12 22.79 12 >1 h

Mp 150 25 12/12 47.20 12 >1 h

Mp 150 30 12/12 66.90 12 >1 h

Bp 250 15 11/12 9.50 100 103.5

Bp 250 19 12/12 19.08 12 >1 h

Bp 250 22 12/12 25.78 12 >1 h

Bp 250 25 12/12 67.64 12 >1 h

Table 4.4. Results of Stages 4 and 5 with dmax = 4 and θ = −2.

π y∗
π n∗ |F ∗|/#I IP-Time #G∗ G-Time

Kow 5 15 11/12 31.84 100 413.8

Kow 5 20 12/12 69.65 12 >1 h

Kow 5 25 12/12 144.20 11 >1 h

Kow 5 30 12/12 352.01 12 >1 h

Mp 150 15 9/12 20.68 100 947.4

Mp 150 20 11/12 73.73 11 >1 h

Mp 150 25 9/12 140.09 9 >1 h

Mp 150 30 12/12 304.04 12 >1 h

Bp 250 15 7/12 28.51 100 232.7

Bp 250 19 11/12 82.01 11 >1 h

Bp 250 22 12/12 150.55 12 >1 h

Bp 250 25 12/12 239.84 12 >1 h

- #G∗: the number of all (or up to 100) rank-2 chemical graphs G∗ that

are computed under 1 h time limit in Stage 5, where f(G∗) = x∗ for some

x∗ ∈ F ∗. (Note that |F ∗| such graphs G∗ have been found in Stage 4, and

Figures 4.5–4.7 illustrate some of such graphs G∗.);

- G-time: the running time (sec.) to execute Stage 5, where “>1 h” means

4.4 Experimental Results 31

Table 4.5. Results of Stages 4 and 5 with dmax = 3 and θ = 0.

π y∗
π n∗ |F ∗|/#I IP-Time #G∗ G-Time

Kow 5 15 12/12 11.00 100 121.1

Kow 5 20 12/12 25.64 12 >1 h

Kow 5 25 12/12 38.79 12 >1 h

Kow 5 30 12/12 49.65 12 >1 h

Mp 150 15 12/12 8.45 100 373.4

Mp 150 20 12/12 18.94 12 >1 h

Mp 150 25 12/12 37.13 12 >1 h

Mp 150 30 12/12 44.745 4 >1 h

Bp 250 15 9/12 8.450 100 74.2

Bp 250 19 11/12 16.31 11 >1 h

Bp 250 22 12/12 21.71 12 >1 h

Bp 250 25 12/12 45.80 12 >1 h

Table 4.6. Results of Stages 4 and 5 with dmax = 4 and θ = 0.

π y∗
π n∗ |F ∗|/#I IP-Time #G∗ G-Time

Kow 5 15 9/12 36.33 100 23.2

Kow 5 20 12/12 82.01 12 >1 h

Kow 5 25 12/12 138.96 12 >1 h

Kow 5 30 12/12 292.79 12 >1 h

Mp 150 15 9/12 19.89 100 557.6

Mp 150 20 11/12 63.62 11 >1 h

Mp 150 25 12/12 112.49 12 >1 h

Mp 150 30 12/12 171.11 12 >1 h

Bp 250 15 3/12 34.60 100 11.2

Bp 250 19 6/12 203.65 6 >1 h

Bp 250 22 9/12 218.07 9 >1 h

Bp 250 25 11/12 783.80 11 >1 h

that the execution time exceeds the limit.

We also conducted some additional experiments to demonstrate that our

MILP-based method is flexible to control conditions on the inference of chemical

graphs. In Stage 3, we constructed an ANN Nπ for each of the three chemical

properties π ∈ {Kow, Mp, Bp}, and formulated the inverse problem of each ANN

32
Chapter 4 An Inverse QSAR Method for Rank-2 Chemical

Compounds

Table 4.7. Results of Stages 4 and 5 with dmax = 3 and θ = 2.

π y∗
π n∗ |F ∗|/#I IP-Time #G∗ G-Time

Kow 5 15 12/12 11.64 100 1386.7

Kow 5 20 12/12 23.84 12 >1 h

Kow 5 25 12/12 33.71 12 >1 h

Kow 5 30 12/12 61.85 12 >1 h

Mp 150 15 12/12 9.80 100 1614.3

Mp 150 20 12/12 20.15 12 >1 h

Mp 150 25 12/12 36.42 12 >1 h

Mp 150 30 12/12 40.58 12 >1 h

Bp 250 15 11/12 10.25 100 1756.1

Bp 250 19 12/12 16.02 12 >1 h

Bp 250 22 12/12 23.63 12 >1 h

Bp 250 25 12/12 63.84 12 >1 h

Table 4.8. Results of Stages 4 and 5 with dmax = 4 and θ = 2.

π y∗
π n∗ |F ∗|/#I IP-Time #G∗ G-Time

Kow 5 15 11/12 28.15 100 20.3

Kow 5 20 12/12 71.90 12 >1 h

Kow 5 25 12/12 112.71 12 >1 h

Kow 5 30 12/12 267.21 12 >1 h

Mp 150 15 9/12 22.53 100 2748.1

Mp 150 20 11/12 53.44 11 >1 h

Mp 150 25 12/12 143.33 12 >1 h

Mp 150 30 12/12 220.63 12 >1 h

Bp 250 15 6/12 27.33 100 254.2

Bp 250 19 9/12 75.50 9 >1 h

Bp 250 22 11/12 133.01 11 >1 h

Bp 250 25 12/12 228.75 12 >1 h

Nπ as an MILP Mπ. Since the set of descriptors is common to all three prop-

erties Kow, Mp, and Bp, it is possible to infer a rank-2 chemical graph G∗ that

satisfies a target value y∗π for each of the three properties at the same time (if one

exists). We specify the size of graph so that n := 22, core size:=14, core height:=

3, θ := −2 and dmax := 3, and set target values with y∗Kow := 5, y∗Mp := 150 and

y∗Bp := 250 in an MILP that consists of the three MILPs MKow, MMp and MBp.

4.4 Experimental Results 33

(b)

(c) (d)

(a)

Figure 4.5. An illustration of inferred rank-2 chemical graphs G∗ with θ = −2:

(a) y∗Kow = 5, θ = −2, n = 30, core size = 16, core height = 3, dmax = 4; (b)

y∗Mp = 150, θ = −2, n = 30, core size = 16, core height = 2, dmax = 3; (c)

y∗Bp = 250, θ = −2, n = 25, core size = 17, core height = 4, dmax = 3; (d)

y∗Kow = 5, y∗Mp = 150, y∗Bp = 250, θ = −2, n = 22, core size = 14, core height =

3, dmax = 3.

(b) (c)(a)

Figure 4.6. An illustration of inferred rank-2 chemical graphs G∗: (a) y∗Kow = 5,

θ = 0, n = 30, core size = 14, core height = 2, dmax = 3; (b) y∗Mp = 150, θ = 0,

n = 30, core size = 16, core height = 2, dmax = 4; (c) y∗Bp = 250, θ = 0, n = 25,

core size =17, core heigh t= 2, dmax = 3.

The MILP was solved in 268.11 (sec) and we obtained a rank-2 chemical graph

G∗ illustrated in Figure 4.5(d).

34
Chapter 4 An Inverse QSAR Method for Rank-2 Chemical

Compounds

(a) (b) (c)

Figure 4.7. An illustration of inferred rank-2 chemical graphs G∗: (a) y∗Kow = 5,

θ = 2, n = 30, core size = 15, core height = 5, dmax = 4; (b) y∗Mp = 150, θ = 2,

n = 30, core size = 17, core height = 2, dmax = 3; (c) y∗Bp = 250, θ = 2, n = 25,

core size = 17, core height = 3, dmax = 3.

4.5 Concluding Remarks

In this chapter, we proposed a new method for the inverse QSAR to rank-2

chemical graphs by significantly enhancing the framework for acyclic chemical

graphs due to Azam et al. [4] and Zhang et al. [59], and the framework for rank-

1 chemical graphs due Ito et al. [25], and implemented it for inferring rank-2

chemical graphs using the algorithms for enumerating rank-2 chemical graphs

due to Tamura et al. [48] and Yamashita et al. [56]. From the results on some

computational experiments, we observe that the proposed method runs efficiently

for an instance with n∗ ≤ 30 non-hydrogen atoms up to Stage 4 and an instance

with n∗ ≤ 15 non-hydrogen atoms up to Stage 5. Due to this development, the

ratio of chemical compounds covered in the PubChem database increased from

16.26% to 44.5%. It is left as future work to apply our new method for the

inverse QSAR to a wider class of graphs. The ratio of the number of chemical

graphs with rank at most 3 (resp., 4) to the number of all chemical graphs in

database PubChem is 68.8% (resp., 84.7%). Among rank-4 chemical compounds,

Remdesivir C27H35N6O8P, an antiviral medication, which is being studied as a

possible post-infection treatment for COVID-19, has a chemical graph G with

r(G) = 4, n(G) = 42, cs(G) = 24, and ch(G) = 8. The number of polymer

topologies with rank 3 (resp., 4) such that the maximum degree is at most 4 is

12 (resp., 73). Our MILP formulation can be easily extended to the case of rank

3 or 4 by replacing the current set of constraints for the scheme graph with a

set of those for a new scheme graph that is designed for rank-3 or -4 polymer

topologies.

5 An Inverse Method for

Arbitrary Cyclic Chemical

Compounds1

5.1 Introduction

In many of methods for inverse QSAR, inference or enumeration of graph struc-

tures from a given set of descriptors is a crucial subtask, and thus various methods

have been developed [15, 20, 30, 38]. However, enumeration in itself is a chal-

lenging task, since the number of molecules (i.e., chemical graphs) with up to 30

atoms (vertices) C, N, O, and S, may exceed 1060 [9]. Furthermore, enumeration

methods tended to be based on branching algorithms, where individual atoms

or substructures are iteratively appended to extend a certain structure. Such

a computation process quickly comes into a combinatorial explosion. Even for

moderately-sized target chemical graphs with around 20 non-hydrogen atoms, the

computation process might not produce even a single output after several hours.

Following the novel framework proposed by [4, 11, 59], Ito et al. [25] and Zhu

et al. [61] designed a method of inferring chemical graphs with rank 1 and 2, re-

spectively, where we presented the content of [61] (i.e. rank 2) in Chapter 4. Each

of them formulated a new MILP, and used an efficient algorithm for enumerating

chemical graphs with rank 1 [46] and rank 2 [48, 56]. The computational results

conducted with the above methods [25, 61] on instances with n non-hydrogen

atoms show that a feature vector x∗ can be inferred for up to around n = 40

whereas graphs G∗ can be enumerated for up to around n = 15. Note that for

each different graph class, an entirely new MILP formulation and graph enumer-

ation algorithm needed to be designed, which are themselves daunting tasks.

Recently Azam et al. [7] introduced a new characterization of acyclic graph

structure, called “branch-height” to define a class of acyclic graphs with a re-

1©2021 IEEE. Reprinted, with permission, from J. Zhu, N. A. Azam, F. Zhang,

A. Shurbevski, K. Haraguchi, L. Zhao, H. Nagamochi, and T. Akutsu. A novel method for

inferring chemical compounds with prescribed topological substructures based on integer pro-

gramming. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(6):

3233–3245, 2021.

35

36
Chapter 5 An Inverse Method for Arbitrary Cyclic Chemical

Compounds

stricted structure that still covers most (99.46%) of the acyclic chemical com-

pounds in the PubChem database [27]. They also employed the dynamic pro-

gramming method to design a new algorithm for generating chemical acyclic

graphs which now works for instances with size up to n(G∗) = 50.

The above framework has been applied so far to the case of chemical com-

pounds with a rather abstract topological structure, such as acyclic or monocyclic

graphs, and graphs with a specified polymer topology with rank up to 2. When

there is a more specific requirement on some part of the graph structure and

the assignment of chemical elements in a chemical graph to be inferred, none

of the above-mentioned methods can be used directly. The main reason is that

generating chemical graphs from a given feature vector is a considerably hard

problem. In particular, an efficient algorithm needed to be newly designed for

each different class of graphs.

This chapter builds upon and extends the recently proposed framework for

inferring acyclic chemical graphs [4, 11, 59], and later extended to the cases of

mono-cyclic [25] and chemical graphs with cycle rank 2 [61]. We note that, to

the best of our knowledge, this framework is unique. First and foremost, it offers

an end-to-end system for chemical graph design that includes pattern recognition

from data and mathematical exactness.

A similar approach for inverse molecular design has been recently proposed

by Takeda et al. [47], however, the two approaches have significant differences.

Notably, the method of defining descriptors in a feature vector, reported in [47],

employs general substructure-based indices, whereas the work in this chapter uses

graph-theoretical descriptors, which preserve explainability. Then, for solving the

problem of reconstructing a feature vector once a regression function has been

constructed, Takeda et al. [47] report to use custom-implemented gradient search

method, which does not necessarily guarantee optimality of the obtained solution.

On the other hand, as a foundation in this chapter, we use an MILP formulation,

which comes with a definite guarantee for the optimality, or the level of deviation

of an obtained solution. Next, the method in [47] for combinatorially generating

chemical graphs is based on a branching algorithm, which necessitates computing

a canonical labeling of a graph, a step with exponential computational complexity,

and not suited for compounds with more than around 20 atoms. Furthermore,

the report of Takeda et al. [47] is of a commercial implementation that is not

available for experimental evaluation by the community.

Another report that resembles the framework that we build on is due to

Sumita et al. [45]. However, it includes a Monte-Carlo based search that takes

on the order of several days of computation time to uncover some chemical com-

5.1 Introduction 37

pounds with desired properties. As shall be seen from our computational experi-

ence in Section 5.6, an end-to-end application of our framework took on the order

of minutes, and at most few hours of computation time, to obtain a wealth of

chemical compounds, all within mathematically proven range of set desired target

properties as predicted by the regression function constructed in the framework.

In this chapter, we propose an entirely new mechanism of generating chemical

graphs. In particular, the contributions include:

• Our mechanism can be readily applied to any graph topology that contains

at least one cycle. Thereby, we dispense with the necessity of designing a

new algorithm for different graph classes. In particular, we no longer need to

design an MILP formulation anew for different graph classes, nor a specific-

purpose combinatorial graph generation algorithm.

• Introduce a flexible way of specifying the topological structure of target

chemical graphs. As such, certain substructures, such as benzene rings can

be included, while at the same time constraints on the global topological

structure of target graphs can be imposed. This allows for the possibility to

include domain knowledge in the way of specifying graph structures.

• We introduce a combinatorial graph construction algorithm based on the

dynamic programming paradigm, that can efficiently explore a huge space [9]

of possible chemical graphs with a given feature vector.

• We open the source code of our implementation of the proposed method/system,

available at GitHub

https://github.com/ku-dml/mol-infer/tree/master/Cyclic.

(Accessed: May 24, 2023.)

The rest of this chapter is organized as follows. Section 5.2 introduces some

notions on graphs, a convention for modeling chemical compounds as graphs, and

a choice of descriptors. Section 5.3 introduces a method of specifying topologi-

cal substructures of target chemical graphs to be inferred. Section 5.4 presents

an idea of a formulation of an MILP that can infer a chemical graph under a

given specification of the target chemical graphs. Section 5.5 describes a new

idea of generating chemical graphs G∗ that have the same feature vector as a

given chemical graph G†. Section 5.6 reports the results on some computational

experiments conducted for some chemical properties. Section 5.7 makes some

concluding remarks.

38
Chapter 5 An Inverse Method for Arbitrary Cyclic Chemical

Compounds

5.2 Preliminary

This section introduces some notation and terminology on a modeling of chemical

compounds, and our choice of descriptors.

5.2.1 Modeling of Chemical Compounds

We represent the graph structure of a chemical compound as a graph H with

labels on vertices and multiplicity on edges in a hydrogen-suppressed model. In

a cyclic graph H, we regard each non-core-edge uv ∈ E as a directed edge (u, v)

from a vertex u to a child v of u in an exterior-tree of H in order to define a

descriptor that exploits the direction of non-core-edges.

We introduce “edge-configuration”, a refined notion of adjacency-configuration.

We call a pair (a, i) of a chemical element a and degree i a chemical symbol, writ-

ten as ai. Let Λdg denote the set of all chemical symbols. We call a tuple

(ai, bj,m) with ai, bj ∈ Λdg and m ∈ [1, 3] an edge-configuration. We choose a

branch-parameter ρ ∈ Z+, two sets, Λco
dg and Λnc

dg, of chemical symbols, and three

sets, Γco, Γin, and Γex, of edge-configurations.

Let e = uv be an edge in a chemical graph G such that a, b ∈ Λ are assigned

to the vertices u and v, the degrees of u and v are i and j, respectively, and

the bond-multiplicity between them is m. When uv is a core-edge, the edge-

configuration τ(e) of edge e is defined to be (ai, bj,m) if ai ≤ bj in a total

order over Λdg (or (bj, ai,m) otherwise). When uv is a non-core-edge which is

regarded as a directed edge (u, v) where u is the parent of v in some exterior-tree,

the edge-configuration τ(e) of a ρ-internal (resp., ρ-external) edge e is defined to

be (ai, bj,m) ∈ Γin (resp., (ai, bj,m) ∈ Γex).

A chemical cyclic graph is defined to be a tuple G = (H,α, β) of a cyclic graph

H = (V,E) and functions α : V → Λ and β : E → [1, 3], such that

(i) H is connected;

(ii)
∑

uv∈E β(uv) ≤ val(α(u)) for each vertex u ∈ V ; and

(iii) τ(e) ∈ Γco, τ(e) ∈ Γin and τ(e) ∈ Γex for each core-edge e ∈ E, ρ-internal

edge e ∈ E and ρ-external edge e ∈ E, respectively.

We represent the graph structure of a chemical compound as a graph with

labels on vertices and multiplicity on edges in a hydrogen-suppressed model.

In our method, we use only graph-theoretical descriptors for defining a feature

vector. A feature vector f(G) of a chemical cyclic graph G = (H = (V,E), α, β)

consists of the following 16 kinds of descriptors.

- n(G): the number |V | of vertices;
cs(G): the core size of G;

5.3 Specifying Target Chemical Graphs 39

ch(G): the core height of G;

blρ(G): the ρ-branch-leaf-number of G;

- ms(G): the average mass of atoms in G;

nsH(G): the number of hydrogen atoms suppressed in G;

- dgcoi (G), dgnci (G): the numbers of core-vertices and non-core-vertices of de-

gree i ∈ [1, 4] in G;

- bdcom(G), bdinm(G), bd
ex
m(G): the numbers of core-edges, ρ-internal edges and

ρ-external edges with bond multiplicity m ∈ [1, 3] in G;

- nscoµ (G), µ ∈ Λco
dg, ns

nc
µ (G), µ ∈ Λnc

dg: the numbers of core-vertices and non-

core-vertices v with α(v) = a and degree i for µ = ai; and

- eccoγ (G), ecinγ (G), ec
ex
γ (G): the numbers of core-edges e ∈ E such that τ(e) =

γ ∈ Γco, ρ-internal edges e ∈ E such that τ(e) = γ ∈ Γin, and ρ-external

edges e ∈ E such that τ(e) = γ ∈ Γex in G.

5.3 Specifying Target Chemical Graphs

This section presents a flexible way of specifying a topological structure of the core

and assignments of chemical elements and bond-multiplicities of a target chemical

graph. We define a target specification (GC, σco, σnc, σαβ) with a multigraph GC

and sets σco, σnc, and σαβ, of lower and upper bounds on several descriptors.

The choice of descriptors in the target specification is aimed to allow flexibility

in our model to specify the structure of a chemical graph based on some intuition

of the graph structure. Below we describe in more detail the structure of a target

specification.

Seed Graphs A seed graph GC = (VC, EC) is defined to be a multigraph with

no self-loops such that the edge set EC consists of four sets E(≥2), E(≥1), E(0/1),

and E(=1). Fig. 5.1(a) illustrates an example of a seed graph. From a seed graph

GC, the core of a cyclic graph will be constructed in the following way: Each

edge e = uv ∈ E(≥2) will be replaced with a u, v-path Pe of length at least 2;

Each edge e = uv ∈ E(≥1) will be replaced with a u, v-path Pe of length at least

1; Each edge e ∈ E(0/1) is either used or discarded; and Each edge e ∈ E(=1) is

always used directly.

Core Specification The core of a target chemical graph is constructed from a

seed graph GC by a core specification σco that consists of the following:

40
Chapter 5 An Inverse Method for Arbitrary Cyclic Chemical

Compounds

P4

u18

u17

a10

a12

a3

u11

a14

a4

u7

a13

a5

u9

u10

a15

a16

u1

u2

a11

a8

u6

u4
a9

a6

u8

u12

a1

a7

u5

u3

a2

: E(≧2)={a1,a2,...,a5}

: E(≧1)={a6},

: E(0/1)={a7},

: E(=1)={a8,a9,...,a16}

a10

a12

P3

a14

a13

P5

a15

a16
a11

a8

a9

a6

P1

P2

u14

u16

u13

u15

u20

u19
u22

u21

u11

u7
u9

u10

u1

u2

u6

u4

u8

u12

u5

u3

(a) GC (b) C

C*

C*

C*

C*

N*

C*

C*

C*

C*

C*

u15

u14

u5

Tu5
Tu14

Tu18

Tu22

Tu15 u7 u10

u1

u2

u6
u4

u3

v18

v12

v17

v13

v3

v11

v15

v10

v4

v7

v5

v6
v2

v1

v9

v8

v14

v19

v21

v20

a6

u18

u20

u17

u19
u22

u21

u11

u12

C2

N2
O1

C3
C3

O2

C1
N1

C2

N3

C1

O1
C3

C2

C3

N2

C3

C3

C3

C3

C3

O2

O1 C3

C2

C2

C3

C1

C1

C1

C2

C2

C2

C4

C3

O2C2

C3

C3

C1

C1

C3
C1

(c) H (d) G

v16

u16

u13

u9

u8

Tu22

Figure 5.1. (a) A seed graph GC; (b) A σco-extension C with cs(C) = 22; (c) A

(σco, σnc)-extension H with Cr(H) = C, n(H) = 43, ch(H) = 5, and bl2(H) = 3;

(d) A (σco, σnc, σαβ)-extension G of GC in Fig. 5.1(a). ©2021 IEEE.

- Lower and upper bound functions ℓLB, ℓUB : E(≥2) ∪ E(≥1) → Z+; For nota-

tional convenience, set ℓLB(e) := 0, ℓUB(e) := 1, e ∈ E(0/1) and ℓLB(e) := 1,

ℓUB(e) := 1, e ∈ E(=1).

- Lower and upper bounds csLB, csUB ∈ Z+ on the core size, where we assume

csLB ≥ |VC|+
∑

e∈E(≥2)∪E(≥1)
(ℓLB(e)− 1).

Example 1 of σco. A core specification σco to GC in Fig. 5.1(a) is given as

follows: csLB = 20, csUB = 28 and a sequence of (ℓLB(ai), ℓLB(ai)), i ∈ [1, 6] is

given by [(2, 3), (2, 4), (2, 3), (3, 5), (2, 4), (1, 4)].

A σco-extension of a seed graph GC is defined to be a graph C with |V (C)| ∈
[csLB, csUB] obtained by replacing each edge e = uv ∈ E(≥2) ∪ E(≥1) with a u, v-

5.3 Specifying Target Chemical Graphs 41

path Pe of length ℓ(Pe) ∈ [ℓLB(e), ℓUB(e)]. Let C be a σco-extension of GC, where

each edge e = uv ∈ E(≥2) ∪E(≥1) is replaced with a u, v-path Pe (where possibly

Pe is equal to e). For each edge e = uv ∈ E(≥2) ∪E(≥1), let F(Pe) denote the set

of trees Tw rooted at internal vertices w of the u, v-path Pe (where w ̸= u, v).

Fig. 5.1(b) illustrates a σco-extension C of GC in Fig. 5.1(a) with core speci-

fication σco in Example 1, where the edge a7 ∈ E(0/1) is discarded.

Non-core Specification We next construct a ρ-lean2 cyclic graph H obtained

from a σco-extension C of GC, by appending a tree Tv with at most one leaf ρ-

branch at each vertex v ∈ V (C), where possibly E(Tv) = ∅. We call the vertices

in C core-vertices of H and the newly added vertices non-core-vertices of H.

We specify the structure of the non-core part of such a graph H by a non-core

specification σnc that consists of the following:

- Lower and upper bounds nLB, n
∗ ∈ Z+ on the number of vertices, where

csLB ≤ nLB ≤ n∗;

- An upper bound dgnc4,UB ∈ Z+ on the number of non-core-vertices of degree

4;

- Lower and upper functions chLB, chUB : VC → Z+ and chLB, chUB : E(≥2) ∪
E(≥1) → Z+ on the maximum height of trees rooted at a vertex v ∈ VC or

at an internal vertex of a path Pe with e ∈ E(≥2) ∪ E(≥1);

- A branch-parameter ρ ∈ Z+;

- Lower and upper functions blLB, blUB : VC → {0, 1} on the number of leaf

ρ-branches in the tree rooted at a vertex v ∈ VC; and

- Lower and upper functions blLB,blUB : E(≥2) ∪ E(≥1) → Z+ on the num-

ber of leaf ρ-branches in the trees rooted at internal vertices in a path Pe

constructed for an edge e ∈ E(≥2) ∪ E(≥1).

Example 2 of σnc. A non-core specification σnc to GC in Fig. 5.1(a) is given as

follows:

nLB = 30, n∗ = 50, ρ = 2,

a sequence of (chLB(ui), chLB(ui)), i ∈ [1, 12], is given by

[(0, 1), (0, 0), (0, 0), (0, 0), (1, 3), (0, 0), (0, 1), (0, 1), (0, 0), (0, 1), (0, 2), (0, 4)],

a sequence of (chLB(ai), chLB(ai)), i ∈ [1, 6], is given by

[(0, 3), (1, 3), (0, 1), (4, 6), (3, 5), (0, 2)],

a sequence of (blLB(ui), blLB(ui)), i ∈ [1, 12] is given by

2See the definition in Chapter 2.

42
Chapter 5 An Inverse Method for Arbitrary Cyclic Chemical

Compounds

[(0, 1), (0, 1), (0, 1), (0, 1), (0, 1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0)]

and a sequence of (blLB(ai),blLB(ai)), i ∈ [1, 6], is given by

[(0, 1), (0, 1), (0, 0), (1, 2), (1, 1), (0, 0)].

We call the above ρ-lean cyclic graph H a (σco, σnc)-extension of GC if the

following conditions hold:

- n(H) ∈ [nLB, n
∗];

- dgnc4 (H) ≤ dgnc4,UB;

- For each vertex v ∈ VC, the tree Tv attached to v satisfies ht(Tv) ∈ [chLB(v),

chUB(v)];

- For each edge e ∈ E(≥2)∪E(≥1), max{ht(T) | T ∈ F(Pe)} ∈ [chLB(e), chUB(e)];

- Each tree Tv, v ∈ V (C), contains at most one leaf ρ-branch; and

- For each edge e ∈ E(≥2)∪E(≥1),
∑

{blρ(T) | T ∈ F(Pe)} ∈ [blLB(e),blUB(e)].

Fig. 5.1(c) illustrates a (σco, σnc)-extension H of GC in Fig. 5.1(a) with the

specification (σco, σnc) from Examples 1 and 2.

Chemical Specification To infer a chemical graphG = (H,α, β) from a (σco, σnc)-

extension H of GC, we finally specify a way of assigning elements in Λ and bond-

multiplicities by a chemical specification σαβ that consists of the following:

- Sets Λco,Λnc of chemical elements. For a chemical graph G, let naa(G) (resp.,

nacoa (G) and nanca (G)) denote the number of vertices (resp., core-vertices and

non-core-vertices) in G assigned chemical element a ∈ Λ (resp., a ∈ Λco and

a ∈ Λnc);

- Sets Λco
dg,Λ

nc
dg of chemical symbols and Γco, Γin,Γex of edge-configurations;

- Fix the following sets of adjacency-configurations:

Γco
ac := {ac(γ) | γ ∈ Γco}, Γin

ac := {ac(γ) | γ ∈ Γin},
Γex
ac := {ac(γ) | γ ∈ Γex}.

Define the adjacency-configuration of a core-edge uv to be (a, b, β(uv)) with

{a, b} = {α(u), α(v)} and the adjacency-configuration of a directed non-

core edge (u, v) to be (α(u), α(v), β(uv)). Let accoν (G) (resp., acinν (G) and

acexν (G)) denote the number of core-edges (resp., directed ρ-internal edges

and directed ρ-external edges) in G assigned adjacency-configuration ν ∈ Γco
ac

(resp., ν ∈ Γin
ac and ν ∈ Γex

ac);

- Subsets Λ∗(v), v ∈ VC, of elements that are allowed to be assigned to vertex

v ∈ VC;

5.3 Specifying Target Chemical Graphs 43

- Lower and upper bound functions naLB,naUB : Λ → [1, n∗] and natLB,na
t
UB :

Λt → [1, n∗] (resp., nsLB,nsUB : Λdg → [1, n∗] and nstLB, ns
t
UB : Λt

dg →
[1, n∗]), t ∈ {co, nc} on the number of core-vertices and non-core-vertices,

respectively, assigned chemical element a (resp., chemical symbol µ);

- Lower and upper bound functions actLB, ac
t
UB : Γt

ac → Z+ (resp., ectLB, ec
t
UB :

Γt → Z+), t ∈ {co, in, ex} on the number of core-edges, directed ρ-internal

edges and directed ρ-external edges, respectively, assigned adjacency-configuration

ν (resp., edge-configurations γ); and

- Lower and upper bound functions bdm,LB,bdm,UB : EC → Z+, m ∈ [2, 3],

where bd2,LB(e) + bd3,LB(e) ≤ ℓUB(e), e ∈ EC.

Example 3 of σαβ. A chemical specification σαβ to GC in Fig. 5.1(a) is given

by Table 5.1.

A (σco, σnc, σαβ)-extension of GC is a chemical graph G = (H,α, β) for a

graph H ∈ H(GC, σco, σnc) such that:

1.
∑

uv∈E β(uv) ≤ val(α(u)) for each vertex u ∈ V (H);

2. τ(e) ∈ Γco (resp., τ(e) ∈ Γin and τ(e) ∈ Γex) for each core-edge (resp.,

ρ-internal edge and ρ-external edge) e;

3. α(v) ∈ Λ∗(v) for each vertex v ∈ VC; and

4. the specified lower and upper bounds are satisfied; i.e.,

• naa(G) ∈ [naLB(a), naUB(a)], a ∈ Λ and nata(G) ∈ [natLB(a),na
t
UB(a)],

a ∈ Λt, t ∈ {co, nc};

• nsµ(G) ∈ [naLB(µ), naUB(µ)], µ ∈ Λdg, nstµ(G) ∈ [nstLB(µ), ns
t
UB(µ)],

µ ∈ Λt
dg, t ∈ {co, nc};

• actν(G) ∈ [actLB(ν), ac
t
UB(ν)], ν ∈ Γt

ac, t ∈ {co, in, ex};

• ectγ(G) ∈ [ectLB(γ), ec
t
UB(γ)], γ ∈ Γt, t ∈ {co, in, ex}; and

• |{e′ ∈ E(Pe) | β(e′) = m}| ∈ [bdm,LB(e),bdm,UB(e)] for each edge

e ∈ E(≥2) ∪ E(≥1).

Fig. 5.1(d) illustrates a (σco, σnc, σαβ)-extension G of GC in Fig. 5.1(a) with the

specifications from Examples 1 to 3.

44
Chapter 5 An Inverse Method for Arbitrary Cyclic Chemical

Compounds

Table 5.1. Example 3 of a chemical specification σαβ. ©2021 IEEE.

Λ = {C, N, O} Λco
dg = {C2, C3, C4, N2, O2} Λnc

dg = {C1, C2, C3, C4, N1, N3, O1, O2}
Γco
ac νco1 = (C, C, 1), νco2 = (C, C, 2), νco3 = (C, N, 1), νco4 = (C, O, 1)

Γin
ac νin1 = (C, C, 1), νin2 = (C, C, 2), νin3 = (C, O, 1)

Γex
ac νex1 = (C, C, 1), νex2 = (C, C, 3), νex3 = (C, N, 1), νex4 = (N, C, 1),

νex5 = (C, O, 1), νex6 = (C, O, 2), νex7 = (O, C, 1)

Γco γco1 = (C2, C2, 1), γco2 = (C2, C3, 1), γco3 = (C2, C3, 2), γco4 = (C2, C4, 1), γco5 = (C3, C3, 1),

γco6 = (C3, C3, 2), γco7 = (C3, C4, 1), γco8 = (C2, N2, 1), γco9 = (C3, N2, 1), γco10 = (C3, O2, 1)

Γin γin1 = (C2, C2, 2), γin2 = (C3, C2, 1), γin3 = (C3, C3, 1), γin4 = (C2, O2, 1), γin5 = (C3, O2, 1)

Γex γex1 = (C3, C1, 1), γex2 = (C2, C1, 3), γex3 = (C3, C3, 1), γex4 = (C4, C1, 1), γex5 = (C3, N1, 1),

γex6 = (C3, N3, 1), γex7 = (C3, O1, 2), γex8 = (O2, C2, 1), γex9 = (O2, C3, 1), γex10 = (N3, C1, 1)

Λ∗(u1) = {N}, Λ∗(u8) = {C, N}, Λ∗(u9) = {C, O}, Λ∗(u) = {C}, u ∈ VC \ {u1, u8, u9}
C N O

naLB(λ) 27 1 1

naUB(λ) 37 4 8

C N O

nacoLB(λ) 9 1 0

nacoUB(λ) 23 4 5

C N O

nancLB(λ) 9 1 2

nancUB(λ) 18 3 8

C1 C2 C3 C4 N1 N2 N3 O1 O2

nsLB(µ) 6 7 12 0 0 0 0 0 0

nsUB(µ) 10 11 18 2 2 2 2 5 5

C2 C3 C4 N2 N3 O2

nscoLB(µ) 3 5 0 0 0 0

nscoUB(µ) 8 15 2 2 3 5

C1 C2 C3 C4 N1 N2 N3 O1 O2

nsncLB(µ) 6 1 1 0 0 0 0 0 0

nsncUB(µ) 10 5 5 2 2 2 2 5 5

i 1 2 3 4

accoLB(ν
co
i) 0 0 0 0

accoUB(ν
co
i) 30 10 10 10

i 1 2 3

acinLB(ν
in
i) 0 0 0

acinUB(ν
in
i) 5 5 5

i 1 2 3 4 5 6 7

acexLB(ν
ex
i) 0 0 0 0 0 0 0

acexUB(ν
ex
i) 10 10 10 10 10 10 10

i 1 2 3 4 5 6 7 8 9 10

eccoLB(γ
co
i) 0 0 0 0 0 0 0 0 0 0

eccoUB(γ
co
i) 4 15 4 4 10 5 4 4 6 4

i 1 2 3 4 5

ecinLB(γ
in
i) 0 0 0 0 0

ecinUB(γ
in
i) 3 3 3 3 3

i 1 2 3 4 5 6 7 8 9 10

ecexLB(γ
ex
i) 0 0 0 0 0 0 0 0 0 0

ecexUB(γ
ex
i) 8 4 4 4 4 4 6 4 4 4

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

bd2,LB(ai) 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

bd2,UB(ai) 1 1 0 2 2 0 0 0 0 0 0 1 0 0 0 0

bd3,LB(ai) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bd3,UB(ai) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

5.4 An MILP Formulation for Stage 4 45

Fi

vT
i,0 vT

tT,0

FtF

eT
i

vT
1,0 vT

2,0

eT
2

F1 F2

(e) PF = (VF, EF)

vF
tF,0

Ti TtT

vF
2,0

T2

(c) PT = (VT, ET)

vF
i,0

eF
i

vF
1,0

eF
2

T1

vF
i-1,0

vT
i-1,0

C1
CtCC2 Ci

: E(≥2)

(a) GC = (VC, EC)

vC
1,0 vC

2,0 vC
tC,0vC

i,0

eTC
i,j

eCT
i,j

eTF
i,j

eCF
i,j

 i [1,tC], j [1,tT]

UI UI

 i [1,tC], j [1,tF]

UI UI

 i [1,tT], j [1,tF]

UI UI

eT
tT

eF
tF

 i [1,tC], j [1,tT]

UI UI

eT
i+1

eF
i+1

(f) Fi = T(dmax-1,dmax-1,r), i [1,tF]

eC
i,1 eC

i,2vC
i,0

eT
i,1 vT

i,0
UI

vT
i,nT

vT
i,2

vT
i,6

eT
i,2

eT
i,7

eT
i,8

vT
i,7

vT
i,1

vT
i,3

eT
i,3

eT
i,4

eT
i,5

vT
i,4 vT

i,5

eT
i,6

eF
i,1

vF
i,0

vF
i,2

vF
i,7

eF
i,3

eF
i,8

eF
i,9

vF
i,8

vF
i,1

vF
i,4

eF
i,4

eF
i,5

eF
i,6

vF
i,5 vF

i,6

eF
i,7

vF
i,nF

vF
i,3

vF
i,10

eF
i,11

eF
i,12

vF
i,11

eF
i,10

vF
i,9

eF
i,2

vC
i,6

eC
i,7

eC
i,8

vC
i,7

eC
i,5

vC
i,5

eC
i,6

vC
i,1 vC

i,2

eC
i,3

eC
i,4

vC
i,3 vC

i,4

: E(≥1) : E(0/1)
: E(=1)

(d) Ti = T(2,dmax-1,r), i [1,tT]

UI

(b) Ci = T(dmax-2,dmax-1,r), i [1,tC]

UI

vCi,nC

Figure 5.2. An illustration of a scheme graph SG: (a) A seed graph GC; (b) A

tree Ci, i ∈ [1, tC] rooted at a core-vertex vCi,0 ∈ VC; (c) A path PT of length

tT − 1; (d) A tree Ti, i ∈ [1, tT] rooted at a core-vertex vTi,0 ∈ VT; (e) A path

PF of length tF − 1; (f) A rooted tree Fi, i ∈ [1, tF] rooted at a ρ-internal vertex

vFi,0 ∈ VF. ©2021 IEEE.

5.4 An MILP Formulation for Stage 4

In this section, we show an outline of an MILP M(x, g; C2) in Stage 4 for inferring

a chemical ρ-lean cyclic graph G ∈ G(GC, σco, σnc, σαβ). The details of the MILP

can be found in [2].

Scheme Graph Our method first regards a given seed graphGC as a digraph and

then adds some more vertices and edges to construct a digraph, called a scheme

graph SG = (V, E) so that any (σco, σnc)-extension H of GC can be chosen as a

subgraph of SG.

For a given specification (σco, σnc), define integers that determine the size of

a scheme graph SG as follows:

dmax := 3 if dgnc4,UB = 0; dmax := 4 if dgnc4,UB ≥ 1, tC := |VC|, tT := csUB − |VC|
and tF := n∗ − csLB. Let nC, nT and nF denote the number of “edges” in the

rooted tree T(dmax−2, dmax−1, ρ), T(2, dmax−1, ρ) and T(dmax−1, dmax−1, ρ),

respectively.

Formally, the scheme graph SG = (V, E) is defined with a vertex set V =

VC ∪VT ∪VF ∪V ex
C ∪V ex

T ∪V ex
F and an edge set E = EC ∪ET ∪EF ∪ECT ∪ETC ∪

ECF ∪ ETF ∪ Eex
C ∪ Eex

T ∪ Eex
F .

Construction of the core Cr(H) of a (σco, σnc)-extension H of GC: De-

note the vertex set VC and the edge set EC in the seed graph GC by VC =

{vCi,0 | i ∈ [1, tC]} and EC = {ai | i ∈ [1,mC]}, respectively, where VC is

46
Chapter 5 An Inverse Method for Arbitrary Cyclic Chemical

Compounds

always included in Cr(H). For including additional core-vertices in Cr(H), intro-

duce a path PT = (VT = {vT1,0, v
T
2,0, . . . , v

T
tT,0}, ET = {eT2, e

T
3, . . . , e

T
tT}) of

length tT − 1 and a set ECT (resp., ETC) of directed edges eCT
i,j = (vCi,0, v

T
j,0)

(resp., eTC
i,j = (vTj,0, v

C
i,0)) i ∈ [1, tC], j ∈ [1, tT]. In Cr(H), an edge ak =

(vCi,0, v
C
i′,0) ∈ E(≥2) ∪ E(≥1) is allowed to be replaced with a path Pk from

core-vertex vCi,0 to core-vertex vCi′,0 that visits a set of consecutive vertices

vTj,0, v
T
j+1,0, . . . , v

T
j+p,0 ∈ VT and edge eCT

i,j = (vCi,0, v
T
j,0) ∈ ECT, then edges

eTj+1, e
T
j+2, . . . , e

T
j+p ∈ ET, and finally, edge eTC

i′,j+p = (vTj+p,0, v
C
i′,0) ∈

ETC. The vertices in VT in the path will be core-vertices in Cr(H).

Construction of paths with ρ-internal edges in a (σco, σnc)-extension H of

GC: Introduce a path PF = (VF = {vF1,0, v
F
2,0, . . . , v

F
tF,0}, EF = {eF2, e

F
3, . . . ,

eFtF}) of length tF − 1, a set ECF of directed edges eCF
i,j = (vCi,0, v

F
j,0), i ∈

[1, tC], j ∈ [1, tF], and a set ETF of directed edges eTF
i,j = (vTi,0, v

F
j,0), i ∈

[1, tT], j ∈ [1, tF]. In H, a path P with ρ-internal edges that starts from a

core-vertex vCi,0 ∈ VC (resp., vTi,0 ∈ VT) visits a set of consecutive vertices

vFj,0, v
F
j+1,0, . . . , v

F
j+p,0 ∈ VF and edge eCF

i,h = (vCi,0, v
F
j,0) ∈ ECF (resp.,

eTF
i,j = (vTi,0, v

F
j,0) ∈ ETF) and edges eFj+1, e

F
j+2, . . . , e

F
j+p ∈ EF. In H, the

edges and the vertices (except for vCi,0) in the path P are regarded as ρ-internal

edges and ρ-internal vertices, respectively.

Construction of ρ-fringe-trees in a (σco, σnc)-extension H of GC: In H,

the root of a ρ-fringe-tree can be any vertex in VC ∪ VT ∪ VF. Let X ∈ {C,T,F}.
Introduce a rooted tree Xi, i ∈ [1, tX] at each vertex vXi,0, where each Ci is

isomorphic to T(dmax − 2, dmax − 1, ρ), each Ti is isomorphic to T(2, dmax − 1, ρ)

and each Fi is isomorphic to T(dmax − 1, dmax − 1, ρ). The j-th vertex (resp.,

edge) in each rooted tree Xi is denoted by vXi,j (resp., e
X
i,j). (See Fig. 5.2.) Let

V ex
X and Eex

X denote the set of non-root vertices vXi,j and the set of edges eXi,j

over all rooted trees Xi, i ∈ [1, tX]. In H, a ρ-fringe-tree is selected as a subtree

of Xi, i ∈ [1, tX] with root vXi,0.

An MILP for Choosing a Chemical Graph from a Scheme Graph

Let K denote the dimension of a feature vector x = f(G) used in constructing

a prediction function ψ over a set of chemical graphs G. Based on the scheme

graph SG, we obtain the following MILP formulation.

Theorem 5.3. Let (σco, σnc, σαβ) be a target specification and |Γ| = |Λco
dg| +

|Λnc
dg| + |Γco| + |Γin| + |Γex| for sets of chemical symbols and edge-configuration

in σαβ. Then there is an MILP M(x, g; C2) that consists of variable vectors

x ∈ RK and g ∈ Rq for an integer q = O(csUB(|EC| + n∗) + (|EC| + |V|)|Γ|)

5.4 An MILP Formulation for Stage 4 47

and a set C2 of O([csUB(|EC| + n∗) + |V|]|Γ|) constraints on x and g such that:

(x∗, g∗) is feasible to M(x, g; C2) if and only if g∗ forms a chemical ρ-lean graph

G ∈ G(GC, σco, σnc, σαβ) such that f(G) = x∗.

Note that our MILP requires only O(n∗) variables and constraints when the

branch-parameter ρ, integers |EC|, csUB and |Γ| are constant. We explain the

basic idea of our MILP in Theorem 5.3. The MILP mainly consists of the following

three types of constraints.

C1. Constraints for selecting a ρ-lean graph H ∈ H(GC, σco, σnc) as a subgraph

of the scheme graph SG;

C2. Constraints for assigning chemical elements to vertices and multiplicity to

edges to determine a chemical graph G = (H,α, β); and

C3. Constraints for computing descriptors from the selected chemical graph G.

In the constraints of C1, more formally, we prepare the following.

Variables:

A binary variable vX(i) ∈ {0, 1} for each vertex vXi ∈ VX, X ∈ {C,T,F} so that

vX(i) = 1 ⇔ vertex vXi is used in a graph H selected from SG;

a binary variable eX(i) ∈ {0, 1} (resp., eC(i) ∈ {0, 1}) for each edge eXi ∈ ET∪EF

(resp., eCi = ai ∈ E(≥2) ∪ E(≥1) ∪ E(0/1)) so that eX(i) = 1 ⇔ edge eXi is used

in a graph H selected from SG. To save the number of variables in our MILP

formulation, we do not prepare a binary variable eX(i, j) ∈ {0, 1} for any edge

eXi,j ∈ ECT ∪ ETC ∪ ECF ∪ ETC, where we represent a choice of edges in these

sets by a set of O(n∗|EC|) variables (see [2] for the details);

Constraints:

Linear constraints so that each ρ-fringe-tree of a graph H from SG is selected as a

subtree of some of the rooted trees Ci, i ∈ [1, tC], Ti, i ∈ [1, tT] and Fi, i ∈ [1, tF];

linear constraints such that each edge eCi = ai ∈ E(=1) is always used as a core-

edge in H and each edge eCi = ai ∈ E(0/1) is used as a core-edge in H if necessary;

linear constraints such that for each edge ak = (vCi, v
C
i′) ∈ E(≥2), vertex v

C
i ∈

VC is connected to vertex vCi′ ∈ VC in H by a path Pk that passes through some

core-vertices in VT and edges eCT
i,j , e

T
j+1, e

T
j+2, . . . , e

T
j+p, e

TC
i′,j+p for some

integers j and p;

linear constraints such that for each edge ak = (vCi, v
C
i′) ∈ E(≥1), either the

edge ak is used as a core-edge in H or vertex vCi ∈ VC is connected to vertex

vCi′ ∈ VC in H by a path Pk as in the case of edges in E(≥2);

linear constraints for selecting a path P with ρ-internal edges eCF
i,j (or eTF

i,j),

eFj+1, e
F
j+2, . . . , e

F
j+p for some integers j and p.

48
Chapter 5 An Inverse Method for Arbitrary Cyclic Chemical

Compounds

In the constraints of C2, we prepare an integer variable αX(i, j) for each

vertex vXi,j ∈ V, X ∈ {C,T,F} in the scheme graph that represents the chemical

element α(vXi,j) ∈ Λ if vXi,j is in a selected graph H (or α(vXi,j) = 0 otherwise);

integer variables βC : EC → [0, 3], βT : ET → [0, 3] and βF : EF → [0, 3] that

represent the bond-multiplicity of edges in EC ∪ ET ∪ EF; and integer variables

β+, β− : E(≥2)∪E(≥1) → [0, 3] and βin : VC∪VT → [0, 3] that represent the bond-

multiplicity of edges in ECT ∪ ETC ∪ ECF ∪ ETF. This determines a chemical

graph G = (H,α, β). Also we include constraints for a selected chemical graph

G to satisfy the valence condition at each vertex v with the edge-configurations

τ(e) of the edges incident to v and the chemical specification σαβ.

In the constraints of C3, we introduce a variable for each descriptor and

constraints with some more variables to compute the value of each descriptor in

f(G) for a selected chemical graph G.

5.5 A New Mechanism for Stage 5

This section describes the idea of a new method for Stage 5. Execution of Stage 5

(i.e., generating chemical graphs G∗ that satisfy f(G∗) = x∗ for a given feature

vector x∗ ∈ ZK+) is a challenging issue for a relatively large instance with size

n(G∗) ≥ 20. There have been proposed algorithms for Stage 5 for classes of graphs

with rank 0 to 2 [15, 46, 48]. All of these are designed based on the branch-and-

bound method where an enormous number of chemical graphs are constructed by

repeatedly appending and removing a vertex one by one until a target chemical

graph is constructed. These algorithms can generate a target chemical graph G∗

with size n(G∗) ≤ 20. To break this barrier, Azam et al. [7] recently employed the

dynamic programming method for designing a new algorithm in Stage 5 based

on “frequency vectors” (where the frequency vector consists of some descriptors

of the feature vector and the rest of the descriptors can be derived from the

frequency vector). They defined the frequency vector f(G) of a chemical graph

G to be the occurrence of each adjacency-configuration in G. Note that a single

frequency vector can represent a large number of chemical graphs. The search

space over frequency vectors is much more compact than that of over chemical

graphs. They also observed that most of the acyclic chemical compounds in

the PubChem database have at most three leaf 2-branches. Their algorithm

constructs the frequency vectors of some subtrees of such a chemical acyclic graph

G∗ without directly building subtrees of G∗, until a required chemical acyclic

graph G∗ is constructed from a final set of frequency vectors. Given a vector

x, their algorithm generates chemical acyclic graphs G∗ with at most three leaf

5.5 A New Mechanism for Stage 5 49

G

Tm
T2T1 T3

T3
* Tm

*T2
*T1

* *G

Tm

T2

T1

T3

T3
*

Tm
*

T2
*

T1
*

x3
* xm

*x2
x1

decompose

combine

u1 u2 u1u2

u1 u2u1

u2

u1 u2

u1 u2

u1

u1u2u2

Figure 5.3. An illustration of a new mechanism to Stage 5, where a given

chemical graph G† is decomposed into chemical trees T †
i , i = 1, 2, . . . ,m based on

a set VB = {u1, u2} of core-vertices and a chemical tree T ∗
i such that f(T ∗

i) = x∗i is

constructed for each vector x∗i = f(T †
i), before a new target graph G∗ is obtained

as a combination of T ∗
1 , . . . , T

∗
m. ©2021 IEEE.

2-branches such that f(G∗) = x for n(G∗) ≤ 50.

However, for a class of graphs with a different rank, we may need to design

again a new algorithm by the dynamic programming method. Moreover, algo-

rithms for higher ranks can be more complicated and do not run as fast as the

algorithm for acyclic graphs due to Azam et al. [7].

In this chapter, as a new mechanism of Stage 5, we adopt an idea of uti-

lizing the chemical graph G† ∈ G obtained as part of a feasible solution of an

MILP in Stage 4. The frequency vector f(G) is now set to be the occurrence

of each edge-configuration in G. In other words, we modify the chemical graph

G† to generate other chemical graphs G∗ that are “chemically isomorphic” to

G† in the sense that f(G∗) = f(G†) holds. Informally speaking, we reduce the

problem of finding such a graph G∗ into the problem of generating chemical

acyclic graphs with two 2-leaf branches, to which we have obtained an efficient

dynamic programming algorithm [7]. We first decompose G† into a collection of

chemical trees T †
1 , T

†
2 , . . . , T

†
m such that for a subset VB of the core-vertices of

G†, any tree T †
i contains at most two vertices in VB, as illustrated in Fig. 5.3.

Let x∗i denote the feature vector f(T †
i). For each index i, we generate chemi-

cal acyclic graphs T ∗
i such that f(T ∗

i) = x∗i . Finally, we combine the generated

chemical trees T ∗
1 , T

∗
2 , . . . , T

∗
m to construct a chemical cyclic graph G∗ such that

f(G∗) =
∑

i∈[1,m] x
∗
i = f(G†). (See [2] for the details on the dynamic program-

ming algorithm.)

50
Chapter 5 An Inverse Method for Arbitrary Cyclic Chemical

Compounds

5.6 Experimental Results

We implemented our method of Stages 1 to 5 for inferring chemical 2-lean graphs

and conducted experiments to evaluate the computational efficiency. We executed

the experiments on a PC with Processor: 3.0 GHz Core i7-9700, Memory: 16 GB

RAM DDR4. We used ChemDoodle version 10.2.0 for constructing 2D drawings

of chemical graphs.

To conduct experiments for Stages 1 to 5, we selected three chemical proper-

ties π: octanol/water partition coefficient (Kow), boiling point (Bp) and melting

point (Mp).

Results on Phase 1.

We implemented Stages 1, 2, and 3, in Phase 1 as follows.

Stage 1. We set a graph class G to be the set of all chemical graphs with rank

at least 1, and set a branch-parameter ρ to be 2. For each property π ∈ {Kow,

Bp, Mp}, we first select a set Λ of chemical elements and then collect a data set

Dπ on chemical cyclic graphs over the set Λ of chemical elements provided by

HSDB from PubChem [27].

Table 5.2 shows the size and range of data sets that we prepared for each

chemical property in Stage 1, where we denote the following:

- Λ: the set of selected chemical elements (hydrogen atoms are added at the

final stage); Λ is one of the following 2 datasets:

Λ1 = {C, N, O}, Λ2 = {C, O, N, S, Cl}

- |Dπ|: the size of data set Dπ over Λ for property π;

- |Γco|, |Γin|, |Γex|: the number of different edge-configurations of core-edges,

2-internal edges and 2-external edges over the compounds in Dπ;

- [n, n], [cs, cs], [ch, ch], [bl, bl]: the minimum and maximum values of n(G),

cs(G), ch(G) and bl2(G) over the compounds G in Dπ; and

- [a, a]: the minimum and maximum values of a(G) in π over compounds G

in Dπ.

Stage 2. We used a feature function f that consists of the descriptors defined

in Section 5.2.

Stage 3. We used scikit-learn version 0.23.2 with Python 3.8.5, MLPRegres-

sor and ReLU activation function to construct ANNs N . We evaluated the result-

ing prediction function ψN with cross-validation over five subsets D
(i)
π , i ∈ [1, 5]

of a given data set Dπ.

5.6 Experimental Results 51

Table 5.2. Data Sets for Stage 1 in Phase 1. ©2021 IEEE.

π Λ |Dπ| |Γco|, |Γin|, |Γex| [n, n] [cs, cs] [ch, ch] [bl, bl] [a, a]

Kow Λ1 424 23, 19, 41 [5, 58] [3, 43] [0, 19] [0, 2] [-7.53, 13.45]

Kow Λ2 580 27, 24, 59 [5, 69] [3, 43] [0, 19] [0, 5] [-7.53, 13.45]

Bp Λ1 175 19, 13, 30 [5, 30] [3, 24] [0, 12] [0, 2] [31.5, 470.0]

Bp Λ2 219 20, 14, 39 [5, 30] [3, 24] [0, 12] [0, 2] [31.5, 470.0]

Mp Λ1 256 22, 15, 36 [4, 122] [3, 87] [0, 28] [0, 3] [-142.5, 300.0]

Mp Λ2 340 25, 19, 48 [4, 122] [3, 87] [0, 28] [0, 3] [-142.5, 300.0]

Table 5.3. Results of Stages 2 and 3 in Phase 1. ©2021 IEEE.

π Λ Architecture L-Time test R2 ave. best

Kow Λ1 (118, 13, 1) 0.55 0.952 0.961

Kow Λ2 (149, 13, 1) 0.64 0.932 0.948

Bp Λ1 (97, 11, 1) 4.90 0.814 0.893

Bp Λ2 (112, 13, 13, 1) 3.42 0.722 0.871

Mp Λ1 (108, 42, 10, 1) 0.63 0.740 0.878

Mp Λ2 (130, 64, 1) 1.73 0.800 0.859

Table 5.3 shows the results on Stages 2 and 3, where we denote the following:

K: the number of descriptors for the chemical compounds in data set Dπ for

property π; Λ: the set of selected chemical elements (hydrogen atoms are added

at the final stage); Architecture: (K, a, 1) (resp., (K, a1, a2, 1)) consists of an

input layer with K nodes, a hidden layer with a nodes (resp., two hidden layers

with a1 and a2 nodes, respectively) and an output layer with a single node, where

K is equal to the number of descriptors in the feature vector; L-time: the average

time (sec.) to construct ANNs for each trial; and test R2 (ave.), test R2 (best):

the average value and the largest value of coefficient of determination over the

five tests.

From Table 5.3, we see that the execution of Stage 3 was considerably suc-

cessful, where the best of test R2 is around 0.86 to 0.96 for all three chemical

properties.

Results on Phase 2.

We prepared the following instances (a)-(d) for conducting experiments of

52
Chapter 5 An Inverse Method for Arbitrary Cyclic Chemical

Compounds

a1

a2
u1 u2

a1

u3u1 u2 u4
a5a4

a3 a2

u3u1
u2 u4

a1

a5a4
a3

u3u1 u2 u4

a1

a5
a4 a3

a2

a2

(i) GC
1

(iii) GC
3

(iv) GC
4

(ii) GC
2

Figure 5.4. An illustration of seed graphs: (i) A monocyclic graph G1
C; (ii) A

rank-2 cyclic graph G2
C with two vertex-disjoint cycles; (iii) A rank-2 cyclic graph

G3
C with two disjoint cycles sharing a vertex; (iv) A rank-2 cyclic graph G4

C with

three cycles. ©2021 IEEE.

Stages 4 and 5 in Phase 2.

(a) Ia = (GC, σco, σnc, σαβ): The instance used in Section 5.3 to explain the

target specification.

(b) Iib = (GiC, σ
i
co, σ

i
nc, σ

i
αβ), i = 1, 2, 3, 4: An instance for inferring chemical

graphs with rank at most 2. Instance I1b is given by the monocyclic seed

graph G1
C in Fig. 5.4(i) and Instances Iib, i = 2, 3, 4 are given by the rank-2

seed graph GiC, i = 2, 3, 4 in Fig. 5.4(ii)-(iv). See [2] for the details of the

specification (σico, σ
i
nc, σ

i
αβ).

We define instances in (c) and (d) in order to find chemical graphs that have

an intermediate structure of given two chemical 2-lean cyclic graphs GA = (HA =

(VA, EA), αA, βA) and GB = (HB = (VB, EB), αB, βB). Let Λco
A and Λnc

A denote

the sets of chemical elements of the core-vertices and the non-core-vertices in GA

and Γco
A , Γin

A and Γex
A denote the sets of edge-configurations of the core-edges, the

2-internal edges and the 2-external edges in GA, respectively. Analogously define

sets Λco
B , Λnc

B , Γco
B , Γin

B and Γex
B in GB.

(c) Ic = (GC, σco, σnc, σαβ): An instance aimed to infer a chemical graph G†

such that the core of G† is equal to the core of GA and the frequency of

each edge-configuration in the non-core of G† is equal to that of GB. We use

chemical compounds CID 24822711 and CID 59170444 in Fig. 5.5(a) and (b)

for GA and GB, respectively. Set a seed graph GC = (VC, EC = E(=1)) to be

the core CA of GA; Set nLB := n∗ := cs(GA)+(n(GB)−cs(GA)), Λ
co := Λco

A ,

Λnc := Λnc
B and Λ∗(v) := {αA(v)}, v ∈ VC; Set ec

co
LB(γ) = eccoUB(γ) to be the

5.6 Experimental Results 53

Table 5.4. Features of test instances, where Λ = {C, O, N} for all instances.

©2021 IEEE.

Γco,Γin,Γex nLB, n
∗ csLB,UB chLB,UB blLB,UB

Ia 10, 5, 10 30, 50 20, 28 4, 6 2, 10

I1b 28, 46, 74 38, 38 6, 6 1, 5 0, 22

I2b 28, 46, 74 50, 50 30, 30 1, 5 0, 34

I3b 28, 46, 74 50, 50 30, 30 1, 5 0, 34

I4b 28, 46, 74 50, 50 30, 30 1, 5 0, 34

Ic 8, 3, 7 46, 46 24, 24 0, 4 0, 24

Id 7, 4, 11 40, 45 18, 18 0, 5 0, 32

number of core-edges with γ ∈ Γco in GA and ecinLB(γ) = ecinUB(γ) (resp.,

ecexLB = ecexUB(γ)) to be the number of 2-internal edges (resp., 2-external

edges) in GB with edge-configuration γ.

(d) Id = (G1
C, σco, σnc, σαβ): An instance aimed to infer a chemical monocyclic

graph G† such that the frequency vector of edge-configurations in G† is a

vector obtained by merging those ofGA andGB. We use chemical monocyclic

compounds CID 10076784 and CID 44340250 in Fig. 5.5(c) and (d) for GA

and GB, respectively. Set a seed graph to be the monocyclic seed graph G1
C

in Fig. 5.4(i); Set nLB := min{n(GA), n(GB)}; n∗ := max{n(GA), n(GB)},
Λco := Λco

A ∪ Λco
B and Λnc := Λnc

A ∪ Λnc
B ; For each edge-configuration γ ∈

Γco (resp., γ ∈ Γin,Γex), let x∗A(γ
co) (resp., x∗A(γ

in), x∗A(γ
ex)) denote the

number of core-edges (resp., 2-internal edges and 2-external edges) with γ;

Analogously, define x∗B(γ
t), t ∈ {co, in, ex}; For each edge-configuration γt ∈

Γt, t ∈ {co, in, ex}, let x∗min(γ
t) := min{x∗A(γt), x∗B(γt)} and x∗max(γ

t) :=

max{x∗A(γt), x∗B(γt)}; Set ectLB(γ) := ⌊(3/4)x∗min(γ
t) + (1/4)x∗max(γ

t)⌋,
ectUB(γ) := ⌈(1/4)x∗min(γ

t) + (3/4)x∗max(γ
t)⌉, γt ∈ Γt, t ∈ {co, in, ex}.

Table 5.4 shows the features of the seven test instances, where we denote the

following: Γco, Γin, Γex: the number of different edge-configurations of core-edges,

2-external edges and 2-external edges for inferring a target graph; and nLB, n
∗,

csLB, csUB, chLB, chUB, blLB,blUB: the lower and upper bounds on n(G†), cs(G†),

ch(G†) and bl2(G
†) for inferring a target graph G†.

To solve an MILP formulation in Stage 4, we used CPLEX version 12.10. Ta-

bles 5.5 to 5.7 show the results on Stages 4 and 5, where we denote the following:

54
Chapter 5 An Inverse Method for Arbitrary Cyclic Chemical

Compounds

(a) GA: CID 24822711 (b) GB: CID 59170444

(c) GA: CID 10076784 (d) GB: CID 44340250

(e) G |- (f) G |-

Figure 5.5. An illustration of chemical compounds: (a) GA: CID 24822711;

(b) GB: CID 59170444; (c) GA: CID 10076784; (d) GB: CID 44340250; (e) G†

inferred from Ic with y∗ = 0.82 of Kow; (f) G† inferred from Id with y∗ = 220 of

Bp. ©2021 IEEE.

y∗: a target value in [a, a] for a property π; #v (resp., #c): the number of vari-

ables (resp., constraints) in the MILP M(x, y, g; C1, C2) in Stage 4; IP-time: the

time (sec.) to solve the MILP in Stage 4; n, cs, ch, bl: n(G†), cs(G†), ch(G†) and

bl2(G
†) in the chemical 2-lean cyclic graph G† inferred in Stage 4; DP-time: the

5.6 Experimental Results 55

Table 5.5. Results of Stages 4 and 5 for Kow. ©2021 IEEE.

instance y∗ #v #c IP-time n cs ch bl DP-time G-LB #G

Ia 3.00 13801 11356 44.1 47 22 5 3 0.070 2 2

I1b 2.80 43176 11202 561.2 38 6 5 4 0.112 8 2

I2b 2.80 50565 16236 1523.4 50 30 2 0 0.127 3.2× 106 100

I3b 2.80 50634 16249 1214.1 50 30 2 0 0.199 1.0× 105 100

I4b 2.80 50703 16260 1143.9 50 30 2 0 1.940 7.6× 107 100

Ic 0.82 10348 9746 19.8 46 24 4 3 0.129 7 6

Id 0.50 13858 11259 345.3 41 18 4 3 0.179 1.8× 108 100

Table 5.6. Results of Stages 4 and 5 for Bp. ©2021 IEEE.

instance y∗ #v #c IP-time n cs ch bl DP-time G-LB #G

Ia 682 13780 11293 27.1 43 23 4 3 0.069 8 4

I1b 220 43155 11139 648.4 38 6 4 1 0.109 108 7

I2b 220 50544 16173 12058.9 50 30 2 0 0.137 1296 48

I3b 220 50613 16186 7206.3 50 30 2 0 0.169 1.5× 107 100

I4b 220 50682 16197 4981.0 50 30 4 1 0.008 6.0× 104 100

Ic 630 10327 9683 2.39 46 24 4 4 0.067 6 2

Id 220 13837 11196 121.8 45 18 4 3 0.551 5.4× 108 100

running time (sec.) to execute the dynamic programming algorithm in Stage 5;

G-LB: a lower bound on the number of all chemical isomers G∗ of G†; and #G:

the number of all (or up to 100) chemical isomers G∗ of G† generated in Stage 5.

Fig. 5.5(e) illustrates the chemical graph G† inferred from instance Ic with

y∗ = 0.82 of Kow in Table 5.5.

Fig. 5.5(f) illustrates the chemical graph G† inferred from instance Id with

y∗ = 220 of Bp in Table 5.6.

Recall that I1b (resp., Iib, i = 2, 3, 4) is an instance for inferring a chemi-

cal monocyclic graph (resp., a chemical rank-2 graph) G† where the sizes n(G),

cs(G), and ch(G) are specified. Ito et al. [25] and Zhu et al. [61] conducted sim-

ilar experiments for inferring chemical monocyclic and rank-2 chemical graphs

G†, respectively, where their feature vector contains adjacency-configuration as a

descriptor, which is simpler than edge-configuration used as a descriptor in our

feature vector. They solved instances with up to n(G†) = 30. From Tables 5.5

56
Chapter 5 An Inverse Method for Arbitrary Cyclic Chemical

Compounds

Table 5.7. Results of Stages 4 and 5 for Mp. ©2021 IEEE.

instance y∗ #v #c IP-time n cs ch bl DP-time G-LB #G

Ia 284 13699 11119 10.7 49 23 4 4 0.176 12 10

I1b 40 43074 10965 57.2 38 6 5 6 0.173 1200 40

I2b 40 50463 15999 168.8 50 30 5 4 0.237 9.5× 105 100

I3b 40 50532 16012 149.2 50 30 3 2 0.349 2.5× 108 100

I4b 40 50601 16023 61.5 50 30 2 0 1.730 2.0× 106 100

Ic 270 10246 9509 1.71 46 24 4 3 0.065 10 6

Id 240 13756 11022 27.9 44 18 4 4 0.753 2.3× 107 100

to 5.7, we observed that our MILP formulation successfully inferred monocyclic

and rank-2 chemical graphs G† with up to n(G†) = 50 even for our new fea-

ture vector containing the edge-configuration descriptor. Furthermore, both Ito

et al. [25] and Zhu et al. [61] employed in Stage 5 a branching type algorithm

for graph enumeration, which failed to obtain graph structures for instances with

more than 15 non-hydrogen atoms. This is a foreseeable consequence of the com-

binatorial explosion that occurs with branching-type algorithms. On the other

hand, the dynamic-programming based algorithm that we employed in this work

could efficiently construct many graphs out of a huge possible number within well

less than a second of computation time.

Table 5.8 shows the results on Stage 4 when we change the target value y∗

for instance Ia, where we denote the following:

- y∗: a target value for property Mp, where we use values outside the range

[a, a] = [−142.5, 300.0] in Table 5.2 to observe the computational behavior

of the MILP M(x, y, g; C1, C2);

- IP-time: the time (sec.) to solve an MILP in Stage 4;

- status: F means that the MILP was solved and a feasible solution G† was

obtained; inF means that the MILP was solved and no feasible solution

existed; and

- n: the number of non-hydrogen atoms in G† when the status is F;

From Table 5.8, we see that the instance Ia is infeasible for a target value y∗

smaller than 0 or larger than 350, where the infeasibility indicated that Ia admits

no chemical graph G† such that ψN (f(G†)) = y∗. We also observe that solving

an MILP takes a larger computation time for infeasible instances.

5.7 Concluding Remarks 57

Table 5.8. Results of Stage 4 for instance Ia and property Mp. ©2021 IEEE.

y∗ -150 -100 0 100 150 200 250 300 350 850 1000

IP-time 322.1 329.1 432.5 85.1 20.7 27.6 26.2 11.7 68.1 156.5 681.2

status inF inF inF F F F F F F inF inF

n - - - 41 38 48 48 49 49 - -

5.7 Concluding Remarks

In this chapter, we employed the new mechanism of utilizing a target chemical

graph G† obtained in Stage 4 of the framework for inverse QSAR to generate

a larger number of target graphs G∗ in Stage 5. We showed that a family of

graphs G∗ that are chemically isomorphic to G† can be obtained by the dynamic

programming algorithm (see [2] for the details). Based on the new mechanism

of Stage 5, we proposed a target specification on a seed graph as a flexible way

of specifying a family of target chemical graphs. With this specification, we

can realize requirements on partial topological substructure of the core of graphs

and partial assignment of chemical elements and bond-multiplicity within the

framework for inverse QSAR by ANNs and MILPs.

We have implemented the proposed method to construct a system for inferring

chemical compounds with a prescribed topological substructure. The results

of computational experiments using such chemical properties as octanol/water

partition coefficient, boiling point, and melting point, suggest that the proposed

system can infer chemical graphs with 50 non-hydrogen atoms.

The current topological specification proposed in this chapter does not allow

to fix part of the non-core structure of a graph beyond the non-core specification

outlined in Section 5.3. We remark that it is not technically difficult to extend

the MILP formulation in Section 5.4 so that a more general specification for the

non-core structure can be handled.

6 Two-Layered Model with

Linear Regression

6.1 Introduction

After the model of Chapter 5 had been developed, Shi et al. [43] proposed a more

sophisticated model to deal with an arbitrary graph in the framework called a two-

layered model to represent the feature of a chemical graph. Also, the set of rules

for describing a topological specification was refined so that a prescribed structure

can be included in both of the acyclic and cyclic parts of a chemical graph C. In
this model, for a chemical graph C with an integer ρ ≥ 1, we consider two parts,

namely, the exterior and the interior of the hydrogen-suppressed graph ⟨C⟩ that is
obtained by removing hydrogens from C. The exterior consists of maximal acyclic

induced subgraphs with height at most ρ in ⟨C⟩ and the interior is the connected

subgraph of ⟨C⟩ obtained by excluding the exterior. Shi et al. [43] also defined a

feature vector f(C) of a chemical graph C as a combination of the frequency of

adjacent atom pairs in the interior and the frequency of chemical acyclic graphs

among the set of chemical rooted trees Tu rooted at interior-vertices u. Recently,

Tanaka et al. [49] extended the model in order to directly treat a chemical graph

with hydrogens so that the feature of the exterior can be represented with more

variety of chemical rooted trees.

The contribution of this chapter is consists of two parts. Firstly, we make a

slight modification to a model of chemical graphs proposed by Tanaka et al. [49]

so that we can treat a chemical element with multi-valence such as sulfur S and

a chemical graph with cations and anions. Second, we employ linear regression

as the learning method in Stage 3. One of the most important factors in the

framework is the quality of a prediction function η constructed in Stage 3. Also,

overfitting is pointed out as a major issue in ANN-based approaches for QSAR

because many parameters need to be optimized for ANNs [16]. In this chapter,

to construct a prediction function in Stage 3, we use linear regression instead

of ANNs or decision trees. A learning algorithm for an ANN may not find a

set of weights and biases that minimizes the error function since the algorithm

simply iterates modification of the current weights and biases until it terminates

59

60 Chapter 6 Two-Layered Model with Linear Regression

at a local minimum value, and linear regression is much simpler than ANNs and

decision trees and thereby we regard the performance of a prediction function

by linear regression as the basis for other more sophisticated machine learning

methods. In this chapter, we derive an MILP formulation M(x, y; C1) in Stage 4

to simulate the computation process of a prediction function by linear regression.

For an MILP formulation M(x, g; C2) that represents a feature function f and a

specification σ in Stage 4, we can use the same formulation proposed by Tanaka

et al. [49] with a slight modification. In Stage 5, we can also use the dynamic

programming algorithm due to Azam et al. [5] with a slight modification to

generate target chemical graphs C∗ and the details are omitted.

We implemented the framework based on the refined two-layered model and

a prediction function by linear regression. The results of our computational

experiments reveal a set of chemical properties to which a prediction function

constructed by linear regression on our feature function performs well, in com-

parison with ANNs in our previous work. We also observe that chemical graphs

with up to 50 non-hydrogen atoms can be inferred by the proposed method.

The rest of this chapter is organized as follows. Section 6.2 reviews the two-

layered model and describes our modification. Section 6.3 reviews the idea of

linear regression and formulates an MILP M(x, y; C1) that simulates the com-

puting process of a prediction function constructed by linear regression. Sec-

tion 6.4 reports the results of some computational experiments conducted for 18

chemical properties such as vapor density and optical rotation. Section 6.5 gives

conclusions with future work. We refer [63] for the complete MILP formulations.

6.2 Two-layered Model

This section reviews the idea of the two-layered model introduced by Shi et al. [43],

and describes our modifications to the model.

Let C = (H,α, β) be a chemical graph and ρ ≥ 1 be an integer, which is

called a branch-parameter.

A two-layered model of C introduced by Shi et al. [43] is a partition of the

hydrogen-suppressed chemical graph ⟨C⟩ into an “interior” and an “exterior” in

the following way. We call a vertex v ∈ V (⟨C⟩) (resp., an edge e ∈ E(⟨C⟩))
of G an exterior-vertex (resp., exterior-edge) if ht(v) < ρ (resp., e is incident

to an exterior-vertex) and denote the sets of exterior-vertices and exterior-edges

by V ex(C) and Eex(C), respectively and denote V int(C) = V (⟨C⟩) \ V ex(C) and
Eint(C) = E(⟨C⟩) \ Eex(C), respectively. We call a vertex in V int(C) (resp.,

an edge in Eint(C)) an interior-vertex (resp., interior-edge). The set Eex(C) of

6.2 Two-layered Model 61

w16

w17

w18

C

O

C C

a10

a12 a14

a13 a15

a16a11

a8

a9

a6

u14

u16

u13

u15

u18
u20

u17

u19 u22

u21
u11u7

u9

u1

u2

u6
u4

u8
u12

u5

u3

u23

u10

a17

w10

w11

w13w12w1

w9

w4

w7

w14

w8

w15

w2

w5

w3

w6N

O

O

C

C

C

O

C

C

C

C

O

C

O

C

C

u27

u25

u24

u26

u28
w19

Pa2

Pa4

Qu5
Qu22C

O

N

C

P

C

CC

C
C

C

C

C

C

C

C
C

C

C

C

C

C

+

O

N

-

S(2)

S(6)

Qu18

Pa3

Pa1

Pa5

-
N

Figure 6.1. An illustration of a hydrogen-suppressed chemical graph ⟨C⟩ ob-

tained from a chemical graph C with r(C) = 4 by removing all the hydrogens,

where for ρ = 2, V ex(C) = {wi | i ∈ [1, 19]} and V int(C) = {ui | i ∈ [1, 28]}.

exterior-edges forms a collection of connected graphs each of which is regarded

as a rooted tree T rooted at the vertex v ∈ V (T) with the maximum ht(v). Let

T ex(⟨C⟩) denote the set of these chemical rooted trees in ⟨C⟩. The interior Cint

of C is defined to be the subgraph (V int(C), Eint(C)) of ⟨C⟩.
Figure 6.1 illustrates an example of a hydrogen-suppressed chemical graph

⟨C⟩. For a branch-parameter ρ = 2, the interior of the chemical graph ⟨C⟩ in

Figure 6.1 is obtained by removing the set of vertices with degree 1 ρ = 2 times;

i.e., first remove the set V1 = {w1, w2, . . . , w14} of vertices of degree 1 in ⟨C⟩ and
then remove the set V2 = {w15, w16, . . . , w19} of vertices of degree 1 in ⟨C⟩ − V1,

where the removed vertices become the exterior-vertices of ⟨C⟩.
For each interior-vertex u ∈ V int(C), let Tu ∈ T ex(⟨C⟩) denote the chemical

tree rooted at u (where possibly Tu consists of vertex u) and define the ρ-fringe-

tree C[u] to be the chemical rooted tree obtained from Tu by putting back the

hydrogens originally attached to Tu in C. Let T (C) denote the set of ρ-fringe-

trees C[u], u ∈ V int(C). Figure 6.2 illustrates the set T (C) = {C[ui] | i ∈ [1, 28]}
of the 2-fringe-trees of the example C in Figure 6.1.

Feature Function We extend the feature function of a chemical graph C in-

troduced by Tanaka et al. [49].

For an integer K, a feature vector f(C) of a chemical graph C is defined by a

feature function f that consists of K descriptors. We call RK the feature space.

Tanaka et al. [49] defined a feature vector f(C) ∈ RK to be a combination

of the frequency of edge-configurations of the interior-edges and the frequency

of chemical rooted trees among the set of chemical rooted trees C[u] over all

interior-vertices u. In this chapter, we introduce the rank and the adjacency-

62 Chapter 6 Two-Layered Model with Linear Regression

OCC C

O

C

C

H

C

CCOC

O

C

C

O

C

C N

N

H

C

H

C

H

C

H

C

H

C

H

N

H

C

H

C

H

C

H

C

C

H H

C

H H

C

H H

C

H H

C

H H

C

S(2)P

C

C

O

N

C O
-

 [u11] [u6] [u7]

 [u12]

 [u8] [u10]

 [u14]

 [u15]

 [u1]

 [u2]

 [u9]

 [u13] [u3] [u4] [u5]

 [u17] [u16] [u19] [u22]

 [u28]

 [u21]

 [u23] [u24]

 [u25] [u20] [u26]

 [u27]

C

 [u18]

-

+

H
H

y19

O

S(6)

y4

y11y11y11

y11

y6y6y6y6

y6y6y6y6 y11

y1

y1y1y1

y8

y2

y15

y27

y23

y24y26
y30y25

Figure 6.2. The set T (C) of 2-fringe-trees C[ui], i ∈ [1, 28] of the example C
in Figure 6.1, where the root of each tree is depicted with a gray circle and the

hydrogens attached to non-root vertices are omitted in the figure.

configuration of leaf-edges as new descriptors in a feature vector of a chemical

graph.

6.2.1 A Full Description of Descriptors

In Shi et al. [43], to represent a feature of the exterior of C, a chemical rooted tree

in T (C) is called a fringe-configuration of C. In this chapter, we also represent

leaf-edges in the exterior of C. For a leaf-edge uv ∈ E(⟨C⟩) with deg⟨C⟩(u) = 1, we

define the adjacency-configuration of e to be an ordered tuple (α(u), α(v), β(uv)).

Define

Γlf
ac ≜ {(a, b,m) | a, b ∈ Λ,m ∈ [1,min{val(a), val(b)}]}

as a set of possible adjacency-configurations for leaf-edges.

Let π be a chemical property for which we will construct a prediction function

η from a feature vector f(C) of a chemical graph C to a predicted value y ∈ R
for the chemical property of C.

We first choose a set Λ of chemical elements and then collect a data set Dπ

of chemical compounds C whose chemical elements belong to Λ, where we regard

Dπ as a set of chemical graphs C that represent the chemical compounds C in

Dπ. To define the interior/exterior of chemical graphs C ∈ Dπ, we next choose a

branch-parameter ρ, where we recommend ρ = 2.

Let Λint(Dπ) ⊆ Λ (resp., Λex(Dπ) ⊆ Λ) denote the set of chemical elements

used in the set V int(C) of interior-vertices (resp., the set V ex(C) of exterior-

vertices) of C over all chemical graphs C ∈ Dπ, and Γint(Dπ) denote the set of

edge-configurations used in the set Eint(C) of interior-edges in C over all chemical

6.2 Two-layered Model 63

graphs C ∈ Dπ. Let F(Dπ) denote the set of chemical rooted trees ψ r-isomorphic

to a chemical rooted tree in T (C) over all chemical graphs C ∈ Dπ, where possibly

a chemical rooted tree ψ ∈ F(Dπ) consists of a single chemical element a ∈ Λ\{H}.
We define an integer encoding of a finite set A of elements to be a bijection

σ : A→ [1, |A|], where we denote by [A] the set [1, |A|] of integers. Introduce an

integer coding of each of the sets Λint(Dπ), Λ
ex(Dπ), Γ

int(Dπ) and F(Dπ). Let

[a]int (resp., [a]ex) denote the coded integer of an element a ∈ Λint(Dπ) (resp.,

a ∈ Λex(Dπ)), [γ] denote the coded integer of an element γ in Γint(Dπ) and [ψ]

denote an element ψ in F(Dπ).

Over 99% of chemical compounds C with up to 100 non-hydrogen atoms in

PubChem have degree at most 4 in the hydrogen-suppressed graph ⟨C⟩. We

assume that a chemical graph C treated in this chapter satisfies deg⟨C⟩(v) ≤ 4 in

the hydrogen-suppressed graph ⟨C⟩.
In our model, we use an integer mass∗(a) = ⌊10 ·mass(a)⌋, for each a ∈ Λ.

We define the feature vector f(C) of a chemical graph C = (H,α, β) ∈ Dπ to

be a vector that consists of the following non-negative real descriptors dcpi(C),
i ∈ [1,K], where K = 14+ |Λint(Dπ)|+ |Λex(Dπ)|+ |Γint(Dπ)|+ |F(Dπ)|+ |Γlf

ac|.

1. dcp1(C): the number |V (H)| − |VH| of non-hydrogen atoms in C.

2. dcp2(C): the rank r(C) of C.

3. dcp3(C): the number |V int(C)| of interior-vertices in C.

4. dcp4(C): the average ms(C) of mass∗ over all atoms in C;
i.e., ms(C) ≜ 1

|V (H)|
∑

v∈V (H)mass∗(α(v)).

5. dcpi(C), i = 4 + d, d ∈ [1, 4]: the number dgHd(C) of non-hydrogen vertices

v ∈ V (H) \ VH of degree deg⟨C⟩(v) = d in the hydrogen-suppressed chemical

graph ⟨C⟩.

6. dcpi(C), i = 8 + d, d ∈ [1, 4]: the number dgintd (C) of interior-vertices of

interior-degree degCint(v) = d in the interior Cint = (V int(C), Eint(C)) of C.

7. dcpi(C), i = 12 +m, m ∈ [2, 3]: the number bdintm (C) of interior-edges with
bond multiplicity m in C; i.e., bdintm (C) ≜ {e ∈ Eint(C) | β(e) = m}.

8. dcpi(C), i = 14 + [a]int, a ∈ Λint(Dπ): the frequency nainta (C) = |Va(C) ∩
V int(C)| of chemical element a in the set V int(C) of interior-vertices in C.

9. dcpi(C), i = 14 + |Λint(Dπ)| + [a]ex, a ∈ Λex(Dπ): the frequency naexa (C) =
|Va(C)∩V ex(C)| of chemical element a in the set V ex(C) of exterior-vertices
in C.

64 Chapter 6 Two-Layered Model with Linear Regression

H
H

H HH

H
H

H
H

u23

a10

a12

a3 u11

a14

a4
u7

a13

a5u9

u10

a15

a16

u1

u2

a11

a8

u6

u4
a9

a6u8
u12

a1

a7

u5

u3

a2

(a) A seed graph GC=(VC,EC) (b) A set of chemical rooted trees

a17

: E(＞2)={a1,a2,...,a5}

: E(＞1)={a6}

: E(0/1)={a7}

: E(=1)={a8,a9,...,a17}

-

-

H

y1 y3y2 y4

y6

y5

y7 y9y8 y11 y12

C

N

O

N

CC

C

C

O

C

O

C

C

C

C

CCCCC

CC

O O

CCC

C

C
N

y10

O

C

C

H

H

CC O

H

NN

H

O

C

C

y14

y15

y13

y17y16 y19 y20y18 y21

H H

C

H H

N

CC

CC

N

C O
-

O

S(6)

OC

S(2)

C

N N

C

P

O

H

P

H H

PS(2) S(6)

y24 y26 y28 y30y29

y22 y23

y25 y27

+

- +

Figure 6.3. (a) An illustration of a seed graph GC with r(GC) = 5 where the

vertices in VC are depicted with gray circles, the edges in E(≥2) are depicted with

dotted lines, the edges in E(≥1) are depicted with dashed lines, the edges in E(0/1)

are depicted with gray bold lines and the edges in E(=1) are depicted with black

solid lines; (b) A set F = {ψ1, ψ2, . . . , ψ30} ⊆ F(Dπ) of 30 chemical rooted trees

ψi, i ∈ [1, 30], where the root of each tree is depicted with a gray circle, where

the hydrogens attached to non-root vertices are omitted in the figure.

10. dcpi(C), i = 14 + |Λint(Dπ)| + |Λex(Dπ)| + [γ], γ ∈ Γint(Dπ): the frequency

ecγ(C) of edge-configuration γ in the set Eint(C) of interior-edges in C.

11. dcpi(C), i = 14 + |Λint(Dπ)|+ |Λex(Dπ)|+ |Γint(Dπ)|+ [ψ], ψ ∈ F(Dπ): the

frequency fcψ(C) of fringe-configuration ψ in the set of ρ-fringe-trees in C.

12. dcpi(C), i = 14+ |Λint(Dπ)|+ |Λex(Dπ)|+ |Γint(Dπ)|+ |F(Dπ)|+[ν], ν ∈ Γlf
ac:

the frequency aclfν (C) of adjacency-configuration ν in the set of leaf-edges in

⟨C⟩.

6.2.2 Topological Specification

A topological specification is described as a set of the following rules proposed

by Shi et al. [43] and modified by Tanaka et al. [49]:

(i) a seed graph GC as an abstract form of a target chemical graph C;
(ii) a set F of chemical rooted trees as candidates for a tree C[u] rooted at each

exterior-vertex u in C; and
(iii) lower and upper bounds on the number of components in a target chemi-

cal graph such as chemical elements, double/triple bounds and the interior-

vertices in C.
Figures 6.3(a) and (b) illustrate examples of a seed graph GC and a set F

6.3 Linear Regression 65

of chemical rooted trees, respectively. Given a seed graph GC, the interior of a

target chemical graph C is constructed from GC by replacing some edges a = uv

with paths Pa between the end-vertices u and v and by attaching new paths Qv to

some vertices v. For example, a chemical graph ⟨C⟩ in Figure 6.1 is constructed

from the seed graph GC in Figure 6.3(a) as follows.

- First replace five edges a1 = u1u2, a2 = u1u3, a3 = u4u7, a4 = u10u11 and a5 =

u11u12 in GC with new paths Pa1 = (u1, u13, u2), Pa2 = (u1, u14, u3), Pa3 =

(u4, u15, u16, u7), Pa4 = (u10, u17, u18, u19, u11) and Pa5 = (u11, u20, u21, u22, u12),

respectively to obtain a subgraph G1 of ⟨C⟩.
- Next attach to this graph G1 three new paths Qu5 = (u5, u24), Qu18 =

(u18, u25, u26, u27) and Qu22 = (u22, u28) to obtain the interior of ⟨C⟩ in Fig-

ure 6.1.

- Finally attach to the interior 28 trees selected from the set F and assign

chemical elements and bond-multiplicities in the interior to obtain a chemical

graph C in Figure 6.1. In Figure 6.2, ψ1 ∈ F is selected for C[ui], i ∈ {6, 7, 11}.
Similarly ψ2 for C[u9], ψ4 for C[u1], ψ6 for C[ui], i ∈ {3, 4, 5, 10, 19, 22, 25, 26},
ψ8 for C[u8], ψ11 for C[ui], i ∈ {2, 13, 16, 17, 20}, ψ15 for C[u12], ψ19 for C[u15],
ψ23 for C[u21], ψ24 for C[u24], ψ25 for C[u27], ψ26 for C[u23], ψ27 for C[u14] and
ψ30 for C[u28].
Our definition of a topological specification is analogous with the one by

Tanaka et al. [49] except for a necessary modification due to the introduction

of multiple valences of chemical elements, cations and anions (see [63] for a full

description of topological specification).

6.3 Linear Regression

Let D be a data set of chemical graphs C with an observed value a(C) ∈ R, where
we denote by ai = a(Ci) for an indexed graph Ci.

Let f be a feature function that maps a chemical graph C to a vector f(C) ∈
RK where we denote by xi = f(Ci) for an indexed graph Ci.

For a feature space RK , a hyperplane is denoted by a pair (w, b) of a vector

w ∈ RK and a real b ∈ R. Given a hyperplane (w, b) ∈ RK+1, a prediction

function ηw,b : RK → R is defined by setting

ηw,b(x) ≜ w · x+ b =
∑

j∈[1,K]

w(j)x(j) + b.

We wish to find a hyperplane (w, b) that minimizes the error function Err(ηw,b;D).

In many cases, a feature vector f contains descriptors that do not play an essential

role in constructing a good prediction function. When we solve the minimization

66 Chapter 6 Two-Layered Model with Linear Regression

problem, the entries w(j) for some descriptors j ∈ [1,K] in the resulting hyper-

plane (w, b) become zero, which means that these descriptors were not necessarily

important for finding a prediction function ηw,b. It is proposed that solving the

minimization with an additional penalty term τ to the error function often results

in more number of entries w(j) = 0, reducing a set of descriptors necessary for

defining a prediction function ηw,b. For an error function with such a penalty

term, a Ridge function 1
2|D|Err(ηw,b;D) + λ[

∑
j∈[1,K]w(j)

2 + b2] [21, 22] and a

Lasso function 1
2|D|Err(ηw,b;D) + λ[

∑
j∈[1,K] |w(j)| + |b|] [52] are known, where

λ ∈ R+ is a given real number.

Given a prediction function ηw,b, we can simulate a process of computing the

output ηw,b(x) for an input x ∈ RK as an MILP M(x, y; C1) in the framework.

By solving such an MILP for a specified target value y∗, we can find a vector

x∗ ∈ RK such that ηw,b(x
∗) = y∗. Instead of specifying a single target value y∗,

we use lower and upper bounds y∗, y∗ ∈ R on the value a(C) of a chemical graph

C to be inferred. We can control the range between y∗ and y∗ for searching a

chemical graph C by setting y∗ and y∗ to be close or different values. A desired

MILP is formulated as follows.

M(x, y; C1): An MILP formulation for the inverse problem to predic-

tion function

constants:

- A hyperplane (w, b) with w ∈ RK and b ∈ R;
- Real values y∗, y∗ ∈ R such that y∗ < y∗;

- A set IZ of indices j ∈ [1,K] such that the j-th descriptor dcpj(C) is always

an integer;

- A set I+ of indices j ∈ [1,K] such that the j-th descriptor dcpj(C) is always
non-negative;

- ℓ(j), u(j) ∈ R, j ∈ [1,K]: lower and upper bounds on the j-th descriptor;

variables:

- Non-negative integer variable x(j) ∈ Z+, j ∈ IZ ∩ I+;
- Integer variable x(j) ∈ Z, j ∈ IZ \ I+;
- Non-negative real variable x(j) ∈ R+, j ∈ I+ \ IZ;
- Real variable x(j) ∈ R, j ∈ [1,K] \ (IZ ∪ I+);

constraints:

ℓ(j) ≤ x(j) ≤ u(j), j ∈ [1,K]; y∗ ≤
∑

j∈[1,K]

w(j)x(j) + b ≤ y∗,

6.4 Experimental Results 67

objective function:

none.

The number of variables and constraints in the above MILP formulation is

O(K). It is not difficult to see that the above MILP is an NP-hard problem. The

entire MILP for Stage 4 consists of the two MILPs M(x, y; C1) and M(x, g; C2)
with no objective function. The latter represents the computation process of our

feature function f and a given topological specification. See [63] for the details

of MILP M(x, g; C2).

6.4 Experimental Results

We implemented our method of Stages 1 to 5 for inferring chemical graphs un-

der a given topological specification and conducted experiments to evaluate the

computational efficiency. We executed the experiments on a PC with Processor:

Core i7-9700 (3.0 GHz; 4.7 GHz at the maximum) and Memory: 16 GB RAM

DDR4.

Results on Phase 1. We have conducted experiments of linear regression

for 37 chemical properties among which we report the following 18 properties to

which the test coefficient of determination R2 attains at least 0.8: octanol/water

partition coefficient (Kow), heat of combustion (Hc), vapor density (Vd), optical

rotation (OptR), electron density on the most positive atom (EDPA), melting

point (Mp), heat of atomization (Ha), heat of formation (Hf), internal energy

at 0K (U0), energy of lowest unoccupied molecular orbital (Lumo), isotropic

polarizability (Alpha), heat capacity at 298.15K (Cv), solubility (Sl), surface

tension (SfT), viscosity (Vis), isobaric heat capacities in liquid phase (IhcLiq),

isobaric heat capacities in solid phase (IhcSol) and lipophilicity (Lp).

We used data sets provided by HSDB from PubChem [27] for Kow, Hc, Vd

and OptR, M. Jalali-Heravi and M. Fatemi [26] for EDPA, Roy and Saha [39] for

Mp, Ha and Hf, MoleculeNet [54] for U0, Lumo, Alpha, Cv and Sl, Goussard

et al. [19] for SfT andVis, R. Naef [34] for IhcLiq and IhcSol, and Figshare [53]

for Lp.

Properties U0, Lumo, Alpha and Cv share a common original data set

D∗ with more than 130,000 compounds, and we used a set Dπ of 1,000 graphs

randomly selected from D∗ as a common data set of these four properties π in

this experiment.

Stages 1, 2 and 3 in Phase 1 are implemented as follows.

Stage 1. We set a graph class G to be the set of all chemical graphs with any

68 Chapter 6 Two-Layered Model with Linear Regression

graph structure, and set a branch-parameter ρ to be 2.

For each of the properties, we first select a set Λ of chemical elements and

then collect a data set Dπ on chemical graphs over the set Λ of chemical elements.

During construction of the data set Dπ, chemical compounds that do not satisfy

one of the following are eliminated: the graph is connected, the number of non-

hydrogen neighbors of each atom is at most four, and the number of carbon atoms

is at least four.

Table 6.1 shows the size and range of data sets that we prepared for each

chemical property in Stage 1, where we denote the following:

- Λ: the set of elements used in the data set Dπ; Λ is one of the following 11 sets:

Λ1 = {H, C, O}; Λ2 = {H, C, O, N}; Λ3 = {H, C, O, S(2)}; Λ4 = {H, C, O, Si}; Λ5 =

{H, C, O, N, Cl, P(3), P(5)}; Λ6 = {H, C, O, N, S(2), F}; Λ7 = {H, C, O, N, S(2), S(6), Cl};
Λ8 = {H, C(2), C(3), C(4), O, N(2), N(3)}; Λ9 = {H, C, O, N, S(2), S(4), S(6), Cl}; Λ10 =

{H, C(2), C(3), C(4), C(5), O, N(1), N(2), N(3), F}; and
Λ11 = {H, C(2), C(3), C(4), O, N(2), N(3), S(2), S(4), S(6), Cl}, where e(i) for a chemical

element e and an integer i ≥ 1 means that a chemical element e with valence

i.

- |Dπ|: the size of data set Dπ over Λ for the property π.

- n, n: the minimum and maximum values of the number n(C) of non-hydrogen
atoms in compounds C in Dπ.

- a, a: the minimum and maximum values of a(C) for π over compounds C in

Dπ.

- |Γ|: the number of different edge-configurations of interior-edges over the com-

pounds in Dπ.

- |F|: the number of non-isomorphic chemical rooted trees in the set of all

2-fringe-trees in the compounds in Dπ.

- K: the number of descriptors in a feature vector f(C).

Stage 2. The newly defined feature function in our chemical model without

suppressing hydrogen in Section 6.2 is used. We normalize the range of each

descriptor and the range {t ∈ R | a ≤ t ≤ a} of property values a(C),C ∈ Dπ.

Stage 3. For each chemical property π, we select a penalty value λπ in the Lasso

function from 36 different values from 0 to 100 by conducting linear regression

as a preliminary experiment.

We conducted an experiment in Stage 3 to evaluate the performance of the

prediction function based on cross-validation. For a property π, an execution

of a cross-validation consists of five trials of constructing a prediction function

as follows. First partition the data set Dπ into five subsets D(k), k ∈ [1, 5]

randomly. For each k ∈ [1, 5], the k-th trial constructs a prediction function η(k)

6.4 Experimental Results 69

Table 6.1. Results in Phase 1.

π Λ |Dπ| n, n a, a |Γ| |F| K λπ K ′ test R2

Kow Λ2 684 4, 58 -7.5, 15.6 25 166 223 6.4E−5 80.3 0.953

Kow Λ9 899 4, 69 -7.5, 15.6 37 219 303 5.5E−5 112.1 0.927

Hc Λ2 255 4, 63 49.6, 35099.6 17 106 154 1.9E−4 19.2 0.946

Hc Λ7 282 4, 63 49.6, 35099.6 21 118 177 1.9E−4 20.5 0.951

Vd Λ2 474 4, 30 0.7, 20.6 21 160 214 1.0E−3 3.6 0.927

Vd Λ5 551 4, 30 0.7, 20.6 24 191 256 5.5E−4 8.0 0.942

OptR Λ2 147 5, 44 -117.0, 165.0 21 55 107 4.6E−4 39.2 0.823

OptR Λ6 157 5, 69 -117.0, 165.0 25 62 123 7.3E−4 41.7 0.825

EDPA Λ1 52 11, 16 0.80, 3.76 9 33 64 1.0E−4 10.9 0.999

Mp Λ2 467 4, 122 -185.33, 300.0 23 142 197 3.7E−5 82.5 0.817

Ha Λ3 115 4, 11 1100.6, 3009.6 8 83 115 3.7E−5 39.0 0.997

Hf Λ1 82 4, 16 30.2, 94.8 5 50 74 1.0E−4 34.0 0.987

U0 Λ10 977 4, 9 -570.6, -272.8 59 190 297 1.0E−7 246.7 0.999

Lumo Λ10 977 4, 9 -0.11, 0.10 59 190 297 6.4E−5 133.9 0.841

Alpha Λ10 977 4, 9 50.9, 99.6 59 190 297 1.0E−5 125.5 0.961

Cv Λ10 977 4, 9 19.2, 44.0 59 190 297 1.0E−5 165.3 0.961

Sl Λ9 915 4, 55 -11.6, 1.11 42 207 300 7.3E−5 130.6 0.808

SfT Λ4 247 5, 33 12.3, 45.1 11 91 128 6.4E−4 20.9 0.804

Vis Λ4 282 5, 36 -0.64, 1.63 12 88 126 8.2E−4 16.3 0.893

IhcLiq Λ2 770 4, 78 106.3, 1956.1 23 200 256 1.9E−5 82.2 0.987

IhcLiq Λ7 865 4, 78 106.3, 1956.1 29 246 316 8.2E−6 139.1 0.986

IhcSol Λ8 581 5, 70 67.4, 1220.9 33 124 192 2.8E−5 75.9 0.985

IhcSol Λ11 668 5, 70 67.4, 1220.9 40 140 228 2.8E−5 86.7 0.982

Lp Λ2 615 6, 60 -3.62, 6.84 32 116 186 1.0E−4 98.5 0.856

Lp Λ9 936 6, 74 -3.62, 6.84 44 136 231 6.4E−5 130.4 0.840

by conducting a linear regression with the penalty term λπ using the set Dπ \D(k)

as a training data set. We used scikit-learn version 0.23.2 with Python 3.8.5 for

executing linear regression with Lasso function. For each property, we executed

ten cross-validations and we show the median of test R2(η(k), D(k)), k ∈ [1, 5] over

all ten cross-validations. Recall that a subset of descriptors is selected in linear

regression with Lasso function and let K ′ denote the average number of selected

descriptors over all 50 trials. The running time per trial in a cross-validation was

at most one second.

Table 6.1 shows the results on Stages 2 and 3, where we denote the following:

- λπ: the penalty value in the Lasso function selected for a property π, where

70 Chapter 6 Two-Layered Model with Linear Regression

H H
H

HH

C

H

H HH

C

H
H

y1: y3:y2:

O

C

C

C

C

C

O

Figure 6.4. An illustration of chemical rooted trees ψ1, ψ1 and ψ3 that are se-

lected in Lasso linear regression for constructing a prediction function to property

Vd, where the root is depicted with a gray circle.

aEb means a× 10b.

- K ′: the average of the number of descriptors selected in the linear regression

over all 50 trials in ten cross-validations.

- test R2: the median of test R2 over all 50 trials in ten cross-validations.

Recall that the adjacency-configuration for leaf-edges was introduced as a new

descriptor in this chapter. Without including this new descriptor, the test R2 for

property Vis was 0.790, that for Lumo was 0.799 and that for Mp was 0.796,

while the test R2 for each of the other properties in Table 6.1 was almost the

same.

From Table 6.1, we observe that a relatively large number of properties ad-

mit a good prediction function based on linear regression. The number K ′ of

descriptors used in linear regression is considerably small for some properties.

For example of property Vd, the four descriptors most frequently selected in the

case of Λ = {H, O, C, N} are the number of non-hydrogen atoms; the number of

interior-vertices v with degCint(v) = 1; the number of fringe-trees r-isomorphic

to the chemical rooted tree ψ1 in Figure 6.4; and the number of leaf-edges with

adjacency-configuration (O, C, 2). The eight descriptors most frequently selected

in the case of Λ = {H, O, C, N, Cl, P(3), P(5)} are the number of non-hydrogen atoms;

the number of interior-vertices v with degCint(v) = 1; the number of exterior-

vertices v with α(v) = Cl; the number of interior-edges with edge-configuration

γi, i = 1, 2, where γ1 = (C2, C2, 2) and γ2 = (C3, C4, 1); and the number of fringe-

trees r-isomorphic to the chemical rooted tree ψi, i = 1, 2, 3 in Figure 6.4.

For the 18 properties listed in Table 6.1, we used ANN to construct prediction

functions. For this purpose, we used our newly proposed feature vector and the

experimental setup as explained in Tanaka et al. [49]. From these computation

experiments, we observe that for the properties Hc, Vd, Ha, Hf, U0, Alpha

and Cv, the test R2 scores of the prediction functions obtained by Lasso linear

regression is at least 0.05 more than those obtained by ANN. For the properties

OptR, Sl and SfT, the test R2 scores of the prediction functions obtained by

ANN is at least 0.05 more than those obtained by Lasso linear regression. For

6.4 Experimental Results 71

a1

a2
u1

u2

a1

u3u1 u2
u4

a5a4

a3
a2

u3u1 u2 u4

a1

a5a4

a3

u3u1 u2 u4

a1

a5a4

a3

a2

a2

(i) GC
1

(iii) GC
3

(iv) GC
4

(ii) GC
2

Figure 6.5. (i) Seed graph G1
C for I1b and Id; (ii) Seed graph G2

C for I2b; (iii)

Seed graph G3
C for I3b; (iv) Seed graph G4

C for I4b.

(a) A: CID 24822711 (b) B: CID 59170444 (c) A: CID 10076784 (d) B: CID 44340250

Figure 6.6. An illustration of chemical compounds for instances Ic and Id: (a)

CA: CID 24822711; (b) CB: CID 59170444; (c) CA: CID 10076784; (d) CB:
CID 44340250, where hydrogens are omitted.

the other properties, the test R2 scores obtained by Lasso linear regression and

ANN are comparable.

Results on Phase 2. We used a set of seven instances Ia, I
i
b, i ∈ [1, 4], Ic and

Id based on seed graphs prepared by Shi et al. [43] to execute Stages 4 and 5 in

Phase 2. We here present their seed graphs GC (see [63] for the details of instances

Ia, I
i
b, i ∈ [1, 4], Ic and Id). The seed graph GC of instance Ia is illustrated in

Figure 6.3(a). The seed graph G1
C (resp., GiC, i = 2, 3, 4) of instances I1b and Id

(resp., Iib, i = 2, 3, 4) is illustrated in Figure 6.5.

Instance Ic has been introduced by Shi et al. [43] in order to infer a chemical

graph C† such that the core of C† is the same as the core of chemical graph CA:
CID 24822711 in Figure 6.6(a) and the frequency of each edge-configuration in

the non-core of C† is the same as that of chemical graph CB: CID 59170444

illustrated in Figure 6.6(b). This means that the seed graph GC of Ic is the core

of CA which is indicated by a shaded area in Figure 6.6(a).

Instance Id has been introduced by Shi et al. [43] in order to infer a monocyclic

chemical graph C† such that the frequency vector of edge-configurations in C† is

a vector obtained by merging those of two chemical graphs CA: CID 10076784

and CB: CID 44340250 illustrated in Figure 6.6(c) and (d), respectively.

Stage 4. We executed Stage 4 for five properties π ∈ {Hc, Vd, OptR, IhcLiq,

72 Chapter 6 Two-Layered Model with Linear Regression

Table 6.2. Results of Stages 4 and 5 for Hc using Lasso linear regression.

inst. y∗, y∗ #v #c I-time n nint η(f(C†)) D-time C-LB #C

Ia 5950, 6050 9902 9255 4.6 44 25 5977.9 0.068 1 1

I1b 5950, 6050 9404 6776 1.7 36 10 6007.1 0.048 6 6

I2b 5950, 6050 11729 9891 16.7 50 25 6043.7 38.7 2.4×105 100

I3b 5950, 6050 11510 9894 16.3 47 25 6015.4 0.353 8724 100

I4b 5950, 6050 11291 9897 9.0 49 26 5971.6 0.304 84 84

Ic 13700, 13800 6915 7278 0.7 50 33 13703.3 0.016 1 1

Id 13700, 13800 5535 6781 4.9 44 23 13704.7 0.564 4.3×105 100

Vis}.
For the MILP formulation M(x, y; C1) in Section 6.3, we use the prediction

function ηw,b that attained the median test R2 in Table 6.1. We used CPLEX ver-

sion 12.10 to solve an MILP in Stage 4. Tables 6.2 to 6.6 show the computational

results of the experiment in Stage 4 for the five properties, where we denote the

following:

- y∗, y∗: lower and upper bounds y∗, y∗ ∈ R on the value a(C) of a chemical

graph C to be inferred;

- #v (resp., #c): the number of variables (resp., constraints) in the MILP in

Stage 4;

- I-time: the time (sec.) to solve the MILP in Stage 4;

- n: the number n(C†) of non-hydrogen atoms in the chemical graph C† inferred

in Stage 4; and

- nint: the number nint(C†) of interior-vertices in the chemical graph C† inferred

in Stage 4;

- η(f(C†)): the predicted property value η(f(C†)) of the chemical graph C†

inferred in Stage 4.

From Tables 6.2 to 6.6, we observe that an instance with a large number of

variables and constraints takes more running time than those with a smaller size

in general. We solved all instances in this experiment with our MILP formulation

in a few seconds to around 30 seconds.

Figure 6.7(a)-(e) illustrate the chemical graphs C† inferred from Ic with

(y∗, y∗) = (13700, 13800) of Hc, I2b with (y∗, y∗) = (21, 22) of Vd, I4b with

(y∗, y∗) = (70, 71) of OptR, Id with (y∗, y∗) = (1190, 1210) of IhcLiq, and

I3b with (y∗, y∗) = (1.85, 1.90) of Vis, respectively.

Similarly, we executed Stage 4 for these seven instances Ia, I
i
b, i ∈ [1, 4],

6.4 Experimental Results 73

Table 6.3. Results of Stages 4 and 5 for Vd using Lasso linear regression.

inst. y∗, y∗ #v #c I-time n nint η(f(C†)) D-time C-LB #C

Ia 16, 17 9481 9358 1.6 38 23 16.83 0.070 1 1

I1b 16, 17 9928 6986 1.5 35 12 16.68 0.206 48 48

I2b 21, 22 12373 10101 10.0 48 25 21.62 0.104 20 20

I3b 21, 22 12159 10104 6.5 48 25 21.95 3.65 8.6×105 100

I4b 21, 22 11945 10107 8.1 48 25 21.34 0.057 6 6

Ic 21, 22 7073 7438 0.7 50 34 21.89 0.016 1 1

Id 17, 18 5693 6942 2.1 41 23 17.94 0.161 216 100

Table 6.4. Results of Stages 4 and 5 for OptR using Lasso linear regression.

inst. y∗, y∗ #v #c I-time n nint η(f(C†)) D-time C-LB #C

Ia 70, 71 8962 9064 3.5 40 23 70.1 0.061 1 1

I1b 70, 71 9432 6662 2.7 37 14 70.1 0.185 2622 100

I2b 70, 71 11818 9773 10.0 50 25 70.8 0.041 4 4

I3b 70, 71 11602 9776 10.2 50 25 70.2 0.241 60 60

I4b 70, 71 11386 9779 24.7 49 25 70.9 6.39 4.6×105 100

Ic -112, -111 6807 7170 1.8 50 32 -111.9 0.016 1 1

Id 70, 71 5427 6673 6.1 42 23 70.2 0.127 78768 100

Table 6.5. Results of Stages 4 and 5 for IhcLiq using Lasso linear regression.

inst. y∗, y∗ #v #c I-time n nint η(f(C†)) D-time C-LB #C

Ia 1190, 1210 10180 9538 3.9 48 26 1208.5 0.071 2 2

I1b 1190, 1210 10784 7191 2.4 35 14 1206.7 0.082 12 12

I2b 1190, 1210 13482 10302 14.1 47 25 1206.7 0.11 12 12

I3b 1190, 1210 13275 10301 9.0 49 27 1209.9 0.090 24 24

I4b 1190, 1210 13128 10306 16.5 50 25 1208.4 0.424 2388 100

Ic 1190, 1210 7193 7560 0.8 50 33 1196.5 0.016 1 1

Id 1190, 1210 5813 7063 2.2 44 23 1198.8 5.63 5.2×105 100

Ic and Id for five properties π ∈ {Hc, Vd, OptR, IhcLiq, Vis} by using

the prediction functions obtained by ANN. We list the running time to solve

74 Chapter 6 Two-Layered Model with Linear Regression

Table 6.6. Results of Stages 4 and 5 for Vis using Lasso linear regression.

inst. y∗, y∗ #v #c I-time n nint η(f(C†)) D-time C-LB #C

Ia 1.25, 1.30 6847 8906 1.3 38 22 1.295 0.042 2 2

I1b 1.25, 1.30 7270 6397 2.5 36 15 1.272 0.155 140 100

I2b 1.85, 1.90 8984 9512 8.9 45 25 1.879 0.149 288 100

I3b 1.85, 1.90 8741 9515 16.2 45 26 1.880 0.137 4928 100

I4b 1.85, 1.90 8498 9518 8.1 45 25 1.851 0.13 660 100

Ic 2.75, 2.80 6813 7162 1.0 50 33 2.763 0.025 4 4

Id 1.85, 1.90 5433 6665 2.7 41 23 1.881 0.138 4608 100

(a) (b) (c)

(e)(d) (f)

Figure 6.7. (a) C† with η(f(C†)) = 13703.3 inferred from Ic with (y∗, y∗) =

(13700, 13800) of Hc; (b) C† with η(f(C†)) = 21.62 inferred from I2b with

(y∗, y∗) = (21, 22) of Vd; (c) C† with η(f(C†)) = 70.9 inferred from I4b with

(y∗, y∗) = (70, 71) of OptR; (d) C† with η(f(C†)) = 1198.8 inferred from Id with

(y∗, y∗) = (1190, 1210) of IhcLiq; (e) C† with η(f(C†)) = 1.880 inferred from I3b
with (y∗, y∗) = (1.85, 1.90) of Vis; (f) C† inferred from I4b with lower and upper

bounds on the predicted property value ηπ(f(C†)) of property π ∈ {Kow, Lp,

Sl} in Table 6.9.

6.4 Experimental Results 75

Table 6.7. Running time of Stage 4 for Hc, Vd and OptR using ANN.

Hc Vd OptR

inst. y∗, y∗ I-time inst. y∗, y∗ I-time inst. y∗, y∗ I-time

Ia 13350, 13450 24.7 Ia 18, 19 18.1 Ia 62, 63 35.6

I1b 9650, 9750 13.5 I1b 13, 14 9.4 I1b 109, 110 15.5

I2b 16750, 16850 70.4 I2b 15, 16 40.9 I2b 23, 24 192.6

I3b 12350, 12450 87.0 I3b 20, 21 46.3 I3b -2, -1 936.4

I4b 14250, 14350 70.9 I4b 22, 23 27.1 I4b 19, 20 63.9

Ic 10400,1110500 31.3 Ic 20, 21 20.5 Ic 86, 87 16.4

Id 12500, 12600 44.3 Id 18, 19 6.1 Id 30, 31 31.8

Table 6.8. Running time of Stage 4 for IhcLiq and Vis using ANN.

IhcLiq Vis

inst. y∗, y∗ I-time inst. y∗, y∗ I-time

Ia 980, 1000 56.6 Ia 1.85, 1.90 2.0

I1b 1000, 1020 40.4 I1b 1.95, 2.00 3.5

I2b 1130, 1150 71.6 I2b 1.85, 1.90 19.7

I3b 1240, 1260 45.0 I3b 2.35, 2.40 26.0

I4b 1240, 1260 105.7 I4b 2.50, 2.55 9.3

Ic 810, 830 9.7 Ic 3.90, 3.95 1.8

Id 1100, 1120 25.8 Id 3.30, 3.35 8.3

MILP formulation for each of these instances in Tables 6.7 and 6.8. From the

computation experiments, we observe that for many instances, the running time

is significantly faster than that of Stage 4 based on ANN.

Inferring a chemical graph with target values in multiple properties Once

we obtained prediction functions ηπ for several properties π, include MILP for-

mulations for these functions ηπ into a single MILP M(x, y; C1) so as to infer a

chemical graph that satisfies given target values y∗ for these properties at the

same time. As an additional experiment in Stage 4, we inferred a chemical graph

that has a desired predicted value each of three properties Kow, Lp and Sl,

where we used the prediction function ηπ for each property π ∈ {Kow, Lp, Sl}

76 Chapter 6 Two-Layered Model with Linear Regression

Table 6.9. Results of Stage 4 for instances Iib, i = 2, 3, 4 with specified target

values of three properties Kow, Lp and Sl using Lasso linear regression.

inst. π y∗
π
, y∗π #v #c I-time n nint ηπ(f(C†))

Kow -7.50, -7.40 -7.41

I2b Lp -1.40, -1.30 14574 11604 62.7 50 30 -1.33

Sl -11.6, -11.5 -11.52

Kow -7.40, -7.30 -7.38

I3b Lp -2.90, -2.80 14370 11596 35.5 48 25 -2.81

Sl -11.6, -11.4 -11.52

Kow -7.50, -7.40 -7.48

I4b Lp -0.70, -0.60 14166 11588 71.7 49 26 -0.63

Sl -11.4, -11.2 -11.39

constructed in Stage 3. Table 6.9 shows the result of Stage 4 for inferring a

chemical graph C† from instances I2b, I
3
b and I4b with Λ = {H, C, N, O, S(2), S(6), Cl},

where we denote the following:

- π: one of the three properties Kow, Lp and Sl used in the experiment;

- y∗
π
, y∗π: lower and upper bounds y∗

π
, y∗π ∈ R on the predicted property value

ηπ(f(C†)) of property π ∈ {Kow, Lp, Sl} for a chemical graph C† to be

inferred;

- #v (resp., #c): the number of variables (resp., constraints) in the MILP in

Stage 4;

- I-time: the time (sec.) to solve the MILP in Stage 4;

- n: the number n(C†) of non-hydrogen atoms in the chemical graph C† inferred

in Stage 4;

- nint: the number nint(C†) of interior-vertices in the chemical graph C† inferred

in Stage 4; and

- ηπ(f(C†)): the predicted property value ηπ(f(C†)) of property π ∈ {Kow,

Lp, Sl} for the chemical graph C† inferred in Stage 4.

Figure 6.7(f) illustrates the chemical graph C† inferred from I4b with (y∗
π1
, y∗π1) =

(−7.50, −7.40), (y∗
π2
, y∗π2) = (−0.70,−0.60) and (y∗

π3
, y∗π3) = (−11.4,−11.2) for

π1 =Kow, π2 =Lp and π3 =Sl, respectively.

Stage 5. We executed Stage 5 to generate more target chemical graphs C∗,

where a chemical graph C∗ is called a chemical isomer of a target chemical graph

C† of a topological specification σ if f(C∗) = f(C†) and C∗ also satisfies the same

6.5 Concluding Remarks 77

topological specification σ. We computed chemical isomers C∗ of each target

chemical graph C† inferred in Stage 4. We executed an algorithm to generate

chemical isomers of C† up to 100 when the number of all chemical isomers exceeds

100. We can obtain such an algorithm from the dynamic programming proposed

by Tanaka et al. [49] with a slight modification. The algorithm first decomposes

C† into a set of acyclic chemical graphs, next replaces each acyclic chemical graph

T with another acyclic chemical graph T ′ that admits the same feature vector

as that of T , and finally assembles the resulting acyclic chemical graphs into a

chemical isomer C∗ of C†. Also, a lower bound on the total number of all chemical

isomers of C† can be computed by the algorithm without generating all of them.

Tables 6.2 to 6.6 show the computational results of the experiment in Stage 5

for the five properties, where we denote the following:

- D-time: the running time (sec.) to execute the dynamic programming algo-

rithm in Stage 5 to compute a lower bound on the number of all chemical

isomers C∗ of C† and generate all (or up to 100) chemical isomers C∗;

- C-LB: a lower bound on the number of all chemical isomers C∗ of C†; and

- #C: the number of all (or up to 100) chemical isomers C∗ of C† generated in

Stage 5.

From Tables 6.2 to 6.6, we observe that for many cases the running time for

generating up to 100 target chemical graphs in Stage 5 is less than 0.4 seconds.

For some chemical graph C†, no chemical isomer was found by our algorithm.

This is because each acyclic chemical graph in the decomposition of C† has no

alternative acyclic chemical graph than the original one. On the other hand, some

chemical graph C† such as the one in Id in Table 6.2 admits an extremely large

number of chemical isomers C∗. Remember that we know such a lower bound

C-LB on the number of chemical isomers without generating all of them.

6.5 Concluding Remarks

In this chapter, we studied the problem of inferring chemical structures from

desired chemical properties and constraints, based on the framework proposed

and developed in [1, 4, 59]. In the previous applications of the framework of

inferring chemical graphs, artificial neural network (ANN) and decision tree have

been used for the machine learning of Stage 3. In this chapter, we used linear

regression in Stage 3 for the first time and derived an MILP formulation that

simulates the computation process of linear regression. We also extended a way

of specifying a target value y∗ in a property so that the predicted value η(f(C†))

of a target chemical graph C† is required to belong to an interval between two

78 Chapter 6 Two-Layered Model with Linear Regression

specified values y∗ and y∗. Furthermore, we modified a model of chemical com-

pounds so that multi-valence chemical elements, cation and anion are treated,

and introduced the rank and the adjacency-configuration of leaf-edges as new

descriptors in a feature vector of a chemical graph.

We implemented the new system of the framework and conducted computa-

tional experiments for Stages 1 to 5. We found 18 properties for which linear

regression delivers a relatively good prediction function by using our feature vec-

tor based on the two-layered model. We also observed that an MILP formulation

for inferring a chemical graph in Stage 4 can be solved efficiently over different

types of test instances with complicated topological specifications. The exper-

imental result suggests that our method can infer chemical graphs with up to

50 non-hydrogen atoms. Therefore, combination of linear regression and integer

programming is a potentially useful approach to computational molecular design.

It is an interesting future work to use other learning methods such as graph

convolution networks, random forest and an ensemble method to construct a

prediction function and derive the corresponding MILP formulations in Stages 3

and 4 in the framework.

7 Two-Layered Model with

Adjustive Linear Regression1

7.1 Introduction

In this chapter, we develop a novel prediction function and its machine learning

method that can be used in the framework. Let us compare linear regression

and ANNs. The former uses a hyperplane to explain a given data set and the

latter can represent a more complex subspace than a hyperplane. Importantly

a best hyperplane that minimizes an error function can be found exactly in the

former whereas a local optimum solution to an error function is constructed by

an iterative procedure in the latter and different local optimum solutions often

appear depending on how we have tuned many parameters in ANNs. Linear

regression can be regarded as an ANN on an architecture with an input layer and

an output layer of a single node with a linear activation function. We consider an

ANN on the same architecture such that each node in the input and output layers

is equipped with a set of activation functions. Given a data set, we consider a

problem of minimizing an error function on the data set by choosing a weight of

each arc, a bias of the output node and a best activation function for each node

simultaneously. With some restriction on the set of activation functions and the

definition of an error function, we show that such an minimization problem can

be formulated as a linear program, which is much easier than an MILP to solve

exactly. We call this new method “adjustive linear regression” and implemented

it in the two phase framework. We compared adjustive linear regression with

Lasso linear regression in constructing prediction functions for several chemical

properties. From the results of our computational experiments, we observe that

a prediction function constructed by adjustive linear regression for some chemical

properties drastically outperforms that by Lasso linear regression.

The rest of this chapter is organized as follows. Section 7.2 reviews the idea

of prediction functions based on linear regression and ANNs and designs “ad-

1©2022 SCITEPRESS. Reprinted, with permission, from J. Zhu, K. Haraguchi, H. Nag-

amochi, and T. Akutsu. Adjustive linear regression and its application to the inverse QSAR.

In Proceedings of the 15th International Joint Conference on Biomedical Engineering Systems

and Technologies - BIOINFORMATICS, pages 144–151. INSTICC, SciTePress, 2022.

79

80 Chapter 7 Two-Layered Model with Adjustive Linear Regression

justive linear regression”, a new method for constructing a prediction function

by solving a linear program to optimize a choice of weights/bias together with

activation functions in an ANN with no hidden layers. Section 7.3 reports the

results on some computational experiments conducted for the framework of in-

ferring chemical graphs by using our new method of adjustive linear regression.

Section 7.4 makes some concluding remarks. We refer [64] for the complete MILP

formulations.

7.2 Constructing Prediction Functions

7.2.1 Linear Prediction Functions

For the feature space RK , a hyperplane is defined to be a pair (w, b) of a vector

w ∈ RK and a real b ∈ R. A prediction function η is called linear if η is given by

ηw,b(x) = w · x + b, x ∈ RK for a hyperplane (w, b). The linear regression is to

find a hyperplane (w, b) that minimizes Err(ηw,b;X) =
∑

i∈[1,m](ai− (w ·xi+b))2.
In many cases, a feature vector f contains descriptors that do not play an

essential role in constructing a good prediction function. When we solve the mini-

mization problem, the entries w(j) for some descriptors j ∈ [1,K] in the resulting

hyperplane (w, b) become zero, which means that these descriptors were not nec-

essarily important for finding a prediction function ηw,b. It is proposed that

solving the minimization with an additional penalty term to the error function

often results in a more number of entries w(j) = 0, reducing a set of descriptors

necessary for defining a prediction function ηw,b. For an error function with such

a penalty term, a Ridge function 1
2mErr(ηw,b;X) + λ[

∑
j∈[1,K]w(j)

2 + b2] [21, 22]

and a Lasso function 1
2mErr(ηw,b;X) + λ[

∑
j∈[1,K] |w(j)| + |b|] [52] are known,

where λ ∈ R is a given real number. As a hybridization of Ridge linear regression

and Lasso linear regression, a linear regression that minimizes an error function

defined to be 1
2mErr(ηw,b;X)+λ2[

∑
j∈[1,K]w(j)

2+b2]+λ1[
∑

j∈[1,K] |w(j)|+ |b|] is
called elastic net linear regression [68], where λ1, λ2 ∈ R are given real numbers.

7.2.2 ANNs for Linear Prediction Functions

It is not difficult to see that a linear prediction function η with a hyperplane (w, b)

can be represented by an ANN N with an input layer Lin = {u1, u2, . . . , uK} of

K input nodes and an output layer Lout = {v} of a single output node v such

that the weight of an arc (uj , v) from an input node uj to the output node v is

given by w(j), j ∈ [1,K]; the bias at node v is given by b; and the activation

function at node v is linear. See Figure 7.1(a) for an illustration of an ANN N
that represents a linear prediction function η with a hyperplane (w, b). Given a

7.2 Constructing Prediction Functions 81

w(1)

(a) (b)

u1

uj v

u2

uK

w(j)

w(K)

b

x(1)

x(j)

x(K)

y:= S w(j)x(j)+b

y

j [1,K]

w(1)

u1

uj v

u2

uK

w(j)

w(K)

b

x(1)

x(j)

x(K)

z(0):= S w(j)z(j)+b
j [1,K]

z(1):= f1(x(1))

z(K):= fK(x(K))

y:= f0(z(0))z(j):= fj(x(j))

Figure 7.1. An illustration of the process in ANNs with no hidden layers: (a) An

ANN N that represents a linear prediction function η with a hyperplane (w, b);

(b) an ANN Nϕ with activation functions ϕj , j ∈ [0,K] at all nodes.

vector x ∈ RK , the ANN N outputs y :=
∑

j∈[1,K]w(j)x(j) + b.

We consider an ANN Nϕ with the same architecture with the ANN N and

introduce activation functions ϕj at nodes uj , j ∈ [1,K] and an activation function

ϕ0 at node v. Given a vector x ∈ RK , the ANN Nϕ outputs y := ϕ0(z(0)) for

z(0) :=
∑

j∈[1,K]w(j)z(j) + b and z(j) := ϕj(x(j)), j ∈ [1,K].

In a standard method of a prediction function ηNϕ
with the above ANN Nϕ,

we specify each activation function ϕj and determine weights w and a bias b by

executing an iterative procedure that tries to minimize an error function between

the real values ai and the predicted values ηNϕ
(xi).

7.2.3 Adjustive Linear Regression

In this chapter, we design a new method of constructing a prediction function

with the above ANN Nϕ so that (i) not only weights w and a bias b but also

prediction functions ϕj are chosen so as to minimize an error function and (ii)

the minimization problem is formulated as a linear programming problem.

We introduce a class Φj of functions for a choice of each activation function

ϕj , j ∈ [0,K]. When we choose a function ϕj ∈ Φj for each j ∈ [0,K] and a

hyperplane (w, b), we define a prediction function ηΨ,w,b such that

ηΨ,w,b(x) ≜ ϕ0(
∑

j∈[1,K]

w(j)(ϕj(x(j)))− b)

for the set Ψ = {ϕj | j ∈ [0,K]} of the functions.

82 Chapter 7 Two-Layered Model with Adjustive Linear Regression

In this chapter, we use a function ξ(t) = ct+ c′t2 + c′′(1− (t− 1)2), 0 ≤ t ≤ 1

for a function ϕj , j ∈ [1,K] or the inverse ϕ−1
0 of a function ϕ0, where c, c

′ and c′′

are nonnegative constant constants with c+ c′+ c′′ = 1 which will be determined

for each j ∈ [0,K] by our method. Note that, for a domain 0 ≤ t ≤ 1, ξ(t) is

a monotone increasing function such that ξ(0) = 0 and ξ(1) = 1 and admits an

inverse function ξ−1(t).

We introduce a class Φj of functions in the following way.

1. Normalize the set {xi(j) | xi ∈ X}, j ∈ [1,K] and the set {ai(j) | xi ∈ X} so

that the minimum and maximum in the set become 0 and 1.

2. For each index j ∈ [0,K], define a class Φj of functions to be

Φj ≜ {c0(j)t + c1(j)t
2 + c2(j)(1 − (t − 1)2), 0 ≤ t ≤ 1 | cq(j) ≥ 0, q ∈ [0, 2],∑

q∈[0,2]

cq(j) = 1}, j ∈ [1,K],

and define

Φ̃0 ≜ {c0(0)t+ c1(0)t
2 + c2(0)(1− (t− 1)2), 0 ≤ t ≤ 1 | cq(0) ≥ 0, q ∈ [0, 2],∑

q∈[0,2]

cq(0) = 1}, Φ0 ≜ {ξ−1(t), 0 ≤ t ≤ 1 | ξ(t) ∈ Φ̃0}.

To use linear programming, we measure an error of a prediction function η over

a data set X by the sum of the absolute errors: SAE(η;X) ≜
∑

xi∈X |ai− η(xi)|.
Now our aim is to find a prediction function ηΨ,w,b that minimizes the sum of

the absolute errors SAE(ηΨ,w,b;X) over all functions ϕ0 ∈ Φ̃0, ϕj ∈ Φj , j ∈ [1,K]

and hyperplanes (w, b).

To formulate this minimization problem as a linear programming problem, we

predetermine the sign of w(j) for each descriptor j in a hyperplane (w, b) that we

will choose. Compute the correlation coefficient σ(Xj , A) between Xj = {xi(j) |
i ∈ [1,m]} and A = {ai | i ∈ [1,m]} and partition the set of descriptors into two

sets I+ := {j ∈ [1,K] | σ(Xj , A) ≥ 0} and I− := {j ∈ [1,K] | σ(Xj , A) < 0}.
We impose an additional constraint that w(j) ≥ 0, j ∈ I+ and w(j) ≤ 0, j ∈ I−.

Then the objective function is described as follows, where we rewrite each term

w(j), j ∈ I+ (resp., −w(j), j ∈ I−) as w′(j):∑
i∈[1,m]

∣∣c0(0)ai + c1(0)a
2
i + c2(0)(1− (ai−1)2)−

∑
j∈I+

[w′(j)
(
c0(j)xi(j) + c1(j)xi(j)

2

+c2(j)(1− (xi(j)−1)2)
)
] +

∑
j∈I−

[w′(j)
(
c0(j)xi(j) + c1(j)xi(j)

2 +c2(j)(1− (xi(j)−

1)2)
)
]− b

∣∣.
We minimize this over all nonnegative reals cq(j), q ∈ [0, 2], j ∈ [1,K], nonneg-

ative reals w(j), j ∈ [1,K] and a real b ∈ R such that
∑

q∈[0,2] cq(j) = 1, j ∈ [1,K].

By introducing a penalty term for the weights w(j), j ∈ [1,K], we consider

the following problem which we call adjustive linear regression ALR(X , λ), where

7.2 Constructing Prediction Functions 83

w′(j)cq(j), q ∈ [0, 2] is rewritten as wq(j).

min:
1

2m

∑
i∈[1,m]

|c0(0)ai+c1(0)a2i+c2(0)(1−(ai−1)2)

−
∑
j∈I+

[w0(j)xi(j)+w1(j)xi(j)
2+w2(j)(1−(xi(j)−1)2)]

+
∑
j∈I−

[w0(j)xi(j)+w1(j)xi(j)
2+w2(j)(1−(xi(j)−1)2)]

− b|+ λ
∑

j∈[1,K]

w0(j)+λ|b|

subject to c0(0) + c1(0) + c2(0) = 1. See Appendix B.1 for the details of the

formulation.

We observe that adjustive linear regression is an extension of the Lasso linear

regression except that the error function is the sum of absolute errors in the former

and the sum of square errors in the latter. It is not difficult to see that the above

minimization can be formulated as a linear program with O(m + K) variables

and constraints. In our experiment, we also penalize each weight wq(j), q ∈ [1, 2]

with the same constant λ in a similar fashion to Lasso linear regression..

We solve the above minimization problem to construct a prediction function

ηΨ,w,b. Let c
∗
q(0), q ∈ [0, 2], w∗

q(j), q ∈ [0, 2], j ∈ [1,K] and b∗ denote the values of

variables cq(0), q ∈ [0, 2], wq(j), q ∈ [0, 2], j ∈ [1,K] and b in an optimal solution,

respectively. Let K ′ denote the number of descriptors j ∈ [1,K] with w∗
0(j) > 0

and IK′ denote the set of j ∈ [1,K] with w∗
0(j) > 0. Then we set

w∗(j) :=0, j ∈ [1,K] with w∗
0(j) = 0,

w∗(j) :=w∗
0(j)/(w

∗
0(j) + w∗

1(j) + w∗
2(j)), j ∈ I+ ∩ IK′ ,

w∗(j) :=−w∗
0(j)/(w

∗
0(j)+w

∗
1(j)+w

∗
2(j)), j ∈ I−∩IK′ ,

c∗q(j) :=w
∗
q(j)/w

∗(j), q ∈ [0, 2], j ∈ IK′ and

w∗ :=(w∗
0(1), w

∗
0(2), . . . , w

∗
0(K)) ∈ RK .

For a set Ψ∗ of selected functions ϕj(t) = c∗0(j)t+c
∗
1(j)t

2+c∗2(j)(1−(t−1)2), j ∈
IK′ with and ϕ0(t) with ϕ−1

0 (t) = c∗0(0)t + c∗1(0)t
2 + c∗2(0)(1 − (t − 1)2) and a

hyperplane (w∗, b∗), we construct a prediction function ηΨ∗,w∗,b∗ .

We propose the following scheme of executing ALR for constructing a predic-

tion function and evaluating the performance.

1. Given a data set X = {xi ∈ RK | i ∈ [1,m]} of normalized feature vectors

and a set A = {ai ∈ R | i ∈ [1,m]} of normalized observed values, we

choose a real λ > 0 possibly from a set of candidates for λ > 0 so that

the performance of a prediction function ηΨ∗,w∗,b∗ obtained from an optimal

solution (Ψ∗, w∗, b∗) to the ALR (X , λ) attains a criterion, where we may

use cross-validation and the test coefficient of determination to know the

performance.

84 Chapter 7 Two-Layered Model with Adjustive Linear Regression

2. With the real λ determined in 1, we evaluate the performance of a prediction

function obtained with ALR based on cross-validation. We divide the entire

set X into five subsets X (k), k ∈ [1, 5]. For each k ∈ [1, 5], we use the set

X \X (k) as a training data to construct a prediction function ηΨ,w,b with ALR

(X \ X (k), λ) and compute the coefficient of determination R2(ηΨ,w,b,X (k)).

7.2.4 MILP Formulation for the Inverse Problem

This section introduces an MILP that simulates the computation process of a

prediction function constructed with adjustive linear regression.

Let x = (x(1), x(2), . . . , x(K)) ∈ RK denote the feature function f(C) of

a chemical graph C. Let cmin(j) (resp., cmax(j)) denote the minimum (resp.,

maximum) values of the j-th descriptor in a data set Dπ for a chemical property

π. Let atmLB ∈ Z+ (resp., atmUB ∈ Z+) be a lower bound (resp., an upper

bound) on the number of atoms in a chemical graph C to be inferred. Let mass(a)

denote the observed mass of a chemical element a ∈ Λ, and define mass∗(a) ≜

⌊10 ·mass(a)⌋. Let MsLB ∈ Z+ (resp., MsUB ∈ Z+) be a lower bound (resp., an

upper bound) on the sum 1
|V (H)|

∑
v∈V (H)mass∗(α(v)) in a chemical graph C to

be inferred. Let jms denote the index j ∈ [1,K] such that the j-th descriptor

dcpj(C) is the average mass ms(C) = 1
|V (H)|

∑
v∈V (H)mass∗(α(v)). Assume that

all other descriptors dcpj(C), j ∈ [1,K] \ {jms} are integers.

Let ηΨ,w,b be a prediction function obtained by adjustive linear regression,

where Ψ = {ϕj | j ∈ [0,K]} and (w, b) is a hyperplane.

We first normalize each of the sets of descriptors x(j), j ∈ [1,K] and the

set of observed values a(C) before we apply the prediction function to compute a

predicted value ηΨ,w,b(f(C)) of a chemical graph C, where the set {ai | i ∈ [1,m]}
of observed values in the data set Dπ is converted into a set {ϕ−1

0 (ai−aa−a) | i ∈
[1,m]}, where a (resp., a) denotes the minimum (resp., maximum) value of a(C)
over the chemical graphs C ∈ Dπ.

Let y∗ and y∗ be lower and upper bounds on the predicted value ηΨ,w,b(f(C))
of a target chemical graph C, respectively.

We first converted them into ϕ−1
0 (

y∗−a
a−a) and ϕ−1

0 (y
∗−a
a−a) . We denote by

ψj(t) the function ϕj((t − cmin(j))/(cmax(j) − cmin(j))). We pre-compute the

values ψj(s) for all integers s ∈ [cmin(j), cmax(j)], j ∈ [1,K] \ {jms} (resp.,

ϕjms(
s/i−cmin(jms)

cmax(jms)−cmin(jms)
) for all integers s ∈ [MsLB,MsUB] and i ∈ [atmLB, atmUB])

as constants.

An MILP that simulates the computation process of a prediction function

ηΨ,w,b is described as follows.

7.2 Constructing Prediction Functions 85

M(x, y; C1):
constants:

- A hyperplane (w, b) with w ∈ RK and b ∈ R;
- Activation functions ϕj : R → R, j ∈ [0,K];

- Real values y∗, y∗ ∈ R such that y∗ < y∗; Set y∗∗ := ϕ−1
0 (

y∗−a
a−a) and y∗∗ :=

ϕ−1
0 (y

∗−a
a−a) .

- cmin(j), cmax(j) ∈ R, j ∈ [1,K]: the minimum and maximum values of the j-th

descriptor in the data set Dπ, respectively;

- Reals ∆(j, s) ∈ R, j ∈ [1,K] \ {jms}, s ∈ [cmin(j), cmax(j)]: ∆(j, cmin(j)) :=

ψj(cmin(j)) and ∆(j, s) := ψj(s)− ψj(s− 1), s ∈ [cmin(j) + 1, cmax(j)];

- atmLB, atmUB ∈ Z+: lower and upper bounds on the number of atoms in a

chemical graph C to be inferred; Set atmLB := nLB + naLB(H) and atmUB :=

n∗ + naUB(H);

- MsLB,MsUB ∈ Z+: lower and upper bounds on the sum
∑

v∈V (H)mass∗(α(v));

For example, set MsLB := ⌊min{mass∗([a]) | a ∈ Λ, val(a) = 1} · (3nLB/4) +
min{mass∗([a]) | a ∈ Λ, val(a) ≥ 2}·(nLB/4)+mass∗([H])naLB(H)⌋ and MsUB :=

n∗max{mass∗([a]) | a ∈ Λ}+mass∗([H])naUB(H);

- M ∈ R+: an upper bound on ζ(x(jms)); For example, set M := 2ϕjms(1);

- Define ζ(s, i) ≜ ϕjms(
s/i−cmin(jms)

cmax(jms)−cmin(jms)
), s ∈ [MsLB,MsUB], i ∈ [atmLB, atmUB],

where ψjms(s/i) = ζ(s, i);

- Reals ∆Ms(s, i) ∈ R, s ∈ [MsLB,MsUB], i ∈ [atmLB, atmUB]: ∆Ms(MsLB, i) :=

ζ(MsLB, i) and ∆Ms(s, i) := ζ(s, i) − ζ(s − 1, i), s ∈ [MsLB + 1,MsUB], i ∈
[atmLB, atmUB];

- A real ε(j) > 0, j ∈ [1,K]: a tolerance. For example, set ε(j) := 1
105

min{∆(j, s) |
s ∈ [cmin(j), cmax(j)]}, j ∈ [1,K] \ {jms} and ε(jms) :=

1
105

min{∆Ms(s, i) | s ∈
[MsLB,MsUB], i ∈ [atmLB, atmUB]}:

variables:

- Real variables x̂(j) ∈ R, j ∈ [1,K]: x̂(j) represents ψj(x(j));

- Integer variables x(j) ∈ [cmin(j), cmax(j)], j ∈ [1,K] \ {jms}: x(j) represents

the j-th descriptor in an MILP M(x, g; C2);
- A real variable x(jms) ∈ R+ with cmin(jms) ≤ x(jms) ≤ cmax(jms): x(jms)

represents the average mass ms(C) in an MILP M(x, g; C2);
- Binary variables δ(j, s) ∈ [0, 1], j ∈ [1,K]\{jms}, s ∈ [cmin(j), cmax(j)]: δ(j, s) =

1 ⇔ x(j) ≥ s;

- Binary variables δatm(i) ∈ [0, 1], i ∈ [atmLB, atmUB]: δatm(i) = 1 ⇔ |V (H)| =
i;

- Binary variables δMs(s) ∈ [0, 1], s ∈ [MsLB,MsUB] δMs(i) = 1 ⇔∑
v∈V (H)mass∗(α(v)) ≥ s;

86 Chapter 7 Two-Layered Model with Adjustive Linear Regression

constraints:

y∗∗ ≤
∑

j∈[1,K]

w(j)x̂(j) + b ≤ y∗∗, (7.2.1)

∑
s∈[cmin(j),cmax(j)]

δ(j, s) + cmin(j)− 1 = x(j),

δ(j, s) ≥ δ(j, s+ 1), s ∈ [cmin(j), cmax(j)− 1],

∑
s∈[cmin(j),cmax(j)]

∆(j, s)δ(j, s)− ϵ(j) ≤ x̂(j) ≤
∑

s∈[cmin(j),cmax(j)]

∆(j, s)δ(j, s) + ϵ(j),

j ∈ [1,K] \ {jms},
(7.2.2)

∑
i∈[atmLB,atmUB]

δatm(i) = 1,

∑
i∈[atmLB,atmUB]

i · δatm(i) = nG + naex([H]ex),

∑
a∈Λ

mass∗(a) · na([a]) =
∑

s∈[MsLB,MsUB]

δMs(s) +MsLB − 1, (7.2.3)

δMs(s) ≥ δMs(s+ 1), s ∈ [MsLB,MsUB − 1], (7.2.4)

∑
s∈[MsLB,MsUB]

∆Ms(s, i)δMs(s)−M · (1−δatm(i))− ϵ(jms) ≤ x̂(jms) ≤∑
s∈[MsLB,MsUB]

∆Ms(s, i)δMs(s) +M · (1−δatm(i)) + ϵ(jms),

i ∈ [atmLB, atmUB]. (7.2.5)

7.3 Experimental Results

We implemented our method of Stages 1 to 5 for inferring chemical graphs un-

der a given topological specification and conducted experiments to evaluate the

computational efficiency. We executed the experiments on a PC with Processor:

Core i7-9700 (3.0GHz; 4.7 GHz at the maximum) and Memory: 16 GB RAM

DDR4. We used scikit-learn version 0.23.2 with Python 3.8.5 for executing linear

7.3 Experimental Results 87

regression with Lasso function or constructing an ANN. To solve an LP or MILP

instance, we used CPLEX version 12.10.

Results on Phase 1 We implemented Stages 1, 2 and 3 in Phase 1 as follows.

We have conducted experiments of adjustive linear regression and for 37 chem-

ical properties of monomers (resp., ten chemical properties of polymers) and

we found that the test coefficient of determination R2 of ALR exceeds 0.6 for

28 properties of monomers: isotropic polarizability (Alpha) and boiling point

(Bp), critical pressure (Cp); critical temperature (Ct); heat capacity at 298.15K

(Cv); dissociation constants (Dc); electron density on the most positive atom

(EDPA); flash point (Fp); energy difference between the highest and lowest

unoccupied molecular orbitals (Gap); heat of atomization (Ha); heat of com-

bustion (Hc); heat of formation (Hf); energy of highest occupied molecular

orbital (Homo); heat of vaporization (Hv); isobaric heat capacities in liquid

phase (IhcL); isobaric heat capacities in solid phase (IhcS); Kováts retention

index (KvI); octanol/water partition coefficient (Kow); lipophilicity (Lp); en-

ergy of lowest unoccupied molecular orbital (Lumo); melting point (Mp); optical

rotation (OptR); refractive index (Rf); solubility (Sl); surface tension (SfT);

internal energy at 0K (U0); viscosity (Vis); and vapor density (Vd) and that

the test coefficient of determination R2 of ALR exceeds 0.8 for eight properties of

polymers: experimental amorphous density (AmD); characteristic ratio (ChaR);

dielectric constant(DeC); heat capacity liquid (HcL); heat capacity solid (HcS);

mol volume (MlV); refractive index (RfId); and glass transition (Tg), where we

include the result of property permittivity (Prm) for a comparison with Lasso

linear regression and ANN.

We used data sets are provided by HSDB from PubChem [27] for Cp, Ct,

Dc, Fp, Hc, Hv, Kow, OptR, Rf and Vd M. Jalali-Heravi and M. Fatemi [26]

for EDPA and KvI, Roy and Saha [39] for Bp, Ha, Hf and Mp, Ramakrish-

nan et al. [37] for Alpha, Cv, Lumo and U0, Goussard et al. [18] for SfT,

Goussard et al. [19] for Vis, R. Naef [34] for IhcL and IhcS, Xiao [53] for Lp

and Delaney [54] for Sl. Properties Alpha, Cv, Homo, Lumo and U0 share a

common original data set D∗ with more than 130,000 compounds, and we used

a set Dπ of 1,000 compounds randomly selected from D∗ as a common data set

of these four properties π in this experiment.

We used data sets of polymers provided by Bicerano [8], where we did not

include any polymer whose chemical formula could not be found by its name in

the book. For property ChaR (resp., RfId), we remove the following polymer

as an outlier from the original data set:

ethyleneTerephthalate, oxy(2-methyl-6-phenyl-1 4-phenylene) and N-vinylCarbazole

88 Chapter 7 Two-Layered Model with Adjustive Linear Regression

(resp., 2-decyl-1 4-butadiene).

Stage 1 We set a graph class G to be the set of all chemical graphs with any

graph structure, and set a branch-parameter ρ to be 2.

For each of the properties, we first select a set Λ of chemical elements and

then collect a data set Dπ on chemical graphs over the set Λ of chemical elements.

Table 7.1 shows the size and range of data sets that we prepared for each

chemical property in Stage 1, where we denote the following: |Λ|: the size |Λ| of
Λ used in the data set Dπ; |Dπ|: the size of data set Dπ over Λ for the property

π; and K: the number of descriptors in a feature vector f(C).

Stage 2 We used the feature function defined in our chemical model without

suppressing hydrogen. We standardize the range of each descriptor and the range

of property values a(C),C ∈ Dπ.

Stage 3 For each chemical property π, we select a penalty value λπ for a constant

λ in ALR(X , λ) by conducting linear regression as a preliminary experiment.

We conducted an experiment in Stage 3 to evaluate the performance of the

prediction function based on cross-validation. For a property π, an execution of

a cross-validation consists of five trials of constructing a prediction function as

follows.

Tables 7.1 and 7.2 show the results on Stages 2 and 3 for the properties on

monomers and polymers, respectively, where we denote the following: time: the

average time (sec.) to construct a prediction function with ALR by solving an

LP with O(|Dπ| + K) variables and constraints over all 50 trials in ten cross-

validations; ALR: the median of test R2 over all 50 trials in ten cross-validations

for prediction functions constructed with ALR; LLR: the median of test R2 over

all 50 trials in ten cross-validations for prediction functions constructed with

Lasso linear regression; and ANN: the median of test R2 over all 50 trials in

ten cross-validations for prediction functions constructed with ANNs (see Ap-

pendix B.2 for the details of constructing a prediction function with ANNs).

From Tables 7.1 and 7.2, we see that ALR performs well for most of the

properties in our experiments, The performance by ALR is inferior to that by

LLR or ANN for some properities such as Gap, Homo, Lumo, OptR, Sl, SfT

and Prm, whereas ALR outperforms LLR and ANN for properties Bp, Ct,

Hv, KvI, Vd, ChaR, RfId and Tg. It should be noted that ALR drastically

improves the result for properties Ct and Hv.

Results on Phase 2 To execute Stages 4 and 5 in Phase 2, we used a set of

seven instances Ia, I
i
b, i ∈ [1, 4], Ic and Id based on the seed graphs prepared

in [43].

7.3 Experimental Results 89

Table 7.1. Results in Phase 1 for monomers.

π |Λ| |Dπ| K time ALR LLR ANN

Alpha 10 977 297 3.00 0.953 0.961 0.888

Bp 4 370 184 1.42 0.816 0.599 0.765

Bp 7 444 230 2.02 0.832 0.663 0.720

Cp 4 125 112 0.15 0.650 0.445 0.694

Cp 6 131 119 0.12 0.690 0.555 0.727

Ct 4 125 113 0.24 0.900 0.037 0.357

Ct 6 132 121 0.28 0.895 0.048 0.356

Cv 10 977 297 4.57 0.966 0.970 0.911

Dc 7 161 130 0.35 0.602 0.574 0.622

EDPA 3 52 64 0.06 0.999 0.999 0.992

Fp 4 36 183 1.31 0.719 0.589 0.746

Fp 7 424 229 1.92 0.684 0.571 0.745

Gap 10 977 297 4.77 0.755 0.784 0.795

Ha 4 115 115 0.29 0.998 0.997 0.926

Hc 4 255 154 0.74 0.986 0.946 0.848

Hc 7 282 177 0.84 0.986 0.951 0.903

Hf 3 82 74 0.05 0.982 0.987 0.928

Homo 10 977 297 4.95 0.689 0.841 0.689

Hv 4 95 105 0.19 0.626 -13.7 -8.44

IhcL 4 770 256 3.24 0.987 0.986 0.974

IhcL 7 865 316 1.98 0.989 0.985 0.971

IhcS 7 581 192 1.72 0.971 0.985 0.971

IhcS 11 668 228 2.21 0.974 0.982 0.968

KvI 3 52 64 0.05 0.838 0.677 0.727

Kow 4 684 223 3.13 0.964 0.953 0.952

Kow 8 899 303 4.95 0.952 0.927 0.937

Lp 4 615 186 1.81 0.844 0.856 0.867

Lp 8 936 231 3.37 0.807 0.840 0.859

Lumo 10 977 297 2.75 0.833 0.841 0.860

Mp 4 467 197 1.78 0.831 0.810 0.799

Mp 8 577 255 2.99 0.807 0.810 0.820

OptR 4 147 107 0.24 0.876 0.825 0.919

OptR 6 157 123 0.27 0.870 0.825 0.878

Rf 4 166 142 0.24 0.685 0.619 0.521

Sl 4 673 217 1.21 0.784 0.808 0.848

Sl 8 915 300 2.33 0.828 0.808 0.861

SfT 4 247 128 0.67 0.847 0.927 0.859

U0 10 977 297 2.40 0.995 0.999 0.890

Vis 4 282 126 0.37 0.911 0.893 0.929

Vd 4 474 214 2.24 0.985 0.927 0.912

Vd 7 551 256 2.28 0.980 0.942 0.889

90 Chapter 7 Two-Layered Model with Adjustive Linear Regression

Table 7.2. Results in Phase 1 for polymers.

π |Λ| |Dπ| K time ALR LLR ANN

AmD 4 86 83 0.09 0.933 0.914 0.885

AmD 7 93 94 0.10 0.917 0.918 0.823

ChaR 3 24 56 0.02 0.904 0.650 0.616

ChaR 4 27 67 0.03 0.835 0.431 0.641

DeC 7 37 72 0.04 0.918 0.761 0.641

HcL 4 52 67 0.06 0.996 0.990 0.969

HcL 7 55 81 0.05 0.992 0.987 0.970

HcS 4 54 75 0.07 0.963 0.968 0.893

HcS 7 59 92 0.09 0.983 0.961 0.880

MlV 4 86 83 0.10 0.998 0.996 0.931

MlV 7 93 94 0.09 0.997 0.994 0.894

Prm 4 112 69 0.09 0.505 0.801 0.801

Prm 5 131 73 0.09 0.489 0.784 0.735

RfId 5 91 96 0.15 0.953 0.852 0.871

RfId 7 124 124 0.21 0.956 0.832 0.891

Tg 4 204 101 0.23 0.923 0.902 0.883

Tg 7 232 118 0.54 0.927 0.894 0.881

Stage 4 We executed Stage 4 for heat of vaporization (Hv). Table 7.3 shows

the computational results of the experiment in Stage 4 for the two properties,

where we denote the following: y∗, y∗: lower and upper bounds y∗, y∗ ∈ R on the

value a(C) of a chemical graph C to be inferred; I-time: the time (sec.) to solve

the MILP in Stage 4; and n: the number n(C†) of non-hydrogen atoms in the

chemical graph C† inferred in Stage 4. The result suggests that ALR is useful to

infer relatively large size chemical graphs from given chemical properties. Note

that hydrogen atoms can be recovered after getting hydrogen-suppressed chemical

graphs.

Stage 5 We executed Stage 5 to generate a more number of target chemical

graphs C∗, where we call a chemical graph C∗ a chemical isomer of a target

chemical graph C† of a topological specification σ if f(C∗) = f(C†) and C∗ also

satisfies the same topological specification σ. We computed chemical isomers C∗

of each target chemical graph C† inferred in Stage 4. We execute the algorithm

due to [43] to generate chemical isomers of C† up to 100 when the number of all

chemical isomers exceeds 100. The algorithm can compute a lower bound on the

total number of all chemical isomers C† without generating all of them.

7.4 Concluding Remarks 91

Table 7.3. Results of Stages 4 and 5 for Hv.

inst. y∗, y∗ I-time n D-time C-LB #C
Ia 145, 150 24.9 37 0.0632 2 2

I1b 190, 195 146.6 35 0.121 30 30

I2b 290, 295 188.8 46 0.154 604 100

I3b 165, 170 1167.2 45 36.8 7.5×106 100

I4b 250, 255 313.7 50 0.166 2208 100

Ic 285, 290 102.5 50 0.016 1 1

Id 245, 250 351.9 40 5.53 3.9×105 100

Table 7.3 shows the computational results of the experiment in Stage 5 for

property Hv, where we denote the following: D-time: the running time (sec.)

to execute the dynamic programming algorithm in Stage 5 to compute a lower

bound on the number of all chemical isomers C∗ of C† and generate all (or up

to 100) chemical isomers C∗; C-LB: a lower bound on the number of all chemical

isomers C∗ of C†; and #C: the number of all (or up to 100) chemical isomers C∗

of C† generated in Stage 5. The result suggests that ALR is useful not only for

inference of chemical graphs but also for enumeration of chemical graphs.

7.4 Concluding Remarks

In this chapter, we proposed a new machine learning method, adjustive linear

regression (ALR), which has the following feature: (i) ALR is an extension of the

Lasso linear regression except for the definition of error functions; (ii) ALR is a

special case of an ANN except that a choice of activation functions is also opti-

mized differently from the standard ANNs and the definition of error functions;

and (iii) ALR can be executed exactly by solving the equivalent linear program

with O(m+K) variables and constraints for a set of m data with K descriptors.

Even though ALR is a special case of an ANN with non-linear activation func-

tions, we still can read the relationship between cause and effect from a prediction

function due to the simple structure of ALR.

In this chapter, we used a quadratic function for a set Ψ of activation func-

tions ϕ. We can use many different functions such as sigmoid function and

ramp functions, where the non-linearity of a function does not affect to de-

rive a linear program for ALR. The proposed method/system is available at

GitHub https://github.com/ku-dml/mol-infer/tree/master/ALR (Accessed:

May 24, 2023).

8 Two-Layered Model with

Quadratic Descriptors

8.1 Introduction

A novel framework for inferring chemical graphs has been developed [6, 23, 43, 66]

based on an idea of formulating as a mixed integer linear programming (MILP)

the computation process of a prediction function constructed by a machine learn-

ing method. Given a prediction function η and a topology specification σ,

the task of the second phase is to infer chemical graphs C∗ ∈ Gσ such that

y∗ ≤ η(f(C∗)) ≤ y∗. For this, we formulate an MILP M(x, g; C2) that represents
(i) the computation process of x := f(C) from a chemical graph C in the feature

function f ; (ii) that of y := η(x) from a vector x ∈ RK in the prediction function

η; and (iii) the constraint C ∈ Gσ. Given an interval with y∗, y∗ ∈ R, we solve the
MILP Mf,η,σ to find a feature vector x∗ ∈ RK and a chemical graph C† ∈ Gσ such

that f(C†) = x∗ and y∗ ≤ η(x∗) ≤ y∗ (where if the MILP instance is infeasible

then this suggests that Gσ does not contain such a desired chemical graph). In

the second phase, we next generate some other desired chemical graphs based on

the solution C†. For this, the following two methods have been designed.

The first method constructs isomers of C† without solving any new MILP.

In this method, we first decompose the chemical graph C† into a set of chemical

acyclic graphs T †
1 , T

†
2 , . . . , T

†
q , and next construct a set Ti of isomers T ∗

i of each

tree T †
i such that f(T ∗

i) = f(T †
i) by a dynamic programming algorithm due to

Azam et al. [7]. Finally we choose an isomer T ∗
i ∈ Ti for each i = 1, 2, . . . , q and

assemble them into an isomer C∗ ∈ Gσ of C† such that f(C∗) = x∗ = f(C†).

The first method generates such isomers C∗
1,C∗

2, . . . which we call recombination

solutions of C†.

The second method constructs new solutions by solving the MILP M(x, g; C2)
with an additional set Θ of new linear constraints [6]. We first prepare arbitrary

pdim linear functions θj : RK → R, j = 1, 2, . . . , pdim and consider a neighbor of

C† defined by a set of chemical graphs C∗ that satisfy linear constraints kδ ≤
|θj(f(C∗)) − θj(f(C†))| ≤ (k + 1)δ, j = 1, 2, . . . , pdim for a small real δ > 0

and an integer k ≥ 1. By changing the integer k systematically, we can search

93

94 Chapter 8 Two-Layered Model with Quadratic Descriptors

for new solutions C†
1,C

†
2, . . . ∈ Gσ of MILP M(x, g; C2) with constraint Θ such

that the feature vectors x∗ = f(C†), x∗1 = f(C†
1), x

∗
2 = f(C†

2), . . . are all slightly

different. We call these chemical graphs C†
1,C

†
2, . . . neighbor solutions of C†, where

a neighbor solution is not an isomer of C†.

The main reason why the framework can infer a chemical compound with 50

non-hydrogen atoms is that the descriptors of a chemical graph are defined on

local graph structures in the two-layered model and thereby an MILP necessary

to represent a chemical graph can be formulated as a considerably compact form

that is efficiently solvable by a standard solver.

In the framework, all descriptors x(1), x(2), . . . , x(K) in the feature vector

x = f(C) are mainly the frequencies of local graph structures based on the two-

layered model by which a chemical graph C is regarded as a pair of interior and

exterior structures (see Section 6.2 for details). To derive a compact MILP for-

mulation to infer a chemical graph, it is important to use the current definition

of descriptors. However, there are some chemical properties for which the perfor-

mance of a prediction function constructed with the feature function f remains

rather low. To improve the learning performance with the same two-layered

model, we add as a new descriptor the product x(i)x(j) (or x(i)(1− x(j)) of two

descriptors (where each descriptor is assumed to be normalized within 0 and 1)

and call such a new descriptor a quadratic descriptor. This drastically increases

the number of descriptors, which would take extra running time in learning or

cause overfitting to the data set. Moreover, computing quadratic descriptors can-

not be directly formulated as a set of linear constraints in the original MILP. For

this, we introduce a method of reducing a set of descriptors into a smaller set

that delivers a prediction function with a higher performance. We also design

an MILP formulation for representing a quadratic term x(i)x(j). Based on the

same MILP M(x, g; C2) formulation proposed by Zhu et al. [66], we implemented

the framework to treat the feature function with quadratic descriptors. From

the results of our computational experiments on over 40 chemical properties,

we observe that our new method of utilizing quadratic descriptors improved the

performance of a prediction function for many chemical properties.

The rest of this chapter is organized as follows. Section 8.2 introduces the

quadratic descriptors and a heuristic to reduce the size of descriptors. Section 8.3

introduces a formulation for computing a quadratic descriptor in an MILP. Sec-

tion 8.4 reports the results on computational experiments conducted for 42 chem-

ical properties such as critical pressure, dissociation constants and lipophilicity

for monomers and characteristic ratio and refractive index for polymers. Sec-

tion 8.5 makes some concluding remarks. We refer [65] for the complete MILP

8.2 Quadratic Descriptors 95

formulations.

8.2 Quadratic Descriptors

In the framework with the two-layered model, the feature vector f mainly consists

of the frequency of edge-configurations of the interior-edges and the frequency of

chemical rooted trees among the set of chemical rooted trees C[u] over all interior-
vertices u. See Section 6.2.1 for all these descriptors x(1), x(2), . . . , x(K1), which

are called linear descriptors.

In the framework for polymers [23], a polymer is treated as a chemical graph

of its repeating unit, where we call an edge e a link-edge when it lays on any path

between the two joint-points of the repeating unit, and call the end-vertices of

a link-edge connecting-vertices. The set of descriptors for a polymer is defined

analogously with the above set for a monomer except for dcp2(C) is replaced with

the number of link-edges and the following two kinds of descriptors are added:

the frequency ecγ(C) of edge-configuration γ of link-edges; and the frequency of

chemical symbols of connecting-vertices (see [23] for the details).

We denote by D
(1)
π := {x(k) | k ∈ [1,K1]} the set of descriptors constructed

over a data set for a property π. In this chapter, we also use a quadratic term

x(i)x(j) (or x(i)(1 − x(j))), 1 ≤ i ≤ j ≤ K1 as a new descriptor, where we

assume that each x(i) is normalized between 0 and 1. We call such a term

x(i)x(j) (or x(i)(1−x(j))), 1 ≤ i ≤ j ≤ K1 a quadratic descriptor and denote by

D
(2)
π := {x(i)x(j) | 1 ≤ i ≤ j ≤ K1} ∪ {x(i)(1 − x(j)) | 1 ≤ i, j ≤ K1} the set of

quadratic descriptors.

To construct a prediction function, we use the union D
(1)
π ∪ D(2)

π . This set

of descriptors is usually excessive in constructing a prediction function, and we

reduce it to a smaller set of descriptors to construct a feature function f : RK →
R, where K is the number of resulting descriptors. See Section 8.2.1 for methods

of reducing descriptors.

8.2.1 Methods for Reducing Descriptors

Let C be a set of chemical compounds, D be a set of all descriptors and K∗ ∈
[1, |D|] be a number of descriptors we want to choose from D.

Given a data set C, a set D of descriptors and a real λ > 0, let Des-set-

LLR(C, D, λ) denote the set S of descriptors d ∈ D such that w(d) = 0 for the

hyperplane (w, b) output by LLR(C, D, λ) (where we numerically treat w(d) with

|w(d)| ≤ 10−6 as 0 in our experiment).

96 Chapter 8 Two-Layered Model with Quadratic Descriptors

A method based on Lasso linear regression

Since the Lasso linear regression finds some number of descriptors d ∈ D with

w(d) = 0 in the output hyperplane (w, b), we can reduce a given set of descriptors

by applying the Lasso linear regression repeatedly. Choose parameters cmax and

dmax so that LLR(C, D, λ) can be executed in a reasonable running time when

|C| ≤ cmax and |D| ≤ dmax. Let K̃ ∈ [1, |D|] be an integer for the number of

descriptors that we choose from a given set D of descriptors. The method is

described in Algorithm 1.

Algorithm 1 LLR-Reduce(C, D)

Input: A data set C and a set D of descriptors;

Output: A subset D̃ ⊆ D with |D̃| = K̃.

1: Initialize D′ := D;

2: while |D′| > K̃ do

3: Partition D′ randomly into disjoint subsets D1, D2, . . . , Dp such that

|Di| ≤ dmax for each i;

4: for each i = 1, 2, ..., p do

5: Choose a subset Ci with |Ci| = min{cmax, |C|} of C randomly;

6: D′
i :=Des-set-LLR(Ci, Di, λ) for some λ > 0

7: end for

8: D′ := D′
1 ∪D′

2 ∪ · · · ∪D′
p

9: end while

10: Output D̃ := D′ after adding to D′ extra K̃ − |D′| descriptors from the

previous set D′ when |D′| < K̃ by using the K-best method.

Here, we set cmax := 200, dmax := 200 and K̃ := 5000 in our computational

experiment.

A method based on backward stepwise procedure

A backward stepwise procedure [13] reduces the number of descriptors one by

one choosing the one removal of which maximizes the learning performance and

outputs a subset with the maximum learning performance among all subsets

during the reduction iteration.

For a subset S ⊆ D and a positive integer p, let R2
CV,MLR(C, S, p) denote

R2
CV(C, S, p) for constructing a prediction function ηw,b by MLR(C, S). We define

a performance evaluation function gp : 2D → R for an integer p ≥ 1 such that

gp(S) = R2
CV,MLR(C, S, p). The backward stepwise procedure with this function

gp is described in Algorithm 2.

8.2 Quadratic Descriptors 97

Algorithm 2 BS-Reduce(C, D, p)
Input: A data set C, a set D of descriptors, an integer p ≥ 1 and a performance

evaluation function gp : 2
D → R defined above;

Output: A subset D∗ ⊆ D.

1: Compute ℓbest := gp(D); Initialize Dbest := D′ := D;

2: while D′ ̸= ∅ do

3: Compute ℓ(d) := gp(D
′ \ {d}) for each descriptor d ∈ D′;

4: Set d∗ ∈ D′ to be a descriptor that maximizes ℓ(d) over all d ∈ D′;

5: Update D′ := D′ \ {d∗};
6: if ℓ(d∗) > ℓbest then

7: Update Dbest := D′ and ℓbest := ℓ(d∗)

8: end if

9: end while

10: Output D∗ := Dbest.

Based on the Lasso linear regression and the backward stepwise procedure,

we design the following method described in Algorithm 3 for choosing a subset

D∗ of a given set D of descriptors. We are given a give set A of 17 real numbers

and a set B(a) of 16 real numbers close to each number a ∈ A. The method

first choose a best parameter λbest ∈ A to construct a prediction function by

LLR and then choose a subset Di ⊆ D for each λi ∈ B(λbest) by the backward

stepwise procedure. The procedure takes O(|D|2) iterations which may take a

large amount of running time. We introduce an upper bound smax on the size of

an input descriptor D for the backward stepwise procedure. Let p1, p2 and p3 be

integer parameters that control the number of executions of cross-validations to

evaluate the learning performance in the method.

Algorithm 3 Select-Des-set(C, D)

Input: A data set C, a set D of descriptors, a set A = {0, 10−6, 10−5, 10−4, 10−3,

0.01, 0.05, 0.1, 0.5, 0.75, 1, 2, 5, 10, 25, 50, 100}, and a set B(λ) of 16 real num-

bers close to each λ ∈ A;

Output: A subset D∗ of D.

1: for each λ ∈ A do

2: Compute Dλ :=Des-set-LLR(C, D, λ) and ℓλ := R2
CV,MLR(C, Dλ, p1)

3: end for

4: Set λbest to be a λ ∈ A that maximizes ℓλ;

5: Denote B(λbest) by {λ1, λ2, . . . , λ16};
6: for each i ∈ [1, 16] do

7: Compute Di := Des-set-LLR(C, D, λi) and let (w, b), w ∈ R|D|, b ∈ R be

98 Chapter 8 Two-Layered Model with Quadratic Descriptors

the hyperplane obtained by this LLR;

8: if |Di| ≤ smax then

9: D′
i := Di

10: else

11: Let D′
i consist of smax descriptors d ∈ Di that have the smax largest

absolute values |w(d)| in the weight sets {w(d) | d ∈ Di} of the hyperplane

(w, b)

12: end if

13: D†
i :=BS-Reduce(C, D′

i, p2);

14: ℓi := R2
CV,MLR(C, D

†
i , p3)

15: end for

16: Set D∗ to be a set D†
i that maximizes ℓi, i ∈ [1, 16].

In our computational experiment in this chapter, we set p1 := p2 := p3 := 5

and smax := 150 + 104/(|C|+ 200).

8.3 Compute a Quadratic Term in an MILP

This section introduces an MILP formulation for computing the product of two

descriptors in an MILP.

Given two real values x and y with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, the computing

process of the product z = xy can be approximately formulated as the following

MILP. First regard (2p+1 − 1)x as an integer with a binary expression of p + 1

bits, where x(j) ∈ [0, 1] denotes the value of the j-th bit. Then compute y · x(j)

which becomes the j-th bit z(j) of (2p+1 − 1)z.

constants:

- x, y: reals with 0 ≤ x, y ≤ 1;

- p: a positive integer;

variables:

- z, z(j), j ∈ [0, p]: reals with 0 ≤ z, z(j) ≤ 1;

- x(j) ∈ [0, 1], j ∈ [0, p]: binary variables;

8.4 Experimental Results 99

constraints:∑
j∈[0,p]

2jx(j) − 1 ≤ (2p+1 − 1)x ≤
∑
j∈[0,p]

2jx(j),

z(j) ≤ x(j), j ∈ [0, p],

y − (1− x(j)) ≤ z(j) ≤ y + (1− x(j)), j ∈ [0, p],

z =
1

2p+1 − 1

∑
j∈[0,p]

2jz(j). (8.3.1)

Note that the necessary number of integer variables for computing xy for

one pair of x and y is p. In this chapter, we set p := 6 in our computational

experiment. The relative error by p = 6 in the above method is at most 1
2p+1−1

=

1/127, which is around 0.8%.

8.4 Experimental Results

With our new method of choosing descriptors and formulating an MILP to treat

quadratic descriptors in the two-layered model, we implemented the framework

for inferring chemical graphs and conducted experiments to evaluate the compu-

tational efficiency. We executed the experiments on a PC with Processor: Core

i7-9700 (3.0GHz; 4.7 GHz at the maximum) and Memory: 16 GB RAM DDR4.

To construct a prediction function by LLR, MLR or ANN, we used scikit-learn

version 1.0.2 with Python 3.8.12, MLPRegressor and ReLU activation function

for ANN, Lasso function for LLR, and LinearRegression function for MLR.

8.4.1 Results on the First Phase of the Framework

Chemical properties We implemented the first phase for the following 32

chemical properties of monomers and ten chemical properties of polymers.

For monomers, we used the following data sets:

• biological half life (BHL), boiling point (Bp), critical temperature (Ct),

critical pressure (Cp), dissociation constants (Dc), flash point in closed cup

(Fp), heat of combustion (Hc), heat of vaporization (Hv), octanol/water

partition coefficient (Kow), melting point (Mp), optical rotation (OptR),

refractive index of trees (RfIdT), vapor density (Vd) and vapor pressure

(Vp), provided by HSDB from PubChem [27];

• electron density on the most positive atom (EDPA) and Kovats retention

index (Kov) by M. Jalali-Heravi and M. Fatemi [26];

100 Chapter 8 Two-Layered Model with Quadratic Descriptors

• entropy (ET) by P. Duchowicz et al. [14];

• heat of atomization (Ha) and heat of formation (Hf) by K. Roy and A. Saha [39];

• surface tension (SfT) by V. Goussard et al. [18];

• viscosity (Vis) by V. Goussard et al. [19];

• isobaric heat capacities liquid (LhcL) and isobaric heat capacities solid

(LhcS) by R. Naef [34];

• lipophilicity (Lp) by N. Xiao [53];

• flammable limits lower of organics (FlmLO) by S. Yuan et al. [58];

• molar refraction at 20 degree (Mr) by Y. M. Ponce [36]; and

• solubility (Sl) by ESOL [54], energy of highest occupied molecular orbital

(Homo), energy of lowest unoccupied molecular orbital (Lumo), the en-

ergy difference between Homo and Lumo (Gap), isotropic polarizability

(Alpha), heat capacity at 298.15K (Cv), internal energy at 0K (U0) and

electric dipole moment (mu) provided by ESOL [54], where the properties

from Homo to mu are based on a common data set QM9.

The data set QM9 contains more than 130,000 compounds. In our experiment,

we use a set of 1,000 compounds randomly selected from the data set. For

property Hv, we remove the chemical compound with CID=7947 as an outlier

from the original data set.

For polymers, we used the following data provided by J. Bicerano [8]:

• experimental amorphous density (AmD), characteristic ratio (ChaR), di-

electric constant (DieC), dissipation factor (DisF), heat capacity in liq-

uid (HcL), heat capacity in solid (HcS), mol volume (MlV), permittivity

(Prm), refractive index of polymers (RfIdP) and glass transition (Tg),

where we excluded from our test data set every polymer whose chemical formula

could not be found by its name in the book [8]. We remark that the previous

learning experiments for π ∈ {ChaR, RfIdP} based on the two-layered model

due to Azam et al. [6] and Zhu et al. [67] excluded some number of polymers as

outliers. In our experiments, we do not exclude any polymer from the original

data set as outliers for these properties.

Setting data sets For each property π, we first select a set Λ of chemical ele-

ments and then collect a data set Cπ on chemical graphs over the set Λ of chemical

8.4 Experimental Results 101

Table 8.1. Results of setting data sets for monomers.

π Λ |Cπ| n, n a, a |Γ| |F| K1

BHL Λ7 514 5, 36 0.03, 732.99 26 101 166

Bp Λ2 370 4, 67 -11.7, 470.0 22 130 184

Bp Λ7 444 4, 67 -11.7, 470.0 26 163 230

Cp Λ5 131 4, 63 4.7×10−6, 5.52 8 79 119

Ct Λ2 125 4, 63 56.1, 3607.5 8 76 113

Ct Λ5 132 4, 63 56.1, 3607.5 8 81 121

Dc Λ2 141 5, 44 0.5, 17.11 20 62 111

Dc Λ7 161 5, 44 0.5, 17.11 25 69 130

ET Λ7 17 5, 12 64.34, 96.21 5 17 53

Fp Λ2 368 4, 67 -82.99, 300.0 20 131 183

Fp Λ7 424 4, 67 -82.99, 300.0 25 161 229

FlmLO Λ16 1046 1, 49 0.185, 4.3 34 282 376

Hv Λ2 94 4, 16 19.12, 210.3 12 63 105

Kov Λ1 52 11, 16 1422.0, 1919.0 9 33 64

Kow Λ2 684 4, 58 -7.5, 15.6 25 166 223

Kow Λ8 899 4, 69 -7.5, 15.6 37 219 303

Lp Λ2 615 6, 60 -3.62, 6.84 32 116 186

Lp Λ8 936 6, 74 -3.62, 6.84 44 136 231

Mp Λ2 467 4, 122 -185.33, 300.0 23 142 197

Mp Λ8 577 4, 122 -185.33, 300.0 32 176 255

OptR Λ2 147 5, 44 -117.0, 165.0 21 55 107

OptR Λ4 157 5, 69 -117.0, 165.0 25 62 123

RfIdT Λ10 191 4, 26 0.919, 1.613 17 115 168

Sl Λ2 673 4, 55 -9.332, 1.11 27 154 217

Sl Λ8 915 4, 55 -11.6, 1.11 42 207 300

SfT Λ3 247 5, 33 12.3, 45.1 11 91 128

Vis Λ3 282 5, 36 -0.64, 1.63 12 88 126

Homo Λ9 977 6, 9 -0.3335, -0.1583 59 190 297

Lumo Λ9 977 6, 9 -0.1144, 0.1026 59 190 297

Gap Λ9 977 6, 9 0.1324, 0.4117 59 190 297

Alpha Λ9 977 6, 9 50.9, 99.6 59 190 297

Cv Λ9 977 6, 9 19.2, 44.0 59 190 297

mu Λ9 977 6, 9 0.04, 6.897 59 190 297

102 Chapter 8 Two-Layered Model with Quadratic Descriptors

Table 8.2. Results of setting data sets for polymers.

π Λ |Cπ| n, n a, a |Γ| |F| K1

AmD Λ2 86 4, 45 0.838, 1.34 16 25 83

AmD Λ13 93 4, 45 0.838, 1.45 18 30 94

ChaR Λ2 30 4, 18 3.7, 15.9 15 17 68

ChaR Λ12 32 4, 18 3.7, 15.9 15 18 71

ChaR Λ6 35 4, 18 3.7, 15.9 18 21 83

DeiC Λ12 36 4, 22 2.13, 3.4 11 18 67

DisF Λ13 132 4, 45 7×10−5, 0.07 15 18 78

Prm Λ2 112 4, 45 2.23, 4.91 14 15 69

Prm Λ13 132 4, 45 2.23, 4.91 15 18 78

RfIdP Λ11 92 4, 29 0.4899, 1.683 15 35 96

RfIdP Λ14 125 4, 29 0.4899, 1.683 19 50 124

RfIdP Λ15 135 4, 29 0.4899, 1.71 23 56 144

Tg Λ2 204 4, 58 171, 673 19 36 101

Tg Λ7 232 4, 58 171, 673 21 43 118

elements. To construct the data set Cπ, we eliminated chemical compounds that

do not satisfy one of the following: the graph is connected, the number of carbon

atoms is at least four, and the number of non-hydrogen neighbors of each atom

is at most 4.

We set a branch-parameter ρ to be 2, introduce linear descriptors defined

by the two-layered graph in the chemical model without suppressing hydrogen

and use the set D
(1)
π ∪ D(2)

π of linear and quadratic descriptors (see Section 8.2

for the details). We normalize the range of each linear descriptor and the range

{t ∈ R | a ≤ t ≤ a} of property values a(C),C ∈ Cπ.
We compare the following four methods of constructing a prediction function.

(i) LLR: use Lasso linear regression on the set the D
(1)
π of linear descriptors

(see [66] for the detail of the implementation);

(ii) ANN: use ANN on the set the D
(1)
π of linear descriptors (see [66] for the

detail of the implementation);

(iii) ALR: use adjustive linear regression on the set the D
(1)
π of linear descriptors

(see Chapter 7 for the detail of the implementation); and

(iv) R-MLR: apply our method (see Section 8.2.1) of reducing descriptors to

8.4 Experimental Results 103

the set D
(1)
π ∪D(2)

π of linear and quadratic descriptors and use multi-linear

regression for the resulting set of descriptors.

Among the above properties, we found that the median of test coefficient of

determination R2 of the prediction function constructed by LLR [66] or ALR [67]

exceeds 0.98 for the following nine properties of monomers (resp., three properties

of polymers): EDPA, Hc, Ha, Hf, LhcL, LhcS, Mr, Vd and U0 (resp., HcL,

HcS and MlV). We excluded the above properties in the following experiment,

and used the rest of 23 chemical properties of monomers and seven chemical

properties of polymers to compare the four methods (i)-(iv).

Tables 8.1 and 8.2 show the size and range of data sets that we prepared for

each chemical property to construct a prediction function, where we denote the

following:

- π: the name of a chemical property used in the experiment.

- Λ: a set of selected elements used in the data set Cπ; Λ is one of the following

19 sets:

Λ1 = {H, C, O}; Λ2 = {H, C, O, N}; Λ3 = {H, C, O, Si(4)}; Λ4 = {H, C, O, N, S(2), F};
Λ5 = {H, C, O, N, Cl, Pb}; Λ6 = {H, C, O, N, Si(4), Cl, Br}; Λ7 = {H, C, O, N, S(2), S(6), Cl};
Λ8 = {H, C, O, N, S(2), S(4), S(6), Cl}; Λ9 = {H, C(2), C(3), C(4), C(5), O, N(1), N(2), N(3), F};
Λ10 = {H, C, O, N, P(2), P(5), Cl}; Λ11 = {H, C, O(1), O(2), N}; Λ12 = {H, C, O, N, Cl};
Λ13 = {H, C, O, N, Cl, S(2)}; Λ14 = {H, C, O(1), O(2), N, Cl, Si(4), F};
Λ15 = {H, C, O(1), O(2), N, Si(4), Cl, F, S(2), S(6), Br};
Λ16 = {H, C, O(2), N, Cl, P(3), P(5), S(2), S(4), S(6), Si(4), Br, I}, where a(i) for a chem-

ical element a and an integer i ≥ 1 means that a chemical element a with

valence i.

- |Cπ|: the size of data set Cπ over Λ for the property π.

- n, n: the minimum and maximum values of the number n(C) of non-hydrogen
atoms in the compounds C in Cπ.

- a, a: the minimum and maximum values of a(C) for π over the compounds C
in Cπ.

- |Γ|: the number of different edge-configurations of interior-edges over the com-

pounds in Cπ.
- |F|: the number of non-isomorphic chemical rooted trees in the set of all

2-fringe-trees in the compounds in Cπ.
- K1: the size |D(1)

π | of a set D
(1)
π of linear descriptors, where |D(2)

π | = (3(K1)
2+

K1)/2 holds.

Constructing prediction functions For each chemical property π, we con-

struct a prediction function by one of the four methods (i)-(iv).

For methods (i)-(iii), we used the same implementation due to Zhu et al. [66,

104 Chapter 8 Two-Layered Model with Quadratic Descriptors

67] and omit the details.

In method (iv), we use our new procedures LLR-Reduce and Select-Des-set for

reducing the number of descriptors (see Appendix 8.2.1 for the details). Method

(iv) for property π is implemented as follows. If π is a monomer property and

|D(1)
π ∪ D

(2)
π | > 5000 then first execute LLR-Reduce(Cπ, D(1)

π ∪ D
(2)
π) to find a

subset D̃ of D
(1)
π ∪D(2)

π with 5000 descriptors. Otherwise set D̃ := D
(1)
π ∪D(2)

π .

Next execute Select-Des-set(Cπ, D̃) to obtain a subset D∗ of D̃. Construct a

prediction function by MLR on the selected descriptor set D∗.

Tables 8.3 and 8.4 show the results on constructing prediction functions, where

we denote the following:

- π: the name of a chemical property used in the experiment.

- Λ: the set of elements selected from the data set Cπ.
- LLR: the median of test R2 in ten 5-fold cross-validations for prediction func-

tions constructed by method (i).

- ANN: the median of test R2 in ten 5-fold cross-validations for prediction func-

tions constructed by method (ii).

- ALR: the median of test R2 in ten 5-fold cross-validations for prediction func-

tions constructed by method (iii).

- R-MLR: the median of test R2 in ten 5-fold cross-validations for prediction

functions constructed by method (iv).

- the score of LLR, ANN, ALR or R-MLR marked with “*” indicates the best

performance among the four methods for the property π;

- K∗
1 ,K

∗
2 : the numbers K∗

1 and K∗
2 of linear and quadratic descriptors, respec-

tively in the set D∗ selected by our method (iv) from the set D
(1)
π ∪D(2)

π before

a prediction function is constructed by MLR in (iv).

The running time of choosing a descriptor set D∗ in method (iv) was around from

80 to 4× 104 seconds and the time for constructing a prediction function to D∗

is around 0.03 to 0.46 second.

There are 47 instances for constructing prediction functions in Tables 8.3 and

8.4. From these tables, we observe that method (iv) using quadratic descriptors

performs better than methods (i)-(iii) with linear descriptors only in 43 out of

the 47 instances. The averages of the median test R2 of the method (i)-(iv) over

the 47 instances are 0.634, 0.733, 0.764 and 0.913, respectively. In particular,

method (iv) considerably improved the performance for π ∈ {Bp, Cp, Dc, ET,

Fp, Hv, Kov, Lp, RfIdT, Gap, ChaR, DisF, Prm, RfIdP}. We also see that

most descriptors in the resulting descriptor set D∗ in R-MLR are quadratic.

8.4 Experimental Results 105

Table 8.3. Results of constructing prediction functions for monomers.

π Λ LLR ANN ALR R-MLR K∗
1 ,K

∗
2

BHL Λ7 0.483 0.622 0.265 *0.659 0, 27

Bp Λ2 0.599 0.765 0.816 *0.935 1, 59

Bp Λ7 0.663 0.720 0.832 *0.899 0, 38

Cp Λ5 0.555 0.727 0.690 *0.841 0, 67

Ct Λ2 0.037 0.357 0.900 *0.937 1, 47

Ct Λ5 0.048 0.357 *0.895 0.860 0, 13

Dc Λ2 0.489 0.651 0.488 *0.908 0, 58

Dc Λ7 0.574 0.622 0.602 *0.829 0, 26

ET Λ7 0.132 0.479 0.464 *0.996 0, 13

Fp Λ2 0.589 0.746 0.719 *0.899 0, 42

Fp Λ7 0.571 0.745 0.684 *0.846 0, 32

FlmLO Λ16 0.819 0.928 0.604 *0.949 0, 77

Hv Λ2 0.864 0.778 0.816 *0.970 0, 22

Kov Λ1 0.677 0.727 0.838 *0.953 2, 19

Kow Λ2 0.953 0.952 0.964 *0.967 0, 55

Kow Λ8 0.927 0.937 *0.952 0.950 0, 64

Lp Λ2 0.856 0.867 0.844 *0.928 0, 89

Lp Λ8 0.840 0.859 0.807 *0.914 0, 109

Mp Λ2 0.810 0.800 0.831 *0.873 0, 51

Mp Λ8 0.810 0.820 0.807 *0.898 0, 58

OptR Λ2 0.825 0.918 0.876 *0.970 0, 85

OptR Λ4 0.825 0.878 0.870 *0.970 0, 69

RfIdT Λ10 0.000 0.453 0.425 *0.775 0, 43

Sl Λ2 0.808 0.848 0.784 *0.894 0, 82

Sl Λ8 0.808 0.861 0.828 *0.897 0, 74

SfT Λ3 0.927 0.859 0.847 *0.941 0, 36

Vis Λ3 0.893 0.929 0.911 *0.973 0, 43

Homo Λ9 *0.841 0.689 0.689 0.804 0, 87

Lumo Λ9 0.841 0.860 0.833 *0.920 0, 102

Gap Λ9 0.784 0.795 0.755 *0.876 0, 83

Alpha Λ9 0.961 0.888 0.953 *0.980 0, 104

Cv Λ9 0.970 0.911 0.966 *0.978 0, 83

mu Λ9 0.367 0.409 0.403 *0.645 0, 112

106 Chapter 8 Two-Layered Model with Quadratic Descriptors

Table 8.4. Results of constructing prediction functions for polymers.

π Λ LLR ANN ALR R-MLR K∗
1 ,K

∗
2

AmD Λ2 0.914 0.885 *0.933 0.906 0, 5

AmD Λ13 0.918 0.824 0.917 *0.953 0, 6

ChaR Λ2 0.210 0.642 0.863 *0.938 0, 10

ChaR Λ12 0.088 0.640 0.835 *0.924 0, 9

ChaR Λ6 -0.073 0.527 0.766 *0.950 0, 12

DeiC Λ12 0.761 0.641 0.918 *0.956 3, 41

DisF Λ13 0.623 0.801 0.308 *0.906 1, 23

Prm Λ2 0.801 0.801 0.505 *0.967 0, 26

Prm Λ13 0.784 0.735 0.489 *0.977 0, 34

RfIdP Λ11 0.104 0.423 0.853 *0.962 2, 52

RfIdP Λ14 0.373 0.560 0.848 *0.953 2, 43

RfIdP Λ15 0.346 0.492 0.883 *0.947 5, 53

Tg Λ2 0.902 0.883 0.923 *0.958 1, 33

Tg Λ7 0.894 0.860 0.927 *0.957 0, 32

8.4.2 Results on the Second Phase of the Framework

To execute the second phase, we used a set of seven instances Ia, I
i
b, i ∈ [1, 4], Ic

and Id based on the seed graphs prepared by Zhu et al. [66].

Solving an MILP for the inverse problem We executed the stage of solving

an MILP to infer a chemical graph for two properties π ∈ {Bp, Dc}.
For the MILP formulation Mf,η,σ, we use the prediction function η for each

π ∈ {Bp, Dc} by method (iv), R-MLR that attained the median test R2 in

Table 8.3. To solve an MILP with the formulation, we used CPLEX version 12.10.

Tables 8.5 and 8.6 show the computational results of the experiment in this stage

for the two properties, where we denote the following:

- nLB: a lower bound on the number of non-hydrogen atoms in a chemical graph

C to be inferred;

- y∗, y∗: lower and upper bounds y∗, y∗ ∈ R on the value a(C) of a chemical

graph C to be inferred;

- #v (resp., #c): the number of variables (resp., constraints) in the MILP;

- I-time: the time (sec.) to solve the MILP;

- n: the number n(C†) of non-hydrogen atoms in the chemical graph C† inferred

by solving the MILP;

8.4 Experimental Results 107

Table 8.5. Results of inferring a chemical graph C† and generating recombina-

tion solutions for Bp with Λ7.

inst. nLB y∗, y∗ #v #c I-time n nint η D-time C-LB #C
Ia 30 225, 235 10502 10240 4.29 49 26 233.92 0.072 3 3

I1b 35 285, 295 10507 7793 2.27 35 10 286.52 0.034 6 6

I2b 45 365, 375 13000 10913 11.9 49 25 370.70 0.14 3202 100

I3b 45 305, 315 12788 10920 7.07 48 25 309.39 0.22 6304 100

I4b 45 260, 270 12576 10928 10.7 49 27 266.26 0.17 376 100

Ic 50 340, 350 7515 8270 0.867 50 33 344.98 0.019 2 2

Id 40 320, 330 6135 7773 8.22 45 23 329.85 8.3 6733440 100

Table 8.6. Results of inferring a chemical graph C† and generating recombina-

tion solutions for Dc with Λ7.

inst. nLB y∗, y∗ #v #c I-time n nint η D-time C-LB #C
Ia 30 0.55, 0.60 10194 9787 3.91 41 25 0.558 0.069 2 2

I1b 35 1.10, 1.15 10415 7368 4.73 35 11 1.104 0.10 16 16

I2b 45 6.00, 6.05 12976 10481 57.4 45 25 6.04 0.12 2040 100

I3b 45 1.45, 1.50 2767 10488 39.7 49 26 1.488 0.28 21600 100

I4b 45 6.10, 6.15 12558 10494 26.4 46 25 6.10 0.027 2 2

Ic 50 12.35, 12.40 7207 7819 1.75 50 34 12.38 0.020 2 2

Id 40 3.15, 3.20 5827 7325 14.9 41 23 3.199 0.079 18952 100

- nint: the number nint(C†) of interior-vertices in the chemical graph C†; and

- η: the predicted property value η(f(C†)) of the chemical graph C†.

Figure 8.1(a) illustrates the chemical graph C† inferred from Ic with (y∗, y∗) =

(340, 350) of Bp in Table 8.5.

Figure 8.1(b) (resp., Figure 8.1(c)) illustrates the chemical graph C† inferred

from Ia with (y∗, y∗) = (0.55, 0.60) (resp., Id with (y∗, y∗) = (3.15, 3.20)) of Dc

in Table 8.6.

In this experiment, we prepared several different types of instances: instances

Ia and Ic have restricted seed graphs, the other instances have abstract seed

graphs and instances Ic and Id have restricted set of fringe-trees. From Ta-

bles 8.5 and 8.6, we observe that an instance with a large number of variables

and constraints takes more running time than those with a smaller size in general.

All instances in this experiment are solved in a few seconds to around 60 seconds

with our MILP formulation.

108 Chapter 8 Two-Layered Model with Quadratic Descriptors

(a) (b) (c)

Figure 8.1. (a) C† with η(f(C†)) = 344.98 inferred from Ic with (y∗, y∗) =

(340, 350) of Bp; (b) C† with η(f(C†)) = 0.558 inferred from Ia with (y∗, y∗) =

(0.55, 0.60) of Dc; and (c) C† with η(f(C†)) = 3.199 inferred from Id with

(y∗, y∗) = (3.15, 3.20) of Dc.

Generating recombination solutions. Let C† be a chemical graph obtained

by solving the MILP Mf,η,σ for the inverse problem. We here execute a stage of

generating recombination solutions C∗ ∈ Gσ of C† such that f(C∗) = x∗ = f(C†).

We execute an algorithm for generating chemical isomers of C† up to 100

when the number of all chemical isomers exceeds 100. For this, we use a dynamic

programming algorithm [66]. The algorithm first decomposes C† into a set of

acyclic chemical graphs, next replaces each acyclic chemical graph T with another

acyclic chemical graph T ′ that admits the same feature vector as that of T and

finally assembles the resulting acyclic chemical graphs into a chemical isomer C∗

of C†. The algorithm can compute a lower bound on the total number of all

chemical isomers C† without generating all of them.

Tables 8.5 and 8.6 show the computational results of the experiment in this

stage for the two properties π ∈ {Bp, Dc}, where we denote the following:

- D-time: the running time (sec.) to execute the dynamic programming algo-

rithm to compute a lower bound on the number of all chemical isomers C∗ of

C† and generate all (or up to 100) chemical isomers C∗;

- C-LB: a lower bound on the number of all chemical isomers C∗ of C†; and

- #C: the number of all (or up to 100) chemical isomers C∗ of C† generated in

this stage.

From Tables 8.5 and 8.6, we observe the running time and the number of

generated recombination solutions in this stage.

The chemical graph C† in I2b, I
3
b and Id admits a large number of chemical

isomers C∗ in some cases, where a lower bound C-LB on the number of chemical

isomers is derived without generating all of them. For the other instances, the

8.4 Experimental Results 109

running time for generating up to 100 target chemical graphs in this stage is less

than 0.03 second. For some chemical graph C†, the number of chemical isomers

found by our algorithm was small. This is because some of acyclic chemical graphs

in the decomposition of C† has no alternative acyclic chemical graph other than

the original one.

Generating neighbor solutions Let C† be a chemical graph obtained by solv-

ing the MILP Mf,η,σ for the inverse problem. We executed a stage of generating

neighbor solutions of C†.

We select an MILP for the inverse problem with a prediction function η such

that a solution C† of the MILP admits only two isomers C∗ in the stage of

generating recombination solutions; i.e., instance Ic for property Bp with Λ7 and

instances Ia, I
4
b and Ic for property Dc with Λ7.

In this experiment, we add to the MILP Mf,η,σ an additional set Θ of two

linear constraints on linear and quadratic descriptors as follows. For the two con-

straints, we use the prediction functions ηπ constructed by R-MLR for properties

π ∈ {Lp, Sl} with Λ8 in Table 8.3.

Let D∗
π denote the set of descriptors selected in the construction of prediction

function for properties π ∈ {Bp,Dc} with Λ7 and π ∈ {Lp, Sl} with Λ8 in

Table 8.3 and let Dunion
π , π ∈ {Bp, Dc} denote the union D∗

π ∪ D∗
Lp ∪ D∗

Sl. We

regard each of ηLp and ηSl as a function from R|Dunion
π | to R for π ∈ {Bp, Dc}. We

set pdim := 2 and let Θ consist of two linear constraints θ1 := ηLp and θ2 := ηSl.

We set δ := 0.1 or 0.05 which defines a two-dimensional grid space where C† is

mapped to the origin (see [6] for the detail on the neighbors). We choose a set N0

of 48 neighbors of the origin C† in the grid search space. For each instance, we

check the feasibility of neighbors in N0. in a non-decreasing order of the distance

between the neighbor and the origin. For each feasible neighbor z ∈ N0, output

a feasible solution C†
z of the augmented MILP instance. We set a time limit for

checking the feasibility of a neighbor to be 300 seconds, and we skip a neighbor

when the corresponding MILP is not solved within the time limit. We also ignore

any neighbor z ∈ N0 without testing the feasibility of z if we find an infeasible

neighbor z′ ∈ N0 such that z′ is closer to the origin than z is.

Table 8.7 shows the computational results of the experiment for the three

instances, where we denote the following:

- (inst., π): topological specification I and property π;

- n: the number of non-hydrogen atoms in the tested instance;

- δ: the size of a sub-region in the grid search space;

- #sol: the number of new chemical graphs obtained from the neighbor set N0;

- #infs: the number of neighbors in N0 that are found to be infeasible during

110 Chapter 8 Two-Layered Model with Quadratic Descriptors

Table 8.7. Results of generating neighbor solutions of C†.

(inst., π) n δ #sol #infs #ign #TO

(Ic,Bp) 50 0.1 5 1 3 39

(Ia,Dc) 30 0.1 40 1 0 7

(I4b,Dc) 45 0.1 2 0 0 46

(Ic,Dc) 40 0.05 0 0 0 48

the search procedure;

- #ign: the number of neighbors in N0 that are ignored during the search pro-

cedure;

- #TO: the number of neighbors in N0 such that the time for feasibility check

exceeds the time limit of 300 seconds during the search procedure.

The branch-and-bound method for solving an MILP sometimes takes an ex-

tremely large execution time for the same size of instances. We introduce a time

limit to bound an entire running time to skip such instances during an execution

of testing the feasibility of neighbors in N0. From Table 8.7, we observe that

some number of neighbor solutions of the solution C† to the MILP Mf,η,σ could

be generated for each of the four instances.

8.5 Concluding Remarks

In the framework of inferring chemical graphs, the descriptors of a prediction

function were mainly defined to be the frequencies of local graph structures in the

two-layered model and such definition was important to derive a compact MILP

formulation for inferring a desired chemical graph. To improve the performance

of prediction functions in the framework, this chapter introduced a multiple of

two of these descriptors as a new descriptor and examined the effectiveness of the

new set of descriptors. For this, we designed a method for reducing the size of

a descriptor set not to lose the learning performance in constructing prediction

functions and gave a compact formulation to compute a product of two values in

an MILP. From the results of our computational experiments, we observe that a

prediction function constructed by our new method performs considerably better

than the previous prediction functions for many chemical properties. We also

found that the modified MILP in the second phase of the framework still can

infer a chemical graph with around 50 non-hydrogen atoms.

9 Conclusion

In this thesis, we mainly focused on applying the mixed integer linear program-

ming (MILP)-based framework for the inverse QSAR problem. We formulated

both the inverse problem of machine learning and the necessary constraints for

constructing a valid chemical graph with a given feature vector and an abstract

graph topology into an integrated MILP together, to guarantee the exactness and

optimality of the inferred chemical compounds, which is not realized by most of

the existing methods.

Following the works in [4, 11, 59, 60], we extended the existing framework

and proposed MILP formulations for certain classes of chemical graphs (rank-2

chemical graphs in Chapter 4, and arbitrary cyclic chemical graphs in Chapter 5,

respectively), which contained nearly 97% of the registered chemical compounds

in PubChem [27]. Since in this approach, we use only graph-theoretical descrip-

tors to define a feature vector for tractability in MILP, it also becomes possible

to specify a prescribed topological substructure of the inferred chemical com-

pound, which allows the possibility to include domain knowledge in the way of

specifying graph structures, which can be of importance for drug discovery. We

also employed a new mechanism to generate a large number of target chemical

graphs with a DP-based graph enumeration algorithms. The experimental results

showed that the proposed approach is available to infer a chemical graph with

around 50 non-hydrogen atoms in a reasonably short time. Both the capable size

of the inferred chemical compounds and the time efficiency drastically improved

when compared to the existing methods.

Since the learning performance of the QSAR phase contributes much to the

quality of the inferred chemical compounds, we then proposed several more ma-

chine learning methods whose inverse problems can be formulated into a MILP

formulation (Lasso linear regression in Chapter 6, adjustive linear regression in

Chapter 7, and multiple linear regression with quadratic descriptors in Chapter 8,

respectively) and thus can be applied to this framework instead of ANN. From

the results of our computational experiments, we observe that these methods are

available to improve the learning performance of the QSAR phase a lot for most

of the chemical property datasets we have while the capable size of the inferred

chemical compounds and time efficiency is preserved.

111

112 Chapter 9 Conclusion

It is left as an interesting future work for the following points:

• Find more graph-theoretical descriptors that can be employed in the frame-

work. Using more descriptors usually means extracting more information

from the chemical graph, and has the possibility to improve the learning

performance in the QSAR phase. We note that the descriptors are necessary

to be available to be expressed as variables and constraints in MILP formu-

lations in our proposed methods, and also the graph enumeration algorithms

may need to be modified. These make finding new descriptors a challenging

task.

• Use other machine learning methods to construct a prediction function that

can obtain a good learning performance and derive the corresponding MILP

formulation in the framework. Graph neural networks (GNN) [28], a learn-

ing model that does not require designing a feature vector, but directly uses

the graph as the input and can extract the intrinsic features from the graph

structure itself, is a promising method for the framework. It has the po-

tential to achieve higher learning performance and the inverse problem can

be written down as an MILP formulation. Also, an ensemble method, such

as random forests, is another kind of possible method for the framework,

because the MILP formulations can be derived relatively easily.

• Find new ways of feature selection during the learning process. Since the

time to solve an MILP formulation depends on its number of variables and

constraints, it will be desirable to use less number of descriptors in the con-

structed prediction function. Just as the Lasso linear regression introduced

in Chapter 6 has the ability to select a subset of descriptors, it will be in-

teresting to design some heuristics to reduce the size of the descriptor set

while keeping or even improving the learning performance for some learning

methods. It will also be interesting to use some clustering methods to se-

lect some representative features and chemical compounds from a dataset to

reduce the computation cost for the learning stage.

• Improve the MILP formulations, especially by reducing the size of variables

and constraints. Just as the MILP formulations in Chapter 5 can be im-

proved based on a characterization of a chemical acyclic graph [62], it is very

possible that there is still space for our MILP formulations to improve, by in-

troducing a more compact way for the constraints and removing unnecessary

variables.

• Try to include 3D information on the chemical compounds. The model of

113

chemical graphs used in this work completely disregards the 3D information

of the corresponding chemical compounds, such as the chirality and the cis-

trans isomerism of the double bond. These pieces of information sometimes

play an important role in drug design and biochemical properties. Modifying

the model to include the 3D information of chemical compounds and the

corresponding MILP formulations will be a challenging future task for this

study.

• Finally, develop a completely new model to describe the chemical compound,

to meet the more sophisticated need in practice.

We hope that the results obtained in this study will be useful in future research

and development in computational chemo-informatics, bioinformatics, machine

learning, and other related fields.

Bibliography
[1] T. Akutsu and H. Nagamochi. A mixed integer linear programming formu-

lation to artificial neural networks. In Proceedings of the 2nd International

Conference on Information Science and Systems, pages 215–220, 2019.

[2] T. Akutsu and H. Nagamochi. A novel method for inference of chemical

compounds with prescribed topological substructures based on integer pro-

gramming. arXiv preprint arXiv:2010.09203, 2020.

[3] T. Akutsu, D. Fukagawa, J. Jansson, and K. Sadakane. Inferring a graph

from path frequency. Discrete Applied Mathematics, 160(10-11):1416–1428,

2012.

[4] N. A. Azam, R. Chiewvanichakorn, F. Zhang, A. Shurbevski, H. Nagamochi,

and T. Akutsu. A novel method for the inverse QSAR/QSPR based on artifi-

cial neural networks and mixed integer linear programming with guaranteed

admissibility. In Proceedings of the 13th International Joint Conference on

Biomedical Engineering Systems and Technologies - BIOINFORMATICS,

pages 101–108. INSTICC, SciTePress, 2020.

[5] N. A. Azam, J. Zhu, R. Ido, H. Nagamochi, and T. Akutsu. Experimental

results of a dynamic programming algorithm for generating chemical isomers

based on frequency vectors. In Fourth International Workshop on Enumer-

ation Problems and Applications (WEPA), pages 7–10, Israel, WEPA2020

15, December 2020. Israel.

[6] N. A. Azam, J. Zhu, K. Haraguchi, L. Zhao, H. Nagamochi, and T. Akutsu.

Molecular design based on artificial neural networks, integer programming

and grid neighbor search. In 2021 IEEE International Conference on Bioin-

formatics and Biomedicine (BIBM), pages 360–363. IEEE, 2021.

[7] N. A. Azam, J. Zhu, Y. Sun, Y. Shi, A. Shurbevski, L. Zhao, H. Nagamochi,

and T. Akutsu. A novel method for inference of acyclic chemical compounds

with bounded branch-height based on artificial neural networks and integer

programming. Algorithms for Molecular Biology, 16:1–39, 2021.

[8] J. Bicerano. Prediction of polymer properties. CRC Press, 2002.

[9] R. S. Bohacek, C. McMartin, and W. C. Guida. The art and practice of

structure-based drug design: A molecular modeling perspective. Medicinal

Research Reviews, 16(1):3–50, 1996.

115

116

Chapter BIBLIOGRAPHY

[10] A. Cherkasov, E. N. Muratov, D. Fourches, A. Varnek, I. I. Baskin,

M. Cronin, J. Dearden, P. Gramatica, Y. C. Martin, R. Todeschini, et al.

QSAR modeling: where have you been? where are you going to? Journal

of Medicinal Chemistry, 57(12):4977–5010, 2014.

[11] R. Chiewvanichakorn, C. Wang, Z. Zhang, A. Shurbevski, H. Nagamochi,

and T. Akutsu. A method for the inverse QSAR/QSPR based on artificial

neural networks and mixed integer linear programming. In Proceedings of

the 10th International Conference on Bioscience, Biochemistry and Bioin-

formatics, pages 40–46, 2020.

[12] N. De Cao and T. Kipf. MolGAN: An implicit generative model for small

molecular graphs. arXiv preprint arXiv:1805.11973, 2018.

[13] N. R. Draper and H. Smith. Applied regression analysis, volume 326. John

Wiley & Sons, 1998.

[14] P. Duchowicz, E. A. Castro, and A. A. Toropov. Improved QSPR analysis

of standard entropy of acyclic and aromatic compounds using optimized

correlation weights of linear graph invariants. Computers & Chemistry, 26

(4):327–332, 2002.

[15] H. Fujiwara, J. Wang, L. Zhao, H. Nagamochi, and T. Akutsu. Enumerating

treelike chemical graphs with given path frequency. Journal of Chemical

Information and Modeling, 48(7):1345–1357, 2008.

[16] F. Ghasemi, A. Mehridehnavi, A. Pérez-Garrido, and H. Pérez-Sánchez.

Neural network and deep-learning algorithms used in QSAR studies: merits

and drawbacks. Drug Discovery Today, 23(10):1784–1790, 2018.

[17] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato,

B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel,

R. P. Adams, and A. Aspuru-Guzik. Automatic chemical design using a

data-driven continuous representation of molecules. ACS Central Science, 4

(2):268–276, 2018.

[18] V. Goussard, F. Duprat, V. Gerbaud, J.-L. Ploix, G. Dreyfus, V. Nardello-

Rataj, and J.-M. Aubry. Predicting the surface tension of liquids: Compar-

ison of four modeling approaches and application to cosmetic oils. Journal

of Chemical Information and Modeling, 57(12):2986–2995, 2017.

[19] V. Goussard, F. Duprat, J.-L. Ploix, G. Dreyfus, V. Nardello-Rataj, and J.-

M. Aubry. A new machine-learning tool for fast estimation of liquid viscosity.

BIBLIOGRAPHY 117

application to cosmetic oils. Journal of Chemical Information and Modeling,

60(4):2012–2023, 2020.

[20] R. Gugisch, A. Kerber, A. Kohnert, R. Laue, M. Meringer, C. Rücker, and

A. Wassermann. MOLGEN 5.0, a molecular structure generator. InAdvances

in Mathematical Chemistry and Applications, pages 113–138. Elsevier, 2015.

[21] A. Hoerl and R. Kennard. Ridge regression: Biased estimation for

nonorthogonal problems. Technometrics, 12(1):55–67, 1970.

[22] A. Hoerl and R. Kennard. Ridge regression: Applications to nonorthogonal

problems. Technometrics, 12(1):69–82, 1970.

[23] R. Ido, S. Cao, J. Zhu, N. A. Azam, K. Haraguchi, L. Zhao, H. Nagamochi,

and T. Akutsu. A method for inferring polymers based on linear regression

and integer programming. arXiv preprint arXiv:2109.02628, 2021.

[24] H. Ikebata, K. Hongo, T. Isomura, R. Maezono, and R. Yoshida. Bayesian

molecular design with a chemical language model. Journal of Computer-

aided Molecular Design, 31:379–391, 2017.

[25] R. Ito, N. A. Azam, C. Wang, A. Shurbevski, H. Nagamochi, and T. Akutsu.

A novel method for the inverse QSAR/QSPR to monocyclic chemical com-

pounds based on artificial neural networks and integer programming. In

Advances in Computer Vision and Computational Biology: Proceedings

from IPCV’20, HIMS’20, BIOCOMP’20, and BIOENG’20, pages 641–655.

Springer, 2021.

[26] M. Jalali-Heravi and M. H. Fatemi. Artificial neural network modeling of

kovats retention indices for noncyclic and monocyclic terpenes. Journal of

Chromatography A, 915(1-2):177–183, 2001.

[27] S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoe-

maker, P. A. Thiessen, B. Yu, et al. Pubchem 2023 update. Nucleic Acids

Research, 51(D1):D1373–D1380, 2023.

[28] T. N. Kipf and M. Welling. Semi-supervised classification with graph con-

volutional networks. arXiv preprint arXiv:1609.02907, 2016.

[29] M. J. Kusner, B. Paige, and J. M. Hernández-Lobato. Grammar variational

autoencoder. In International Conference on Machine Learning, pages 1945–

1954. PMLR, 2017.

118

Chapter BIBLIOGRAPHY

[30] J. Li, H. Nagamochi, and T. Akutsu. Enumerating substituted benzene

isomers of tree-like chemical graphs. IEEE/ACM Transactions on Compu-

tational Biology and Bioinformatics, 15(2):633–646, 2016.

[31] Y.-C. Lo, S. E. Rensi, W. Torng, and R. B. Altman. Machine learning in

chemoinformatics and drug discovery. Drug Discovery Today, 23(8):1538–

1546, 2018.

[32] K. Madhawa, K. Ishiguro, K. Nakago, and M. Abe. GraphNVP: An

invertible flow model for generating molecular graphs. arXiv preprint

arXiv:1905.11600, 2019.

[33] T. Miyao, H. Kaneko, and K. Funatsu. Inverse QSPR/QSAR analysis for

chemical structure generation (from y to x). Journal of Chemical Information

and Modeling, 56(2):286–299, 2016.

[34] R. Naef. Calculation of the isobaric heat capacities of the liquid and solid

phase of organic compounds at and around 298.15 k based on their “true”

molecular volume. Molecules, 24(8):1626, 2019.

[35] T. I. Netzeva, A. P. Worth, T. Aldenberg, R. Benigni, M. T. Cronin, P. Gra-

matica, J. S. Jaworska, S. Kahn, G. Klopman, C. A. Marchant, et al. Cur-

rent status of methods for defining the applicability domain of (quantitative)

structure-activity relationships: The report and recommendations of ecvam

workshop 52. Alternatives to Laboratory Animals, 33(2):155–173, 2005.

[36] Y. M. Ponce. Total and local quadratic indices of the molecular pseudo-

graph’s atom adjacency matrix: applications to the prediction of physical

properties of organic compounds. Molecules, 8(9):687–726, 2003.

[37] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. Von Lilienfeld. Quantum

chemistry structures and properties of 134 kilo molecules. Scientific data, 1

(1):1–7, 2014.

[38] J.-L. Reymond. The chemical space project. Accounts of Chemical Research,

48(3):722–730, 2015.

[39] K. Roy and A. Saha. Comparative QSPR studies with molecular connectiv-

ity, molecular negentropy and tau indices: Part i: Molecular thermochemi-

cal properties of diverse functional acyclic compounds. Journal of Molecular

Modeling, 9:259–270, 2003.

BIBLIOGRAPHY 119

[40] C. Rupakheti, A. Virshup, W. Yang, and D. N. Beratan. Strategy to dis-

cover diverse optimal molecules in the small molecule universe. Journal of

Chemical Information and Modeling, 55(3):529–537, 2015.

[41] M. H. Segler, T. Kogej, C. Tyrchan, and M. P. Waller. Generating focused

molecule libraries for drug discovery with recurrent neural networks. ACS

Central Science, 4(1):120–131, 2018.

[42] C. Shi, M. Xu, Z. Zhu, W. Zhang, M. Zhang, and J. Tang. GraphAF: a flow-

based autoregressive model for molecular graph generation. arXiv preprint

arXiv:2001.09382, 2020.

[43] Y. Shi, J. Zhu, N. A. Azam, K. Haraguchi, L. Zhao, H. Nagamochi, and

T. Akutsu. An inverse QSAR method based on a two-layered model and

integer programming. International Journal of Molecular Sciences, 22(6):

2847, 2021.

[44] M. I. Skvortsova, I. I. Baskin, O. L. Slovokhotova, V. A. Palyulin, and N. S.

Zefirov. Inverse problem in QSAR/QSPR studies for the case of topological

indexes characterizing molecular shape (kier indices). Journal of Chemical

Information and Computer Sciences, 33(4):630–634, 1993.

[45] M. Sumita, X. Yang, S. Ishihara, R. Tamura, and K. Tsuda. Hunting for

organic molecules with artificial intelligence: molecules optimized for desired

excitation energies. ACS Central Science, 4(9):1126–1133, 2018.

[46] M. Suzuki, H. Nagamochi, and T. Akutsu. Efficient enumeration of mono-

cyclic chemical graphs with given path frequencies. Journal of Cheminfor-

matics, 6(1):1–18, 2014.

[47] S. Takeda, T. Hama, H.-H. Hsu, V. A. Piunova, D. Zubarev, D. P. Sanders,

J. W. Pitera, M. Kogoh, T. Hongo, Y. Cheng, et al. Molecular inverse-design

platform for material industries. In Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pages

2961–2969, 2020.

[48] Y. Tamura, Y. Nishiyama, C. Wang, Y. Sun, A. Shurbevski, H. Nagamochi,

and T. Akutsu. Enumerating chemical graphs with mono-block 2-augmented

tree structure from given upper and lower bounds on path frequencies. arXiv

preprint arXiv:2004.06367, 2020.

[49] K. Tanaka, J. Zhu, N. A. Azam, K. Haraguchi, L. Zhao, H. Nagamochi, and

T. Akutsu. An inverse QSAR method based on decision tree and integer

120

Chapter BIBLIOGRAPHY

programming. In Intelligent Computing Theories and Application: 17th In-

ternational Conference, ICIC 2021, Shenzhen, China, August 12–15, 2021,

Proceedings, Part II, pages 628–644. Springer, 2021.

[50] I. V. Tetko and O. Engkvist. From big data to artificial intelligence: chemoin-

formatics meets new challenges. Journal of Cheminformatics, 12:1–3, 2020.

[51] Y. Tezuka and H. Oike. Topological polymer chemistry. Progress in Polymer

Science, 27(6):1069–1122, 2002.

[52] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal

of the Royal Statistical Society: Series B (Methodological), 58(1):267–288,

1996.

[53] J.-B. Wang, D.-S. Cao, M.-F. Zhu, Y.-H. Yun, N. Xiao, and Y.-Z. Liang. In

silico evaluation of logd7. 4 and comparison with other prediction methods.

Journal of Chemometrics, 29(7):389–398, 2015.

[54] Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu,

K. Leswing, and V. Pande. MoleculeNet: a benchmark for molecular machine

learning. Chemical Science, 9(2):513–530, 2018.

[55] J. Xiong, Z. Xiong, K. Chen, H. Jiang, and M. Zheng. Graph neural networks

for automated de novo drug design. Drug Discovery Today, 26(6):1382–1393,

2021.

[56] K. Yamashita, R. Masui, X. Zhou, C. Wang, A. Shurbevski, H. Nagamochi,

and T. Akutsu. Enumerating chemical graphs with two disjoint cycles satis-

fying given path frequency specifications. arXiv preprint arXiv:2004.08381,

2020.

[57] X. Yang, J. Zhang, K. Yoshizoe, K. Terayama, and K. Tsuda. ChemTS:

an efficient python library for de novo molecular generation. Science and

Technology of Advanced Materials, 18(1):972–976, 2017.

[58] S. Yuan, Z. Jiao, N. Quddus, J. S.-I. Kwon, and C. V. Mashuga. Develop-

ing quantitative structure–property relationship models to predict the upper

flammability limit using machine learning. Industrial & Engineering Chem-

istry Research, 58(8):3531–3537, 2019.

[59] F. Zhang, J. Zhu, R. Chiewvanichakorn, A. Shurbevski, H. Nagamochi,

and T. Akutsu. A new integer linear programming formulation to the in-

verse QSAR/QSPR for acyclic chemical compounds using skeleton trees. In

BIBLIOGRAPHY 121

Trends in Artificial Intelligence Theory and Applications. Artificial Intel-

ligence Practices: 33rd International Conference on Industrial, Engineer-

ing and Other Applications of Applied Intelligent Systems, IEA/AIE 2020,

Kitakyushu, Japan, September 22-25, 2020, Proceedings, pages 433–444.

Springer, 2020.

[60] F. Zhang, J. Zhu, R. Chiewvanichakorn, A. Shurbevski, H. Nagamochi, and

T. Akutsu. A new approach to the design of acyclic chemical compounds

using skeleton trees and integer linear programming. Applied Intelligence,

52(15):17058–17072, 2022.

[61] J. Zhu, C. Wang, A. Shurbevski, H. Nagamochi, and T. Akutsu. A novel

method for inference of chemical compounds of cycle index two with desired

properties based on artificial neural networks and integer programming. Al-

gorithms, 13(5):124, 2020.

[62] J. Zhu, N. A. Azam, K. Haraguchi, L. Zhao, H. Nagamochi, and T. Akutsu.

An improved integer programming formulation for inferring chemical com-

pounds with prescribed topological structures. In Advances and Trends in

Artificial Intelligence. Artificial Intelligence Practices: 34th International

Conference on Industrial, Engineering and Other Applications of Applied

Intelligent Systems, IEA/AIE 2021, Kuala Lumpur, Malaysia, July 26–29,

2021, Proceedings, Part I 34, pages 197–209. Springer, 2021.

[63] J. Zhu, N. A. Azam, K. Haraguchi, L. Zhao, H. Nagamochi, and T. Akutsu.

An inverse QSAR method based on linear regression and integer program-

ming. arXiv preprint arXiv:2107.02381, 2021.

[64] J. Zhu, K. Haraguchi, H. Nagamochi, and T. Akutsu. Adjustive linear re-

gression and its application to the inverse qsar. Department of Applied

Mathematics and Physics, Kyoto University, Technical Report, TR:2021-002

http://www.amp.i.kyoto-u.ac.jp/tecrep, 2021.

[65] J. Zhu, N. A. Azam, S. Cao, R. Ido, K. Haraguchi, L. Zhao, H. Nag-

amochi, and T. Akutsu. Molecular design based on integer program-

ming and quadratic descriptors in a two-layered model. arXiv preprint

arXiv:2209.13527, 2022.

[66] J. Zhu, N. A. Azam, K. Haraguchi, L. Zhao, H. Nagamochi, and T. Akutsu. A

method for molecular design based on linear regression and integer program-

ming. In Proceedings of the 12th International Conference on Bioscience,

Biochemistry and Bioinformatics, pages 21–28, 2022.

122

Chapter BIBLIOGRAPHY

[67] J. Zhu, K. Haraguchi, H. Nagamochi, and T. Akutsu. Adjustive linear re-

gression and its application to the inverse QSAR. In Proceedings of the

15th International Joint Conference on Biomedical Engineering Systems and

Technologies - BIOINFORMATICS, pages 144–151. INSTICC, SciTePress,

2022.

[68] H. Zou and T. Hastie. Regularization and variable selection via the elastic

net. Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy), 67(2):301–320, 2005.

Appendix A Appendix for

Chapter 4

A.1 All Constraints in an MILP Formulation for Rank-

2 Chemical Graphs

To formulate an MILP that represents a chemical graph G = (H,α, β), we

distinguish a tuple (a, b, k) from a tuple (b, a, k). For a tuple γ = (a, b, k) ∈
Λ×Λ×{1, 2, 3}, let γ denote the tuple (b, a, k). Let Γ< ≜ {γ | γ ∈ Γ>}. We call

a tuple γ = (a, b, k) ∈ Λ× Λ× {1, 2, 3} proper if

k ≤ min{val(a), val(b)} and k ≤ max{val(a), val(b)} − 1,

where the latter is assumed because otherwise G must consist of two atoms of

a = b. Assume that each tuple γ ∈ Γ is proper. Let ϵ be a fictitious chemical

element that represents null, call a tuple (a, b, 0) with a, b ∈ Λ∪{ϵ} fictitious, and

define Γ0 to be the set of all fictitious tuples; i.e., Γ0 = {(a, b, 0) | a, b ∈ Λ∪{ϵ}}.
To represent chemical elements e ∈ Λ ∪ {ϵ} ∪ Γ in an MILP, we encode these

elements e into some integers denoted by [e]. Assume that, for each element

a ∈ Λ, [a] is a positive integer and that [ϵ] = 0.

A.1.1 Applicability Domain

We use the range-based method to define an applicability domain for our method.

For this, we find the range (the minimum and maximum) of each descriptor

over all relevant chemical compounds and represent each range as a set of linear

constraints in the constraint set C1 of our MILP formulation. Recall that Dπ

stands for a set of chemical graphs used for constructing a prediction function.

However, the number of examples in Dπ may not be large enough to capture a

general feature on the structure of chemical graphs. For this, we also use some

data set from the whole set DB of chemical graphs in a database. Let DB
(i)
G

denote the set of chemical graphs G ∈ DB∩G such that n(G) = i for each integer

i ≥ 1. Formally the set of variables and constraints is given as follows.

AD constraints in C1:
constants:

123

124 Chapter A Appendix for Chapter 4

Integers cs∗ ≥ 3 and ch∗ ≥ 1;

An integer dmax ∈ {3, 4};
An integer n∗ ∈ [cs∗ + 1, cs∗ · (dmax−1)ch

∗
];

variables for descriptors in x:

A real variable κ1 ≥ 0: κ1 represents κ1(H);

dg(i) ∈ [0, n∗] (i ∈ [1, 4]): dg(i) represents the number of vertices of degree i in

H;

Mass ∈ Z: Mass represents
∑

v∈V mass∗(α(v));

ceco(a) ∈ [0, n∗], a ∈ Λ: ceco(a) represents the number of vertices of chemical

element a in the core of H;

cenc(a) ∈ [0, n∗], a ∈ Λ: cenc(a) represents the number of vertices of chemical

element a in the non-core of H;

bco(k) ∈ [0, 2n∗], k ∈ [1, 3]: bco(k) represents the number of k-bonds in the core

of H;

bnc(k) ∈ [0, 2n∗], k ∈ [1, 3]: bnc(k) represents the number of k-bonds in the non-

core of H;

acco(γ) ∈ [0, n∗], γ ∈ Γ< ∪ Γ=: ac
co(γ) represents the number of core edges in H

that are assigned tuple γ ∈ Γ<;

acnc(γ) ∈ [0, n∗], γ ∈ Γ< ∪ Γ=: acnc(γ) represents the number of non-core edges

in H that are assigned tuple γ ∈ Γ<;

constraints:

n∗ min
G∈Dπ∪DB

(n∗)
G

κ1(G)

n(G)
≤ κ1 ≤ n∗ max

G∈Dπ∪DB
(n∗)
G

κ1(G)

n(G)
, (A.1.1)

n∗ min
G∈Dπ∪DB

(n∗)
G

dgi(G)

n(G)
≤ dg(i) ≤ n∗ max

G∈Dπ∪DB
(n∗)
G

dgi(G)

n(G)
, i ∈ [1, 4],

(A.1.2)

n∗ min
G∈Dπ∪DB

(n∗)
G

ms(G) ≤ Mass ≤ n∗ max
G∈Dπ∪DB

(n∗)
G

ms(G), (A.1.3)

n∗ min
G∈Dπ∪DB

(n∗)
G

cecoa (G)

n(G)
≤ ceco(a) ≤ n∗ max

G∈Dπ∪DB
(n∗)
G

cecoa (G)

n(G)
, a ∈ Λ,

(A.1.4)

n∗ min
G∈Dπ∪DB

(n∗)
G

cenca (G)

n(G)
≤ cenc(a) ≤ n∗ max

G∈Dπ∪DB
(n∗)
G

cenca (G)

n(G)
, a ∈ Λ,

(A.1.5)

A.1 All Constraints in an MILP Formulation for Rank-2 Chemical Graphs 125

(n∗+1) min
G∈Dπ∪DB

(n∗)
G

bcok (G)

n(G)+1
≤ bco(k) ≤ (n∗+1) max

G∈Dπ∪DB
(n∗)
G

bcok (G)

n(G)+1
, k ∈ [2, 3],

(A.1.6)

(n∗+1) min
G∈Dπ∪DB

(n∗)
G

bnck (G)

n(G)+1
≤ bnc(k) ≤ (n∗+1) max

G∈Dπ∪DB
(n∗)
G

bnck (G)

n(G)+1
, k ∈ [2, 3],

(A.1.7)

(n∗+1) min
G∈Dπ∪DB

(n∗)
G

accoγ (G)

n(G)+1
≤ acco(γ) ≤ (n∗+1) max

G∈Dπ∪DB
(n∗)
G

accoγ (G)

n(G)+1
, γ ∈ Γ,

(A.1.8)

(n∗+1) min
G∈Dπ∪DB

(n∗)
G

acncγ (G)

n(G)+1
≤ acnc(γ) ≤ (n∗+1) max

G∈Dπ∪DB
(n∗)
G

acncγ (G)

n(G)+1
, γ ∈ Γ.

(A.1.9)

In the following, we derive an MILP M(x, g; C2) that satisfies the condition

in Theorem 4.2. Let dmax ∈ {3, 4}, n∗ ≥ 3, cs∗ ≥ 3 ch∗ ≥ 0 and θ∗ be given

integers. We describe the set C2 with several sets of constraints.

A.1.2 Construction of Scheme Graph and Tree-Extension

We infer a subgraph H such that the maximum degree is dmax ∈ {3, 4}, n(H) =

n∗, cs(H) = cs∗ and ch(H) = ch∗. For this, we first construct the (t∗, ch∗, dmax)-

tree-extension of the scheme graph (K = (VK = {u1, . . . , us∗},EK = {a1, a2, . . . , am}),
E = (E1, E2, E3)). We use the following notations: For j ∈ [1, 3] and s ∈ [1, s∗], let

E+
j (s) (resp., E

−
j (s)) denote the set of indices i of edges ai ∈ Ei such that the tail

(resp., head) of ai is us,1. Let E
+
j,k(s) ≜ E+

j (s)∪E
+
k (s), E

−
j,k(s) ≜ E−

j (s)∪E
−
k (s),

Ej(s) ≜ E+
j (s) ∪ E

−
j (s) and Ej,k(s) ≜ Ej(s) ∪ Ek(s).

As described in Section 4.3, some edge a(i) ∈ E1 ∪ E2 may be replaced

with a subpath Pi of (v1,1, v1,2, . . . , vt∗,1), which consists of the roots of trees

T1, T2, . . . , Tt∗ . We assign color i to the vertices in such a subpath Pi by setting

a variable χ(t) of each vertex vt,1 ∈ V (Pi) to be i. For each edge us,1vt,1, we

prepare a binary variable e(s, t) to denote that edge us,1vt,1 is used (resp., not

used) in a selected graph H when e(s, t) = 1 (resp., e(s, t) = 0). We also include

constraints necessary for the variables to satisfy a degree condition at each of the

vertices us,1, s ∈ [1, s∗] and vt,1, t ∈ [1, t∗].

constants:

Integers s∗ = |VK |, c∗ = |E1 ∪ E2|, cs∗ (≥ s∗), n∗ (≥ cs∗) and ch∗ ≥ 0;

d+(s), s ∈ [1, s∗]: a lower bound on the out-degree of vertex us,1 in H;

d−(s), s ∈ [1, s∗]: a lower bound on the in-degree of vertex us,1 in H;

126 Chapter A Appendix for Chapter 4

d
+
(s), s ∈ [1, s∗]: an upper bound on the out-degree of vertex us,1 in H;

d
−
(s), s ∈ [1, s∗]: an upper bound on the in-degree of vertex us,1 in H;

variables:

a(i) ∈ {0, 1}, i ∈ E1 ∪ E3: a(i) represents edge ai ∈ E1 ∪ E3 (a(i) = 1, i ∈ E1)

(a(i) = 1 ⇔ edge ai is used in H);

e(s, t), e(t, s) ∈ {0, 1}, s ∈ [1, s∗], t ∈ [1, t∗]: e(s, t) (resp., e(t, s)) represents

direction (us,1, vt,1) (resp., (vt,1, us,1)), where e(s, t) = 1 (resp., e(t, s) = 1) ⇔
edge us,1, vt,1 is used in H and direction (us,1, vt,1) (resp., (vt,1, us,1)) is assigned

to edge us,1, vt,1;

χ(t) ∈ [1, c∗], t ∈ [1, t∗]: χ(t) represents the color assigned to vertex vt,1

(χ(t) = c ⇔ vertex vt,1 is assigned color c);

clr(c) ∈ [0, n∗ − s∗], c ∈ [1, c∗]: the number of vertices vt,i with color c;

degco+(s) ∈ [1, 4], s ∈ [1, s∗]: the out-degree of vertex us,1 in the core of H;

degco−(s) ∈ [1, 4], s ∈ [1, s∗]: the in-degree of vertex us,1 in the core of H;

δclr(t, c) ∈ {0, 1}, t ∈ [1, t∗], c ∈ [1, c∗] (δclr(t, c) = 1 ⇔ χ(t) = c);

constraints:

∑
c∈[1,c∗]

δclr(t, c) = 1, t ∈ [1, t∗], (A.1.10)

∑
c∈[1,c∗]

c · δclr(t, c) = χ(t), t ∈ [1, t∗], (A.1.11)

∑
t∈[1,t∗]

δclr(t, c) = clr(c), c ∈ [1, c∗], (A.1.12)

e(s, t) + e(t, s) ≤ 1, s ∈ [1, s∗], t ∈ [1, t∗], (A.1.13)∑
s∈[1,s∗]\{head(c)}

e(t, s) ≤ 1− δclr(t, c), c ∈ [1, c∗], t ∈ [1, t∗], (A.1.14)

∑
s∈[1,s∗]\{tail(c)}

e(s, t) ≤ 1− δclr(t, c), c ∈ [1, c∗], t ∈ [1, t∗], (A.1.15)

∑
i∈E−

1,3(s)

a(i) +
∑

t∈[1,t∗]

e(t, s) = degco−(s), s ∈ [1, s∗], (A.1.16)

∑
i∈E+

1,3(s)

a(i) +
∑

t∈[1,t∗]

e(s, t) = degco+(s), s ∈ [1, s∗], (A.1.17)

d+(s) ≤ degco+(s) ≤ d
+
(s), s ∈ [1, s∗], (A.1.18)

d−(s) ≤ degco−(s) ≤ d
−
(s), s ∈ [1, s∗]. (A.1.19)

A.1 All Constraints in an MILP Formulation for Rank-2 Chemical Graphs 127

A.1.3 Specification for Chemical Graphs with Rank 2

To generate any of the three rank-2 polymer topologies in PT (2, 4), we use the

scheme graph (K = (VK = {u1, u2, u3, u4}, EK), E = (E1, E2, E3)) in Figure 4.2d,

where s∗ = |V (K)| = 4, c∗ = |E1 ∪ E2| = 5, E1 = {a1 = (u1, u4), a2 =

(u2, u3), a3 = (u2, u4)}, E2 = {a4 = (u1, u2), a5 = (u3, u4)} and E3 = {a6 =

(u1, u2), a7 = (u3, u4)}. Recall that each color i ∈ [1, c∗] is assigned to edge

ai ∈ E1 ∪ E2. We impose some more constraints on the degree of each of the

vertices us,1, s ∈ [1, s∗] and vt,1, t ∈ [1, t∗] so that the core of a selected graph

H satisfies one of the three least simple graphs in Figure 4.2a–c. We also let a

variable θ mean the topological parameter θ(H) of a selected subgraph H.

constants:

s∗ = 4, c∗ = 5,

E−
1 (1) = ∅, E−

2 (1) = ∅, E−
3 (1) = ∅, E+

1 (1) = {1}, E+
2 (1) = {4}, E+

3 (1) = {6},
E−

1 (2) = ∅, E−
2 (2) = {4}, E−

3 (2) = {6}, E+
1 (2) = {2, 3}, E+

2 (2) = ∅, E+
3 (2) = ∅,

E−
1 (3) = {2}, E−

2 (3) = ∅, E−
3 (3) = ∅, E+

1 (3) = ∅, E+
2 (3) = {5}, E+

3 (3) = {7},
E−

1 (4) = {1, 3}, E−
2 (4) = {5}, E−

3 (4) = {7}, E+
1 (4) = ∅, E+

2 (4) = ∅, E+
3 (4) = ∅,

d−(1) = 0, d
−
(1) = 0, d+(1) = 2, d

+
(1) = 2,

d−(2) = 1, d
−
(2) = 2, d+(2) = 1, d

+
(2) = 2,

d−(3) = 1, d
−
(3) = 1, d+(3) = 1, d

+
(3) = 2,

d−(4) = 2, d
−
(4) = 3, d+(4) = 0, d

+
(4) = 0,

variables:

θ ∈ [−n∗, n∗]: The topology-parameter θ(H) for rank 2;

constraints:

a(2) + clr(2) ≥ 1, (A.1.20)

a(3) + clr(3) + clr(4) ≥ 1, (A.1.21)

clr(4) ≥ clr(5), (A.1.22)

clr(3) ≤ clr(2) + 1, (A.1.23)

clr(3) ≤ clr(1) + 1 + n∗(3− degco−(4)), (A.1.24)

−θ ≤ 1 + clr(2) + n∗(2− degco+(3)), (A.1.25)

−θ ≥ 1 + clr(2)− n∗(2− degco+(3)), (A.1.26)

θ ≤ n∗(4− degco+(2)− degco−(2)), (A.1.27)

θ ≥ −n∗(4− degco+(2)− degco−(2)), (A.1.28)

θ ≤ 1 + clr(3) + n∗(3− degco−(4)), (A.1.29)

θ ≥ 1 + clr(3)− n∗(3− degco−(4)). (A.1.30)

128 Chapter A Appendix for Chapter 4

A.1.4 Selecting A Subgraph

We prepare a binary variable u(s, i) (resp., v(t, i)) for each vertex us,i in tree Ss

(resp., vt,i in tree Tt). We include constraints so that the path (v1,1, v1,2, . . . , vt∗,1)

is partitioned into subpaths Pc, c ∈ [1, c∗], where possibly some Pc is empty, and

the resulting subgraph H becomes a connected rank-2 graph with n(H) = n∗,

cs(H) = cs∗, ch(H) = ch∗ and θ(H) = θ∗.

constants:

Integers dmax ∈ {3, 4}, ch∗ ≥ 0;

Prepare the set Cld(i) of the indices of children of a vertex vi

the index prt(i) of the parent of a non-root vertex vi, and

the set Dst(h) of indices i such that the height of a vertex vi is h

in the rooted tree T (2, dmax − 1, ch∗);

variables:

u(s, i) ∈ {0, 1}, s ∈ [1, s∗], i ∈ [1, ntree]: u(s, i) represents vertex us,i

(u(s, i) = 1 ⇔ vertex us,i is used in H and edge e′s,i (i ≥ 2) is used in H);

v(t, i) ∈ {0, 1}, t ∈ [1, t∗], i ∈ [1, ntree]: v(t, i) represents vertex vt,i

(v(t, i) = 1 ⇔ vertex vt,i is used in H and edge et,i (i ≥ 2) is used in H);

e(t) ∈ {0, 1}, t ∈ [1, t∗ + 1]: e(t) represents edge et = vt−1,1vt,i,

where e1,1 and et∗+1,1 are fictitious edges (e(t) = 1 ⇔ edge et is used in H);

constraints:

u(s, 1) = 1, s ∈ [1, s∗],

(A.1.31)

dmax · u(t, i) ≥
∑

j∈Cld(i)

u(t, j), t ∈ [1, cs∗], i ∈ [2, nin],

(A.1.32)

v(t, 1) = 1, t ∈ [1, t∗],

(A.1.33)

dmax · v(t, i) ≥
∑

j∈Cld(i)

v(t, j), t ∈ [1, cs∗], i ∈ [2, nin],

(A.1.34)∑
s∈[1,s∗],i∈[1,ntree]

u(s, i) +
∑

t∈[1,t∗],i∈[1,ntree]

v(t, i) = n∗, (A.1.35)

∑
s∈[1,s∗],i∈Dst(ch∗)

u(s, i) +
∑

t∈[1,t∗],i∈Dst(ch∗)

v(t, i) ≥ 1, (A.1.36)

A.1 All Constraints in an MILP Formulation for Rank-2 Chemical Graphs 129

e(1) = e(t∗ + 1) = 0, (A.1.37)

e(t+ 1) +
∑

s∈[1,s∗]

e(t, s) = 1, t ∈ [1, t∗], (A.1.38)

e(t) +
∑

s∈[1,s∗]

e(s, t) = 1, t ∈ [1, t∗], (A.1.39)

c∗ ≥ χ(1) ≥ χ(2) ≥ · · · ≥ χ(t∗) ≥ 1, (A.1.40)

e(t+ 1) ≥ 1 + χ(t+ 1)− χ(t), t ∈ [1, t∗ − 1], (A.1.41)

c∗ · (1− e(t+ 1)) ≥ χ(t)− χ(t+ 1), t ∈ [1, t∗ − 1]. (A.1.42)

A.1.5 Assigning Multiplicity

We prepare an integer variable β̃(e) or β̂(e) for each edge e in the (t∗, ch∗, dmax)-

tree-extension of the scheme graph to denote the multiplicity of e in a selected

graph H and include necessary constraints for the variables to satisfy in H.

variables:

β̃(i) ∈ [0, 3], i ∈ E1 ∪ E3: β̃(i) represents the multiplicity of edge ai,

where β̃(i) = 0 if edge ai is not in H;

β̃(p, i) ∈ [0, 3], p ∈ [1, cs∗], i ∈ [2, ntree]: β̃(p, i) with p ≤ s∗ (resp., p > s∗)

represents the multiplicity of edge e′p,i (resp., ep−s∗,i);

β̃(t, 1) ∈ [0, 3], t ∈ [1, t∗ + 1]: β̃(t, 1) represents the multiplicity of edge et;

β̂(s, t) ∈ [0, 3], s ∈ [1, s∗], t ∈ [1, t∗]: β̂(s, t) represents the multiplicity of edge

us,1vt,1;

constraints:

a(i) = 1, i ∈ E3,

(A.1.43)

a(i) ≤ β̃(i) ≤ 3a(i), i ∈ E1 ∪ E3,

(A.1.44)

u(s, i) ≤ β̃(s, i) ≤ 3u(s, i), s ∈ [1, s∗], i ∈ [2, ntree],

(A.1.45)

v(t, i) ≤ β̃(s∗ + t, i) ≤ 3v(t, i), t ∈ [1, t∗], i ∈ [2, ntree],

(A.1.46)

e(t) ≤ β̃(t, 1) ≤ 3e(t), t ∈ [1, t∗ + 1],

(A.1.47)

e(s, t) + e(t, s) ≤ β̂(s, t) ≤ 3e(s, t) + 3e(t, s), s ∈ [1, s∗], t ∈ [1, t∗].

(A.1.48)

130 Chapter A Appendix for Chapter 4

A.1.6 Assigning Chemical Elements and Valence Condition

We include constraints so that each vertex v in a selected graph H satisfies the

valence condition; i.e.,
∑

uv∈E(H) β(uv) ≤ val(α(u)). With these constraints,

a rank-2 chemical graph G = (H,α, β) on a selected subgraph H will be con-

structed.

constants:

A set Λ ∪ {ϵ} of chemical elements, where ϵ denotes null;

A coding [a], a ∈ Λ ∪ {ϵ} such that [ϵ] = 0; [a] ≥ 1, a ∈ Λ; and [a] ̸= [b] if a ̸= b;

Let [Λ] and [Λ ∪ {ϵ}] denote {[a] | a ∈ Λ} and {[a] | a ∈ Λ ∪ {ϵ}}, respectively;
A valence function: val : Λ → [1, 4];

variables:

α̃(p, i) ∈ [Λ ∪ {ϵ}], p ∈ [1, cs∗], i ∈ [1, ntree]:

α̃(p, i) with p ≤ s∗ (resp., p > s∗) represents α(up,i) (resp., α(vp−s∗,i));

δα(p, i, a) ∈ {0, 1}, p ∈ [1, cs∗], i ∈ [1, ntree], a ∈ Λ ∪ {ϵ}:
δα(p, i, a) = 1 ⇔ α(up,i) = a for p ≤ s∗ and α(vp−s∗,i) = a for p > s∗;

δ
β̃
(i, k) ∈ {0, 1}, p ∈ [1, cs∗], i ∈ E1 ∪ E3, k ∈ [0, 3]:

δ
β̃
(i, k) = 1 ⇔ the multiplicity of edge ai in H is k;

δ
β̃
(p, i, k) ∈ {0, 1}, p ∈ [1, cs∗], i ∈ [2, ntree], k ∈ [0, 3]:

δ
β̃
(p, i, k) = 1 ⇔ the multiplicity of edge e′p,i, p ≤ s∗ (or ep−s∗,i, p > s∗) in H is

k;

δ
β̃
(t, 1, k) ∈ {0, 1}, t ∈ [1, t∗ + 1], k ∈ [0, 3]:

δ
β̃
(t, 1, k) = 1 ⇔ the multiplicity of edge et in H is k;

δ
β̂
(s, t, k) ∈ {0, 1}, s ∈ [1, s∗], t ∈ [1, t∗], k ∈ [0, 3]:

δ
β̂
(s, t, k) = 1 ⇔ the multiplicity of edge us,1vt,1 in H is k;

constraints:

∑
a∈Λ∪{ϵ}

δα(p, i, a) = 1, p ∈ [1, cs∗], i ∈ [1, ntree], (A.1.49)

∑
a∈Λ∪{ϵ}

[a] · δα(p, i, a) = α̃(p, i), p ∈ [1, cs∗], i ∈ [1, ntree], (A.1.50)

∑
k∈[0,3]

δ
β̃
(i, k) = 1, i ∈ E1 ∪ E3, (A.1.51)

∑
k∈[1,3]

k · δ
β̃
(i, k) = β̃(i), i ∈ E1 ∪ E3, (A.1.52)

A.1 All Constraints in an MILP Formulation for Rank-2 Chemical Graphs 131

∑
k∈[0,3]

δ
β̃
(p, i, k) = 1, p ∈ [1, cs∗], i ∈ [2, ntree], (A.1.53)

∑
k∈[1,3]

k · δ
β̃
(p, i, k) = β̃(p, i), p ∈ [1, cs∗], i ∈ [2, ntree], (A.1.54)

∑
k∈[0,3]

δ
β̃
(t, 1, k) = 1, t ∈ [1, t∗ + 1], (A.1.55)

∑
k∈[1,3]

k · δ
β̃
(t, 1, k) = β̃(t, 1), t ∈ [1, t∗ + 1], (A.1.56)

∑
k∈[0,3]

δ
β̂
(s, t, k) = 1, s ∈ [1, s∗], t ∈ [1, t∗], (A.1.57)

∑
k∈[0,3]

kδ
β̂
(s, t, k) = β̂(s, t), s ∈ [1, s∗], t ∈ [1, t∗], (A.1.58)

∑
i∈E1,3(s)

β̃(i) +
∑

t∈[1,t∗]

β̂(s, t)

+
∑

j∈Cld(1)

β̃(s, j) ≤
∑
a∈Λ

val(a) · δα(s, 1, a), s ∈ [1, s∗],

(A.1.59)∑
s∈[1,s∗]

β̂(s, t) + β̃(t, 1) + β̃(t+ 1, 1)

+
∑

j∈Cld(1)

β̃(s∗ + t, j) ≤
∑
a∈Λ

val(a) · δα(s∗ + t, 1, a), t ∈ [1, t∗],

(A.1.60)

β̃(p, i) +
∑

j∈Cld(i)

β̃(p, j) ≤
∑
a∈Λ

val(a) · δα(p, i, a), p ∈ [1, cs∗], i ∈ [2, ntree].

(A.1.61)

A.1.7 Descriptors for Mass, the Numbers of Elements and Bonds

We include constraints to compute descriptors ms(G) cecoa (G), cenca (G) (a ∈ Λ),

bk(G) (k ∈ [2, 3]) and nH(G) according to the definitions in Section 4.2.2.

constants:

A function mass∗ : Λ → Z; Let mass(a) denote the observed mass of a chemical

element a ∈ Λ, and

define mass∗(a) = ⌊10 ·mass(a)⌋;

variables:

ceco(a) ∈ [0, n∗], a ∈ Λ;

132 Chapter A Appendix for Chapter 4

cenc(a) ∈ [0, n∗], a ∈ Λ;

Mass ∈ Z;
bco(k) ∈ [0, 2n∗], k ∈ [1, 3];

bnc(k) ∈ [0, 2n∗], k ∈ [1, 3];

nH ∈ [0, 4n∗]: the number of hydrogen atoms to be included in G;

constraints:

∑
p∈[1,cs∗]

δα(p, 1, a) = ceco(a), a ∈ Λ, (A.1.62)

∑
p∈[1,cs∗],i∈[2,ntree]

δα(p, i, a) = cenc(a), a ∈ Λ, (A.1.63)

∑
a∈Λ

mass∗(a)(ceco(a) + cenc(a)) = Mass, (A.1.64)∑
i∈E1∪E3

δ
β̃
(i, k) +

∑
s∈[1,s∗],t∈[1,t∗]

δ
β̂
(s, t, k)

+
∑

t∈[2,t∗]

δ
β̃
(t, 1, k) = bco(k), k ∈ [1, 3], (A.1.65)

∑
p∈[1,cs∗],i∈[2,ntree]

δ
β̃
(p, i, k) = bnc(k), k ∈ [1, 3], (A.1.66)

∑
a∈Λ

val(a)(ceco(a) + cenc(a))

−2(n∗ + 1 + bco(2) + bnc(2) + 2bco(3) + 2bnc(3)) = nH. (A.1.67)

A.1.8 Descriptor for the Number of Specified Degree

We include constraints to compute descriptors dgi(G) (i ∈ [1, 4]) according to

the definitions in Section 4.2.2. We also add constraints so that the maximum

degree of a non-core vertex in H is at most 3 (resp., equal to 4) when dmax = 3

(resp., dmax = 4).

variables:

deg(p, i) ∈ [0, 4], p ∈ [1, cs∗], i ∈ [1, ntree]:

deg(p, i) represents degH(up,i) for p ≤ s∗ or degH(vp−s∗,i) for p > s∗;

δdeg(p, i, d) ∈ {0, 1}, p ∈ [1, cs∗], i ∈ [1, ntree], d ∈ [0, 4]:

δdeg(p, i, d) = 1 ⇔ deg(p, i) = d;

dg(d) ∈ [0, n∗], d ∈ [1, 4];

A.1 All Constraints in an MILP Formulation for Rank-2 Chemical Graphs 133

constraints:∑
i∈E1,3(s)

a(i) +
∑

t∈[1,t∗]

(e(s, t) + e(t, s))

+
∑

j∈Cld(1)

u(s, j) = deg(s, 1), s ∈ [1, s∗],

(A.1.68)

u(s, i) +
∑

j∈Cld(i)

u(s, j) = deg(s, i), s ∈ [1, s∗], i ∈ [2, ntree],

(A.1.69)

2 +
∑

j∈Cld(1)

v(t, j) = deg(s∗ + t, 1), t ∈ [1, t∗],

(A.1.70)

v(t, i) +
∑

j∈Cld(i)

v(t, j) = deg(s∗ + t, i), t ∈ [1, t∗], i ∈ [2, ntree],

(A.1.71)∑
d∈[0,4]

δdeg(p, i, d) = 1, p ∈ [1, cs∗], i ∈ [1, ntree],

(A.1.72)∑
d∈[1,4]

d · δdeg(p, i, d) = deg(p, i), p ∈ [1, cs∗], i ∈ [1, ntree],

(A.1.73)∑
p∈[1,cs∗],i∈[1,ntree]

δdeg(p, i, d) = dg(d), d ∈ [1, 4],

(A.1.74)∑
p∈[1,cs∗],i∈[2,ntree]

δdeg(p, i, 4) ≥ 1 (resp., = 0) when dmax = 4 (resp., = 3).

(A.1.75)

A.1.9 Descriptor for the Number of Adjacency-Configurations

We include constraints to compute descriptors accoγ (G) and acncγ (G) (γ = (a, b, k) ∈
Γ) according to the definitions in Section 4.2.2.

constants:

A set Γ = Γ< ∪ Γ= ∪ Γ> of proper tuples (a, b, k) ∈ Λ× Λ× [1, 3];

The set Γ0 = {(a, b, 0) | a, b ∈ Λ ∪ {ϵ}};
variables:

δτ (i, γ) ∈ {0, 1}, i ∈ E1 ∪ E3, γ ∈ Γ ∪ Γ0:

δτ (i, γ) = 1⇔ edge ai is assigned tuple γ; i.e., γ = (α̃(tail(i), 1), α̃(head(i), 1), β̃(i));

δτ (t, 1, γ) ∈ {0, 1}, t ∈ [2, t∗], γ ∈ Γ ∪ Γ0:

134 Chapter A Appendix for Chapter 4

δτ (t, 1, γ) = 1 ⇔ edge et is assigned tuple γ; i.e., γ = (α̃(s∗ + t − 1, 1), α̃(s∗ +

t, 1), β̃(t, 1));

δτ (t, i, γ) ∈ {0, 1}, p ∈ [1, cs∗], i ∈ [2, ntree], γ ∈ Γ ∪ Γ0:

δτ (t, i, γ) = 1 ⇔ edge e′p,i, p ≤ s∗ (or ep−s∗,i, p > s∗) is assigned tuple γ; i.e.,

γ = (α̃(p,prt(i)), α̃(p, i), β̃(p, i));

δτ̂ (s, t, γ) ∈ {0, 1}, s ∈ [1, s∗], t ∈ [1, t∗], γ ∈ Γ ∪ Γ0:

δτ̂ (s, t, γ) = 1 ⇔ edge us,1vt,1 is assigned tuple γ; i.e., γ = (α̃(s, 1), α̃(s∗ +

t, 1), β̂(s, t));

acco(γ) ∈ [0, n∗], γ ∈ Γ< ∪ Γ=;

acnc(γ) ∈ [0, n∗], γ ∈ Γ< ∪ Γ=;

constraints:

∑
γ∈Γ∪Γ0

δτ (i, γ) = 1, i ∈ E1 ∪ E3, (A.1.76)

∑
(a,b,k)∈Γ∪Γ0

[a]δτ (i, (a, b, k)) = α̃(tail(i), 1), i ∈ E1 ∪ E3, (A.1.77)

∑
(a,b,k)∈Γ∪Γ0

[b]δτ (i, (a, b, k)) = α̃(head(i), 1), i ∈ E1 ∪ E3, (A.1.78)

∑
(a,b,k)∈Γ∪Γ0

k · δτ (i, (a, b, k)) = β̃(i), i ∈ E1 ∪ E3, (A.1.79)

∑
γ∈Γ∪Γ0

δτ (t, 1, γ) = 1, t ∈ [2, t∗], (A.1.80)

∑
(a,b,k)∈Γ∪Γ0

[a]δτ (t, 1, (a, b, k)) = α̃(s∗ + t− 1, 1), t ∈ [2, t∗], (A.1.81)

∑
(a,b,k)∈Γ∪Γ0

[b]δτ (t, 1, (a, b, k)) = α̃(s∗ + t, 1), t ∈ [2, t∗], (A.1.82)

∑
(a,b,k)∈Γ∪Γ0

k · δτ (t, 1, (a, b, k)) = β̃(t, 1), t ∈ [2, t∗], (A.1.83)

∑
γ∈Γ∪Γ0

δτ (p, i, γ) = 1, p ∈ [1, cs∗], i ∈ [2, ntree],

(A.1.84)∑
(a,b,k)∈Γ∪Γ0

[a]δτ (p, i, (a, b, k)) = α̃(p,prt(i)), p ∈ [1, cs∗], i ∈ [2, ntree],

(A.1.85)

A.1 All Constraints in an MILP Formulation for Rank-2 Chemical Graphs 135

∑
(a,b,k)∈Γ∪Γ0

[b]δτ (p, i, (a, b, k)) = α̃(p, i), p ∈ [1, cs∗], i ∈ [2, ntree], (A.1.86)

∑
(a,b,k)∈Γ∪Γ0

k · δτ (p, i, (a, b, k)) = β̃(p, i), p ∈ [1, cs∗], i ∈ [2, ntree], (A.1.87)

∑
γ∈Γ∪Γ0

δτ̂ (s, t, γ) = 1, s ∈ [1, s∗], t ∈ [1, t∗], (A.1.88)

∑
(a,b,k)∈Γ∪Γ0

[a]δτ̂ (s, t, (a, b, k)) = α̃(s, 1), s ∈ [1, s∗], t ∈ [1, t∗], (A.1.89)

∑
(a,b,k)∈Γ∪Γ0

[b]δτ̂ (s, t, (a, b, k)) = α̃(s∗ + t, 1), s ∈ [1, s∗], t ∈ [1, t∗], (A.1.90)

∑
(a,b,k)∈Γ∪Γ0

k · δτ̂ (s, t, (a, b, k)) = β̂(s, t), s ∈ [1, s∗], t ∈ [1, t∗], (A.1.91)

∑
i∈E1∪E3

(δτ (i, γ) + δτ (i, γ))

+
∑

s∈[1,s∗],t∈[1,t∗]

(δτ̂ (s, t, γ) + δτ̂ (s, t, γ))

+
∑

t∈[2,t∗]

(δτ (t, 1, γ) + δτ (t, 1, γ)) = acco(γ), γ ∈ Γ<, (A.1.92)

∑
i∈E1∪E3

δτ (i, γ) +
∑

s∈[1,s∗],t∈[1,t∗]

δτ̂ (s, t, γ)

+
∑

t∈[2,t∗]

δτ (t, 1, γ) = acco(γ), γ ∈ Γ=, (A.1.93)

∑
p∈[1,cs∗],i∈[2,ntree]

(δτ (p, i, γ) + δτ (p, i, γ)) = acnc(γ), γ ∈ Γ<, (A.1.94)

∑
p∈[1,cs∗],i∈[2,ntree]

δτ (p, i, γ) = acnc(γ), γ ∈ Γ=. (A.1.95)

A.1.10 Descriptor for 1-Path Connectivity

We include constraints to compute descriptor κ1(G) according to the definition.

variables:

A real variable κ1 ≥ 0;

δdd(i, d, d
′, µ) ∈ {0, 1}, i ∈ E1 ∪ E3, d, d

′ ∈ [0, 4], µ ∈ {0, 1}:
δdd(i, d, d

′, µ) = 1 ⇔ degH(utail(i)) = d and degH(uhead(i)) = d′,

where ai is in H if and only if µ = 1;

δdd(t, 1, d, d
′, µ) ∈ {0, 1}, t ∈ [2, t∗], d, d′ ∈ [0, 4]: δdd(t, 1, d, d

′, µ) = 1 ⇔
degH(vt−1,1) = d and degH(vt,1) = d′ where et is in H if and only if µ = 1;

136 Chapter A Appendix for Chapter 4

δdd(p, i, d, d
′, µ) ∈ {0, 1}, p ∈ [1, cs∗], i ∈ [2, ntree], d, d

′ ∈ [0, 4]: δdd(p, i, d, d
′, µ) =

1 ⇔
degH(up,prt(i)) = d and degH(up,i) = d′ for p ≤ s∗

(or degH(vp−s∗,prt(i)) = d and degH(vp−s∗,i) = d′ for p > s∗),

where edge e′p,i or ep−s∗,i is in H if and only if µ = 1;

δ
d̂d
(s, t, d, d′, µ) ∈ {0, 1}, s ∈ [1, s∗], t ∈ [1, t∗], d, d′ ∈ [0, 4], µ ∈ {0, 1}:

δ
d̂d
(s, t, d, d′, 1) = 1 ⇔ degH(us,1) = d and degH(vt,1) = d′,

where us,1vt,1 is in H if and only if µ = 1;

constraints:

∑
d,d′∈[0,4],µ∈{0,1}

δdd(i, d, d
′, µ) = 1, i ∈ E1 ∪ E3,

(A.1.96)∑
d,d′∈[0,4],µ∈{0,1}

µ · δdd(i, d, d′, µ) = a(i), i ∈ E1 ∪ E3,

(A.1.97)∑
d∈[1,4],d′∈[0,4],µ∈{0,1}

d · δdd(i, d, d′, µ) = deg(tail(i), 1), i ∈ E1 ∪ E3,

(A.1.98)∑
d∈[0,4],d′∈[1,4],µ∈{0,1}

d′ · δdd(i, d, d′, µ) = deg(head(i), 1), i ∈ E1 ∪ E3,

(A.1.99)∑
d,d′∈[0,4],µ∈{0,1}

δdd(t, 1, d, d
′, µ) = 1, t ∈ [2, t∗],

(A.1.100)∑
d,d′∈[0,4],µ∈{0,1}

µ · δdd(t, 1, d, d′, µ) = e(t), t ∈ [2, t∗],

(A.1.101)∑
d∈[1,4],d′∈[0,4],µ∈{0,1}

d · δdd(t, 1, d, d′, µ) = deg(s∗ + t− 1, 1), t ∈ [2, t∗],

(A.1.102)∑
d∈[0,4],d′∈[1,4],µ∈{0,1}

d′ · δdd(t, 1, d, d′, µ) = deg(s∗ + t, 1), t ∈ [2, t∗],

(A.1.103)

A.1 All Constraints in an MILP Formulation for Rank-2 Chemical Graphs 137

∑
d,d′∈[0,4],µ∈{0,1}

δdd(p, i, d, d
′, µ) = 1, p ∈ [1, cs∗], i ∈ [2, ntree],

(A.1.104)∑
d,d′∈[0,4],µ∈{0,1}

µ · δdd(s, i, d, d′, µ) = u(s, i), s ∈ [1, s∗], i ∈ [2, ntree],

(A.1.105)∑
d,d′∈[0,4],µ∈{0,1}

µ · δdd(s∗ + t, i, d, d′, µ) = v(t, i), t ∈ [1, t∗], i ∈ [2, ntree],

(A.1.106)∑
d∈[1,4],d′∈[0,4],µ∈{0,1}

d · δdd(p, i, d, d′, µ) = deg(p,prt(i)), p ∈ [1, cs∗], i ∈ [2, ntree],

(A.1.107)∑
d∈[0,4],d′∈[1,4],µ∈{0,1}

d′ · δdd(t, i, d, d′, µ) = deg(p, i), p ∈ [1, cs∗], i ∈ [2, ntree],

(A.1.108)∑
d,d′∈[1,4],µ∈{0,1}

δ
d̂d
(s, t, d, d′, µ) = 1, s ∈ [1, s∗], t ∈ [1, t∗],

(A.1.109)∑
d,d′∈[1,4],µ∈{0,1}

µ · δ
d̂d
(s, t, d, d′, µ) = e(s, t) + e(t, s),s ∈ [1, s∗], t ∈ [1, t∗],

(A.1.110)∑
d∈[1,4],d′∈[0,4],µ∈{0,1}

d · δ
d̂d
(s, t, d, d′, µ) = deg(s, 1),s ∈ [1, s∗], t ∈ [1, t∗],

(A.1.111)∑
d∈[0,4],d′∈[1,4],µ∈{0,1}

d′ · δ
d̂d
(s, t, d, d′, µ) = deg(s∗ + t, 1),s ∈ [1, s∗], t ∈ [1, t∗],

(A.1.112)

(1− ξ)κ1 ≤
∑

i∈E1∪E3,d,d′∈[1,4]

δdd(i, d, d
′, 1)/

√
dd′

+
∑

t∈[2,t∗],d,d′∈[1,4]

δdd(t, 1, d, d
′, 1)/

√
dd′

+
∑

p∈[1,cs∗],i∈[2,ntree],
d,d′∈[1,4]

δdd(p, i, d, d
′, 1)/

√
dd′

+
∑

s∈[1,s∗],t∈[1,t∗],
d,d′∈[1,4]

δ
d̂d
(s, t, d, d′, 1)/

√
dd′ ≤ (1 + ξ)κ1,

(A.1.113)

138 Chapter A Appendix for Chapter 4

where a tolerance ξ is set to be 0.001.

A.1.11 Constraints for Left-Heavy Trees

To reduce the number of rank-2 chemical graphs G that are isomorphic to each

other, we include in C2 some additional constraints so that each subtree T ′ selected

from tree Sp or Tt satisfies the following property:

for any two siblings u(p, j1) and u(p, j2), j1 < j2 in T ′, the number of

descendants of u(p, j1) is not smaller than that of u(p, j2).

For this, we define dsn(p, i) to be the number of descendants of a vertex

up,i (or vp−s∗,i) in a selected graph H and η(p, i) ≜ 21|Λ|dsn(p, i) + 20α̃(p, i) +

4deg(p, i)+β̃(p, i), p ∈ [1, cs∗], i ∈ [2, ntree]. We include constraints that compute

the values of dsn recursively.

variables:

dsn(p, i) ∈ [1, ntree], p ∈ [1, cs∗], i ∈ [1, ntree]: the number of descendants of vertex

up,i

in tree Sp for p ≤ s∗ and vertex vp−s∗,i in tree Tp−s∗ for p > s∗;

constraints:

dsn(s, i) ≥
∑

j∈Cld(i)

dsn(s, j) + u(s, i), s ∈ [1, s∗], i ∈ [1, ntree],

(A.1.114)

dsn(s∗ + t, i) ≥
∑

j∈Cld(i)

dsn(s∗ + t, j) + v(t, i), t ∈ [s∗ + 1, cs∗], i ∈ [1, ntree],

(A.1.115)∑
p∈[1,cs∗]

dsn(p, 1) ≤ n∗, (A.1.116)

η(p, j1) ≥ η(p, j2), p ∈ [1, cs∗], j1, j2 ∈ Cld(1), j1 < j2,

(A.1.117)

η(p, j1) ≥ η(p, j2), p ∈ [1, cs∗], i ∈ [2, nin], j1, j2 ∈ Cld(i),

j1 < j2, for dmax = 3,

(A.1.118)

η(p, j1) ≥ η(p, j2) ≥ η(p, j3), p ∈ [1, cs∗], i ∈ [2, nin], j1, j2, j3 ∈ Cld(i),

j1 < j2 < j3, for dmax = 4.

(A.1.119)

Appendix B Appendix for

Chapter 7

B.1 An LP formulation for Adjustive Linear Regres-

sion

We formulate a linear programming problem LP(X , λ) to the adjustive linear

regression ALR(X , λ).

LP(X , λ):
constants:

- A set X = {xi ∈ RK | i ∈ [1,m]} of feature vectors and a set A = {ai ∈ R |
i ∈ [1,m]} of observed values. Assume that each of the sets Xj = {xi(j) | i ∈
[1,m]}, j ∈ [1,K] and A is standardized;

- A positive real λ ∈ R: a coefficient for the penalty term;

variables:

- Nonnegative reals cq(0) ∈ R, q ∈ [0, 2];

- Nonnegative vectors wq ∈ RK , q ∈ [0, 2] and a real b ∈ R;
- Nonnegative real b ∈ R;
- Nonnegative reals ∆i ≥ 0, i ∈ [1,m];

constraints:

c0(0) + c1(0) + c2(0) = 1, (B.1.1)

∆i ≥ c0(0)ai + c1(0)a
2
i + c2(0)(1− (ai−1)2)

−
∑
j∈I+

[w0(j)xi(j) + w1(j)xi(j)
2 + w2(j)(1− (xi(j)−1)2)]

+
∑
j∈I−

[w0(j)xi(j) + w1(j)xi(j)
2 + w2(j)(1− (xi(j)−1)2)]− b ≥ −∆i, i ∈ [1,m],

(B.1.2)

b ≥ b ≥ −b, (B.1.3)

139

140 Chapter B Appendix for Chapter 7

objective function:

Minimize
1

2m

∑
i∈[1,m]

∆i + λ
∑

q∈[0,2],j∈[1,K]

wq(j) + λb.

We see that the numbers of variables and constraints in the linear program

LP(X , λ) are both O(m+K).

Let w∗
q(j), q ∈ [0, 2], j ∈ [1,K] and b∗ denote the values of variables wq(j), q ∈

[0, 2], j ∈ [1,K] and b in an optimal solution to linear program LP(X , λ), respec-
tively. Let K ′ denote the number of descriptors j ∈ [1,K] with w∗

0(j) > 0 and

IK′ denote the set of j ∈ [1,K] with w∗
0(j) > 0. Then we obtain an optimal

solution to the adjustive linear regression by setting

w∗(j) := w∗
0(j)/(w

∗
0(j) + w∗

1(j) + w∗
2(j)), j ∈ I+ ∩ IK′ ,

w∗(j) := −w∗
0(j)/(w

∗
0(j) + w∗

1(j) + w∗
2(j)), j ∈ I− ∩ IK′ , and

c∗q(j) := w∗
q(j)/w

∗(j), q ∈ [1, 2], j ∈ IK′ .

B.2 A Procedure for Constructing a Prediction Func-

tion with ANNs

For each of the properties, we first select a set Λ of chemical elements and then

collect a data set Dπ on chemical graphs over the set Λ of chemical elements.

For each chemical property π, we conducted a preliminary experiment to

choose the following: a subset Sπ of the original set of K descriptors; an archi-

tecture Aπ with at most five hidden layers; a nonnegative real ρstpπ ≤ 1; and an

integer itestpπ , where we will use ρstpπ and itestpπ as parameters to execute an early

stopping in constructing a prediction function with a training data set. Let fπ

denote the feature vector that consists of the descriptors in the set Sπ.

For each property π, we conducted ten 5-fold cross-validations. In a 5-fold

cross-validation, we construct five prediction functions η(k), k ∈ [1, 5] as follows.

Partition a data set Dπ into five subsets D
(k)
π , k ∈ [1, 5] randomly. For each

k ∈ [1, 5], use the set Dtrain := Dπ \D(k)
π as a training set and construct an ANN

on the selected architecture Aπ with the feature vector fπ by the MLPRegressor of

scikit-learn, where we stop updating weights/biases on Aπ during an execution

of the iterative algorithm when the coefficient of determination R2(η,Dtrain) of

the prediction function η by the current weights/biases exceeds ρstpπ (where we

terminate the execution when the number of iterations exceeds 1.5× itestpπ even if

R2(η,Dtrain) does not reach ρ
stp
π). Set η(k) to be the prediction function η by the

resulting weights/biases on Aπ. We evaluate the performance of the prediction

function η(k) with the coefficient R2(η(k), Dtest) of determination for the test set

Dtest := D
(k)
π .

List of the Author’s Work

Publications Related to the Dissertation

[1] J. Zhu, C. Wang, A. Shurbevski, H. Nagamochi, and T. Akutsu. A novel

method for inference of chemical compounds of cycle index two with desired

properties based on artificial neural networks and integer programming. Al-

gorithms, 13(5):124, 2020.

[2] J. Zhu, N. A. Azam, F. Zhang, A. Shurbevski, K. Haraguchi, L. Zhao,

H. Nagamochi, and T. Akutsu. A novel method for inferring chemical

compounds with prescribed topological substructures based on integer pro-

gramming. IEEE/ACM Transactions on Computational Biology and Bioin-

formatics, 19(6):3233–3245, 2021.

[3] J. Zhu, N. A. Azam, K. Haraguchi, L. Zhao, H. Nagamochi, and T. Akutsu.

An improved integer programming formulation for inferring chemical com-

pounds with prescribed topological structures. In Advances and Trends in

Artificial Intelligence. Artificial Intelligence Practices: 34th International

Conference on Industrial, Engineering and Other Applications of Applied

Intelligent Systems, IEA/AIE 2021, Kuala Lumpur, Malaysia, July 26–29,

2021, Proceedings, Part I 34, pages 197–209. Springer, 2021.

[4] J. Zhu, N. A. Azam, K. Haraguchi, L. Zhao, H. Nagamochi, and T. Akutsu.

A method for molecular design based on linear regression and integer pro-

gramming. In Proceedings of the 12th International Conference on Bio-

science, Biochemistry and Bioinformatics, pages 21–28, 2022.

[5] J. Zhu, N. A. Azam, K. Haraguchi, L. Zhao, H. Nagamochi, and T. Akutsu.

An inverse QSAR method based on linear regression and integer program-

ming. Frontiers in Bioscience-Landmark, 27(6):188, 2022.

[6] J. Zhu, K. Haraguchi, H. Nagamochi, and T. Akutsu. Adjustive linear

regression and its application to the inverse QSAR. In Proceedings of the

15th International Joint Conference on Biomedical Engineering Systems and

Technologies - BIOINFORMATICS, pages 144–151. INSTICC, SciTePress,

2022.

141

142 LIST OF THE AUTHOR’S WORK

[7] J. Zhu, N. A. Azam, S. Cao, R. Ido, K. Haraguchi, L. Zhao, H. Nag-

amochi, and T. Akutsu. Molecular design based on integer programming and

quadratic descriptors in a two-layered model. arXiv preprint arXiv:2209.13527,

2022. (submitted to BMC Bioinformatics)

[8] N. A. Azam, J. Zhu, K. Haraguchi, L. Zhao, H. Nagamochi, and T. Akutsu.

Molecular design based on artificial neural networks, integer programming

and grid neighbor search. In 2021 IEEE International Conference on Bioin-

formatics and Biomedicine (BIBM), pages 360–363. IEEE, 2021.

[9] N. A. Azam, J. Zhu, R. Ido, H. Nagamochi, and T. Akutsu. Experimental

results of a dynamic programming algorithm for generating chemical isomers

based on frequency vectors. In Fourth International Workshop on Enumer-

ation Problems and Applications (WEPA), pages 7–10, Israel, WEPA2020

15, December 2020. Israel.

[10] N. A. Azam, J. Zhu, Y. Sun, Y. Shi, A. Shurbevski, L. Zhao, H. Nagamochi,

and T. Akutsu. A novel method for inference of acyclic chemical compounds

with bounded branch-height based on artificial neural networks and integer

programming. Algorithms for Molecular Biology, 16:1–39, 2021.

[11] R. Ido, S. Cao, J. Zhu, N. A. Azam, K. Haraguchi, L. Zhao, H. Nagamochi,

and T. Akutsu. A method for inferring polymers based on linear regression

and integer programming. arXiv preprint arXiv:2109.02628, 2021. (sub-

mitted to IEEE/ACM Transactions on Computational Biology and Bioin-

formatics)

[12] K. Tanaka, J. Zhu, N. A. Azam, K. Haraguchi, L. Zhao, H. Nagamochi,

and T. Akutsu. An inverse QSAR method based on decision tree and

integer programming. In Intelligent Computing Theories and Application:

17th International Conference, ICIC 2021, Shenzhen, China, August 12–15,

2021, Proceedings, Part II, pages 628–644. Springer, 2021.

[13] Y. Shi, J. Zhu, N. A. Azam, K. Haraguchi, L. Zhao, H. Nagamochi, and

T. Akutsu. An inverse QSAR method based on a two-layered model and

integer programming. International Journal of Molecular Sciences, 22(6):

2847, 2021.

[14] F. Zhang, J. Zhu, R. Chiewvanichakorn, A. Shurbevski, H. Nagamochi, and

T. Akutsu. A new integer linear programming formulation to the inverse

QSAR/QSPR for acyclic chemical compounds using skeleton trees. In

LIST OF THE AUTHOR’S WORK 143

Trends in Artificial Intelligence Theory and Applications. Artificial Intel-

ligence Practices: 33rd International Conference on Industrial, Engineering

and Other Applications of Applied Intelligent Systems, IEA/AIE 2020, Ki-

takyushu, Japan, September 22-25, 2020, Proceedings, pages 433–444. Springer,

2020.

[15] F. Zhang, J. Zhu, R. Chiewvanichakorn, A. Shurbevski, H. Nagamochi, and

T. Akutsu. A new approach to the design of acyclic chemical compounds

using skeleton trees and integer linear programming. Applied Intelligence,

52(15):17058–17072, 2022.

