
Doctoral Thesis

Network Resource Management Using

Multi-Agent Deep Reinforcement Learning

Akito SUZUKI

Graduate School of Informatics, Kyoto University

September 2023

Preface

The future evolution of networks will require various new communication tech-

nologies. These technologies offer many advantages, including flexibility, scal-

ability, and cost savings. Network functions virtualization (NFV) is one of the

key technologies of future networks. NFV enables telecommunications service

providers (TSPs) to offer various network services by flexibly combining multi-

ple virtual network functions (VNFs), which can improve resource utilization

efficiency by sharing physical resources between VNFs. To provide such ser-

vices, a TSP should allocate virtual network (VN) requests represented by

virtual nodes as VNFs and virtual links connecting virtual nodes. A signifi-

cant research challenge in NFV is finding an optimal VN allocation considering

limited network and server resources. Edge computing (EC) is also one of the

key technologies of future networks. EC can provide computing capability at

the edge servers close to end devices (EDs). Diverse applications are gener-

ally offloaded and processed in edge servers or cloud servers because of the

limitation of the computation resources of EDs. Such offloaded applications’

tasks consist of the demand for computing and communication with various

characteristics. A significant research challenge in EC is finding efficient task

offloading to edge and cloud servers considering various task characteristics

and limited network and server resources.

In common with both technologies, network resource management must be

optimized to maximize resource utilization efficiency in a network with lim-

ited physical resources. The optimal management refers to the allocation of

VNs and tasks that maximizes the objective function (e.g., resource utiliza-

tion) while satisfying constraints (e.g., resource capacity). The performance

of allocation algorithms is critical for future network management, as it deter-

mines the overall network’s resource utilization efficiency. This thesis studies

iii

Preface

four specific problems about network resource management using multi-agent

deep reinforcement learning (MADRL). Each problem corresponds to resource-

integrated control in NFV, dynamic VN allocation, and task offloading for

multi-cloud-edge networks, respectively. This thesis focused on reinforcement

learning (RL) as a solution to the resource management problem because it can

quickly calculate a near-optimal resource allocation by learning the relation-

ship between input network resource patterns and output resource allocation

in advance.

Firstly, this thesis proposes an extendable network-resource-integrated con-

trol method based on the coordinated control architecture in NFV, which

consists of multiple pre-specified control algorithms and a single coordination

algorithm between the control algorithms. The key idea for extendability is

modularization that divides a whole system into standardized functional ele-

ments and reduces the interdependence among the elements. This work first

prepares and solves each control algorithm for each control metric and then

interactively improves the results using the proposed coordination algorithm.

This work also proposes an efficient coordination algorithm on the basis of RL.

The learning makes it possible to learn the strategy for how to find better allo-

cations efficiently from past exploration steps. The proposed method requires

more iterations than the combined approach, but it achieves extendability

through the coordinated control architecture. Finally, this work evaluated the

effectiveness of the proposed method through simulations.

Secondly, this thesis proposes a dynamic VN allocation method based on

safe multi-agent deep reinforcement learning (Safe-MADRL). This method can

quickly optimize network resources even while network demands are drastically

changing by using the deep reinforcement learning (DRL) in advance. This

work develops two techniques to be used with the proposed method; safety-

considerations and multi-agent. The proposed safety-considerations technique

reduces the degree of constraint violations, such as network congestion and

server overload, and the proposed multi-agent technique improves the scala-

bility of VN allocation by dividing demands into groups and assigning each

group’s allocation to each agent. As a result of a simulation evaluation, Safe-

MADRL can calculate effective allocation within one second that doubles the

link utilization efficiency without any constraint violations compared to the

iv

Preface

static VN allocation method.

Thirdly, this thesis proposes a dynamic VN allocation method based on

cooperative multi-agent deep reinforcement learning (Coop-MADRL). This

method also can quickly optimize network resources even while network de-

mands are drastically changing by using DRL in advance. The key idea is to

use a multi-agent technique for an RL-based dynamic VN allocation method,

which can reduce the number of candidate actions per agent and can improve

the performance for VN allocation. Moreover, a cooperation technique im-

proves the efficiency of VN allocation. From results of a simulation evaluation,

Coop-MADRL can calculate effective allocation within one second, which re-

duces the maximum server and link utilization and drastically reduces the

constraint violations compared with that of the static VN allocation method.

Furthermore, this work revealed that the learning with various mixed traffic

models could achieve a high generalization performance for all traffic patterns.

Fourthly, this thesis proposes a task-offloading method for multi-cloud and

multi-edge networks considering network topology and bandwidth constraints.

This work introduces a cooperative multi-agent technique through central-

ized training and decentralized execution, improving task-offloading efficiency.

Simulations revealed that the proposed method can minimize network utiliza-

tion and task latency while minimizing constraint violations in less than one

millisecond in various network topologies. It also shows that cooperative learn-

ing improves the efficiency of task offloading. This work demonstrated that

the proposed method has generalization performance for various task types by

pre-training with many resource-consuming tasks.

This thesis is organized as follows. Chapter 1 introduces the background

of network resource management in future networks. Chapter 2 investigates

the related works in literature. Chapter 3 describes the extendable resource-

integrated control method in NFV and an efficient algorithm for the proposed

method using RL. Chapter 4 describes the Safe-MADRL-based dynamic VN

allocation method. Chapter 5 describes the Coop-MADRL-based dynamic

VN allocation method. Chapter 6 describes the Coop-MADRL-based task-

offloading method. Finally, Chapter 7 concludes this thesis.

v

Preface

vi

Acknowledgements

I would like to express my gratitude to everyone who has supported and as-

sisted me throughout the completion of my doctoral thesis.

First and foremost, I would like to express my deepest gratitude to my

doctoral advisor, Professor Eiji Oki of Kyoto University, for his guidance and

support. I am truly grateful for the opportunity to pursue my doctoral research

in his laboratory. Without his valuable advice and encouragement, my studies

would never have been accepted in high-level journals, and this thesis would

never have been completed.

Next, I would like to express my deep gratitude to my previous supervisors,

Professor Ryoichi Kawahara of Toyo University, Professor Keisuke Ishibashi

of International Christian University, and Professor Takanobu Watanabe of

Waseda University. Their guidance and encouragement have greatly influenced

my growth as a researcher and shaped me into the researcher I am today.

I would also like to express my gratitude to Professor Hiroshi Harada and

Professor Takayuki Ito of Kyoto University for being members of my judging

committee and providing valuable feedback to improve this thesis.

Furthermore, I would like to acknowledge all the current and past colleagues

at NTT Laboratory for their cooperation and inspiration. In particular, I

would like to express my gratitude to Dr. Masataka Masuda, Dr. Shigeaki

Harada, Mr. Masahiro Kobayashi, Mr. Yousuke Takahashi, and Dr. Yoichi

Matsuo for their contributions and discussions throughout my research.

Lastly, this thesis is dedicated to my beloved wife, Miyabi, my precious

son, Takayoshi, and my supportive parents. I would like to express my special

gratitude to my wife for her dedicated support. Her strong encouragement and

deep understanding have enabled me to concentrate on my studies. Without

her presence, none of these accomplishments would have been possible.

vii

Acknowledgements

viii

Contents

Preface iii

Acknowledgements vii

List of Figures xiv

List of Tables xvi

Notations xvii

Abbreviations xxi

1 Introduction 1

1.1 Network resource management in future networks 1

1.1.1 Network resource management in NFV 1

1.1.2 Network resource management in edge computing 2

1.2 Challenges of network resource management 2

1.3 Problem statements . 3

1.3.1 Network-resource-integrated control in NFV 3

1.3.2 Dynamic virtual network allocation 4

1.3.3 Task offloading for multi-cloud-edge networks 6

1.4 Overview and contributions of this thesis 8

2 Related works 13

2.1 Reinforcement learning . 13

2.1.1 Single-agent reinforcement learning 13

2.1.2 Multi-agent reinforcement learning 15

ix

Contents

2.1.3 Safe reinforcement learning 18

2.1.4 Hybrid reward architecture 18

2.2 Network-resource-integrated control 18

2.2.1 Combined approach . 18

2.2.2 Coordinated approach 20

2.3 Dynamic virtual network allocation 20

2.3.1 Reinforcement learning-based allocation 20

2.3.2 Heuristic-based allocation 22

2.4 Task-offloading for cloud computing and edge computing 24

3 Extendable resource-integrated control using reinforcement learn-

ing 27

3.1 Challenges and motivation . 28

3.2 Proposed method . 29

3.2.1 Overview of proposed method 29

3.2.2 Overview of coordination algorithm 31

3.2.3 Formulation of coordination algorithm 33

3.3 Use case of proposed method . 35

3.3.1 Taxonomy of general use case 38

3.3.2 Modeling of use cases and options 39

3.3.3 Modeling of proposed method 40

3.3.4 Implementation difference between options 45

3.4 Evaluation . 46

3.4.1 Evaluation conditions . 47

3.4.2 Evaluation results . 48

3.5 Chapter summary . 65

4 Safe multi-agent deep reinforcement learning for dynamic vir-

tual network allocation 67

4.1 Proposed method . 68

4.1.1 Overview . 68

4.1.2 Modeling . 70

4.1.3 Formulation . 73

4.2 Evaluation . 75

x

Contents

4.2.1 Evaluation conditions . 76

4.2.2 Comparative methods 79

4.2.3 Evaluation results . 79

4.3 Chapter summary . 81

5 Cooperative multi-agent deep reinforcement learning for dy-

namic virtual network allocation 83

5.1 Dynamic virtual network allocation 84

5.1.1 Problem definition . 84

5.1.2 Problem formulation . 86

5.2 Proposed method . 91

5.2.1 Overview . 91

5.2.2 Modeling . 93

5.2.3 Formulation . 94

5.2.4 Update environment . 96

5.2.5 Reward calculation . 97

5.3 Evaluation . 98

5.3.1 Evaluation conditions . 98

5.3.2 Traffic models . 100

5.3.3 Comparative methods 104

5.3.4 Evaluation results . 106

5.3.5 Discussion . 124

5.4 Chapter summary . 125

6 Cooperative multi-agent deep reinforcement learning for task

offloading 127

6.1 Problem formulation . 128

6.1.1 Overview . 128

6.1.2 Network model . 129

6.1.3 Task model . 130

6.1.4 Optimization problem 131

6.2 Proposed method . 136

6.2.1 Overview . 136

6.2.2 Modeling . 138

xi

Contents

6.2.3 Formulation . 139

6.2.4 Update environment . 141

6.2.5 Reward calculation . 142

6.3 Evaluation . 142

6.3.1 Evaluation conditions . 146

6.3.2 Comparison methods . 147

6.3.3 Evaluation results . 148

6.3.4 Training curve . 148

6.3.5 Discussion . 164

6.4 Chapter summary . 166

7 Conclusions 169

Bibliography 173

Publication 185

xii

List of Figures

1.1 Chapter overview of this thesis. 8

3.1 Overview of proposed resource-integrated control method. (©2020

IEICE.) . 30

3.2 Overview of coordination engine based on reinforcement learn-

ing. An example when instruction agent selects VNF#1 control

agent. (©2020 IEICE.) . 32

3.3 Internet2 topology. (©2020 IEICE.) 47

3.4 Solution-exploration speed for Case #1 and its 𝑁VN dependency

(1). (©2020 IEICE.) . 50

3.5 Solution-exploration speed for Case #1 and its 𝑁VN dependency

(2). (©2020 IEICE.) . 51

3.6 Components of each objective function value in the best solution

for Case #1 and its 𝑁VN dependency (1). (©2020 IEICE.) . . . 52

3.7 Components of each objective function value in the best solution

for Case #1 and its 𝑁VN dependency (2). (©2020 IEICE.) . . . 53

3.8 Computation time. (©2020 IEICE.) 55

3.9 Components of each objective function value in the best solution

for each case. (©2020 IEICE.) 58

3.10 Weighting parameter dependency of components of each objec-

tive function value in the best solution for Case #4. (©2020

IEICE.) . 59

4.1 Sample traffic sequences. (©2020 IEEE.) 77

4.2 Network topology. (©2020 IEEE.) 77

4.3 Performance evaluation for each method. (©2020 IEEE.) 78

xiii

List of Figures

5.1 Overview of dynamic VN allocation. (©2022 IEEE.) 85

5.2 Three types of DRL architectures: (a) single-agent, (b) inde-

pendent multi-agent, and (c) cooperative multi-agent. (©2022

IEEE.) . 91

5.3 Overview of VN allocation in a simple network topology. (©2022

IEEE.) . 92

5.4 Simple network topology. (©2022 IEEE.) 99

5.5 Practical network topology. (©2022 IEEE.) 100

5.6 Various traffic models (1). (©2022 IEEE.) 101

5.7 Various traffic models (2). (©2022 IEEE.) 102

5.8 Training curves tracking the agent’s total return (training by

Mixed model). (©2022 IEEE.) 106

5.9 Performance evaluation for each method. (©2022 IEEE.) 107

5.10 Training curves tracking the agent’s total return in Atlanta net-

work. (©2022 IEEE.) . 117

5.11 Training curves tracking the agent’s total return with the pro-

posed method using the shortest path. (©2022 IEEE.) 117

6.1 Network topology (Internet2). (©2023 IEEE.) 143

6.2 Training curves tracking agent’s total return in Internet2 topol-

ogy. (©2023 IEEE.) . 149

6.3 Performance in Internet2 topology. (©2023 IEEE.) 150

6.4 Allocation ratio of each task type in Internet2 topology. (©2023

IEEE.) . 151

6.5 Task latency of each task type in Internet2 topology. (©2023

IEEE.) . 151

6.6 Allocation ratio of each task type in Abilene topology. (©2023

IEEE.) . 154

6.7 Allocation ratio of each task type in Atlanta topology. (©2023

IEEE.) . 154

6.8 Allocation ratio of each task type in Geant topology. (©2023

IEEE.) . 154

xiv

List of Tables

2.1 Comparison of related studies. 23

3.1 Symbol descriptions for coordination algorithm. 33

3.2 Summary of 12 types of use cases combining 4 options. 37

3.3 Symbol descriptions for control engines. 41

3.4 Scale parameters for Case #1. 49

3.5 CEV convergence ratio when w/ RL and 𝑁VN = 200. 54

3.6 Parameters depend on each case when 𝑁VN is 200. 57

3.7 Performance of solution when Case #12 and 𝑁VN = 20. 64

4.1 Symbol descriptions for dynamic VN control. 69

4.2 Symbol descriptions for Safe-MADRL. 70

4.3 Average computation time per time-step for 𝑁 = 20. 80

5.1 Symbol descriptions for physical network. 87

5.2 Symbol descriptions for VN demands. 87

5.3 Symbol descriptions for control variables. 87

5.4 Symbol descriptions for dynamic VN allocation. 88

5.5 Symbol descriptions for Coop-MADRL. 94

5.6 Summary of the proposed methods and comparison methods. . . 104

5.7 Average computation time per step for 𝐾 = 20. 110

5.8 Scalability evaluation results for the number of VNs in practical

network (QMIX, training by ARMA model). 111

5.9 Computation time for various physical network topologies. . . . 113

5.10 Computation time for various physical network topologies (with

shortest path). 113

xv

List of Tables

5.11 Performance evaluation results in Atlanta network (training by

ARMA model). 114

5.12 Performance evaluation results in India35 network (training by

ARMA model, with shortest path). 114

5.13 Performance evaluation results in Germany50 network (training

by ARMA model, with shortest path). 114

5.14 Performance evaluation results in Ta2 network (training by ARMA

model, with shortest path). 114

5.15 Evaluation of average rewards for various traffic models in sim-

ple network (training by Mixed model). 119

5.16 Evaluation of average rewards for various traffic models in prac-

tical network (training by Mixed model). 120

5.17 Evaluation of average rewards for various traffic models in prac-

tical network (training by each model). 121

6.1 Notation definitions for physical-network model. 129

6.2 Notation definitions for task model. 130

6.3 Notation definitions for task-offloading problem. 132

6.4 Notation definitions for proposed method. 138

6.5 Task-generation parameters. 144

6.6 Network-topology parameters. 145

6.7 Summary of the proposed method and comparison methods. . . 147

6.8 Average reward of each method for various network topologies. . 153

6.9 Execution times for various network topologies. 157

6.10 Training times for various network topologies. 157

6.11 Latency-weighting-parameter dependency. 159

6.12 Network parameters for scalability evaluation. 160

6.13 Scalability evaluation regarding number of tasks. 160

6.14 Various cases for generalization-performance evaluation. 162

6.15 Generalization-performance evaluation for various task types. . . 163

xvi

Notations

Notation Description

𝑎
agent
𝑡 Action of each agent at step 𝑡 (agent ∈ ia ∪ 𝑮)

𝑎𝑒𝑡 ∈ A𝑒 Action for agent 𝑔𝑒 at step 𝑡

𝑎𝑘,𝑡 ∈ A𝑘 Action of 𝑘th agent at step 𝑡

A := {A𝑒} Action sets for all agents (A𝑒: Action space)

𝑨𝑒 Solution of control engine 𝑒

𝒂𝑡 := {𝑎𝑒𝑡 } All actions at step 𝑡

𝐵
up
𝑘
, 𝐵down

𝑘
Upload/Download traffic demand of 𝑘th task

𝑩𝑡 :=
{
𝑏𝑖𝑡

}
Traffic demands of 𝑖th VN at step 𝑡

𝑐 ∈ 𝑪 ⊂ 𝑵 Cloud

𝑐𝑖 𝑗 , 𝑐
𝐿
𝑖 𝑗
, 𝑐link

𝑖 𝑗
Link capacity of link (𝑖, 𝑗)

𝑐𝑖, 𝑐
𝑆
𝑖
, 𝑐server

𝑖
Server capacity of server 𝑖

𝑐ids
𝑖

𝑖th IDS capacity

𝐶𝑘 Computing demand of 𝑘th task

𝑪 Client set

D := {𝑫𝑘 } Task set (𝑘 ∈ K, K: Total tasks)
𝑫 𝒕 :=

{
𝑑𝑖 𝑗 𝑡

}
Traffic demands from node 𝑖 to node 𝑗 at step 𝑡

𝑫𝑡 :=
{
𝑑𝑖𝑡

}
VM demands of 𝑖th VN at step 𝑡

𝑫𝑡 :=
{
𝑑𝑖,𝑡

}
Traffic demands of 𝑖th VN at step 𝑡

𝑒 ∈ 𝐸 Episode (𝐸 : Total episodes)

𝑒 ∈ 𝑬 ⊂ 𝑵 Edge

𝑬 := {𝑒} Control engine set

𝐺 (𝑺, 𝑳) Network graph (𝑺: server set, 𝑳: link set)

𝑮 := {𝑔} Control agent set

xvii

Notations

Notation Description

G := {𝑔𝑒} Agent set

G𝑐 :=
{
𝑔𝑐
𝑘

}
Constraint agent sets (1 ≤ 𝑘 ≤ 𝑀)

G𝑜 :=
{
𝑔𝑜
𝑘

}
Objective agent sets (1 ≤ 𝑘 ≤ 𝑀)

ℎ𝑖 ∈ 𝒉 Observation-action history

𝒉 Observation-action history of all agents

𝑰 IDS set

L𝑝 Link set along with path 𝑝

link (𝑖, 𝑗) ∈ 𝑳 Link from node 𝑖 to node 𝑗

M Replay memory

𝑴 𝑡 :=
{
𝑚
𝑝𝑞
𝑡

}
Traffic matrix from node 𝑝 to node 𝑞

𝑛 ∈ 𝑵 Node

𝑁cli, 𝑁vm, 𝑁ids Number of clients, VMs, and IDSs

𝑁server Number of servers

𝑁VN Number of VNs

𝑜𝑒𝑡 ∈ O𝑒 Observation for agent 𝑔𝑒 at step 𝑡

O := {O𝑒} Observation sets for all agents

𝒐𝑡 := {𝑜𝑒𝑡 } All observations at step 𝑡

𝑃(𝑵, 𝑳) Physical Network graph

𝑃𝑡 Penalty Function of VM migration

𝑷 := {𝑝𝑖} 𝑖th User placement

Pup
𝑘
, Pdown

𝑘
Upload and download path set of 𝑘th task

𝑄
(
𝑠𝑡 , 𝑎𝑘,𝑡

)
Action-value function for 𝑠𝑡 and 𝑎𝑘,𝑡

𝑄𝑡𝑜𝑡 (𝒐𝑡 , 𝒂𝑡) Joint action-value function for all agent

𝑄𝑒

(
𝑜𝑒𝑡 , 𝑎

𝑛
𝑡

)
Action-value function for agent 𝑔𝑒

𝑟
agent
𝑡 Reward of each agent at step 𝑡 (agent ∈ ia ∪ 𝑮)

𝑅total Total reliability

𝑟node
𝑖

𝑖th node reliability

𝑟 link
𝑖 𝑗

Link reliability of link (𝑖, 𝑗)
𝑟𝑝 Traffic-splitting ratio of path 𝑝

𝑟𝑡 Reward for agent 𝑔𝑒 at step 𝑡

𝑹𝐿𝑡 :=
{
𝑟𝐿
𝑖 𝑗 ,𝑡

}
(𝑖, 𝑗) residual link resources at step 𝑡

𝑹𝑆𝑡 :=
{
𝑟𝑆
𝑖,𝑡

}
𝑖th residual server resources at step 𝑡

xviii

Notations

Notation Description

𝑠 ∈ 𝑺 Server

𝑠
agent
𝑡 State of each agent at step 𝑡 (agent ∈ ia ∪ 𝑮)

𝑠𝑡 ∈ S State at step 𝑡 (S: State space)

𝑡 ∈ 𝑇 Time-step (𝑇 : Total time-steps)

𝑡sim ∈ 𝑇 sim Time-step for simulator (𝑇 sim: Total time steps)

𝑡VN
𝑖

OD Traffic demands for 𝑖th VN

𝑡𝑔 Number of iterations of control agent (𝑔 ∈ 𝑮)

𝑇 𝑔 Total exploration steps of control agent (𝑔 ∈ 𝑮)

𝑡𝑘 Acceptance time of 𝑘th task

𝑻 :=
{
𝑡𝑝𝑞

}
Traffic matrix from server 𝑝 to server 𝑞

𝑻node :=
{
𝑡𝑝𝑞

}
Traffic from node 𝑝 to node 𝑞

𝑻vm :=
{
𝑡vm
𝑖 𝑗

}
Traffic from VM 𝑖 to VM 𝑗

𝑈link
max Maximum link utilization

𝑈server
max Maximum server utilization

𝑢𝐿
𝑖 𝑗 ,𝑡

(𝑖, 𝑗) link utilization at step 𝑡

𝑢𝑁
𝑖,𝑡

𝑖th node utilization at step 𝑡

𝑢𝑆
𝑖,𝑡

𝑖th server utilization at step 𝑡

𝑈𝐿
𝑡 = max𝑖 𝑗

(
𝑢𝐿
𝑖 𝑗 ,𝑡

)
Maximum link utilization at step 𝑡

𝑈𝑁
𝑡 = max𝑖

(
𝑢𝑁
𝑖,𝑡

)
Maximum node utilization at step 𝑡

𝑈𝑆
𝑡 = max𝑖

(
𝑢𝑆
𝑖,𝑡

)
Maximum server utilization at step 𝑡

𝑣 ∈ 𝑽 VM (𝑽: VM set)

𝑣𝑁
𝑖

𝑖th node-processing capability

𝑽𝒕 :=
{
𝑣𝑒𝑡

}
Evaluation values of control engine 𝑒 at step 𝑡

𝑽𝑡 :=
{
𝑣𝑖,𝑡

}
VM demands of 𝑖th VN at step 𝑡

𝑤 ∈ 𝑾 User

𝑤𝐿
𝑖 𝑗

(𝑖, 𝑗) link capacity

𝑤𝑁
𝑖

𝑖th node capacity

𝑤vm
𝑖

, 𝑤ids
𝑗

𝑖th VM size, 𝑗 th IDS size

𝑤𝑐 Weighting parameter of constraint agents G𝑐

𝑥
𝑝𝑞

𝑖 𝑗
Proportion of passed 𝑡𝑝𝑞 on link (𝑖, 𝑗)

𝑿𝑡 :=
{
𝑥
𝑝𝑞

𝑖 𝑗 ,𝑡

}
Proportion of passed traffic matrix on link (𝑖, 𝑗)

xix

Notations

Notation Description

𝒀 := {𝑦𝑘𝑛} Task allocation (task 𝑘, node 𝑛)

𝒀 𝑡 :=
{
𝑦𝑖 𝑗 ,𝑡

}
VM allocation at step 𝑡 (VM 𝑖, server 𝑗)

𝒁 :=
{
𝑧𝑖 𝑗

}
User/device placement (user 𝑖, node 𝑗)

𝛼𝐿
𝑖 𝑗

Propagation latency of link (𝑖, 𝑗)
𝛽𝑘 Task type of 𝑘th task

_ Weighting parameter of objective function

I𝑘,𝑡 Binary variable indicating executing tasks

𝜏max
𝑘

Maximum permissible latency of 𝑘th task

𝜏𝑁
𝑘
, 𝜏RTT

𝑘
Node latency and RTT latency of 𝑘th task

𝜏𝑝 Latency coefficient of path 𝑝

𝝉𝑡 :=
{
𝜏
𝑝𝑞
𝑡

}
Traffic matrix from node 𝑝 to node 𝑞

𝜽 := {\𝑒} Coefficients of control engine 𝑒

𝚵cli :=
{
bcli
𝑖 𝑗

}
Client node placement (𝑖th client, 𝑗 th node)

𝚵ids :=
{
b ids
𝑖 𝑗

}
IDS allocation (𝑖th IDS, 𝑗 th server)

𝚵vm :=
{
bvm
𝑖 𝑗

}
VM allocation (𝑖th VM, 𝑗 th server)

xx

Abbreviations

Abbreviation Description

ARMA autoregressive moving average

BS base station

CC cloud computing

CEV comprehensive evaluation value

CNF cloud-native network function

CPU central processing unit

CSI channel state information

DC data-center

Dec-POMDP decentralized partially observable Markov decision process

DNN deep neural network

DQN deep Q-network

DRL deep reinforcement learning

DRQN deep recurrent Q-Network

EC edge computing

ED end device

ES exhaustive search

FIFO first-in-first-out

GA greedy algorithm

GLPK GNU Linear Programming Kit

GRU gated recurrent unit

HA heuristic algorithm

HRA hybrid reward architecture

IDS intrusion detection system

xxi

Abbreviations

Abbreviation Description

ILP integer linear programming

IoT Internet of Things

IQL independent Q-learning

LP linear programming

LSTM recurrent long short-term memory

MADRL multi-agent deep reinforcement learning

MARL multi-agent reinforcement learning

MINLP mixed-integer non-linear programming

MIP mixed integer programming

MOGA multi-objective genetic algorithm

NFV network functions virtualization

NLP non-linear Programming

OD origin-destination

OS operating system

RA random algorithm

RAM random access memory

RL reinforcement learning

RNN recurrent neural network

RTT round-trip time

SA static allocation

SARIMA seasonal autoregressive integrated moving average

SDN Software Defined Networking

SFC service function chaining

TSP telecommunications service provider

VDN value decomposition network

VM virtual machine

VN virtual network

VNE virtual network embedding

VNF virtual network function

WAN wide-area network

xxii

Chapter 1

Introduction

1.1 Network resource management in future

networks

1.1.1 Network resource management in NFV

Network functions virtualization (NFV) [1–3] is one of the key technologies of

future networks. NFV has emerged as an innovative network paradigm that

abstracts the network functions from hardware. NFV is closely related to other

emerging technologies, such as Software Defined Networking (SDN) [4]. SDN

is a networking technology that decouples the control plane from the underly-

ing data plane and allows programmatic and centralized resource management

of network functions. Combining SDN and NFV will enable to provide the

complex network services in next-generation networks through centralized net-

work management by SDN and specific abstraction and isolation mechanisms

by NFV.

NFV enables telecommunications service providers (TSPs) to offer vari-

ous network services by flexibly combining multiple virtual network functions

(VNFs). These network services can be provided by combining multiple VNFs

(e.g., virtual machines (VMs) and intrusion detection systems (IDSs)). The

combination of VNFs is specified for each network service type. NFV can

improve the efficiency of resource utilization by sharing physical resources be-

tween VNFs. To provide such services, a TSP should allocate virtual network

1

Chapter 1

(VN) requests represented by virtual nodes as VNFs and virtual links connect-

ing virtual nodes. A virtual node indicates the server resource requirements

such as the required number of central processing units (CPUs) and amount

of random access memory (RAM) and is often treated as a unit of a VM. A

virtual link indicates the network resource requirements such as the required

bandwidth and delay between virtual nodes.

1.1.2 Network resource management in edge computing

With the development of communication technologies, diverse applications

have emerged in various domains, e.g., healthcare, smart cities, and manu-

facturing. These applications are generally offloaded and processed in cloud

servers because of the limitation of the computation resources of end devices

(EDs), e.g., personal computers, smartphones, Internet of Things (IoT) de-

vices, and cars. This process is called cloud computing (CC). Such offloaded

applications’ tasks consist of the demand for computing and communication

with various characteristics, e.g., traffic heavy, computing heavy, or latency

sensitive. Since cloud servers are generally located far from EDs, offloading

tasks to the cloud inevitably generates additional transmission latency. There-

fore, CC degrades the performance of latency-sensitive tasks.

To address this issue, edge computing (EC) has been proposed to deploy

computing resources at the edge servers close to EDs. Combining CC and EC

provides multiple offloading choices, improving the efficiency of offloading. For

example, offloading computing-heavy tasks to the cloud is effective because the

cloud usually has sufficient computing resources. Similarly, offloading traffic-

heavy and latency-sensitive tasks to the edge effectively shortens the transmis-

sion latency. Thus, CC and EC must be combined to improve the efficiency of

various offloading tasks.

1.2 Challenges of network resource manage-

ment

Network resource management, which involves mapping VN requirements and

offloading tasks to the physical network, must be optimized to maximize re-

2

Section 1.3

source utilization efficiency in a network with limited physical resources. It has

been reported that the inefficient management of network policies accounts for

78% of data-center (DC) downtime [5,6]; therefore, resources must be optimally

allocated to provide carrier-grade network services. The optimal management

refers to the allocation of VNs and tasks that maximizes the objective function

(e.g., resource utilization) while satisfying constraints (e.g., resource capacity).

The performance of allocation algorithms is critical for future network man-

agement incorporating NFV, SDN, and EC technologies, as it determines the

overall network’s resource utilization efficiency. Though a significant amount

of research has been conducted [7], no unified allocation problem has been

formulated and solved that takes into account all conditions consisting of com-

bination(s) of objective functions and constraints. In particular, many previ-

ous studies have proposed methods based on mathematical optimization, but

the high computational cost of these methods makes it impractical to manage

future networks.

1.3 Problem statements

This thesis studies four specific problems about network resource management

using multi-agent deep reinforcement learning (MADRL). This thesis focused

on reinforcement learning (RL) [8,9] as a solution to the resource management

problem because it can quickly calculate a near-optimal resource allocation by

learning the relationship between input network resource patterns and output

resource allocation in advance. In addition, this thesis incorporates deep rein-

forcement learning (DRL) and/or multi-agent reinforcement learning (MARL).

The definitions and formulations of RL algorithms and related works on RL-

based network resource management are described in Chapter 2. Each problem

corresponds to resource-integrated control in NFV, dynamic virtual network

allocation, and task offloading for multi-cloud-edge networks, respectively.

1.3.1 Network-resource-integrated control in NFV

This thesis addresses the challenge of developing a network-resource-integrated

control method in NFV, i.e., how to formulate and solve such a unified optimal

3

Chapter 1

allocation problem. This problem becomes more difficult due to the increase

in the number of control metrics (e.g., VNF placements and routes between

the VNFs) and diversification of objective functions, where the control metric

is defined by parameter(s) to characterize the state of a controlled network. In

addition, the resource-integrated control method in NFV should be extendable,

i.e., able to handle new control metrics being added or constraints of control

metrics being changed. This requirement is crucial because a optimization

problem needs to be solved quickly and easily even when a new network service

starts or a new constraint needs to be taken into account. This thesis studies

this problem in Chapter 3.

A simple way to achieve adequate extendability is to solve independently

pre-specified optimization problems for each control metric. However, if we

independently solve each optimization problem taking into account only the

problem’s constraints, we may not satisfy all the constraints. Hereafter, this

thesis calls this problem control conflict (see Section 3.1 for details). To avoid

control conflicts, resource-integrated control methods need to calculate the

optimal allocation that satisfies all conditions determined by combination(s)

of control metrics.

Previous studies on resource-integrated control methods can be categorized

into two approaches. One is the combined approach [6, 10–16], which builds

a specified algorithm that simultaneously solves the combined optimization

problem. However, it is not extendable because we need to reconstruct the

problem formula every time the combination of control metrics changes. The

other is the coordinated approach [17–19], which involves using an extendable

control architecture that coordinates multiple control algorithms pre-specified

for individual control metrics. Though an extendable control architecture has

been proposed, this architecture is only a concept and no specific implemen-

tation or formulation is described.

1.3.2 Dynamic virtual network allocation

The problem of finding an optimal VN allocation is known as the virtual

network embedding (VNE) problem. Most existing approaches [7, 20, 21] only

focus on static VN allocation, where the amount of VN demand for resources

4

Section 1.3

is unchanged over time. When a VN is embedded at once in the physical

network, the VN requests will hold fixed resources until the end of their lifetime

in the static embedding process. However, since network traffic and computing

demand have been changing dramatically due to the various types of network

services, e.g., high-quality video delivery and operating system (OS) updates,

the VN demands are dynamically changing and fluctuating. In the above

situation, the static VN allocation leads to resources being inefficiently utilized

and/or networks becoming congested, so the dynamic VN allocation for time-

varying demand becomes more important. To more efficiently utilize resources,

this work attempts to solve the dynamic VN allocation problem. Although the

dynamic VN allocation problem has been studied for more than a decade, the

following difficulty remains unresolved.

The difficulty in optimizing dynamic VN allocation is the need to simulta-

neously allocate VNs efficiently and immediately, even though efficiency and

immediacy are in a trade-off relationship. Dynamic VN allocation needs to

increase the computation time to increase the efficiency of VN allocation. The

increase in computation time directly causes an increase in the control period.

Alternatively, dynamic VN allocation requires a short control period to keep

up with changes in demand. That is, increasing the efficiency leads to decreas-

ing the immediacy. Similarly, since allocation performance decreases when the

control period is limited, increasing immediacy leads to decreasing efficiency.

Therefore, many methods have failed to simultaneously achieve efficiency and

immediacy.

Several studies have addressed this problem [22–29]. Specifically, RL has

been focused on as a solution [22–27]. RL solves the decision problem of what

action an agent should take by observing the current state within a certain

environment. An agent receives a reward from the environment depending

on the selected action and learns a policy (i.e., strategy) that maximizes the

received reward through a series of selected actions. RL is expected to be

able to immediately output a close-to-optimal VN allocation even as the net-

work resource demand drastically changes by learning the relationship between

resource demand patterns and optimal VN allocation in advance.

There are two challenges in applying RL to dynamic VN allocation. One

is related to safety, which is a common challenge in applying RL to real-world

5

Chapter 1

applications. Satisfying constraints are important and never violating them is

often required in real-world applications. However, there is no guarantee to

satisfy constraints because the general RL agent learns the optimal action only

by a reward. The agent receives a positive reward for preferable actions and a

negative reward for unpreferable actions. This reward cannot fundamentally

prohibit the action which does not satisfy the constraints. As an example

of VN allocation, these constraints are equivalent to network congestion and

server overload. This thesis studies this problem in Chapter 4.

The other is related to the number of candidate actions when solving the

combinatorial optimization problem by RL, which is a problem-specific chal-

lenge for RL-based VN allocation. The RL approach relies on exploring all

available actions sufficiently to compute a policy close to the optimal. Since

the number of ways a VN can be embedded is combinatorial, the candidate

actions of VN allocation exponentially increase as the number of nodes and

the number of links increase. Therefore, the RL approach potentially requires

a huge number of actions to derive an appropriate solution, which could lead

to a prohibitively long convergence time for the learning process [30]. It was

also reported that the performance of RL drastically worsens as the number of

candidate actions increases [31]. Thus, the action space of the VNE problem

needs to be shrunk. This thesis studies this problem in Chapter 5.

1.3.3 Task offloading for multi-cloud-edge networks

Several studies have addressed task-offloading problems for CC and EC [32–39].

Current methods based on mathematical optimization still incur high compu-

tational cost. For example, Wang et al. [32] accelerated the computation time

by more than 100 times using their parallel optimization framework. However,

due to the computational cost, they could only evaluate it in a small network

with one cloud and a few base stations (BSs) (i.e., a few edge servers). To

solve this problem, RL has been gaining attention as a solution [35–39]. RL

can immediately output the preferred task offloading by learning the relation-

ship between input network patterns and output task offloading in advance.

Although RL can solve the problem of computation time, two issues re-

main. One is that these methods [35–38] do not take into account CC or

6

Section 1.4

target only the network with a single cloud. As mentioned above, CC and EC

need to be combined to improve task-offloading efficiency. Moreover, a typical

network has multiple clouds. The other issue is that these methods [35–39] do

not take into account the bandwidth capacity and backbone-network topol-

ogy. Many studies attempted to minimize task latency by shortening the path

that offloaded tasks take. When a control system does not take into account

bandwidth capacity, some links may become congested due to the concentra-

tion of tasks. Therefore, the system should obtain the task offloading that

minimizes latency while satisfying all link-bandwidth constraints. Some of the

above studies assumed a typology that is not practical as a backbone network,

e.g., a full-mesh network. This thesis studies this problem in Chapter 6.

With RL-based task-offloading methods, multi-cloud and network topology

are challenging to consider because route optimization requires many variables.

Even a minimal network with five nodes requires hundreds of variables to op-

timize all routes between nodes. The performance of RL drastically worsens

as the number of variables increases [31]. Therefore, computing offloading

and route optimization are difficult to jointly solve by using RL-based meth-

ods. Since the joint problem is a non-deterministic polynomial time (NP)-hard

mixed integer linear problem, it is also difficult to solve by mathematical op-

timization.

MARL is effective in solving more complex problems. It is a system of

multiple agents interacting within a common environment. Each agent works

with the other agent(s) to achieve a team reward. The learning cost of each

agent can be reduced by assigning each agent to each task. However, when

training decentralized and independent agents to optimize the team reward,

each agent faces a non-stationary learning problem [40]. An example of this

problem is that when each agent independently acts simultaneously, all tasks

will be allocated on the light-load server, resulting in server overload. To avoid

a non-stationary problem, Zhan et al. [35] developed an algorithm combining

MARL and game theory. However, the actions of decentralized agents based

on game theory fall into a sub-optimal solution of the Nash equilibrium. This

thesis also studies this problem in Chapter 6.

7

Chapter 1

Chapter 3 Chapter 4 Chapter 5 Chapter 6

Use Case Virtual network allocation Task
offloading

Management
Architecture

Network-resource-integrated control architecture
proposed in Chapter 3

Method

Reinforcement
Learning ✓ ✓ ✓ ✓

with
Multi-agent ✓ ✓ ✓ ✓

with
Deep learning ✓ ✓ ✓

with
Safety ✓

with
Cooperation ✓ ✓

Network resource management using multi-agent deep reinforcement learning

Chapter 1: background and problem statements

Chapter 2: related works

Chapter 7: conclusions and future works

Figure 1.1: Chapter overview of this thesis.

1.4 Overview and contributions of this thesis

Figure 1.1 shows the chapter overview of this thesis. Chapter 2 surveys the

related works in literature.

Chapter 3 proposes an extendable resource-integrated control method based

on the coordinated control architecture in NFV, which consists of multiple pre-

specified control algorithms and a single coordination algorithm between the

control algorithms. The key idea for extendability is modularization that di-

vides a whole system into standardized functional elements and reduces the

interdependence among the elements, which is a widely used technique for

designing and managing huge complex systems. This work first prepares and

solves each control algorithm for each control metric and then interactively im-

8

Section 1.4

proves the results using the proposed coordination algorithm. This work also

proposes an efficient coordination algorithm on the basis of RL. The learn-

ing makes it possible to learn the strategy for how to find better allocations

efficiently from past exploration steps. The proposed method requires more

iterations than the combined approach, but it achieves extendability through

the coordinated control architecture.

In Chapters 4, 5, and 6, these works calculate the optimal computing al-

location by RL and optimal routing by mathematical optimization. However,

not all constraints may be satisfied when two methods are calculated indi-

vidually. Therefore, this work proposes a combining method that uses the

solution of mathematical optimization for RL reward, enabling all objectives

and constraints of two methods to be considered. These methods are based by

the architecture proposed in Chapter 3 that can coordinate multiple control

algorithms prepared for each control metric.

Chapter 4 proposes a dynamic VN allocation method based on safe multi-

agent deep reinforcement learning (Safe-MADRL). The main contribution of

this work is the integration of the safety-considerations technique and multi-

agent technique into a dynamic VN allocation method based on DRL. The

proposed safety-considerations technique can reduce an agent’s constraint vi-

olation. This work introduces two types of agents inspired by safety explo-

ration [41]. One agent learns to improve the objective function (objective

agent) and the other learns to satisfy all constraints (constraint agent). This

work also decomposes the reward function dedicated to each agent and learn

a action-value function for each component reward function, which is based

on the hybrid reward architecture (HRA) [42]. Note that this work is also an

RL-based approach, similar to previous methods [22–27]. Therefore, there is

no guarantee that this work will satisfy the constraints. However, this work is

safety-oriented, meaning it is based on RL but specifically designed to priori-

tize and achieve a higher level of safety. This work refers to “safety-oriented”

simply as “safe.” The proposed multi-agent technique can improve the perfor-

mance and scalability for VN allocation. This work divides the VN demands

into groups, and each agent is prepared for each group, which can reduce the

number of candidate actions per agent. This work also restricted the agents

that could act at each time to avoid conflicts among agents. An example of

9

Chapter 1

such a conflict is when each agent independently acts at the same time, all

VMs will be allocated on the smallest load server, resulting in server overload.

Chapter 5 proposes a dynamic VN allocation algorithm based on cooper-

ative multi-agent deep reinforcement learning (Coop-MADRL). The key idea

is to use a multi-agent technique for an RL-based dynamic VN allocation

method. This work prepares each agent for each VN allocation control, which

can reduce the action space. However, when training decentralized indepen-

dent agents to optimize for the team reward, each agent is faced with a non-

stationary learning problem, i.e., the dynamics of its environment change as

other agents change their behaviors through learning [40]. An example of such

a non-stationary problem is that when each agent independently acts at the

same time, all VMs will be allocated on the smallest load server, resulting

in server overload. Therefore, this work introduces a cooperative element in

which several agents jointly optimize a single reward through centralized train-

ing and decentralized execution, which can improve the efficiency of VN allo-

cation. The proposed method directly treats all candidate actions at each step

without restricting agent actions or modeling and compressing handcrafted

features for states and actions. This cooperation can avoid conflicts of control

between agents and improve the performance of VN allocation. Moreover, it

can take the hassle out of problem-specific feature design.

Chapter 6 formulates an optimal task-offloading problem and proposes a

task-offloading method for multi-cloud and multi-edge networks considering

network topology and bandwidth constraints. This work handles the task of-

floading of edge-to-edge and edge-to-cloud. Each task arriving at the nearest

edge is either processed at the nearest edge or offloaded to the neighboring

edge or cloud. This work defines optimal offloading as a solution that max-

imizes server- and link-resource efficiency and minimizes task latency while

satisfying the constraints of server and link capacity and task latency. The

decision variables are the computing-resource allocation of tasks and routing

between the ED and allocated server. The key solution to this problem is that

mathematical optimization can quickly solve the route-optimization problem.

Therefore, this work develops a method for combining RL and mathematical

optimization. This work assigns an agent at each edge that has learned the

optimal task offloading. This work introduces a cooperative multi-agent tech-

10

Section 1.4

nique proposed in Chapter 5 in which several agents jointly optimize a single

reward in a centralized training and decentralized execution manner. This can

prevent the non-stationary problem and improve task-offloading efficiency. The

proposed method combines Coop-MADRL and mathematical optimization to

take into account network topology and bandwidth constraints in the task-

offloading problem. This work uses the solution of mathematical optimization

in the learning process of Coop-MADRL. The proposed method calculates the

optimal computing offloading by RL and the optimal routing by mathematical

optimization. Therefore, the proposed method can handle numerous routing

variables without approximating or reducing them.

Finally, Chapter 7 concludes this thesis and discusses the future works to

extend this work.

11

Chapter 1

12

Chapter 2

Related works

This chapter is structured as follows. Section 2.1 briefly reviews reinforcement

learning (RL). Section 2.2 describes the related works in network-resource-

integrated control. Section 2.3 describes the related works in dynamic virtual

network (VN) allocation. Section 2.4 describes the related works in task-

offloading for cloud computing (CC) and edge computing (EC).

2.1 Reinforcement learning

This section briefly reviews single-agent RL, MARL, and safe RL.

2.1.1 Single-agent reinforcement learning

Single-agent RL considers a sequential decision-making problem in which an

agent interacts with an environment. The agent observes state 𝑠 ∈ S in which

S is the state space, takes action 𝑎 ∈ A where A is the action space, and

executes it in the environment to receive reward 𝑟 and transfer to the new

state 𝑠′ ∈ S. The goal of the agent is to determine a policy that maximizes

the long-term reward. The policy is a map 𝜋 : S → 𝑃(A), where 𝑃 is the

transition probability among the states. Q-learning [8], a widely used RL

algorithm, learns the relationship of ⟨𝑠, 𝑎, 𝑟, 𝑠′⟩ to maximize the action value

𝑄 (𝑠, 𝑎), which is defined as the expectation of the sum of rewards obtained in

the future when action 𝑎 is selected in state 𝑠. The agent receives a reward 𝑟

13

Chapter 2

and updates the Q-function in accordance with the following equation.

𝑄 (𝑠, 𝑎) ← (1 − 𝛼)𝑄 (𝑠, 𝑎) + 𝛼
[
𝑟 + 𝛾max

𝑎′∈A
𝑄 (𝑠′, 𝑎′)

]
, (2.1)

where 𝛼 is a learning rate and 𝛾 is a discount factor.

Deep reinforcement learning (DRL) [9,31] dramatically improves the gener-

alization and scalability of traditional RL algorithms and can handle continu-

ous and high-dimensional state space by approximating the 𝑄(𝑠, 𝑎) with a deep

neural network (DNN). Among the numerous studies on DRL, one prominent

study is the Deep Q-network (DQN) [9], which has demonstrated human-level

control and achieved outstanding performance in various classic games. An-

other notable study is the Deep Deterministic Policy Gradient (DDPG) [43],

which adopts the successful principles of Deep Q-Learning and applies them to

the continuous action domain. DDPG has demonstrated robust performance

in more than 20 simulated physics tasks using the same learning algorithm,

network architecture, and hyperparameters.

This thesis adopts the DQN as the base for the DRL algorithm because it

is well-suited for handling discrete actions and has demonstrated stability and

high performance across various scenarios. The optimal resource management

problem involves handling discrete actions as it requires selecting the best

server from a set of available servers. Note that, similar to previous studies [9,

43, 44], this thesis defines DRL as the RL with multiple hidden layers of the

DNN and does not restrict the number of DNN layers.

DQN uses a replay memory to store the transition tuple ⟨𝑠, 𝑎, 𝑟, 𝑠′⟩. DNN
parameters \ are learned by sampling batches 𝑏 of transitions from the replay

memory and minimizing the squared error:

L(\) =

𝑏∑︁
𝑖=1

[(
𝑦
DQN
𝑖

−𝑄(𝑠, 𝑎; \)
)2]

, (2.2)

𝑦DQN = 𝑟 + 𝛾max
𝑎′∈A

𝑄(𝑠′, 𝑎′; \−), (2.3)

where \− are the parameters of a target network that are periodically copied

from \ and kept constant for several iterations. It was reported that the

performance of RL algorithms drastically worsens as the number of candidate

actions increases due to the decrease in the sampling efficiency of ⟨𝑠, 𝑎, 𝑟, 𝑠′⟩

14

Section 2.1

and increase in the error of the DNN [31]. Therefore, stable DRL becomes

difficult as the number of actions increases.

DRL performs better when historical information is used for learning. DQN

defines the last four frames as the current state in the classic game environ-

ment to consider historical information. This approach was successful enough

for games where reflexes are critical, but it became clear that DQN needed

more than four frames for some games. To address these shortcomings, Deep

Recurrent Q-Network (DRQN) [45] adds recurrency to DQN by replacing the

first post-convolutional fully connected layer with a recurrent long short-term

memory (LSTM). DRQN successfully integrates historical information and im-

proves the performance of DQN in some games, even though it only sees a

single frame at each time step. In addition, DRQN with the recurrent network

can better adapt during an evaluation when the quality of the observations

changes.

2.1.2 Multi-agent reinforcement learning

MARL is a system of multiple agents interacting within a common environ-

ment. Each agent decides each time-step and works together with the other

agent(s) to achieve a given goal. It is used for learning a complex environment

by dividing a single task into multiple sub-tasks. The learning cost of each

agent can be reduced by assigning each agent to each task. The recent review

of MARL is described in detail [46–48]. Due to the complexities of the envi-

ronments and the combinatorial nature of the problem, most MARL problems

are categorized as NP-hard problems [49].

A cooperative multi-agent environment can be described as a decentralized

partially observable Markov decision process (Dec-POMDP) [50] consisting of

⟨𝐾,S,A, 𝑅, 𝑃,O, 𝛾⟩, in which 𝐾 is the number of agents, S is state space,

A = {A1, . . . ,A𝐾} is the set of actions for all agents, 𝑃 is the transition

probability among the states, 𝑅 is the reward function, and O = {O1, . . . ,O𝐾}
is the set of observations for all agents. In a cooperative multi-agent problem

in which the environment can be fully observed, the 𝑖th agent at time-step 𝑡

observes the global state 𝑠𝑡 , takes action 𝑎
𝑖
𝑡 (𝒂𝑡 = {𝑎𝑖𝑡}), and receives reward 𝑟𝑡 .

If the agents cannot observe the global state, each agent only accesses its own

15

Chapter 2

local observation 𝑜𝑖𝑡 . The state 𝑠𝑡 needs to contain all information required to

uniquely represent the current environment’s status. Whereas the observation

𝑜𝑖𝑡 is a part of state 𝑠𝑡 , and it needs to contain the information required to

uniquely represent 𝑖th agent’s current status.

Each agent has an observation-action history ℎ𝑖 ∈ 𝒉, where the history

indicates a series of past observations and 𝒉 is the observation-action history

of all agents. The joint policy is a map 𝜋 : 𝒉 → 𝑃(A), and the joint policy 𝜋

has a joint action-value function:

𝑄𝜋 (𝒉𝑡 , 𝒂𝑡) = E
[∞∑︁
𝑗=0

𝛾 𝑗𝑟𝑡+ 𝑗 | 𝒉𝑡 , 𝒂𝑡

]
. (2.4)

In the following section, this work describes several significant MADRL

algorithms based on the DQN that can handle discrete actions. However, this

work does not describe the major MADRL algorithms for continuous actions,

e.g., Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [51].

Independent Q-learning

The most naive approach to solve the MARL problem is to treat each agent

independently. This idea is formalized in an independent Q-learning (IQL)

algorithm [52, 53], which decomposes a multi-agent problem into a collection

of simultaneous single-agent problems that share the same environment. Each

agent runs Q-learning [8] or DQN [9]. IQL is scalable from the viewpoint of

implementation while increasing the number of agents, and each agent only

needs its local history of observations during the training. In this theise, IQL

is trained to minimize the loss:

L(\) =
𝑏∑︁
𝑖=1

𝐾∑︁
𝑘=1

[(
𝑦𝑘𝑖 −𝑄𝑘 (ℎ𝑘 , 𝑎𝑘 ; \𝑘)

)2]
, (2.5)

where 𝑏 is the batch size of transitions sampled from the replay memory, 𝑄𝑘 is

the 𝑘th agent’s Q-value function, and 𝑦𝑘 is the 𝑘th agent’s 𝑦DQN as in Eq. (2.3).

Value decomposition networks

Value decomposition networks (VDNs) [54] aim to learn a joint action-value

function 𝑄𝑡𝑜𝑡 (𝒉, 𝒂). It is assumed that the joint action-value function 𝑄𝑡𝑜𝑡 can

16

Section 2.1

be additively decomposed into 𝐾 Q-value functions for 𝐾 agents, in which each

Q-value function 𝑄𝑖 only relies on the local state-action history:

𝑄𝑡𝑜𝑡 (𝒉, 𝒂) =
𝐾∑︁
𝑖=1

𝑄𝑖 (ℎ𝑖, 𝑎𝑖; \𝑖). (2.6)

Therefore, each agent observes its local state, obtains the Q-values for its ac-

tion, and selects an action, and then the sum of Q-values for the selected action

of all agents provides the total Q-value of the problem. By using the shared

reward and the total Q-value, the loss is calculated and then the gradients are

back-propagated into the networks of all agents. Because each agent’s DNN is

updated on the basis of the total Q-value, each agent learns the best behavior

for all agents, i.e., they learn cooperative behavior. The loss function for VDN

is as follows:

L(\) =
𝑏∑︁
𝑖=1

[(
𝑦𝑡𝑜𝑡𝑖 −𝑄𝑡𝑜𝑡 (𝒉, 𝒂; \)

)2]
, (2.7)

where 𝑏 is the batch size, 𝑦𝑡𝑜𝑡 = 𝑟 + 𝛾max𝒂′ 𝑄𝑡𝑜𝑡 (𝒉′, 𝒂′; \−) and \− are the

parameters of a target network as in DQN.

QMIX

QMIX [55] extends VDN to address a broader class of environments. To repre-

sent a more complex factorization, a mixing network with trainable parameters

is introduced to compute the total Q-value on the basis of each agent’s state-

action value function. As mentioned above, VDN adds restrictions to have the

additivity of the Q-value and further shares the action-value function during

the training. QMIX also shares the action-value function during the training.

Besides, QMIX adds the below constraint to the problem:

𝜕𝑄𝑡𝑜𝑡

𝜕𝑄𝑖
≥ 0,∀𝑖, (2.8)

which enforces positive weights on the mixer network, and as a result, QMIX

can guarantee monotonic improvement. QMIX is trained to minimize the DQN

loss, and the gradient is back-propagated to the individual Q-values, similarly

to VDN.

17

Chapter 2

2.1.3 Safe reinforcement learning

Dalal at el. [41] proposed an RL algorithm for a physical system where critical

constraints must never be violated, such as a data-center cooling unit. Their

approach relies on a one-time initial pre-training of a model that predicts the

change in the safety signal over a single time-step. The model is a first-order

approximation with respect to the action, where its coefficients are the outputs

of a DNN. This model is used in a safety layer composed directly on the agent’s

policy to correct the action if needed, i.e., after every policy query, it solves an

optimization problem for finding the minimal change to the action such that

the safety constraints are met.

2.1.4 Hybrid reward architecture

In domains where the optimal value function cannot easily be reduced to a

low-dimensional representation, learning can be very slow and unstable. Sei-

jen et al. [42] tackled such challenging domains by using HRA. They decom-

posed a reward function and learned a separate value function for each com-

ponent reward function. The reward function is decomposed into 𝑛 reward

functions with weighting parameters 𝑤𝑘 , and action selection is based on the

sum of each 𝑄-value function 𝑄𝑘 of 𝑘th agent:

𝑄HRA(𝑠, 𝑎) :=
𝑛∑︁
𝑘=1

𝑤𝑘𝑄𝑘 (𝑠, 𝑎). (2.9)

2.2 Network-resource-integrated control

Previous studies on resource-integrated control methods can be categorized

into two approaches: combined and coordinated.

2.2.1 Combined approach

The combined approach [6,10–16] builds a specified algorithm that simultane-

ously solves the combined optimization problem.

Jiang et al. [10] studied a combined optimization problem of VM placement

and routing to minimize traffic costs in an intra-DC. They also proposed an ef-

18

Section 2.2

ficient online algorithm in a dynamic environment under changing traffic loads

by leveraging and expanding the technique of Markov approximation. How-

ever, since the algorithm approximates the combined optimization problem by

utilizing the specific problem structure, it is difficult to extend to another use

case.

Yoshida et al. [11] designed a plug-in architecture to satisfy various re-

quirements related to NFV resources. They also proposed a modified multi-

objective genetic algorithm (MOGA) to obtain approximate solutions in rea-

sonable computation time. However, each plug-in should be pre-formulated

as a format of objective functions and/or constraints of MOGA. Moreover,

they evaluated only one use case and did not mention extendability for adding

and/or changing plug-ins.

Jin et al. [12] proposed optimization method to minimize the cost of caching,

transcoding, and routing functions for cost-efficient video distribution over the

future Internet. They developed two algorithms for maximizing total cache hits

and minimizing the networking cost. They improve the solution by alternately

calculating those two algorithms. However, this method cannot be applied to

general use cases due to the control conflict between objective functions (a

detailed example is given in Section 3.1).

Cui et al. [6] formulated the Policy-VM Consolidation problem, which can

jointly optimize the VM placement as the origin/destination node and VNF

placement as the middle node, and the route between VMs via VNF. They

also proposed an efficient and synergistic scheme to jointly consolidate VNFs

and VM. However, this scheme is heuristic and specified for only one use case,

so it is difficult to extend to other use cases.

Herrera et al. [7] survey the research challenges of solving the resource

allocation problem in NFV-based network architectures. They classify the

NFV resource allocation problems into three stages: VNFs chain composing,

VNF forwarding graph embedding, and VNFs scheduling. They mention that

these three stages of the NFV resource allocation problem are related to each

other, and a way to coordinate the three stages is a major challenge of the

NFV resource allocation problem. The aim is to optimize the use of resources

to improve the performance of the network.

To coordinate NFV resource allocation problems, various studies have been

19

Chapter 2

conducted [13–16]. In particular, Li et al. [16] formulated a typical three-stage

coordinated NFV resource allocation model as a mixed integer programming

(MIP) and proposed a heuristic solution called merge-split viterbi (MSV).

However, MSV is a specified algorithm that simultaneously solves the combined

optimization problem, so it is difficult to extend to other use cases. Other

algorithms [13–15] are similar to the case of MSV.

2.2.2 Coordinated approach

The coordinated approach [17–19] involves using an extendable control archi-

tecture that coordinates multiple control algorithms pre-specified for individual

control metrics.

Tsagkaris et al. [17, 18] and Stamou et al. [19] proposed a hierarchical

network control framework for unifying all control when a network contains

multiple control metrics. In particular, their proposed architectures [18, 19]

include a single Autonomic Network Management (ANM) Core and multiple

Autonomic Control Loops (ACLs). Each ACL is a control module special-

ized for one control metric. The ANM Core integrates control of all ACLs

and determines whether each ACL appropriately controls each control metric.

However, this extendable control architecture is only a concept, and no specific

implementation or formulation is described.

2.3 Dynamic virtual network allocation

There have been several studies on dynamic VN allocation (RL-based [22–27]

and heuristic [28,29]).

2.3.1 Reinforcement learning-based allocation

Mijumbi et al. [22–24] proposed a MARL-based dynamic bandwidth control

method under the decentralized resource management system, which prepares

the agents for each physical node and physical link. They [22] applied a Q-

learning based RL agent. They [23] also used an artificial network to make

resource reallocation decisions and train the network with a Q-table. They [24]

20

Section 2.3

also proposed an RL-based neuro-fuzzy algorithm. However, it controls only

the buffer size of virtual nodes and the bandwidth of virtual links and does

not reallocate virtual nodes. Therefore, it cannot cope with demand changes

for server resources. Moreover, to prevent the number of actions from expo-

nentially increasing, all the demands passing through each node and link are

controlled by uniform parameters. Therefore, the bandwidth for all users is

limited regardless of the demand of each user.

With the breakthrough of DRL in human-level control applications [9],

the DRL-based VNE algorithm has been increasingly studied. Studies have

mentioned the problem of the RL-based approach: the candidate actions of

VN allocation exponentially increase as the number of nodes and the number

of links increase [25–27]. Dolati et al. [25] attempted to shrink the action

space of the VNE problem to provide sufficient flexibility for exploring different

VN mappings while retaining the efficiency of the learning process. They

adopted a convolutional neural network for a DRL approach in solving VNE

problems. Dolati et al. assumed that networks have grid-like typologies to

make the image representation easier to obtain, but this is not true in many

other situations. Yan et al. [26] decomposed a VNE process into a sequence

of virtual node embedding to shrink the action space, and the learning agent

only focuses on one virtual node of the current VN request at every single step.

The work in Chapter 4 proposed a MADRL-based dynamic VN allocation

method [27]. This work divided the VN demands into groups, and each agent

is prepared for each group, which can shrink the action space per agent. This

work also restricted the agents that could act at each time to avoid conflicts

among agents. However, the shrinking action space and the restriction on the

agent’s action decrease the performance of VNE. Moreover, this restriction

increases the number of steps required for VN reallocation and may delay the

response to dynamic demand changes. Conversely, the work in Chapter 5

adds a cooperative element to the previous method, which can avoid conflicts

of control between agents and improve the performance of VN allocation.

In conclusion, the shortcoming of existing methods and the strengths of

the proposed method is summarized. As mentioned above, the problem of RL-

based approaches is that the number of candidate actions for VN allocation

increases exponentially as the number of nodes and links increases. Exist-

21

Chapter 2

ing methods introduce the multi-agent technique to prevent the exponential

increase of actions. However, existing methods restrict the agent’s actions

at each step or compress the action space using handcrafted features, which

degrades the performance of VN allocation. On the other hand, the work

in Chapter 5 additively introduces a cooperative technique for a multi-agent

DRL-based dynamic VN allocation method. This technique can improve the

performance of VN allocation without restricting agent actions or compressing

actions.

2.3.2 Heuristic-based allocation

Zheng et al. [28] proposed a dynamic VNE algorithm based on a radial basis

function neural network to learn and predict the dynamic changes of resources,

and users dynamically adjust and allocate resources by the predicted results.

Although these proactive control methods based on predicting the dynamic

changes are effective for near-stationary resource demand, they sometimes fail

since drastic demand changes cannot be predicted. On the other hand, the

proposed approach uses the almost real-time demand for control by drasti-

cally reducing the computation time and control interval, not minimizing the

prediction error.

Dehury and Sahoo [29] proposed a dynamic VN allocation method that

combines online and offline allocation algorithms. The VN demand is ac-

cepted and allocated immediately by the online algorithm, then VN demand

is periodically reallocated by the offline algorithm. By combining the two

algorithms, they simultaneously achieved immediate demand acceptance and

optimal demand allocation. However, they assumed only adding and deleting

virtual links and not the change in virtual link bandwidths. Therefore, their

method cannot be applied for time-varying traffic demand.

22

Section 2.3

T
ab

le
2.
1:

C
om

p
ar
is
on

of
re
la
te
d
st
u
d
ie
s.

S
tu

d
ie
s

N
et
w
o
rk

P
ro
p
er
ti
es

M
et
h
o
d
P
ro
p
er
ti
es

E
v
a
lu
a
ti
o
n
P
ro
p
er
ti
es

#
o
f
E
d
g
es

#
o
f
C
lo
u
d
s

T
o
p
o
lo
g
y

A
cc
es
s
N
et
w
o
rk

M
et
h
o
d
o
lo
g
y

C
o
o
p
er
a
ti
o
n

#
o
f
T
a
sk

T
y
p
es

C
o
m
p
re
h
en

si
v
en

es
s

[3
2
]

S
ev

er
a
l

S
in
g
le

-
W

ir
el
es
s

A
D
M
M

✓
S
in
g
le

L
im

it
ed

[3
3
]

D
o
ze
n
s

S
in
g
le

-
W

ir
el
es
s

S
A

-
S
in
g
le

L
im

it
ed

[3
4
]

S
ev

er
a
l

S
in
g
le

-
W

ir
el
es
s

P
ip
el
in
e
S
tr
a
te
g
y

-
S
in
g
le

L
im

it
ed

[3
5
]

S
ev

er
a
l

-
-

W
ir
el
es
s

M
A
D
R
L

-
S
in
g
le

L
im

it
ed

[3
6
]

D
o
ze
n
s

-
-

W
ir
el
es
s

M
A
D
R
L

✓
S
in
g
le

L
im

it
ed

[3
7
]

S
ev

er
a
l

S
in
g
le

-
W

ir
el
es
s

M
A
D
R
L

✓
S
in
g
le

L
im

it
ed

[3
8
]

S
ev

er
a
l

S
in
g
le

-
W

ir
el
es
s

M
A
D
R
L

✓
S
in
g
le

L
im

it
ed

[3
9
]

S
ev

er
a
l

M
u
lt
i

-
W

ir
el
es
s

M
A
D
R
L

-
S
in
g
le

L
im

it
ed

O
u
rs

D
o
ze
n
s

M
u
lt
i

✓
-

M
A
D
R
L

✓
M
u
lt
i

✓

23

Chapter 2

2.4 Task-offloading for cloud computing and

edge computing

Several studies have addressed task-offloading problems for CC and EC [32–39].

In general, CC has sufficient computing resources but inevitably increases net-

work latency. On the other hand, EC can reduce network latency at the

expense of having sufficient computing resources. These studies aim to opti-

mize the task-offloading when considering the characteristics of heterogeneous

computing resources. They sometimes refer to fog computing instead of CC

or EC, or assume multiple layers in the edge network. When an edge fog or

a two-tier edge network considers the heterogeneous resource characteristics,

the work in Chapter 6 can see them as the same studies.

Table 2.1 summarizes the characteristics of these studies and ours. “Co-

operation” in method properties means whether multiple control algorithms

are coordinated when a method contains multiple algorithms. It is not the

case when a single algorithm determines all task offloads or when multiple al-

gorithms independently determine them. “Comprehensiveness” in evaluation

properties means whether the methods evaluate the performance of the algo-

rithm under practical conditions, e.g., a sufficient number of edges and clouds,

and under various metrics, e.g., computation time and scalability.

Wang et al. [32] considered a cooperative three-tier computing network by

leveraging vertical cooperation among devices, edge nodes, and cloud servers

and horizontal cooperation between edge nodes. They also presented a parallel

optimization framework by using the alternating direction method of multi-

pliers (ADMM) method. However, they did not impose network bandwidth

constraints and did not assume multi-cloud networks. They evaluated minimal

conditions with four edges and 40 devices. Yuan et al. [33] designed a profit-

maximizing collaborative computation offloading and resource-allocation algo-

rithm to maximize system profit and guarantee task-response-time constraints.

They also developed a migratory-bird optimization method that is based on

simulated annealing (SA) to obtain a close-to-optimal solution. However, they

did not assume multi-cloud networks and backbone-network topology. They

evaluated their method under very light conditions, such as one task every 20

seconds. Kai et al. [34] developed a collaborative computing framework to pro-

24

Section 2.4

cess mobile devices’ tasks at terminals, edge nodes, and cloud centers. They

presented a pipeline-based offloading scheme, in which both mobile devices

and edge nodes can offload computation-intensive tasks to an edge node and

cloud center in accordance with their computation and communication capac-

ities, respectively. However, they did not assume multi-cloud networks and

backbone network topology and evaluated minimal conditions with 40 devices.

MADRL has gained attention as a solution to the problem of computation

time [35–39]. Zhan et al. [35] designed a decentralized algorithm for compu-

tation offloading so that users can independently choose their offloading deci-

sions. They developed their algorithm by combining MADRL and game theory.

However, the actions of decentralized agents based on game theory fall into a

sub-optimal solution of the Nash equilibrium. They only considered EC and

did not consider CC. Nguyen et al. [36] presented a new collaborative offload-

ing framework that is based on MADRL in heterogeneous edge networks where

each ED acts as an intelligent agent to make offloading decisions collaboratively

and achieve optimal system utility. However, they only considered EC and did

not consider CC. Hou et al. [37] introduced a hierarchical task-offloading and

resource-allocation method that is based on MADRL for the Cybertwin-based

network. It can promote the flexible collaboration of EDs, EC servers, or CC

servers to improve system processing efficiency and security. Although they de-

scribed the formulation in detail, their work remains only a concept, and they

evaluated minimal conditions with a single cloud, three edges, and 100–300

devices. Ding et al. [38] considered cooperative task offloading, where all edge

servers cooperate to achieve good performance for the entire edge-CC system,

such as low latency and energy costs. They addressed MADRL-based task

offloading that takes into account cooperation among agents. However, they

evaluated minimal conditions with a single cloud and five edges. They evalu-

ated only one snapshot and did not evaluate statistical performance. They also

did not conduct any practical evaluation, e.g., computation time or scalability.

Zhang et al. [39] considered a three-layer distributed multi-access edge com-

puting network where there are multiple clouds, EC servers, and EDs. They

developed a distributed scheme that is based on MADRL. Each cloud jointly

determines the offloading task and resource-allocation strategy on the basis

of its inference of other cloud decisions. However, they evaluated minimal

25

Chapter 2

conditions with 1–3 clouds, 1–3 edges, and 3–9 devices.

In summary, previous studies did not consider CC or targeted only the

network with a single cloud. Zhang et al. [39] assumed multi-cloud networks,

but their evaluation was under the limited condition of three edge nodes, and

effectiveness of their method under practical conditions remains unclear. Pre-

vious studies did not consider the link capacity and topology of the backbone

network. They assumed that the backbone-network link between clouds and

edges was as if it were a single link. To the best of our knowledge, the work in

Chapter 6 is the first to focus on optimal task offloading for multi-cloud and

multi-edge networks considering network topology and bandwidth constraints.

Several studies have addressed MADRL-based task offloading by considering

cooperation among agents similar to ours but do not meet the above network

requirements. Furthermore, this work introduces a generalized task model rep-

resenting various task types. Previous studies evaluated the performances of

their methods under conditions where they generated only one type of task uni-

formly. This work evaluated the effectiveness of the proposed method in terms

of performance, network-topology dependency, computation time, scalability

regarding the number of tasks, and generalization performance for unknown

task patterns. Such a comprehensive evaluation had not been conducted.

26

Chapter 3

Extendable resource-integrated

control using reinforcement

learning

Network functions virtualization (NFV) enables telecommunications service

providers to realize various network services by flexibly combining multiple

virtual network functions (VNFs). To provide such services, an NFV con-

trol method should optimally allocate such VNFs into physical networks and

servers by taking account of the combination(s) of objective functions and

constraints for each metric defined for each VNF type, e.g., VNF placements

and routes between the VNFs. The NFV control method should also be ex-

tendable for adding new metrics or changing the combination of metrics. One

approach for NFV control to optimize allocations is to construct an algorithm

that simultaneously solves the combined optimization problem. However, this

approach is not extendable because the problem needs to be reformulated

every time a new metric is added or a combination of metrics is changed.

Another approach involves using an extendable network-control architecture

that coordinates multiple control algorithms specified for individual metrics.

However, to the best of our knowledge, no method has been developed that

can optimize allocations through this kind of coordination. This work pro-

poses an extendable network-resource-integrated control method in NFV by

coordinating multiple control algorithms. This work also proposes an efficient

27

Chapter 3

coordination algorithm based on reinforcement learning. Finally, this work

evaluates the effectiveness of the proposed method through simulations. A

part of this work in this chapter was presented in [56,57].

This chapter is structured as follows. Section 3.1 describes the motivation

of this work in detail. Section 3.2 describes the proposed extendable resource-

integrated control method in NFV and an efficient algorithm for the proposed

method using RL. Section 3.3 describes the use cases for the proposed method,

the modeling and formulation of the proposed method, and its extendable im-

plementation. Section 3.4 evaluates the performance, and Section 3.5 concludes

the chapter.

3.1 Challenges and motivation

In this section, this work describes the challenges and motivation for extendable

resource-integrated control methods with a concrete use case. This work first

considers the use case as an example in which this work provides a secure-

cloud-computing service consisting of routes between VMs via an IDS. In this

case, the control metrics are routes, VM placements, and IDS placements,

and each control algorithm is pre-formulated (detailed formulation is given in

Section 3.3.3).

Independently solving each optimization problem leads to the following

control conflicts.

(1) Conflict between constraints - Capacity overload: Since each

control algorithm takes into account only its constraints, all constraints might

not be satisfied at the same time. For example, when each problem for each

control metric is independently solved at the same time, VMs and IDSs will

be allocated on the same server, resulting in server overload.

(2) Conflict between objective functions - Oscillatory solution: If

each algorithm with a different objective function is conducted independently,

the network may become unstable. For example, if the IDS-allocation algo-

rithm to balance server loads and the VM-allocation algorithm to minimize

electric power consumption (i.e., the number of powered-on servers) are used

independently (e.g., the latter is done after the former repeatedly), most as-

signment results are repeatedly changed.

28

Section 3.2

The above conflicts can be avoided by sequentially solving each optimiza-

tion problem for residual resources of each allocated result. However, the

obtained results after conducting all the algorithms are not guaranteed to be-

come optimal. This is because, since the result of the previous algorithm is

fixed, an inefficient solution may be inevitable. For example, when the results

of the physical distance between allocated VMs are long, inefficient routing is

inevitable.

The motivation for this work is to avoid the conflicts and inefficiency de-

scribed above. In addition, this work addresses the challenge of extendability

for changing control metrics that are considered essential in resource-integrated

control. The goal is to construct an extendable resource-integrated control

method, i.e., enabling NFV control metrics to be changed and added without

changing each control-algorithm formulation. Though the proposed method

cannot solve all the challenges of extendability or cover all use cases, to the

best of our knowledge, this is the first work to tackle this problem, and this

work expects that more complicated use cases can be solved by enhancing the

proposed method.

3.2 Proposed method

This work has developed an extendable resource-integrated control method

by coordinating multiple control algorithms. This work has also developed an

efficient coordination algorithm by using RL to find better solutions with fewer

coordinating iterations than the case without RL.

In this section, this work first describes the overview and procedure of the

proposed method and then gives a formulation of the proposed coordination

algorithm.

3.2.1 Overview of proposed method

The proposed method executes hierarchical control consisting of multiple con-

trol engines and a single coordination engine (Fig. 3.1). A control engine

has an algorithm to calculate a solution for each control metric and calculate

the evaluation value of the solution quantitatively. The evaluation value of a

29

Chapter 3

Network Observation Information/
User Demands (Constraints)

Control Result / Setting command

Physical Network (Node, Link, Server)

Coordination Engine (Proposal.)

Route
Control Engine

Route Control
Algorithm

VNF#1
Control Engine

VNF#1 Control
Algorithm

VNF#2
Control Engine

VNF#2 Control
Algorithm

VNF#3
Control Engine

VNF#3 Control
Algorithm

・・・

Constraints

Network
configuration

Input
Management

Unit

NFV-integrated control engine

Control
Information

Figure 3.1: Overview of proposed resource-integrated control method. (©2020

IEICE.)

solution is defined as the objective-function value if the constraints of a con-

trol algorithm are satisfied; otherwise, it returns a negative value as a penalty.

The objective-function value allows only positive values. Using this negative

value, this work can determine whether the constraints are satisfied. The co-

ordination engine explores a solution by changing a part of the solution to

improve the comprehensive evaluation value (CEV), which is defined as

a unique value determined by all evaluation values of solutions calculated by

the individual control engines, e.g., the weighted average of each evaluation

value of the solution. The weight of each evaluation value is determined from

the importance of each objective function.

This work describes the procedure of the proposed method. Each control

engine first calculates initial solutions independently, and then the proposed

coordination engine recursively explores the solutions to improve the CEV.

In the exploration procedure, the coordination engine first changes a part of

a solution on the basis of the current CEV, and then the changed solution is

sent to each control engine. Next, each control engine calculates the evaluation

value on the basis of the changed solution. At this time, some control engines

calculate the part of the next solution together as necessary. For example,

a route control engine needs to calculate the next route on the basis of the

changed VNF placements. The coordination engine calculates the next CEV

30

Section 3.2

on the basis of the evaluation value and then returns to the beginning of the

procedure. When the exploration is terminated by repeating the above proce-

dure a certain number of times, this work regards the highest CEV solution

among the past iterations as the final solution. The proposed method can be

extended because this work improves each solution on the basis of only the

CEV, independently of the control metric type or number of control engines.

3.2.2 Overview of coordination algorithm

RL solves the decision problem of what action an “agent” should take by

observing the current state within a certain “environment.” An agent receives

a reward from the environment depending on the selected action and then

learns a strategy for how to maximize the received reward through a series

of selected actions. In a resource-integrated control environment, an agent’s

strategy indicates an efficient solution exploration to improve the CEV, and

the agent observes the current solution and CEV. This work bases the proposed

algorithm on RL because general-purpose learning is possible by just defining

states, actions, and rewards and applying them to general control engines

without a specific algorithm.

Specifically, this work uses hierarchical MARL [58], consisting of a single

instruction agent and multiple control agents (Fig. 3.2). The instruction

agent learns a selection of the control agent, and the control agent learns

an efficient solution exploration for the corresponding control engine. The

purpose of hierarchical MARL is to make the proposed method extendable by

preparing a specific control agent for each control engine. Since all agents’

learning algorithms are common, the learning algorithm is not affected by any

change of any control algorithm.

This work introduces the input/output (I/O)-conversion unit, which con-

verts the I/O format of each control engine. Because the changed solution of a

control engine may affect evaluation values of other control engines, this work

needs to share the changed solution by converting the I/O format. For exam-

ple, the VNF placements affect the routes between the VNFs, so this unit needs

to convert the VNF placements (i.e., an output of a VNF control engine) into

traffic demands between servers on which the VNFs are allocated (i.e., input

31

Chapter 3

Coordination Engine (Proposal.)

Route
Control Engine

Route
Control Agent

(5)

(4)

VNF#3
Control Engine

VNF#3
Control Agent

(5)

(4)

VNF#2
Control Engine

VNF#2
Control Agent

(5)

(4)

VNF#1
Control Engine

VNF#1
Control Agent

(5)

(6)

(7)(1)

(2)

(3)

Instruction Agent

CEV Calculation Unit

I/O Conversion Unit

Figure 3.2: Overview of coordination engine based on reinforcement learning.

An example when instruction agent selects VNF#1 control agent. (©2020

IEICE.)

of a route control engine). This work assumes that the cost of implementing

the I/O conversion unit is lower than the cost of rebuilding each algorithm

formulation. An example of the I/O-conversion is described in Section 3.3.3.

This work describes the procedure of the proposed coordination algorithm

based on hierarchical MARL. As shown in Fig. 3.2, the instruction agent first

selects a control agent on the basis of the RL (1), and then the selected control

agent starts exploring solutions and learning a strategy of exploration (2)–(6).

In the exploration step, the selected control agent observes the current solution

(2), then changes a part of the solution on the basis of the RL, and sends the

changed solution (3). After the changed solution is shared through the I/O-

conversion unit (4), each control engine calculates its evaluation value. Next,

the CEV is calculated from all evaluation values (5), and then the control

agent receives the CEV as a reward (6). Then, the instruction agent learns

the strategy of selecting a control agent on the basis of the maximum CEV

in the exploration (7) and selects the next agent on the basis of the strategy.

After repeating the procedure, the best solution is output as the final solution.

Finally, the procedure returns to the beginning (1).

32

Section 3.2

Table 3.1: Symbol descriptions for coordination algorithm.

Symbols Definitions

ia Instruction agent

𝑮 := {𝑔} Control agent set

𝑬 := {𝑒} Control engine set

𝑡 ∈ 𝑇 Exploration step (𝑇 : Total exploration steps)

𝑡𝑔 Number of iterations of control agent (𝑔 ∈ 𝑮)

𝑇 𝑔 Total exploration steps of control agent (𝑔 ∈ 𝑮)

𝑠
agent
𝑡 State of each agent at step 𝑡 (agent ∈ ia ∪ 𝑮)

𝑎
agent
𝑡 Action of each agent at step 𝑡 (agent ∈ ia ∪ 𝑮)

𝑟
agent
𝑡 Reward of each agent at step 𝑡 (agent ∈ ia ∪ 𝑮)

𝑄

(
𝑠
agent
𝑡 , 𝑎

agent
𝑡

)
Policy value for state 𝑠agent𝑡 and action 𝑎agent𝑡

𝛼, 𝛾 Hyper-parameter (Default: 𝛼 = 0.2 and 𝛾 = 0.9)

𝑨𝑒 Solution of control engine 𝑒

𝑫 𝒕 :=
{
𝑑𝑖 𝑗 𝑡

}
Traffic demands from node 𝑖 to node 𝑗 at step 𝑡

𝑽𝒕 :=
{
𝑣𝑒𝑡

}
Evaluation values of control engine 𝑒 at step 𝑡

𝜽 := {\𝑒} Coefficients of control engine 𝑒

3.2.3 Formulation of coordination algorithm

This work describes the formulation of the proposed coordination algorithm.

Table 3.1 summarizes the definitions of the variables of the proposed coordi-

nation algorithm. For agent learning algorithms, this work uses Q-learning [8],

which learns the relationship of a state, action, and reward to maximize the

policy value. Policy value 𝑄 (𝑠𝑡 , 𝑎𝑡) is defined as the expectation of the sum of

rewards obtained in the future when action 𝑎𝑡 is selected in state 𝑠𝑡 .

Instruction-agent algorithm

The instruction agent learns how to select control agents. A state is defined

as the selected control agent, action as the selection of the next control agent,

and reward as the maximum CEV obtained during this control-agent selection.

The instruction-agent algorithm is shown in Algorithm 1. Lines 1–2 show

the initialization of 𝑄
(
𝑠ia, 𝑎ia

)
, exploration step 𝑡, and initial state 𝑠ia0 . The

33

Chapter 3

Algorithm 1 Instruction-agent Learning.

1: initialize: 𝑄
(
𝑠ia, 𝑎ia

)
← 0, for all 𝑠ia and 𝑎ia

2: initialize: 𝑡 ← 0, 𝑠ia0 ← random choice from 𝑮

3: while 𝑡 < 𝑇 do

4: 𝑎ia𝑡 ← 𝜖 greedy
(
𝑠ia𝑡

)
5: 𝑠ia

𝑡+1 ← action
(
𝑎ia𝑡

)
6: 𝑟 ia

𝑡+1, 𝑡
𝑔 ← agent learning

(
𝑠ia
𝑡+1

)
7: Δ𝑄 ← 𝑟 ia

𝑡+1 + 𝛾max𝑎′ 𝑄
(
𝑠ia
𝑡+1, 𝑎

′) −𝑄 (
𝑠ia𝑡 , 𝑎

ia
𝑡

)
8: 𝑄

(
𝑠ia𝑡 , 𝑎

ia
𝑡

)
← 𝑄

(
𝑠ia𝑡 , 𝑎

ia
𝑡

)
+ 𝛼Δ𝑄

9: 𝑡 ← 𝑡 + 𝑡𝑔

term “𝜖 greedy” in line 4 means the action selected on the basis of the strategy

that a random action is selected with probability 𝜖 ; otherwise, an action 𝑎ia𝑡
that maximizes 𝑄 is selected (i.e., argmax𝑎′ 𝑄

(
𝑠ia𝑡 , 𝑎

′)) with probability 1 − 𝜖 .
It indicates the epsilon-greedy algorithm and is to avoid convergence to a local

optimum solution. The term “action” in line 5 shows the action of the instruc-

tion agent 𝑎ia𝑡 , which means the switch from the old control agent 𝑔 to the new

control agent 𝑔, that is, 𝑠ia𝑡 = 𝑔 and 𝑠ia
𝑡+1 = 𝑔. The term “agent learning (𝑠ia

𝑡+1)”
in line 6 means control-agent learning (Algorithm 2). The control agent re-

turns the maximum CEV during exploration and the number of exploration

steps. Lines 7–8 show instruction-agent learning, which means that 𝑄
(
𝑠ia, 𝑎ia

)
is updated from the relationship of state 𝑠ia, action 𝑎ia, and reward 𝑟 ia. Δ𝑄 is

called temporal difference error in RL, which indicates the difference between

the current reward and the expected reward. At line 9, 𝑡𝑔 means the number

of iterations in Algorithm 2.

Control-agent algorithm

The control agent learns how to efficiently change the solution of the control

engine. A state is defined as the solution of the control engine, action as the

changing of the control solution of each control engine, and reward as the CEV

(examples are given in Section 3.3.3).

The control-agent algorithm is shown in Algorithm 2. The control agent

𝑔 is selected by the instruction agent, i.e., 𝑔 corresponds to the current state

34

Section 3.3

of instruction agent 𝑠ia. Lines 1–2 show the initialization of each variable,

and 𝑨𝑒 means the initial solution corresponding to the control engine 𝑒. The

term “action” in line 5 means the changing part of the solution of the selected

control engine 𝑒. Then it outputs the result to the selected control engine 𝑒. In

line 6, the result is shared among other control engines through I/O-conversion

unit. Lines 7–8 show the calculation of evaluation values of all control engines

on the basis of the changed solution. The term “CEV calculation” in line 9

means the calculation the CEV as the reward of control agent 𝑟
𝑔

𝑡+1. The CEV

is basically defined as follows:

CEV =
∑︁
𝑒∈𝑬

\𝑒𝑣𝑒𝑡 , (3.1)

where \𝑒 and 𝑣𝑒𝑡 are the weighting parameter and evaluation value for the con-

trol engine 𝑒, respectively. The term “end state” in line 12 means the termi-

nation condition of control-agent learning, i.e., the state that does not satisfy

one or more constraints. That is, after reaching the solution that does not

satisfy at least one constraint, the control agent stops the exploration. In lines

13 and 15, the control agent returns the maximum CEV during exploration as

a reward for the instruction agent.

3.3 Use case of proposed method

This work considers the use cases where the extendable resource-integrated

control method is required, i.e., where the control metrics and network con-

trol conditions are changed and added frequently. First, this work classified

the general use case of NFV control using a combination of three elements:

(1) control metric, (2) control objective, and (3) network model. This work

also prepared four options as representatives of each element. One option is

selected from (1) control metric, one option is selected from (2) control objec-

tive, and two options are selected from (3) network model. Finally, this work

considers 12 use cases excluding four invalid combinations from the 16 (= 24)

combinations.

In Sections 3.3.1 and 3.3.2, this work first describes the taxonomy of gen-

eral use cases and the modeling of four options. Then this work describes the

35

Chapter 3

Algorithm 2 Control-agent Learning.

1: initialize: 𝑄 (𝑠𝑔, 𝑎𝑔) ← 0, for all 𝑠𝑔 and 𝑎𝑔

2: initialize: 𝑠
𝑔

0 ← 𝑨𝑒

3: for 𝑡 = 0 to 𝑇 𝑔 − 1 do

4: 𝑎
𝑔
𝑡 ← 𝜖 greedy

(
𝑠
𝑔
𝑡

)
5: 𝑠

𝑔

𝑡+1 ← action
(
𝑎
𝑔
𝑡

)
6: 𝑫𝑡+1 ← I/O conversion

(
𝑠
𝑔

𝑡+1
)

7: for each 𝑒 ∈ 𝑬 do

8: 𝑣𝑒
𝑡+1 ← evaluation by each control engine (𝑫𝑡+1)

9: 𝑟
𝑔

𝑡+1 ← CEV calculation (𝑽𝒕+1, 𝜽)
10: Δ𝑄 ← 𝑟

𝑔

𝑡+1 + 𝛾max𝑎′ 𝑄
(
𝑠
𝑔

𝑡+1, 𝑎
′) −𝑄 (

𝑠
𝑔
𝑡 , 𝑎

𝑔
𝑡

)
11: 𝑄

(
𝑠
𝑔
𝑡 , 𝑎

𝑔
𝑡

)
← 𝑄

(
𝑠
𝑔
𝑡 , 𝑎

𝑔
𝑡

)
+ 𝛼Δ𝑄

12: if 𝑠
𝑔

𝑡+1 is 𝑒𝑛𝑑 𝑠𝑡𝑎𝑡𝑒 then

13: return max𝜏∈{0,1,··· ,𝑡}
{
𝑟
𝑔
𝜏

}
, 𝑡 + 1

14: 𝑡 ← 𝑡 + 1
15: return max𝜏∈{0,1,··· ,𝑇𝑔−1}

{
𝑟
𝑔
𝜏

}
, 𝑇 𝑔

modeling and formulation of the proposed method and its extendable imple-

mentation in Sections 3.3.3 and 3.3.4, respectively.

36

Section 3.3

T
ab

le
3.
2:

S
u
m
m
ar
y
of

12
ty
p
es

of
u
se

ca
se
s
co
m
b
in
in
g
4
op

ti
on

s.

O
p
ti
o
n
s

1
2

3
4

5
6

7
8

9
10

11
12

(1
)
w
it
h
ID

S
✓
✓
✓
✓
✓
✓
✓
✓

(2
)
w
it
h
R
el
ia
b
il
it
y

✓
✓
✓
✓

✓
✓

(3
A
)
w
it
h
F
ix
ed

n
o
d
e

✓
✓

✓
✓

✓
✓

(3
B
)
ID

S
is
ol
at
io
n
or

sh
ar
in
g

(✓
:
is
ol
at
io
n
)
✓

✓
✓

✓
–

–
–

–

37

Chapter 3

3.3.1 Taxonomy of general use case

Several studies [7, 59–61] classify VNF/cloud resource control methods and

their use cases. Various use cases are composed of a combination of 3 elements.

(1) Control metric: The control metric is defined by parameters to char-

acterize the state of a controlled network, e.g., VNF types, VNF model (e.g.,

CPU, memory, and storage), VNF placements, the combination of the VNFs,

the order to go through the VNFs and routes between the VNFs, etc. Specif-

ically, each control metric determines the constraints, e.g., link bandwidth,

latency, server capacity, the maximum number of chaining VNFs, etc.

(2) Control objective: Control objectives can be categorized as follows:

improvement of resources utilization efficiency (e.g., link and server), network

performance (e.g., traffic throughput and latency), quality of service/quality

of experience (QoS/QoE), an acceptance rate of service demands, energy ef-

ficiency, security and reliability, etc. The number of control objectives also

depends on the use case. The use cases in NFV often introduce multiple con-

trol objectives. It has been reported that 34% of the previous studies on VM

placement used the multi-objective approach [59].

(3) Network model: The network model is a specific representation of a

controlled network and user demands depending on each use case. The example

of network model element is as follows: network topology, traffic transport rule

(e.g., route splittable or not), node placement rule (e.g., fixed node placement

or not), and resource isolation rule (e.g., with or without network slicing), etc.

This work describes two cases with different network models as an example.

One example case is when assuming the service function chaining (SFC) in a

TSP network. In this case, this work generally assumes the communication

between the client as an origin node and the server as middle nodes or a

destination node. Then, this work models that the client node is fixed because

its location such as a company building using an SFC service is predetermined

by the client’s location, and the server node can migrate because that function

is virtualized as a VM or VNF. In this model, the server resources to be

allocated to individual VNFs are separated among users for reasons such as

the VNF license fee and security. The other example case is when assuming the

data transportation in an inter-DC network. In this case, it is assumed that the

38

Section 3.3

functions in origin, middle, and destination nodes can migrate because these

functions are virtualized as VMs or VNFs. When a user requests multiple

VN demands, or when the DC operator or TSP manages all VN demands,

the server resources to be allocated to individual VNFs can be shared among

VN demands. The maximum numbers of VNFs and concurrent sessions are

practically limited due to the constraints of license and cost. Therefore, it can

be modeled that one VNF allocated to near the origin node is selected until

the maximum number of concurrent sessions is reached.

3.3.2 Modeling of use cases and options

This work selects 4 options from the above elements to evaluate the proposed

method’s extendability and coverage for various use cases. Each option is (1)

with IDS (i.e., a representative example of adding a control metric), (2) with

Reliability (i.e., a representative example of adding a control objective), (3A)

with Fixed node and (3B) IDS isolation or sharing (i.e., representative

examples of changing network models). Table 3.2 shows 12 use cases combining

4 options. There are only 12 use cases because the (3B) IDS isolation or sharing

option is effective only under (1) with the IDS option.

This work first describes the condition of the simplest case (Case #12). In

this case, this work assumes the use case of computing resource optimization

in a single DC as an example. The origin and destination nodes are VMs, i.e.,

both nodes can migrate. The control metrics are routes and VM placements.

Link capacity and server capacity are imposed as constraints. Maximum link

utilization efficiency and maximum server utilization efficiency are introduced

as control objectives. All routes between the origin and destination are split-

table. That is, the traffic between an origin–destination (OD) node pair can

be split into multiple routes.

Next, this work describes the condition of each option. The (1) with

IDS option adds IDS placements as control metrics. It is an option passing

through an IDS between the origin and destination for all user demands. The

same as for VM placements, server capacity is imposed as a constraint and

maximizing server utilization efficiency is introduced as a control objective for

IDS placements. The (2) with Reliability option adds maximizing total

39

Chapter 3

reliability as a control objective. In this study, reliability is defined by the

probability that a packet can go between two points. In other words, it is

defined by the one minus failure probability. When the route of each OD is

splitting, the reliability of each OD is calculated by multiplying the split ratio

and reliability of each route. The formulation of total reliability is described in

Section 3.3.3. The (3A) with Fixed node option decides whether the origin

and/or destination node is a fixed node or can migrate. An example of a fixed

node is a client node. The (3B) IDS isolation or sharing option decides

whether IDS resources are shared among VNs or not. When isolating IDSs

among VNs, the number of IDSs (𝑁ids) that need to be allocated is the same

as the number of VNs (𝑁VN), that is, 𝑁ids = 𝑁VN. When sharing IDSs among

VNs, the 𝑁ids is less than the 𝑁VN, that is, 𝑁ids = 𝑀 < 𝑁VN.

Some previous studies can be classified into 12 use cases. The policy and

VM consolidation method in cloud DC [6] are similar to Cases #5–#8. The

disaster avoidance control method in a TSP network [62,63] is similar to Cases

#9–#10. The joint VM placement and routing control method in DC [10]

is similar to Cases #11–#12. However, to the best of our knowledge, no

method has been developed that corresponds to Cases #1–#4. In addition,

no method has been developed that can handle all cases with one

extendable algorithm.

3.3.3 Modeling of proposed method

This work describes the modeling and formulation of the proposed method on

the basis of Case #1 since it is redundant to explain the modeling of 12 use

cases one by one. This work considers the use case in which this work provides

a secure and reliable cloud-computing service consisting of routes between

VMs via an IDS. This work describes each formulation of the algorithm and

modeling of the proposed method. In this case, the control metrics are routes,

VM placements, IDS placements, and reliability. Each control algorithm is

pre-formulated. The symbols used in the formulation are defined in Table 3.3.

40

Section 3.3

Table 3.3: Symbol descriptions for control engines.

Symbols Definitions

𝑁server Number of servers

𝑵, 𝑺, 𝑳 Node set, server set, link set

𝑃(𝑵, 𝑳) = 𝑃(𝑺, 𝑳) Physical Network graph

link (𝑖, 𝑗) ∈ 𝑳 Link from node 𝑖 to node 𝑗

𝑐link
𝑖 𝑗

Link capacity of link (𝑖, 𝑗)
𝑐server
𝑖

𝑖th server capacity

𝑁VN Number of VNs

𝑁cli, 𝑁vm, 𝑁ids Number of clients, VMs, and IDSs

𝑪,𝑽, 𝑰 Client set, VM set, IDS set

𝑐ids
𝑖

𝑖th IDS capacity

𝑤vm
𝑖

, 𝑤ids
𝑗

𝑖th VM size, 𝑗 th IDS size

𝑡VN
𝑖

OD Traffic demands for 𝑖th VN

𝚵cli :=
{
bcli
𝑖 𝑗

}
Client node placement (𝑖th client, 𝑗 th node)

𝑻node :=
{
𝑡𝑝𝑞

}
Traffic from node 𝑝 to node 𝑞

𝑻vm :=
{
𝑡vm
𝑖 𝑗

}
Traffic from VM 𝑖 to VM 𝑗

𝑥
𝑝𝑞

𝑖 𝑗
Proportion of passed 𝑡𝑝𝑞 on link (𝑖, 𝑗)

𝑈link
max Maximum link utilization

𝚵vm :=
{
bvm
𝑖 𝑗

}
VM allocation (𝑖th VM, 𝑗 th server)

𝚵ids :=
{
b ids
𝑖 𝑗

}
IDS allocation (𝑖th IDS, 𝑗 th server)

𝑈server
max Maximum server utilization

𝑟 link
𝑖 𝑗

Link reliability of link (𝑖, 𝑗)
𝑟node
𝑖

𝑖th node reliability

𝑅total Total reliability

Network

This work assumes that each physical server is connected to each node, that is

𝑃(𝑵, 𝑳) = 𝑃(𝑺, 𝑳). When each VN request is accepted, the amounts of server

and link resources consumed depend on the request size.

This work assumes that there is a certain number of VN requests 𝑁vn. A

VN request consists of one origin (i.e., client) and one destination (i.e., VM),

41

Chapter 3

OD traffic demands, and VM size. Each VM is allocated to a physical server.

The VM size indicates the processing capacity of the VM request, such as

the requested number of CPU cores. This work also assumes that each OD

traffic demand is routed through an IDS, which is also allocated to a physical

server. The IDS size also indicates the processing capacity. Note that if the

client and IDS for an OD pair are allocated in the same node, the OD traffic

demand between the client and IDS on the network is regarded as 0. Similarly,

if VM and IDS for an OD pair are allocated in the same server, the OD traffic

demand between them is regarded as 0.

Control algorithms

This work introduces four control engines: route, VM, IDS, and reliability (𝑬 =

{Route,VM, IDS,Reliability}). All control engines have pre-specified control

algorithms. The calculation procedure of the initial solution is as follows.

After the VM and IDS control algorithms calculate the optimal allocations

without taking into account the constraints of other control algorithms, the

route control algorithm calculates the end-to-end route between VMs via an

IDS. Finally, the reliability control algorithm calculates the reliability on the

basis of all end-to-end routes.

This work introduces three objective functions: minimization of maximum

link utilization for route control, minimization of maximum server utilization

for VM and IDS controls, and maximization of total reliability for reliability

control. This work imposes three constraints: link capacity for route control,

server capacity for VM control, and server capacity for IDS control.

The route control algorithm is formulated as follows:

min : 𝑈link
max (3.2)

s.t. :
∑︁

𝑗 :(𝑖, 𝑗)∈𝐿
𝑥
𝑝𝑞

𝑖 𝑗
−

∑︁
𝑗 :(𝑗 ,𝑖)∈𝐿

𝑥
𝑝𝑞

𝑗𝑖
= 0 (3.3)

(∀𝑝, 𝑞 ∈ 𝑁, 𝑖 ≠ 𝑝, 𝑖 ≠ 𝑞)∑︁
𝑗 :(𝑖, 𝑗)∈𝐿

𝑥
𝑝𝑞

𝑖 𝑗
−

∑︁
𝑗 :(𝑖, 𝑗)∈𝐿

𝑥
𝑝𝑞

𝑗𝑖
= 1 (3.4)

(∀𝑝, 𝑞 ∈ 𝑁, 𝑖 = 𝑝)∑︁
𝑝,𝑞∈𝑁

𝑡𝑝𝑞𝑥
𝑝𝑞

𝑖 𝑗
≤ 𝑐link𝑖 𝑗 𝑈link

max

42

Section 3.3

(∀(𝑖, 𝑗) ∈ 𝐿,∀𝑝, 𝑞 ∈ 𝑁) (3.5)

0 ≤ 𝑥𝑝𝑞
𝑖 𝑗
≤ 1 (∀(𝑖, 𝑗) ∈ 𝐿,∀𝑝, 𝑞 ∈ 𝑁) (3.6)

0 ≤ 𝑈link
max ≤ 1. (3.7)

This algorithm calculates a routing variable 𝑥
𝑝𝑞

𝑖 𝑗
to minimize the link utilization

𝑈link
max while satisfying the constraints in (3)–(7), where 𝑥

𝑝𝑞

𝑖 𝑗
shows the propor-

tion of passing OD traffic demands 𝑡𝑝𝑞 on the link (𝑖, 𝑗). Equations (3)–(4)

show the traffic flow conservation law. Equation (5) shows the constraint of

link capacity. Equations (6)–(7) show the range of variables.

The VM control algorithm is formulated as follows:

min : 𝑈server
max (3.8)

s.t. :
∑︁
𝑠𝑘∈𝑆

bvm𝑖𝑘 = 1 (∀𝑣𝑖 ∈ 𝑉) (3.9)∑︁
𝑣𝑖∈𝑉

𝑤vm
𝑖 bvm𝑖𝑘 ≤ 𝑐

server
𝑘 𝑈server

max (∀𝑠𝑘 ∈ 𝑆) (3.10)

bvm𝑖𝑘 ∈ {0, 1} (3.11)

0 ≤ 𝑈server
max ≤ 1. (3.12)

This algorithm calculates an VM allocation variable bvm
𝑖𝑘

to minimize the server

utilization 𝑈server
max while satisfying the constraints in (8)–(12), where bvm

𝑖𝑘
shows

the VM solution in which bvm
𝑖𝑘

is 1 if 𝑖th VM is assigned to the 𝑘th server;

otherwise, 0. Equation (9) shows the VM conservation law. In other words, it

shows that each VM must be allocated to any server. Equation (10) shows the

constraint of server capacity. Equations (11)–(12) show the range of variables.

The formulation of the IDS control algorithm replaces 𝑤vm
𝑖

and bvm
𝑖𝑘

with

𝑤ids
𝑗

and b ids
𝑗 𝑘

for that of the VM control algorithm. Similarly, IDS allocation

b ids
𝑗 𝑘

indicates the IDS solution in which b ids
𝑗 𝑘

is 1 if 𝑗 th IDS is assigned to the

𝑘th server; otherwise, 0.

In this study, reliability is defined by the probability that a packet can

go between two points. Especially, node reliability is defined by the packet

reachable probability from node ingress to node egress. In other words, it is

defined by the one minus node failure probability. The link reliability is also

similar. The reliability between ODs is defined as the product of each reliability

going through each node and each link between ODs. The reliability control

43

Chapter 3

algorithm is formulated as follows:

min : 𝑅total (3.13)

𝑅total =
1∑𝑁VN

𝑘=1 𝑡
VN
𝑘

𝑁VN∑︁
𝑘=1

𝑡VN
𝑘 𝑅VN

𝑘 (3.14)

𝑅VN
𝑘 =

∑︁
𝑝∈path(𝑘)

𝑟𝑝
©«
∏
𝑖∈𝑁𝑝

𝑟node𝑖

∏
(𝑖, 𝑗)∈𝐿𝑝

𝑟 link𝑖 𝑗

ª®¬ . (3.15)

As shown in (3.14), total reliability 𝑅total is defined as the weighted average of

each VN reliability 𝑅VN
𝑘

, where the weight is determined by the traffic demand

to each VN, i.e.,
∑𝑁VN
𝑘=1 𝑡

VN
𝑘

. Here, 𝑅VN
𝑘

is calculated as shown in (3.15). This

work explains this formula. The terms 𝑟node
𝑖

and 𝑟 link
𝑖 𝑗

indicate the reliability

of node 𝑖 and the link between nodes 𝑖 and 𝑗 . If each VN has multiple paths,

each VN’s reliability is calculated using the traffic splitting ratio. For each

path 𝑝 ∈ path(𝑘) of the 𝑘th VN, the traffic splitting ratio 𝑟𝑝, the set of nodes

that the path 𝑝 passes through 𝑁𝑝, and the set of links that the path 𝑝 passes

through 𝐿𝑝 are defined. The above three parameters are calculated by each

VN allocation result, each traffic demand 𝑻node, and the route control engine’s

solution 𝑥
𝑝𝑞

𝑖 𝑗
.

Note that this work selected these control algorithms as examples, which

are commonly used in previous studies. In the proposed method, each control

algorithm is saved as a model file and can be changed by only changing the

model file.

Coordination algorithm

This work introduces VM and IDS control agents as the control agents (𝑮 =

{VM, IDS}). The route control agent is not introduced here because any routes

between the VNFs are not changed unless the VNF placements change. The

route control engine is used only to calculate the part of the CEV by solving

the route control algorithm in each step. Similarly, the reliability control agent

is not introduced.

The state of a control agent defines the VM or IDS allocation, that is,

𝑠VM = 𝚵vm or 𝑠IDS = 𝚵ids. The action of the control agent defines one VM

or IDS migration. The VM or IDS to migrate is selected from the most used

44

Section 3.3

server, and the destination server is selected on the basis of its agent strategy.

Note that, in this action, only one migration is executed, and the VNF control

algorithm described using (3.8)–(3.12) is not solved. The reward of the control

agent defines the CEV if all constraints are satisfied; otherwise, the penalty is

−100. The CEV is defined as follows:

𝑟
𝑔
𝑡 = \

link
(
1 −𝑈link

max

)
+ \server

(
1 −𝑈server

max

)
+ \r𝑅total

𝑡 , (3.16)

where \link and \server, and \r are weighting parameters indicating the im-

portance of each control-objective function. The term 𝑈server
max is the maxi-

mum server utilization after aggregating VM and IDS allocations. The I/O-

conversion unit calculates VN allocation results, which are the set of the origin

node (or clients placement), middle node (allocated IDS placement), destina-

tion server (allocated VM placement), and 𝑻node, on the basis of 𝚵vm, 𝚵ids,

𝚵cli, and 𝑡VN
𝑖

.

3.3.4 Implementation difference between options

This work describes the implementation differences with and without each

option shown in Table 3.2. This work describes the required additional im-

plementation in comparison with the situation where the implementation of

proposed methods for Case #12 is completed. This work also indicates that

the above implementation can easily be completed.

(1) with IDS: When the option is added, this work needs to introduce

an IDS agent and IDS control engine. The RL algorithm and its modeling of

state, action, and reward are the same for the VM agent and IDS agent, so

no additional implementation of the Python code is required for adding the

IDS agent. Similarly, no additional implementation of the code is required for

adding IDS control engine because the objective function and constraints of

the IDS engine are the same as those for the VM control engine in this use

case. Even if the formulation of IDS control engine is changed, the formulation

of that engine is modularized as a file that describes optimization problem

formulations, so the engine can be reformulated by changing a few lines of

that file.

In I/O-conversion unit calculation, the format of VN allocation results is

changed to that of adding the middle server node information. In the CEV

45

Chapter 3

calculation, the term 𝑈server
max of the maximum server utilization is changed to

𝑈server
max , which is that of the value after aggregating VM and IDS allocations.

In this implementation, the above change can be developed with a change of

about 10 lines of Python code.

(2) with Reliability: When the option adds, this work needs to introduce

Reliability control algorithms. Though the implementation of the engine is

newly required, it is extendable because the existing code does not change.

In addition, the formula to calculate CEV slightly needs to be changed from

(3.17) to (3.16).

𝑟
𝑔
𝑡 = \

link
(
1 −𝑈link

max

)
+ \server

(
1 −𝑈server

max

)
(3.17)

(3A) with Fixed node: When the option changes, this work needs to

slightly modify the I/O-conversion unit implementation. In the I/O-conversion

unit calculation, origin node placement returns from 𝚵cli if with the Fixed node

option, otherwise, it returns 𝚵vm.

(3B) IDS isolation or sharing: When the option changes, this work

needs to modify the I/O-conversion unit implementation. When the IDS iso-

lation condition is used, the I/O-conversion unit returns the specific IDS for

each VN demand, that is, the 𝑖th IDS is exclusively allocated to the 𝑖th VN. If

IDS sharing condition, the I/O-conversion unit returns the best IDS selected

from IDS set 𝑰. The best IDS is defined as the IDS that satisfies two condi-

tions: the length of total OD route via IDS is the shortest, and concurrent

sessions are less than the IDS capacity 𝑐ids
𝑖
. In this implementation, the above

change can be developed with a change of about 10 lines of Python code.

3.4 Evaluation

This work evaluated the effectiveness of the proposed algorithm through sim-

ulations in terms of solution-exploration speed, difference from the optimal

solution, scalability, and extendability. This work uses the use cases in Sec-

tion 3.3 to evaluate the extendable resource-integrated control method.

This work first evaluates the solution-exploration speed to assess whether

the proposed method can find the solution with improved CEV within the

practical iterations because the proposed method generally seems to need more

46

Section 3.4

2

1

3 6

4
7

9

8

5

Figure 3.3: Internet2 topology. (©2020 IEICE.)

iterations than the combined approach developed for a specific problem. In

addition, this work assesses whether RL can find better solution efficiently.

Then, this work also investigates the difference from the optimal solution.

After that, this work evaluates the scalability of the proposed method to es-

timate the practical range of 𝑁VN where the CEV can be improved within

the practical computational time. In addition, this work also discusses the

extendability of the proposed method. Since the extendability of the proposed

method is difficult to evaluate quantitatively, this work shows that the pro-

posed method makes it possible to solve all use cases. Since it is redundant

to discuss all 12 results, this work focused on the 6 use cases for which the

effects of changing each option need to be discussed (Cases #1, #3, #4, #5,

#8, #12). Then, this work investigates the differences between the proposed

coordinated method and the previous combined method and also discusses how

easy/difficult to build and solve the problem. Finally, this work discusses the

applicability of the proposed method.

3.4.1 Evaluation conditions

For the physical network conditions, this work used the topology of Internet2 [64],

which consists of 9 nodes (Fig. 3.3). In particular, this work assumes a local

disaster near node 6 and sets 𝑟node6 = 0.9 and 𝑟 link67 = 𝑟 link69 = 0.5. Other 𝑟 link
𝑖 𝑗

and

𝑟node
𝑖

are set to 1.0. For the VN demand conditions, the location of each client

node is randomly generated. Moreover, the OD traffic demand 𝑡VN
𝑖

is ran-

47

Chapter 3

domly generated within the range of 0–1.0 Gbps so as to arrange the average

as 0.5 Gbps. Each VM size is randomly given an integer value, and each IDS

size is fixed to an integer value. The average server utilization is set to 80% by

changing each server capacity proportionally to the 𝑁VN and slightly adjust-

ing the VM size. For the agent conditions, this work sets the total exploration

steps of instruction and control agents to 𝑇 = 5000, and 𝑇 𝑔 = 20.

In above conditions, this work varied 𝑁VN from 20 to 2000 and varied

use-cases from 1 to 12. Some parameters increase proportionally as shown

in Table 3.4 as the number of VNs are increased from 20 to 2000. Some

parameters also set depending on the selected use-cases as shown in Table 3.6.

In addition, this work excluded the cases in each of which an initial solution

does not satisfy all constraints in all evaluations. This is because starting from

an unsatisfied initial solution would drastically decrease the performance of the

solution. The way to find a feasible initial solution is discussed in Section 3.4.2,

which is for future study.

3.4.2 Evaluation results

This work implemented the proposed coordination algorithm and physical net-

work simulator using Python from scratch and each pre-specified control al-

gorithm using the GNU Linear Programming Kit (GLPK) [65] to calculate

initial solutions.

48

Section 3.4

T
ab

le
3.
4:

S
ca
le

p
ar
am

et
er
s
fo
r
C
as
e
#
1.

D
e
fi
n
it
io
n
s

20
50

20
0

40
0

80
0

10
00

15
00

2
0
0
0

N
u
m
b
er

of
V
N
s

𝑁
V
N

20
50

20
0

40
0

80
0

10
00

15
00

2
0
0
0

N
u
m
b
er

of
V
M
s

𝑁
v
m

20
50

20
0

40
0

80
0

10
00

15
00

2
0
0
0

N
u
m
b
er

of
ID

S
s

𝑁
id
s

20
50

20
0

40
0

80
0

10
00

15
00

2
0
0
0

N
u
m
b
er

of
cl
ie
n
ts

𝑁
cl
i

20
50

20
0

40
0

80
0

10
00

15
00

2
0
0
0

𝑖t
h
se
rv
er

ca
p
ac
it
y

𝑐
se
rv
er

𝑖
12

–1
4

30
–3

6
12

0–
14

4
24

0–
28

8
48

0–
57

6
60

0–
72

0
90

0–
10

80
12

0
0
–
1
4
0
0

L
in
k
ca
p
ac
it
y
of

li
n
k
(𝑖,
𝑗)

𝑐
li
n
k

𝑖
𝑗

3
7.
5

30
60

12
0

15
0

22
5

3
0
0

49

Chapter 3

0 1000 2000 3000 4000 5000
Steps

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4
To

ta
l R

ew
ar

d
#VN: 20, Average Server Utilization: 80%

w/ RL
w/o RL

(a) 𝑁VN = 20.

0 1000 2000 3000 4000 5000
Steps

1.0

1.1

1.2

1.3

1.4

To
ta

l R
ew

ar
d

#VN: 50, Average Server Utilization: 80%
w/ RL
w/o RL

(b) 𝑁VN = 50.

0 1000 2000 3000 4000 5000
Steps

1.05

1.10

1.15

1.20

1.25

1.30

1.35

To
ta

l R
ew

ar
d

#VN: 200, Average Server Utilization: 80%
w/ RL
w/o RL

(c) 𝑁VN = 200.

0 1000 2000 3000 4000 5000
Steps

1.05

1.10

1.15

1.20

1.25

1.30

To
ta

l R
ew

ar
d

#VN: 400, Average Server Utilization: 80%
w/ RL
w/o RL

(d) 𝑁VN = 400.

Figure 3.4: Solution-exploration speed for Case #1 and its 𝑁VN dependency

(1). (©2020 IEICE.)

Discussion on solution-exploration speed

This work compared the solution-exploration speeds of the proposed algorithm

based on RL (w/ RL) and an algorithm based on changing solutions randomly

(w/o RL). Note that, in the case of w/o RL, this work sets 𝜖 = 1 and also

skipped both agent learning steps, i.e., lines 7–8 in Algorithm 1 and lines 10–

11 in Algorithm 2. In this evaluation, this work uses Case #1 and sets to each

weighting parameter \link = \server = \r = 1.

This work first discusses the case when 𝑁VN = 200 as a baseline. This work

will discuss other Figs. 3.4(a)–3.5(d) in Sections 3.4.2 and 3.4.2. Figure 3.4(c)

shows the solution-exploration speeds for Case #1, which is the average tran-

sition of the best CEV, which is defined by the highest CEV found until the

current exploring step. Note that each time CEV is defined by the total reward

50

Section 3.4

0 1000 2000 3000 4000 5000
Steps

1.14

1.16

1.18

1.20

1.22
To

ta
l R

ew
ar

d
#VN: 800, Average Server Utilization: 80%

w/ RL
w/o RL

(a) 𝑁VN = 800.

0 1000 2000 3000 4000 5000
Steps

1.09

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

To
ta

l R
ew

ar
d

#VN: 1000, Average Server Utilization: 80%
w/ RL
w/o RL

(b) 𝑁VN = 1000.

0 1000 2000 3000 4000 5000
Steps

1.08

1.09

1.10

1.11

1.12

1.13

To
ta

l R
ew

ar
d

#VN: 1500, Average Server Utilization: 80%
w/ RL
w/o RL

(c) 𝑁VN = 1500.

0 1000 2000 3000 4000 5000
Steps

1.10

1.11

1.12

1.13

1.14

1.15

1.16

To
ta

l R
ew

ar
d

#VN: 2000, Average Server Utilization: 80%
w/ RL
w/o RL

(d) 𝑁VN = 2000.

Figure 3.5: Solution-exploration speed for Case #1 and its 𝑁VN dependency

(2). (©2020 IEICE.)

𝑟
𝑔
𝑡 shown in (3.16). This work carried out 10 calculations with a fixed initial so-

lution. The width of each line indicates the standard deviation (±𝜎). Though
the initial CEV was low due to the control conflict mentioned in Section 3.1,

the best CEV was improved by repeating the exploration in both cases w/ RL

and w/o RL. Results of the comparison between w/ and w/o RL in Fig. 3.4(c)

indicated that RL could find a better CEV solution within 5000 exploration

steps. The reason is that the agent of RL learns the strategy for how to find

better allocations efficiently from past exploration steps.

Figure 3.6(c) shows the components of each objective function value in the

best solution for Case #1. Initial in Fig. 3.6(c) means above values for the

initial solution. w/ RL improves the total reward about 0.3 in Fig. 3.4(c),

which is equivalent to improving the sum of link utilization, server utilization,

51

Chapter 3

Link
0.5

0.6

0.7

0.8

0.9

1.0
M

ax
im

um
 L

in
k

Ut
iliz

at
io

n

Server
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 S
er

ve
r U

til
iza

tio
n

Reliability
0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Re

lia
bi

lit
y

w/ RL
w/o RL
Initial

(a) 𝑁VN = 20.

Link
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 L
in

k
Ut

iliz
at

io
n

Server
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 S
er

ve
r U

til
iza

tio
n

Reliability
0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Re

lia
bi

lit
y

w/ RL
w/o RL
Initial

(b) 𝑁VN = 50.

Link
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 L
in

k
Ut

iliz
at

io
n

Server
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 S
er

ve
r U

til
iza

tio
n

Reliability
0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Re

lia
bi

lit
y

w/ RL
w/o RL
Initial

(c) 𝑁VN = 200.

Link
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 L
in

k
Ut

iliz
at

io
n

Server
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 S
er

ve
r U

til
iza

tio
n

Reliability
0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Re

lia
bi

lit
y

w/ RL
w/o RL
Initial

(d) 𝑁VN = 400.

Figure 3.6: Components of each objective function value in the best solution

for Case #1 and its 𝑁VN dependency (1). (©2020 IEICE.)

and reliability by 30%. Since this work assumed \link = \server = \r = 1 in this

evaluation, an increase of 0.01 for the CEV is equivalent to a 1% improvement

in the sum of link utilization, server utilization, and reliability. Of the 30%

total improvement, the maximum link utilization improvement is about 22%

and the total reliability improvement is about 8%. Note that, since the average

server utilization is set to 80% in all evaluations, the optimal value of the

maximum server utilization is 80%. In addition, since an initial solution of

VM and IDS placements is calculated by the VM and IDS control engines for

minimizing maximum server utilization, this value of the initial solution is near

to 80%.

52

Section 3.4

Link
0.5

0.6

0.7

0.8

0.9

1.0
M

ax
im

um
 L

in
k

Ut
iliz

at
io

n

Server
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 S
er

ve
r U

til
iza

tio
n

Reliability
0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Re

lia
bi

lit
y

w/ RL
w/o RL
Initial

(a) 𝑁VN = 800.

Link
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 L
in

k
Ut

iliz
at

io
n

Server
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 S
er

ve
r U

til
iza

tio
n

Reliability
0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Re

lia
bi

lit
y

w/ RL
w/o RL
Initial

(b) 𝑁VN = 1000.

Link
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 L
in

k
Ut

iliz
at

io
n

Server
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 S
er

ve
r U

til
iza

tio
n

Reliability
0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Re

lia
bi

lit
y

w/ RL
w/o RL
Initial

(c) 𝑁VN = 1500.

Link
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 L
in

k
Ut

iliz
at

io
n

Server
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 S
er

ve
r U

til
iza

tio
n

Reliability
0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Re

lia
bi

lit
y

w/ RL
w/o RL
Initial

(d) 𝑁VN = 2000.

Figure 3.7: Components of each objective function value in the best solution

for Case #1 and its 𝑁VN dependency (2). (©2020 IEICE.)

Discussion on difference to optimal solution

This work discusses the difference to the optimal solution in the case of w/ RL

and Case #1. General VN allocation problems are known to be NP-hard [66].

In addition, there are no previous studies for calculating an optimal solution of

Case #1 without approximation. On the other hand, the policy value 𝑄(𝑠, 𝑎)
of RL has been analytically proved to converge to the optimal policy 𝑄∗(𝑠, 𝑎) in
an infinite number of exploration steps by a policy improvement theorem [67].

Therefore, when increasing the total exploration steps 𝑇 to infinity, the so-

lution and its CEV absolutely converge to the optimal solution and optimal

value. Since infinite iterations are impossible, this work regarded a sub-optimal

solution/CEV as the converged solution/CEV when the number of exploration

steps sufficiently increased.

53

Chapter 3

Table 3.5: CEV convergence ratio when w/ RL and 𝑁VN = 200.

Steps Best CEV Convergence ratio

0 (Initial) 1.06 0.00

5.0 × 103 1.35 0.56

1.0 × 104 1.38 0.62

5.0 × 104 1.48 0.82

1.0 × 105 1.52 0.89

5.0 × 105 1.57 0.99

1.0 × 106 1.58 1.00

1.5 × 106 1.58 1.00

Table 3.5 shows the convergence speed to the sub-optimal CEV when

𝑁NV = 200. This evaluation corresponds to the case where the number of ex-

ploration steps was increased for the evaluation in Fig. 3.4(c). Since the best

CEV sufficiently converges when the total exploration steps 𝑇 are increased to

1.5 × 106, CEV = 1.58 is regarded as the sub-optimal CEV and the solution

at the time is regarded as the sub-optimal solution. The convergence ratio is

defined as the best CEV minus initial CEV divided by sub-optimal CEV minus

initial CEV. This work defined sufficient converge as the case when the error

of the convergence ratio has converged to 1% or less. As shown in Table 3.5,

the convergence ratio reaches 56% of the sub-optimal solution in 5000 steps

and 82% of the sub-optimal solution in 50,000 steps. This convergence speed

seems to suffice as a general NP-hard problem solution.

Discussion on scalability

Figures 3.4–3.7 show the solution-exploration speed and the components of

each objective function value in the best solution when this work varied 𝑁VN

from 20 to 2000 for Case #1. It reveals that the proposed method can improve

the solution by repeating the exploration in all cases of both algorithms (w/

RL and w/o RL). In addition, RL can more efficiently explore better solutions

than w/o RL. Note that the performance of the initial solution depends on

the randomness of the initial OD traffic and initial client node, so it cannot be

compared uniformly in each case.

54

Section 3.4

101 102 103

Number of Virtul Networks (#VN)
6

8

10

12

14

16

18

20

Ti
m

e
[m

in
]

5000 steps calculation time for Case#1

Figure 3.8: Computation time. (©2020 IEICE.)

In the case of 𝑁VN is 200, the improvement of the solution is about 30%

for w/ RL and about 10% for w/o RL. On the other hand, when the 𝑁VN = 20

and 𝑁VN = 1500 or more, the improvement of the solution is reduced to 10%

or less. This shows that the improvement of the solution basically decreases as

the 𝑁VN increases except for the case of 𝑁VN = 20. The performance decreased

in the case of 𝑁VN = 20 because a better solution was found easily even w/o

RL since the solution exploration space is sufficiently small. The performance

decreased in the case of 𝑁VN = 1500 or more because the learning of RL is

not sufficient due to the number of total exploration steps close to the 𝑁VN.

From the above discussion, this work concludes that the proposed method is

effective in the range of 𝑁VN = 50 to 1000.

Figure 3.8 shows the computation time of the proposed algorithm (w/ RL)

for 𝑁VN 20 and 2000. The calculations were performed on a Intel core i7

4790k CPU of a single core. The computation time increases depending on

the number of steps proportionally. Although 𝑁VN increased 100 times, the

computation time increased only several times. This means that, from the

viewpoint of computation time, the proposed method is scalable with respect

to 𝑁VN, with up to 1000 VNs. Note that w/o RL has almost the same com-

putation time as w/ RL. The difference between w/ RL and w/o RL is the

55

Chapter 3

overhead time of RL, which is less than 1% of the total computation time.

Figure 3.8 also shows that the calculation time of the proposed method

until 5000 steps is less than 10 minutes in the range up to 1000 VNs. This

work thus considered that the calculation time allows enough practice. In NFV

environments, each VN demand is statistically multiplexed by multiple users

sharing the VN. For that reason, the proposed control system mainly targets

static VN demand allocation, which considers VN demands to be fixed within

a particular period (e.g., more than one hour). Moreover, the proposed method

can adjust the calculation time to modify the number of total exploration steps

in accordance with the required calculation time.

The computation time of the proposed method is determined by the calcu-

lation time of each control engine. In this evaluation, the route control engine

is formulated as a linear programming (LP) problem, and its calculation time

is less than one second. However, if the route control engine is formulated as

an integer linear programming (ILP) problem, e.g., non-split route case and

path-base route control case, the computation time of the proposed method

will increase dramatically. When each exploration step contains ILP problems,

the following solution seems to be effective: set the upper limit for calculation

time of each step, approximate by limiting of route candidates, and use the

heuristic method for route calculation.

56

Section 3.4

T
ab

le
3.
6:

P
ar
am

et
er
s
d
ep

en
d
on

ea
ch

ca
se

w
h
en

𝑁
V
N
is
20
0.

D
e
fi
n
it
io
n
s

1
2

3
4

5
6

7
8

9
10

11
12

N
u
m
b
er

of
ID

S
s

𝑁
id
s

20
0

10
20
0

10
20
0

10
20
0

10
0

0
0

0

N
u
m
b
er

of
cl
ie
n
ts

𝑁
cl
i

20
0

20
0

0
0

20
0

20
0

0
0

20
0

0
20
0

0

𝑖t
h
V
M

si
ze

𝑤
v
m
𝑖

1–
3

1–
3

1–
3

1–
3

1–
3

1–
3

1–
3

1–
3

3–
8

3–
8

3–
8

3–
8

𝑖t
h
ID

S
si
ze

𝑤
id
s

𝑖
2

40
2

40
2

40
2

40
0

0
0

0

𝑖t
h
ID

S
ca
p
ac
it
y

𝑐
id
s

𝑖
1

20
1

20
1

20
1

20
0

0
0

0

57

Chapter 3

Link
0.5

0.6

0.7

0.8

0.9

1.0
M

ax
im

um
 L

in
k

Ut
iliz

at
io

n

Server
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 S
er

ve
r U

til
iza

tio
n

Reliability
0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Re

lia
bi

lit
y

w/ RL
w/o RL
Initial

(a) Case #1. (w/ IDS, w/ Reliability, w/

Fixed node, IDS isolation.)

Link
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 L
in

k
Ut

iliz
at

io
n

Server
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 S
er

ve
r U

til
iza

tio
n

Reliability
0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Re

lia
bi

lit
y

w/ RL
w/o RL
Initial

(b) Case #3. (w/ IDS, w/ Reliability, IDS

isolation.)

Link
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 L
in

k
Ut

iliz
at

io
n

Server
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 S
er

ve
r U

til
iza

tio
n

Reliability
0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Re

lia
bi

lit
y

w/ RL
w/o RL
Initial

(c) Case #4. (w/ IDS, w/ Reliability, IDS

sharing.)

Link
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 L
in

k
Ut

iliz
at

io
n

Server
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 S
er

ve
r U

til
iza

tio
n

Reliability
0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Re

lia
bi

lit
y

w/ RL
w/o RL
Initial

(d) Case #5. (w/ IDS, w/ Fixed node, IDS

isolation.)

Link
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 L
in

k
Ut

iliz
at

io
n

Server
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 S
er

ve
r U

til
iza

tio
n

Reliability
0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Re

lia
bi

lit
y

w/ RL
w/o RL
Initial

(e) Case #8. (w/ IDS, IDS sharing.)

Link
0.0

0.1

0.2

0.3

0.4

0.5

M
ax

im
um

 L
in

k
Ut

iliz
at

io
n

Server
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 S
er

ve
r U

til
iza

tio
n

Reliability
0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Re

lia
bi

lit
y

w/ RL
w/o RL
Initial

(f) Case #12. (default.)

Figure 3.9: Components of each objective function value in the best solution

for each case. (©2020 IEICE.)

58

Section 3.4

Link
0.5

0.6

0.7

0.8

0.9

1.0
M

ax
im

um
 L

in
k

Ut
iliz

at
io

n

Server
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 S
er

ve
r U

til
iza

tio
n

Reliability
0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Re

lia
bi

lit
y

w/ RL
w/o RL
Initial

(a) (\link, \server, \r) = (10, 0, 0).

Link
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 L
in

k
Ut

iliz
at

io
n

Server
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 S
er

ve
r U

til
iza

tio
n

Reliability
0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Re

lia
bi

lit
y

w/ RL
w/o RL
Initial

(b) (\link, \server, \r) = (0, 10, 0).

Link
0.5

0.6

0.7

0.8

0.9

1.0

M
ax

im
um

 L
in

k
Ut

iliz
at

io
n

Server
0.5

0.6

0.7

0.8

0.9

1.0
M

ax
im

um
 S

er
ve

r U
til

iza
tio

n

Reliability
0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Re

lia
bi

lit
y

w/ RL
w/o RL
Initial

(c) (\link, \server, \r) = (0, 0, 10).

Figure 3.10: Weighting parameter dependency of components of each objective

function value in the best solution for Case #4. (©2020 IEICE.)

Discussion on extendability

Since the extendability of the proposed method is difficult to evaluate quan-

titatively, this work evaluated the applicability of the proposed method under

the various use cases. Although the applicability is not equal to the extendabil-

ity, this work assumes that it indirectly provides evidence that the proposed

method has extendability.

Figure 3.9 shows the components of each objective function value in the

best solution for each case. In this evaluation, this work selected 6 use cases to

discuss the effects of changing each option (Cases #1, #3, #4, #5, #8, #12)

and set to each weighting parameter \link = \server = \r = 1. Results reveal that

the proposed method can improve the solution by repeating the exploration

in all cases of both algorithms (w/ RL and w/o RL). Therefore, this work can

59

Chapter 3

indirectly show that the proposed method has highly extendability.

Next, this work considers the effects of adding or changing each option

in details. First, this work describes the result of the simplest Case #12.

Figure 3.9(f) shows that the proposed method improves the maximum link

utilization. Although reliability is not considered as an objective function, the

total reliability is also improved. It seems that since the solution with a shorter

route was preferentially selected to reduce the maximum link utilization, the

total reliability was improved coordinately.

This work first considers the influence of adding the (1) with IDS op-

tion under the IDS sharing option by comparing Figs. 3.9(e) and 3.9(f). In

Fig. 3.9(e), the maximum link utilization of the initial solution is drastically

increased by adding IDS. This is because the path length increases due to the

addition of the middle server node, and the total traffic volume in a physical

network increases proportionally. This work also considers the influence of

adding the IDS sharing option. In Fig. 3.9(e), the maximum server utilization

is increased and the total reliability is decreased. The reason for increasing

maximum server utilization is that large IDSs exist in IDS sharing condition.

This can be seen from the fact that the maximum server utilization does not

increase in Cases #1, #3, or #5. The reason the total reliability did not im-

prove as the link utilization improved is that the IDS sharing makes it difficult

to find a solution that avoids the disaster area. This difficulty to avoid the dis-

aster area in IDS sharing condition is why the IDS that minimizes the length

of the OD route without considering the reliability is preferentially selected.

Second, this work considers the influence of adding the (2) with Relia-

bility option by comparing Figs. 3.9(c) and 3.9(e). The reliability is clearly

improved by maintaining the link utilization efficiency and server utilization

efficiency. The comparison between Figs. 3.9(a) and 3.9(d) shows a similar

result.

Third, this work considers the influence of changing the (3A) with Fixed

node option by comparing Figs. 3.9(a) and 3.9(b). Figure 3.9(a) shows that

the total reliability is decreased slightly by introducing fixed clients. This is

because the placement of the origin node (i.e., client node) is fixed, which

makes it difficult to avoid the disaster area.

Finally, this work considers the influence of changing the (3B) IDS isola-

60

Section 3.4

tion or sharing option by comparing Figs. 3.9(b) and 3.9(c). Figure 3.9(b)

shows that the maximum server utilization is decreased and the total reliabil-

ity is increased by changing the IDS isolation model. The decrease in server

utilization efficiency made it easier to improve the server utilization efficiency

by removing the large IDSs. The increase in total reliability made it easier to

find the solutions that avoid the disaster area by IDSs isolation for each VN.

The maximum link utilization in w/o RL also is increased due to the increase

in the solution space by increasing the 𝑁ids.

Discussion on weight parameters

Figures 3.9(c) and 3.10 show the effectiveness of weight parameters for Case

#4. In this evaluation, this work sets four different conditions:

(\link, \server, \r) = (1, 1, 1), (10, 0, 0), (0, 10, 0), (0, 0, 10). (3.18)

Note that the proposed method can satisfy all constraints even if each weight-

ing parameter is 0 as shown in Fig. 3.10. The results in Fig. 3.10(a) have the

best link utilization efficiency, the results in Fig. 3.10(b) have the best server

utilization efficiency, and the results in Fig. 3.10(c) have the best total reliabil-

ity. In particular, the maximum server utilization of 0.8 is a global optimum

solution. From the above results, the proposed method can suggest a wide va-

riety of options of solutions by adjusting the weighting parameters \link, \server,

\r.

Discussion on difference to previous method

This work discusses the differences between the proposed coordinated method

and previous combined approaches in terms of how easy/difficult they are to

build and their problems are to solve. As described in Chapter 1, previous

combined approaches need the specified algorithm to be built that simultane-

ously solves the combined optimization problem. This work formulated and

implemented the combined optimization problem solving the VN allocation

problem for Case #12, which is the simplest use case among Cases #1–12.

This work also evaluates the differences in the performance of the solution be-

tween the proposed method based on the RL and the previous method based

on the combined optimization problem.

61

Chapter 3

This work first describes the formulation of the combined optimization

problem for Case #12. The conditions and assumptions for Case #12 have

already been described in Section 3.3.2. Since the control metrics are routes

and VM placements, in this case, this work needs to formulate the route control

algorithm and the VM control algorithm and to newly formulate the relational

equations between the variables of both algorithms. This work uses the route

control algorithm shown in (2)–(7) and the VM control algorithm shown in

(8)–(12).

Since traffic demands between nodes 𝑻node := {𝑡𝑝𝑞} in (5) are determined

by the traffic demands between VMs 𝑻vm := {𝑡vm
𝑖 𝑗
} and VM placements 𝚵vm :=

{bvm
𝑖𝑝
}, the relational equations between both algorithms can be formulated as

follows:

𝑻node = 𝑡𝚵vm𝑻vm𝚵vm

𝑡𝑝𝑞 =
∑︁
𝑖∈𝑽

∑︁
𝑗∈𝑽

bvm𝑖𝑝 𝑡
vm
𝑖 𝑗 b

vm
𝑗𝑞 , (3.19)

where 𝑡𝑝𝑞 shows traffic demands from node 𝑝 to node 𝑞, 𝑡vm
𝑖 𝑗

shows traffic

demands from 𝑖th VM to 𝑗 th VM, and bvm
𝑖𝑝

shows VM allocation, which returns

1 if 𝑖th VM is assigned to the 𝑝th node; otherwise, 0. Therefore, the combined

optimization problem is formulated with the objective of minimizing 𝑈link
max +

𝑈server
max and the constraints (2)–(12) and (18).

Next, this work describes the implementation to solve the combined opti-

mization problem. This problem is categorized into quadratically constrained

mixed-integer non-linear programming (QC-MINLP). This work uses Pyomo [68,

69], which is a Python-based open-source optimization modeling tool, and

MindtPy [70], which is the Mixed-Integer Nonlinear Decomposition Toolbox

in Pyomo, to solve the MINLP problem. Since the optimal solution of the

MINLP problem is difficult to calculate, these tools repeat the following pro-

cedure to calculate the sub-optimal solution. These tools first decompose the

MINLP problem into the continuously relaxed Non-linear Programming (NLP)

problem and the Mixed-Integer Programming (MIP) problem and then calcu-

late each problem. After calculating two problems, they consider the NLP

solution as the upper bound and the MIP solution as the lower limit. They re-

peat the decomposition and calculation procedures until the difference between

62

Section 3.4

the upper and lower bounds is sufficiently small. This work uses IPOPT [71]

and MUMPS [72, 73] for solving the NLP problem and GLPK for solving the

MIP problem.

As described above, the difficulty of the previous approach is that the

following time-consuming tasks are required depending on the individual use

cases: constructing a new formulation such as (18), selecting and combining

tools to solve the combined problem such as [68–73], preparing the development

environment, and implementing the combined problem. In Case #12, the

number of constructing new formulation is only one because it is the simplest

use case among Cases #1–12 and has only two control metrics. However,

when control metrics increases, the number of new formulations needing to be

constructed increases by the number of control metric combinations. On the

other hand, in the proposed method, the above function can be replaced by

the I/O conversion unit, which is programmable and does not need to express

mathematical expressions. In addition, it enables solutions to be calculated

for various use cases.

This work indicates the comparative evaluation of the performance when

𝑁VN = 20. These tools solving the MINLP problem are non-commercial and

are very limited in terms of the size that can be solved. Since these tools take a

long time to calculate the sub-optimal solution, this work limits the calculation

time to a maximum of 10 minutes. The proposed method uses the best CEV

solutions found up to 5000 steps. As shown in Fig. 3.8, the calculation time

of the proposed method is 10 minutes or less. Other evaluation conditions are

the same as described in Section 3.4.1.

Table 3.7 shows the average and standard deviation (±𝜎) of the perfor-

mance of the solution. This work carried out 10 calculations with random

initial conditions. This work first sets the same initial conditions for both

methods. This work then excluded the cases with an invalid initial solution

for the proposed method and when no feasible solution is found after 10 min-

utes calculation for the previous method. Results shows that the proposed

method achieves better CEV compared to the previous method. Although the

previous method outperforms when commercial tools are used, the proposed

method almost matches up the previous method in terms of CEV, and is much

easier to implement new control metrics.

63

Chapter 3

Table 3.7: Performance of solution when Case #12 and 𝑁VN = 20.

Methods Performance (CEV)

Propose 0.86 ± 0.043
Previous 0.63 ± 0.12

Discussion on applicability

The proposed method can be applied to the VN allocation problem that con-

siders the combination of link resource constraints (e.g., route selection) and

server resource constraints (e.g., VM placement) even if the control metrics,

control objective, and network model are changed as shown in Cases #1–12.

Though there are some minor constraints for the initial solution and the cal-

culation order of each engine’s evaluation, all the constraints are considered to

be minor compared with the merits of the proposed method.

This work first describes the condition of the initial state. As the required

condition, this work needs to find a feasible initial solution to obtain the ad-

vantage of speeding up the solution exploration by the proposed method based

on RL. Because invalid solutions are concentrated near the invalid solution, an

agent of RL always obtains a negative reward and cannot learn the strategy

for how to find better solutions from past exploration steps.

All evaluations in this work assume that a feasible initial solution has al-

ready been found. When not finding a feasible solution, this work tries the

following two ways. One is to use the proposed method against an invalid ini-

tial solution. The proposed method can explore the feasible solution through

random exploration. Fortunately, once a feasible solution is found, the pro-

posed method always converges to the better solution by RL. The other way

is to use the sequential VN allocation, in which each VN demand is judged as

to whether the physical network can allocate it or not when it is received. In

this way, this work allocates the 𝑁th VM demand to the remaining resources

after the 𝑁 − 1 VNs resource optimization using the proposed method. When

𝑁th VN demand cannot be allocated to the remaining resources, this request

is rejected. The evaluation of the effectiveness of the two ways is for further

study.

This work next describes the condition of the calculation order of each

64

Section 3.5

engine’s evaluation values. When calculating the CEV, the evaluation values

between interdependent control metrics should be calculated simultaneously

(e.g., the VM placement and IDS placement), and evaluation values between

dependent control metrics should be calculated sequentially (e.g., the route

between VMs is determined by the VM placements). For example, in (16),

the evaluation value of VM and IDS placements (i.e., 𝑈server
max) is calculated by

aggregating the results of VM and IDS placements. The evaluation value of

route (i.e., 𝑈link
max) is calculated after the VM and IDS placements are deter-

mined. Similarly, the evaluation value of reliability (i.e., 𝑅total
𝑡) is calculated

after the routes are determined.

3.5 Chapter summary

This chapter presented an extendable resource-integrated control method in

network functions virtualization (NFV) by coordinating multiple control algo-

rithms. This work developed an efficient coordination algorithm on the basis

of reinforcement learning (RL), which makes it possible to find better solutions

with fewer explorations by learning a strategy that can improve resource-

utilization efficiency with each exploration step. Simulations revealed that

the proposed algorithm can improve solution exploration for 12 representative

types of the virtual network allocation use cases modeled from previous stud-

ies. This qualitatively revealed that the proposed method has extendability.

This work also found that it can improve resource-utilization efficiency by 22%

and total reliability by 8% in less than 5000 steps in the case of several hundred

virtual machines (VMs) and a hundred intrusion detection systems (IDSs).

For future work, this work plans to evaluate the applicability of the pro-

posed method in more complicated use cases with realistic traffic patterns and

virtual network functions (VNFs) demands. This work also plans to enhance

the solution-exploration-speed and scalability of the proposed coordination al-

gorithm by using deep RL [9] and parallelization of agent learning [74].

65

Chapter 3

66

Chapter 4

Safe multi-agent deep

reinforcement learning for

dynamic virtual network

allocation

Network traffic and computing demand have been changing dramatically due

to the growth of various types of network services, e.g., high-quality video

delivery and operating system (OS) update. To maximize the utilization ef-

ficiency of limited network resources, network resource control technology is

required for smooth and quick operation when the network demands change.

This work proposes a dynamic virtual network allocation method based on safe

multi-agent deep reinforcement learning (Safe-MADRL). A part of this work

in this chapter was presented in [27]. This method can quickly optimize net-

work resources even while network demands are drastically changing by learn-

ing the relationship between network demand patterns and optimal allocation

by using the deep reinforcement learning (DRL) algorithm in advance. This

work develops two techniques to be used with the proposed method; safety-

considerations and multi-agent. The proposed safety-considerations technique

reduces the degree of constraint violations, such as network congestion and

server overload, and the proposed multi-agent technique improves the scalabil-

ity of virtual network allocation by dividing demands into groups and assigning

67

Chapter 4

each group’s allocation to each agent. As a result of a simulation evaluation,

Safe-MADRL can calculate effective allocation within one second that doubles

the link utilization efficiency without any constraint violations compared to

the static virtual network allocation method.

This chapter is structured as follows. Section 4.1 describes the Safe-MADRL-

based dynamic VN allocation method and its modeling and formulation. Sec-

tion 4.2 evaluates its performance, and Section 4.3 concludes the chapter.

4.1 Proposed method

4.1.1 Overview

With the proposed dynamic VN allocation method, an agent observes the

current VN demands and physical network states, and the agent learns how

to change the VN allocation to improve network resource efficiency. By ap-

plying DRL to agent learning, it can handle continuous traffic demand and

high-dimensional network states. Furthermore, this work develops safety-

considerations and multi-agent techniques to be used with the proposed method.

As mentioned above, this work introduces two types of agents, objective

and constraint. The objective agent learns how to change the VN allocation

to improve the objective function, and the constraint agent learns how to

change the VN allocation to satisfy all constraints. This approach is inspired

by safety exploration [41] that involves pre-training the safety layer to meet

the constraints. This work also decomposes the reward function dedicated to

each agent and learn a separate 𝑄-value function for each component reward

function:

𝑄(𝑠, 𝑎) := 𝑄𝑜 (𝑠, 𝑎) + 𝑤𝑐𝑄𝑐 (𝑠, 𝑎), (4.1)

where 𝑄𝑜 and 𝑄𝑐 are 𝑄-values for the objective and constraint agents. This

approach is based on HRA [42]. By separating the learning to satisfy the con-

straints, the constraint agent does not select actions that temporarily violate

the constraints for maximizing the cumulative reward. Therefore, the proposed

method can improve the performance and avoid constraint violations.

68

Section 4.1

Table 4.1: Symbol descriptions for dynamic VN control.

Symbols Definitions

𝑡 ∈ 𝑇 Time-step (𝑇 : Total time-steps)

𝑁 Number of VNs

𝐺 (𝑺, 𝑳) Network graph (𝑺: server set, 𝑳: link set)

𝑠 ∈ 𝑺, 𝑛 ∈ 𝑵 Server, Node

link (𝑖, 𝑗) ∈ 𝑳 Link from server 𝑖 to server 𝑗

𝑢𝐿
𝑖 𝑗 ,𝑡

(𝑖, 𝑗) link utilization at step 𝑡

𝑢𝑆
𝑖,𝑡

𝑖th server utilization at step 𝑡

𝑈𝐿
𝑡 = max𝑖 𝑗

(
𝑢𝐿
𝑖 𝑗 ,𝑡

)
Maximum link utilization at step 𝑡

𝑈𝑆
𝑡 = max𝑖

(
𝑢𝑆
𝑖,𝑡

)
Maximum server utilization at step 𝑡

𝑫𝑡 :=
{
𝑑𝑖,𝑡

}
Traffic demands of 𝑖th VN at step 𝑡

𝑽𝑡 :=
{
𝑣𝑖,𝑡

}
VM demands of 𝑖th VN at step 𝑡

𝑹𝐿𝑡 :=
{
𝑟𝐿
𝑖 𝑗 ,𝑡

}
(𝑖, 𝑗) residual link resources at step 𝑡

𝑹𝑆𝑡 :=
{
𝑟𝑆
𝑖,𝑡

}
𝑖th residual server resources at step 𝑡

𝒀 𝑡 :=
{
𝑦𝑖 𝑗 ,𝑡

}
VM allocation at step 𝑡 (VM 𝑖, server 𝑗)

𝑻 :=
{
𝑡𝑝𝑞

}
Traffic matrix from server 𝑝 to server 𝑞

𝑷 := {𝑝𝑖} 𝑖th User placement

𝑐𝑖 Server capacity of server 𝑖

𝑐𝑖 𝑗 Link capacity of link (𝑖, 𝑗)

This work divides the demands of 𝑁 VNs demands into groups of 𝑀 agents

and assigns each agent for each VN group. Note that the proposed method

includes 2𝑀 agents, i.e., 𝑀 objective agents and 𝑀 constraint agents. Since

DRL performance drastically decreases as the number of actions increases, as

described in Section 2.1, this work aims to reduce the number of candidate

actions per agent. This work also restricts the agents that could act at each

time to avoid conflicts among agents.

69

Chapter 4

Table 4.2: Symbol descriptions for Safe-MADRL.

Symbols Definitions

𝑀 Number of Agents

𝑒 ∈ 𝐸 Episode (𝐸 : Total episodes)

G := {𝑔𝑘 } Agent sets (1 ≤ 𝑘 ≤ 2𝑀)
G𝑜 :=

{
𝑔𝑜
𝑘

}
Objective agent sets (1 ≤ 𝑘 ≤ 𝑀)

G𝑐 :=
{
𝑔𝑐
𝑘

}
Constraint agent sets (1 ≤ 𝑘 ≤ 𝑀)

𝑠𝑡 ∈ S State at step 𝑡

𝑎𝑘,𝑡 ∈ A𝑘 Action of 𝑘th agent at step 𝑡

𝑟𝑡 Reward at step 𝑡 (−1 ≤ 𝑟𝑡 ≤ 1)

𝑄
(
𝑠𝑡 , 𝑎𝑘,𝑡

)
Action-value function for 𝑠𝑡 and 𝑎𝑘,𝑡

M𝑘 Replay memory for agent 𝑘

𝑤𝑐 Weighting parameter of constraint agents G𝑐

4.1.2 Modeling

Dynamic VN allocation problem

This work considers the use case of providing a cloud computing service as an

example. To provide such a service, VN allocation to a physical network is

needed, and each VN demand consists of a virtual node as a VM and virtual

link as a route between users and VMs. This work assumes that the physical

network 𝐺 (𝑺, 𝑳) consists of physical link 𝑳 and physical server 𝑺 and each

physical server is connected to each node, i.e., 𝐺 (𝑺, 𝑳) = 𝐺 (𝑵, 𝑳).
Table 4.1 summarizes the definitions of the variables of the dynamic VN

allocation problem. This work introduces two objective functions: minimiza-

tion of total maximum link utilization 𝑈𝐿
𝑡 and minimization of total maximum

server utilization 𝑈𝑆
𝑡 , i.e., min :

∑
𝑡∈𝑇

(
𝑈𝐿
𝑡 +𝑈𝑆

𝑡

)
. This work also imposes two

constraints: link capacity and server capacity, i.e., 𝑈𝐿
𝑡 < 1 and 𝑈𝑆

𝑡 < 1.

This work assumes that each user requests one VN demand and user place-

ments are constant during the VN demand lifetime. This work considers the

demands of 𝑁 VNs and 𝑁 users. This work also considers a discrete time-step

𝑡 and assumes the VN demands change at each 𝑡. A VN demand consists of

one origin (i.e., user) and one destination (i.e. VM), traffic demand 𝑫𝑡 , and

70

Section 4.1

VM demand 𝑽𝑡 . The VM demand indicates the processing capacity of the VM

request such as the requested number of CPU cores. When each VN demand

is accepted, the amounts of link and server resources consumed depend on the

traffic and VM demand. If an origin-destination (i.e., user-VM) pair is allo-

cated in the same server, the traffic demand between the user and VM on the

physical network is regarded as 0.

At the beginning of each 𝑡, the VN demands are observed. Based on the

observation, the proposed method calculates the optimal VN allocation for

the next 𝑡 + 1. Note that this optimal allocation is calculated based on the

current observation and does not directly predict the next 𝑡 + 1 observation.

Next, if necessary, controllers update the routing information and migrate each

VM. Since this work focuses on the optimization of resource allocation, this

work assumes the migration process is ideal, which means that the VN can be

migrated without interrupting the running service.

Safe-MADRL algorithm

Table 4.2 summarizes the definitions of the variables of the proposed Safe-

MADRL algorithm. This work introduces two groups of agents, i.e., a group

of objective agents G𝑜 and a group of constraint agents G𝑐. Each group consists

of 𝑀 agents. That is, this work introduces 2𝑀 agents:

G = [G𝑜,G𝑐] =
[
𝑔𝑜1 , ..., 𝑔

𝑜
𝑀 , 𝑔

𝑐
1, ..., 𝑔

𝑐
𝑀

]
. (4.2)

The demands of 𝑁 VN are divided into groups of 𝑀 agents, and 𝑔𝑜
𝑘
and 𝑔𝑐

𝑘

learn how to optimize VN allocation for the 𝑘th VN group. The state 𝑠𝑡 is the

same for all agents G. The candidate action sets A𝑡 of 𝑔
𝑜
𝑘
and 𝑔𝑐

𝑘
are the same,

and the rewards 𝑟𝑡 for 𝑔
𝑜
𝑘
and 𝑔𝑐

𝑘
differ. The learning algorithm is the same for

both G𝑜 and G𝑐.
A state is defined as 𝑠𝑡 = [𝑫𝑡 ,𝑽𝑡 , 𝑹

𝐿
𝑡 , 𝑹

𝑆
𝑡], where 𝑫𝑡 and 𝑽𝑡 are the traffic

and VM demands at 𝑡, and 𝑹𝐿𝑡 and 𝑹𝑆𝑡 are the residual resources of each link

and server at 𝑡. Each 𝑟𝐿
𝑖 𝑗 ,𝑡

is calculated by 𝑟𝐿
𝑖 𝑗 ,𝑡

= 1 − 𝑐𝑖 𝑗𝑢𝐿𝑖 𝑗 ,𝑡 , and each 𝑟𝑆
𝑖,𝑡

is similar. The action set A𝑘 is defined as a set of allocation combinations

included in group 𝑘 (|A𝑘 | = |𝑺 |𝑁/𝑀). Each element in A𝑘 is a candidate

action 𝑎𝑘,𝑡 of agent 𝑔𝑘 . As a design of rewards, this work gives a large negative

value if the constraints are not satisfied; otherwise, a positive value depends

71

Chapter 4

Algorithm 3 Safe-MADRL for dynamic VN allocation.

1: Train objective agents G𝑜 by Alg. 4

2: Train constraint agents G𝑐 by Alg. 4

3: for 𝑡 = 1,∞ do

4: 𝑘 = 𝑡 mod 𝑀

5: 𝑠𝑡 ← observe state

6: 𝑎𝑘,𝑡 ← arg max
𝑎′∈A𝑘

[𝑄𝑜 (𝑠𝑡 , 𝑎′) + 𝑤𝑐𝑄𝑐 (𝑠𝑡 , 𝑎′)]

7: 𝑠𝑡+1 ← update environment
(
𝑠𝑡 , 𝑎𝑘,𝑡

)
by Alg. 5

Algorithm 4 MADRL algorithm.

1: make training-traffic sequences

2: initialize: agent parameters

3: for 𝑒 = 0, 𝐸 do

4: Set training-traffic sequences for all VNs

5: initialize: environment parameters

6: initialize: 𝑠1 ← observe state

7: for 𝑡 = 1, 𝑇 do

8: 𝑘 = 𝑡 mod 𝑀

9: 𝑎𝑘,𝑡 ← select epsilon greedy action (𝑠𝑡)
10: 𝑠𝑡+1 ← update environment

(
𝑠𝑡 , 𝑎𝑘,𝑡

)
by Alg. 5

11: 𝑟𝑡 ← calculate reward
(
𝑠𝑡 , 𝑎𝑘,𝑡 , 𝑠𝑡+1

)
by Alg. 6

12: store transition
(
𝑠𝑡 , 𝑎𝑘,𝑡 , 𝑟𝑡 , 𝑠𝑡+1,

)
in M𝑘

13: if 𝑟𝑡 = −1 then

14: terminate episode 𝑒

15: train agent by transition (𝑠 𝑗 , 𝑎𝑘, 𝑗 , 𝑟 𝑗 , 𝑠 𝑗+1) in M𝑘

on the objective function value. A certain negative value is also given when

VN allocation is changed to avoid unnecessary VN reallocation. Based on the

above, this work designs different rewards for G𝑜 and G𝑐 (detailed formulation

is given in Alg. 6).

72

Section 4.1

4.1.3 Formulation

Safe-MADRL algorithm

Algorithm 3 shows dynamic VN allocation using Safe-MADRL algorithm.

Lines 1–2 show the pre-training of G𝑜 and G𝑐 by using Alg. 4 and calculation

of 𝑄𝑜 (𝑠, 𝑎) and 𝑄𝑐 (𝑠, 𝑎). Next, this algorithm continually repeats lines 4–7 at

every fixed 𝑡. Line 4 determine the agents to act. At each 𝑡, agents 𝑔𝑜
𝑘
∈ G𝑜 and

𝑔𝑐
𝑘
∈ G𝑐 (𝑘 = 𝑡 mod 𝑀) are selected. Line 5 shows the observation of 𝑠𝑡 from

the VN environment. In line 6, an 𝑎𝑘,𝑡 that maximizes 𝑄𝑜 (𝑠, 𝑎) + 𝑤𝑐𝑄𝑐 (𝑠, 𝑎)
is selected, where 𝑤𝑐 is the weighting parameter to decide the importance of

avoiding constraints violation. The 𝑠𝑡 of each agent is common in all agents,

but the candidate actions of each agent differ for each 𝑘. In line 7, VN alloca-

tion is updated according to 𝑎𝑘,𝑡 by Alg. 5, and returns the 𝑠𝑡+1.

MADRL algorithm

Algorithm 4 shows the MADRL algorithm for G𝑜 and G𝑐. The difference in

the two-agent groups is only the rewards calculation.

Lines 1–2 show the generation of the training-traffic sequences and initial-

ization of agents parameters. A series of actions is called an episode, and

in each episode (lines 3–15), a series of procedures (lines 7–15) is repeatedly

executed until learning is complete. In lines 9–11, learning samples that are

combinations of 𝑠𝑡 , 𝑎𝑘,𝑡 , 𝑟𝑡 , and 𝑠𝑡+1 are collected and stores in replay memory

M𝑘 in line 12. The reason for storing the samples once in replay memory is to

eliminate the time dependence of collecting training samples [9]. Line 9 means

the action selected on the basis of the strategy that a random action is selected

with probability Y; otherwise, an action 𝑎𝑘,𝑡 that maximizes 𝑄(𝑠𝑡 , 𝑎′) is selected
(i.e., argmax𝑎′∈A𝑘 𝑄 (𝑠𝑡 , 𝑎′)) with probability 1 − Y. This is to avoid conver-

gence to a local optimum solution. Line 11 shows reward calculation. Lines

13–14 means the termination condition of agent learning. In this algorithm,

𝑟𝑡 = −1 is the terminate condition, i.e., the state that does not satisfy at least

one constraint. In line 15, 𝑔𝑘 is trained by a learning sample
(
𝑠 𝑗 , 𝑎𝑘, 𝑗 , 𝑟 𝑗 , 𝑠 𝑗+1

)
,

which is randomly taken from M𝑘 .

73

Chapter 4

Algorithm 5 Update environment.

1: 𝑫𝑡+1,𝑽𝑡+1 ← update VN demand (𝑡)
2: 𝒀 𝑡+1 ← calculate VM allocation

(
𝑎𝑘,𝑡 ,𝒀 𝑡

)
3: 𝑻 ← convert traffic demands (𝑫𝑡+1,𝒀 𝑡+1, 𝑷)
4: 𝑹𝐿

𝑡+1,𝑈
𝐿
𝑡+1 ← calculate link utilization (𝑻)

5: 𝑹𝑆
𝑡+1,𝑈

𝑆
𝑡+1 ← calculate server utilization (𝑽t,𝒀t)

6: return 𝑠𝑡+1 = [𝑫𝑡+1,𝑽𝑡+1, 𝑹
𝐿
𝑡+1, 𝑹

𝑆
𝑡+1]

Update environment

In this formulation, the action sets that candidate VN allocation changes are

determined only from the VM allocation, and the routes between users and

VMs are uniquely determined in the environment update.

This work updates the environment based on the extendable resource-

integrated control architecture [56] that coordinates multiple control algo-

rithms specified for individual metrics. This work uses the route-optimization

algorithm as the specified optimization algorithm. This formulation is de-

scribed in Chapter 3. Using this architecture, the routes between users and

VMs are uniquely determined when the destination server is determined.

Algorithm 5 shows the procedure of the update environment. Line 1 shows

the observation of the next demands. In line 2, the next VM allocation is

calculated from 𝑎𝑘,𝑡 and current VM allocation. Line 3 means the calculation

of the traffic matrix 𝑻 from origin node, destination server, and VN traffic

demands 𝑫𝑡 . The origin node is determined by the user placement 𝑷, and the

destination server is determined by the VM allocation 𝒀 𝑡 . Lines 4–5 shows the

calculation of link and server utilization. Finally, it returns 𝑠𝑡+1.

Reward calculation

Algorithm 6 shows the procedure of the reward calculation for G𝑜 and G𝑐.
The G𝑜 learns how to maximize the objective function, and G𝑐 learns how to

minimize the constraint variations. Lines 1–5 shows the reward calculation of

G𝑜. The term Eff (𝑥) in line 2 shows the efficiency function and it defined as

74

Section 4.2

Algorithm 6 Reward calculation.

1: if 𝑔𝑘 ∈ G𝑜 then

2: 𝑟𝑡 ← Eff
(
𝑈𝐿
𝑡+1

)
+ Eff

(
𝑈𝑆
𝑡+1

)
3: if 𝒀 𝑡 ≠ 𝒀 𝑡+1 then

4: 𝑟𝑡 ← 𝑟𝑡 − 0.05
5: return max(−1,min(1, 𝑟𝑡))
6: if 𝑔𝑘 ∈ G𝑐 then
7: if 𝑈𝐿

𝑡+1 > 1 ∨𝑈𝑆
𝑡+1 > 1 then

8: return 𝑟𝑡 ← −1
9: else

10: return 𝑟𝑡 ← 0

follows:

Eff (𝑥) =

0.5 (𝑥 ≤ 0.2)
−𝑥 + 0.9 (0.2 < 𝑥 ≤ 0.9)
−2𝑥 + 1.8 (0.9 < 𝑥 ≤ 1)
−1.5 (1 < 𝑥).

(4.3)

This function returns a positive value depending on 𝑥 if 𝑥 < 0.9; otherwise it

returns a negative value. The values of 0.5 and −1.5 indicate the upper and

lower limit of this function. Note that this work uses a handcrafted efficiency

function in this formulation, but this function design is essentially independent

of the effectiveness of the proposed method. In lines 3–4, it adds −0.05 as a

penalty if the 𝒀 is changed. Finally, it returns a clipped reward within ±1. The
reason for clipping the reward is to increase the stability of agent learning [9].

Lines 6–10 shows the reward calculation of G𝑐. It returns −1 if either 𝑈𝐿
𝑡+1 > 1

or 𝑈𝑆
𝑡+1 > 1; otherwise it returns 0.

4.2 Evaluation

This work evaluated the effectiveness of the proposed method through simu-

lations in terms of performance and computation time. This work prepared

three comparison methods. This work adopted Double-DQN [31] as the DRL

75

Chapter 4

algorithm. This work used a three-layer fully connected DNN the input dimen-

sion of which is |𝑠𝑡 | and output dimension is |A𝑘 |. This work implemented the

DRL algorithm using ChainerRL [44] and route-optimization algorithm using

the GNU Linear Programming Kit (GLPK) [65].

4.2.1 Evaluation conditions

For all evaluations, this work sets the number of VNs to 𝑁 = 20, number of

agents to 𝑀 = 5, total time-steps to 𝑇 = 200, total episodes to 𝐸 = 20000,

and weighting parameter of G𝑐 to 𝑤𝑐 = 1. For the VN-demand conditions,

the 𝑷 is randomly generated, which was fixed for all evaluations. Each 𝑽𝑡 is

randomly given an integer value within the range of 3–5, which was reset at

the beginning of each episode.

The 𝑫𝑡 is generated using the autoregressive moving average (ARMA)

model within the range of 0–200 Mbps. This work generated 1000 sets of

200-step time-series traffic sequences for training and evaluation, respectively.

After generated by ARMA, all the traffic data were normalized within the

range of 0–200. Figure 4.1 shows the sample traffic sequences, which images

real-world traffic demands including demand fluctuation. At the beginning of

each episode, 𝑁 time-series sequences were randomly selected from traffic data

sets.

Figure 4.2 show the network topology, server capacity, and link capacity.

This work used the topology of Internet2 [64], which consists of 9 nodes. This

work assumed that all users and VMs are placed in all nodes. The number

of candidate VM allocations was 920 ≃ 1.2 × 1019, and that of the candidate

actions of 𝑔𝑘 was 920/5 = 6561.

76

Section 4.2

Figure 4.1: Sample traffic sequences. (©2020 IEEE.)

20

20

20 20

20
20

20

20

200.4G

0.4G

0.4G

0.4G

0.2G

0.8G

0.4G

0.4G0.2G

0.8G
0.4G

0.8G

0.4G

Figure 4.2: Network topology. (©2020 IEEE.)

77

Chapter 4

M
et

ho
ds

0.
4

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

Ave. Reward

M
et

ho
ds

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Ave. of Max. Server Utilization

M
et

ho
ds

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Ave. of Max. Link Utilization

M
et

ho
ds

02040608010
0

12
0

14
0

Ave. Constraint Violation

M
et

ho
ds

010203040 Total VN Migration

sa
fe

 M
A-

DR
L

(E
=2

0k
)

sa
fe

 M
A-

DR
L

(E
=5

k)
M

A-
DR

L
(E

=2
0k

)
M

A-
DR

L
(E

=5
k)

St
at

ic

F
ig
u
re

4.
3:

P
er
fo
rm

an
ce

ev
al
u
at
io
n
fo
r
ea
ch

m
et
h
o
d
.
(©

20
20

IE
E
E
.)

78

Section 4.2

4.2.2 Comparative methods

The following four comparison methods were prepared.

• Safe-MADRL (The proposed method with G𝑜 and G𝑐)

• MADRL (The proposed method with G𝑜 and without G𝑐)

• Static (Fixed VM allocation)

• Exhaustive search (Search of all candidate actions)

Note that, single-agent DRL was not evaluated because the number of actions

is extremely large, and it is clear that learning is not successful.

Safe-MADRL indicates the proposed method with Alg. 3 and MADRL

indicates the proposed method when only G𝑜 is applied, that is, 𝑤𝑐 = 0 by

Alg. 3. Static is the method when VM allocation is fixed to minimize the

average number of constraint violations. In this evaluation, VM allocation

was fixed in the state in which the same number of VMs are allocated to all

servers. Exhaustive search is the method when the action that maximizes the

reward 𝑟𝑡 is selected for all candidate actions A𝑘 that agent 𝑔𝑘 can perform

in the current VN allocation. Note that all methods calculate rewards on the

basis of the current demand and not on the basis of the next-step demand.

Therefore, constraint violations cannot be absolutely eliminated.

4.2.3 Evaluation results

Figure 4.3 shows the average performance of each method under the practical-

network conditions. This work carried out 100 calculations with random initial

conditions. The width of each bar indicates the standard deviation (±𝜎). The
performance of each method can roughly be compared to the average reward.

The factor of performance can be considered using the 2–5th metrics in Fig. 4.3.

That is, the performance metrics are average of maximum server utilization,

average of maximum link utilization, average constraint violation, and total

VM migration. When 𝑘 VNs migrate at a certain time, the total VN migration

adds 𝑘. Table 4.3 shows the average computation time per 𝑡 of each method.

79

Chapter 4

Table 4.3: Average computation time per time-step for 𝑁 = 20.

Methods Time

Safe-MADRL 102 ms

MADRL 101 ms

Static 100 ms

Exhaustive search 656 s

Performance

This work discusses the comparison between Static and the other two dynamic

allocation methods. Note that Exhaustive search could not evaluate within

the practical time because its computation time dramatically increased. The

results show the cases for MADRL and Safe-MADRL when 𝐸 = 5000 and

20000. Figure 4.3 shows that the two dynamic methods performed better

than Static. The reason is that the dynamic allocation methods can prevent

constraint violations by changing the VN allocation according to the demand

change. It also indicates that the reduction in the number of actions by using

the multi-agent technique is effective. The reason that MADRL can reduce

the constraint violations without information of the next demand is that the

RL agent indirectly predicts the next demand through learning of the optimal

allocation. Safe-MADRL prevented constraint violations more than MADRL

because the constraints of agent G𝑐 increases the probability of taking an

action that satisfies those constraints. At 𝐸 = 5000, the constraint violation

of Safe-MADRL already decreased to 1/100 that of Static. At 𝐸 = 20000,

there was no longer a violation constraint with Safe-MADRL and MADRL.

Safe-MADRL also reduced the average of maximum link utilization to half

that of Static while maintaining the average of maximum server utilization

compared to that of Static. Therefore, the proposed method is effective for

practical-network conditions.

Computation time

Table 4.3 shows the average computation time of each method, which includes

the time to decide action, update the next state, and evaluate performance.

80

Section 4.3

This work used Intel core i7 8700 for the evaluation. The computation time per

𝑡 of all methods other than Exhaustive search was less than one second. The

computation times of the three methods were almost equal because the time of

the route-optimization calculation became dominant, and that of Exhaustive

search drastically increased. Exhaustive search was not effective in a practical

condition due to the huge computation time. Finally, this work revealed that

the proposed method is also useful as a dynamic VM allocation method in

terms of computation time.

4.3 Chapter summary

This chapter proposed a dynamic virtual network allocation method based on

the proposed Safe-MADRL algorithm. This method can quickly optimize the

network resources even when traffic demand change drastically. It can also

reduce the agent’s constraint violations such as the control that leads to net-

work congestion and server overload. Simulations revealed that the proposed

method can reduce the maximum link utilization to half while maintaining the

maximum server utilization compared to the static allocation method under

practical-network conditions. Moreover, the computation time of the proposed

method was less than one second, which is a significant increase in speed com-

pared to exhaustive search. As a result, this work revealed that the proposed

method simultaneously enables efficient and immediate dynamic VN alloca-

tion. For future work, this work plans to evaluate the efficiency of the proposed

method for real-world traffic demands.

81

Chapter 4

82

Chapter 5

Cooperative multi-agent deep

reinforcement learning for

dynamic virtual network

allocation

Network traffic and computing demand have been changing dramatically due to

the growth of various types of network services, e.g., high-quality video delivery

and operating system (OS) updates. To maximize the utilization efficiency of

limited network resources, network resource control technology is required for

smooth and quick operation when network demands change. Therefore, this

work proposes a dynamic virtual network (VN) allocation method based on

cooperative multi-agent deep reinforcement learning (Coop-MADRL). A part

of this work in this chapter was presented in [75,76]. This method can quickly

optimize network resources even while network demands are drastically chang-

ing by learning the relationship between network demand patterns and optimal

allocation by using deep reinforcement learning (DRL) in advance. The key

idea is to use a multi-agent technique for a reinforcement learning (RL) based

dynamic VN allocation method, which can reduce the number of candidate ac-

tions per agent and can improve the performance for VN allocation. Moreover,

a cooperation technique improves the efficiency of VN allocation. From results

of a simulation evaluation, Coop-MADRL can calculate effective allocation

83

Chapter 5

within one second, which reduces the maximum server and link utilization and

drastically reduces the constraint violations compared with that of the static

VN allocation method. Furthermore, this work revealed that the learning with

various mixed traffic models could achieve a high generalization performance

for all traffic patterns.

This chapter is structured as follows. Section 5.1 defines the dynamic VN

allocation problem. Section 5.2 describes the Coop-MADRL-based dynamic

VN allocation method and its modeling and formulation. Section 5.3 evaluates

its performance, and Section 5.4 concludes the chapter.

5.1 Dynamic virtual network allocation

5.1.1 Problem definition

This work addresses the dynamic VN allocation for time-varying demand.

Each VN consists of server demands as virtual nodes and traffic demands

as virtual links. In this work, dynamic VN is defined as the time-varying

resource requirement of virtual nodes and virtual links, and dynamic VN allo-

cation is defined as the resource allocation for time-varying VN demands. In

static allocation, each user estimates the maximum amount of demand during

their lifetime in advance and pays a fixed fee based on the estimated amount.

The service provider allocates the resources for the demands to maximize the

VNE acceptance rate. Once accepted, the allocation is fixed until the end of

the service. This provision may not be optimal when demand fluctuates. In

contrast, in dynamic allocation, each user pays a minimal fee corresponding to

the resources consumed at each time. The service provider dynamically reallo-

cates the resources in accordance with the demand at each time to maximize

resource utilization efficiency, which can decrease the service cost per user and

minimize the negative effect of network congestion and server overload. More-

over, the dynamic allocation is made robust to sudden changes in demands by

maintaining high utilization efficiency each time.

Figure 5.1 describes an overview of dynamic VN allocation. For an exam-

ple of a use case, this work considers providing a cloud computing service in

a physical network consisting of a wide-area network (WAN) and DCs. To

84

Section 5.1

Figure 5.1: Overview of dynamic VN allocation. (©2022 IEEE.)

provide such a service, each user requests a VN demand, which consists of

server demands as VMs and traffic demands between the user and VMs, and

each VN demand needs to be allocated to a physical network. For simplicity,

Fig. 5.1 describes a case where the number of VNs is 1, and a VN consists of

one user, one VM, and the links between them. A physical network consists of

4 nodes including 2 user nodes and 2 server nodes. Here, the nodes connected

to the user and server are called user nodes and server nodes, respectively.

Some nodes can perform as both user and server nodes. This work considers a

discrete time-step 𝑡 and assumes the VN demands change at each 𝑡. As shown

in the graph in Fig. 5.1, this work assumes that the two kinds of demands are

time-varying, and an unexpected heavy demand suddenly emerged at time 𝑡,

thereby causing the link congestion and the overload on server 𝐴. In dynamic

allocation, after observing the current demands and calculating the next allo-

cation, the VN is reallocated at 𝑡 + 1. In this example, the VM is migrated to

server 𝐵, and the route is switched from a blue one to a red one.

This work focuses on immediately calculating a close-to-optimal VN alloca-

tion every 𝑡. This work uses the offline VN allocation, where all VN demands

are given at the beginning of each 𝑡. This work considers 𝐾 VN demands and

assume that 𝐾 is constant during a series of steps. When the number of VNs

are changed during a series of steps, the maximum number of VNs is regarded

85

Chapter 5

as 𝐾. Here, a series of steps refers to the steps until the number of VNs ex-

ceeds 𝐾. When the actual number of VNs exceeds 𝐾, the RL agent needs

to be retrained. At the beginning of each 𝑡, the VN demands are observed.

On the basis of the observation, the proposed method calculates the next VN

allocation for the next 𝑡 +1. Note that this next allocation is calculated on the

basis of the current observation and does not directly predict the next 𝑡 + 1
observation. Since the proposed method responsively allocates the demands

after observation, it must immediately calculate a close-to-optimal allocation

to follow the change, e.g., within one second. This target computation time is

very challenging and different from those of existing methods. Next, if neces-

sary, controllers update the routing information and migrate each VM. After

the update is complete, the proposed method proceeds to the next 𝑡 + 1.
Note that this work assumes the migration process is ideal, which means

that the VM can be migrated in a short time without interrupting the running

service. The way to accomplish the ideal migration is out of the scope of

this work and may be considered in future research. In related work, the live

migration of VM has been widely studied [77]. Moreover, the development

of lightweight VMs has notably progressed. Firecracker [78], an open-source

virtualization technology, enables us to deploy workloads in lightweight VMs,

called microVMs. It can boot application code within 125 ms with a memory

overhead of less than 5 MB per container and has been commonly used in

cloud computing. This work assumes that, as VNFs evolve into cloud-native

network functions (CNFs) in the future, nearly ideal migration will be made

possible by utilizing these techniques.

5.1.2 Problem formulation

Table 5.1 summarizes the definitions of the physical network variables. This

work assumed that the physical network graph 𝐺 (𝑵, 𝑳) consists of a physical

node set 𝑵 and a physical link set 𝑳. Each node connected to the user and

server is called user nodes and server nodes, respectively. For example, the

nodes directly connected to the data center are called server nodes, and the

nodes directly connected to the access network are called user nodes. Some

nodes can perform as both user and server nodes. Each server node has a

86

Section 5.1

Table 5.1: Symbol descriptions for physical network.

Symbols Definitions

𝐺 (𝑵, 𝑳) Network graph

𝑛 ∈ 𝑵 Node

𝑠 ∈ 𝑺 Server

link (𝑖, 𝑗) ∈ 𝑳 Link from node 𝑖 to node 𝑗

𝑐𝑆
𝑖

Server capacity of server 𝑖

𝑐𝐿
𝑖 𝑗

Link capacity of link (𝑖, 𝑗)
𝒁 :=

{
𝑧𝑖 𝑗

}
User placement (user 𝑖, node 𝑗)

Table 5.2: Symbol descriptions for VN demands.

Symbols Definitions

𝑡 ∈ 𝑇 Time-step (𝑇 : Total time steps)

𝐾 Number of VNs

𝑩𝑡 :=
{
𝑏𝑖𝑡

}
Traffic demands of 𝑖th VN at step 𝑡

𝑫𝑡 :=
{
𝑑𝑖𝑡

}
VM demands of 𝑖th VN at step 𝑡

Table 5.3: Symbol descriptions for control variables.

Symbols Definitions

𝑿𝑡 :=
{
𝑥
𝑝𝑞

𝑖 𝑗 ,𝑡

}
Proportion of passed 𝜏

𝑝𝑞
𝑡 on link (𝑖, 𝑗)

𝒀 𝑡 :=
{
𝑦𝑖 𝑗 ,𝑡

}
VM allocation at step 𝑡 (VM 𝑖, server 𝑗)

server connected to it. This work denotes the server as 𝑠 ∈ 𝑺 ⊆ 𝑵. All servers

and links have the capacities 𝑐𝑆
𝑖
and 𝑐𝐿

𝑖 𝑗
, which indicate the limit of computing

resources and bandwidth resources. Each user connects to the nearest user

node through the access network, which is not included in 𝐺 (𝑵, 𝑳) in this

work. User placement is defined as 𝒁 :=
{
𝑧𝑖 𝑗

}
, in which 𝑧𝑖 𝑗 is 1 if the 𝑖th user

is connected to the 𝑗 th node; otherwise, 0. Here, 𝒁 is assumed to be constant

during the VN demand lifetime.

Table 5.2 summarizes the definitions of the VN demand variables. A VN

demand consists of one origin (i.e., user) and one destination (i.e., VM), user

placement 𝒁, traffic demand 𝑩𝑡 :=
{
𝑏𝑖𝑡

}
, and VM demand 𝑫𝑡 :=

{
𝑑𝑖𝑡

}
. The 𝑖th

traffic demand 𝑏𝑖𝑡 indicates the bandwidth between the user and VM at 𝑡, and

87

Chapter 5

Table 5.4: Symbol descriptions for dynamic VN allocation.

Symbols Definitions

𝑤 ∈ 𝑾 User

𝑣 ∈ 𝑽 VM

𝝉𝑡 :=
{
𝜏
𝑝𝑞
𝑡

}
Traffic matrix from node 𝑝 to node 𝑞

𝑃𝑡 Penalty Function of VM migration

𝑢𝐿
𝑖 𝑗 ,𝑡

(𝑖, 𝑗) link utilization at step 𝑡

𝑢𝑆
𝑖,𝑡

𝑖th server utilization at step 𝑡

𝑈𝐿
𝑡 = max𝑖 𝑗

(
𝑢𝐿
𝑖 𝑗 ,𝑡

)
Maximum link utilization at step 𝑡

𝑈𝑆
𝑡 = max𝑖

(
𝑢𝑆
𝑖,𝑡

)
Maximum server utilization at step 𝑡

𝑹𝐿𝑡 :=
{
𝑟𝐿
𝑖 𝑗 ,𝑡

}
(𝑖, 𝑗) residual link resources at step 𝑡

𝑹𝑆𝑡 :=
{
𝑟𝑆
𝑖,𝑡

}
𝑖th residual server resources at step 𝑡

the 𝑖th VM demand 𝑑𝑖𝑡 indicates the processing power of the VM request at 𝑡

such as the number of CPU cores. When each VN demand is accepted, the

amount of link and server resources consumed depend on the traffic and VM

demand. If an origin-destination (i.e., user-VM) pair is allocated in the same

server, the traffic demand between the user and VM on the physical network

is regarded as 0.

This work mainly adopted the VN demand model consisting of one origin

and one destination. The problem formulation can be extended to the VN

demand model with multiple origins and destinations. In this case, this work

newly defines 𝑩𝑡 := {𝑏𝑖 𝑗𝑡 } as the traffic demands between 𝑖th user and 𝑗 th VM

at step 𝑡, and defines �̃�𝑡 := {𝑑𝑖𝑡} as the VM sizes of 𝑖th VM at step 𝑡. The

problem formulation and proposed method can be used directly by replacing

𝑩𝑡 and 𝑫𝑡 with 𝑩𝑡 and �̃�𝑡 .

Note that, though the VN model in this work is assumed to consist of a

single VM, it can be extended to more complex VN models consisting of a

graph with multiple VMs and virtual link(s) by using an extendable resource-

integrated control architecture in Chapter 3 [56]. Though this formulation can

be extended to more complex VN models in principle, its performance has not

been evaluated yet, and its evaluation is one of the future works.

88

Section 5.1

For the above physical network graph and VN demand, this work formu-

lates the dynamic VN allocation problem. Table 5.3 summarizes the definitions

of the control variables. The goal of this problem is to find an optimal VN

allocation consisting of 𝑿𝑡 and 𝒀 𝑡 every 𝑡. Here, 𝑿𝑡 :=
{
𝑥
𝑝𝑞

𝑖 𝑗 ,𝑡

}
shows the pro-

portion of traffic 𝜏
𝑝𝑞
𝑡 from origin node 𝑝 to destination node 𝑞 passing through

link (𝑖, 𝑗), and 𝒀 𝑡 :=
{
𝑦𝑖 𝑗 ,𝑡

}
shows the VM allocation in which 𝑦𝑖 𝑗 ,𝑡 is 1 if the

𝑖th VM is assigned to the 𝑗 th server; otherwise, 0.

Table 5.4 summarizes the definitions of the variables of the dynamic VN

allocation problem. This work introduces an objective function:

min :
∑︁
𝑡∈𝑇

(
𝑈𝑆
𝑡 +𝑈𝐿

𝑡 + 𝛼𝑃𝑡
)
, (5.1)

where 𝑈𝑆
𝑡 and 𝑈𝐿

𝑡 show the maximum server utilization and maximum link

utilization at 𝑡, and 𝑃𝑡 shows the penalty of VM migration. Here, 𝛼 is a

positive value and determines the degree of VM migration. This work sets the

penalty to depend on the number of migrated VMs, which is formulated as

follows:

𝑃𝑡 =
1

2

∑︁
𝑖∈𝑉

∑︁
𝑗∈𝑆
∥𝑦𝑖 𝑗 ,𝑡 − 𝑦𝑖 𝑗 ,𝑡−1∥. (5.2)

Equation (5.2) calculates the sum of the absolute value of the difference be-

tween current 𝒀 𝑡 and previous 𝒀 𝑡−1. Since 𝑦𝑖 𝑗 ,𝑡 and 𝑦𝑖 𝑗 ,𝑡−1 are binary numbers,

the sum of the absolute values of these differences indicates the number of

migrated VMs at 𝑡. This work also imposes two constraints: link capacity and

server capacity, i.e., 𝑠.𝑡. : 𝑈𝑆
𝑡 < 1 and 𝑈𝐿

𝑡 < 1. To formulate this, a VM allo-

cation variable 𝑦𝑖 𝑗 ,𝑡 is formulated to minimize the server utilization 𝑈𝑆
𝑡 while

satisfying the constraints as follows:

s.t. :
∑︁
𝑗∈𝑺

𝑦𝑖 𝑗 ,𝑡 = 1 (∀𝑖 ∈ 𝑽) (5.3)∑︁
𝑖∈𝑽

𝑑𝑖𝑡𝑦𝑖 𝑗 ,𝑡 ≤ 𝑐𝑆𝑗𝑈𝑆
𝑡 (∀ 𝑗 ∈ 𝑺) (5.4)

𝑦𝑖 𝑗 ,𝑡 ∈ {0, 1} (5.5)

0 ≤ 𝑈𝑆
𝑡 ≤ 1. (5.6)

Equation (5.3) shows the VM conservation law. In other words, it shows that

each VM must be allocated to any server. Equation (5.4) shows the constraint

89

Chapter 5

of server capacity, and Eqs. (5.5)–(5.6) show the range of variables. In addition,

a routing variable 𝑥
𝑝𝑞

𝑖 𝑗 ,𝑡
is formulated to minimize the link utilization 𝑈𝐿

𝑡 while

satisfying the constraints as follows:

s.t. :
∑︁

𝑗 :(𝑖, 𝑗)∈𝑳
𝑥
𝑝𝑞

𝑖 𝑗 ,𝑡
−

∑︁
𝑗 :(𝑗 ,𝑖)∈𝑳

𝑥
𝑝𝑞

𝑗𝑖,𝑡
= 0 (5.7)

(∀𝑝, 𝑞 ∈ 𝑵, 𝑖 ≠ 𝑝, 𝑖 ≠ 𝑞)∑︁
𝑗 :(𝑖, 𝑗)∈𝑳

𝑥
𝑝𝑞

𝑖 𝑗 ,𝑡
−

∑︁
𝑗 :(𝑗 ,𝑖)∈𝑳

𝑥
𝑝𝑞

𝑗𝑖,𝑡
= 1 (5.8)

(∀𝑝, 𝑞 ∈ 𝑵, 𝑖 = 𝑝)∑︁
𝑝,𝑞∈𝑵

𝜏
𝑝𝑞
𝑡 𝑥

𝑝𝑞

𝑖 𝑗 ,𝑡
≤ 𝑐𝐿𝑖 𝑗𝑈𝐿

𝑡 (5.9)

(∀(𝑖, 𝑗) ∈ 𝑳,∀𝑝, 𝑞 ∈ 𝑵)
0 ≤ 𝑥𝑝𝑞

𝑖 𝑗 ,𝑡
≤ 1 (∀(𝑖, 𝑗) ∈ 𝑳,∀𝑝, 𝑞 ∈ 𝑵) (5.10)

0 ≤ 𝑈𝐿
𝑡 ≤ 1. (5.11)

Equations (5.7)–(5.8) show the traffic flow conservation law. Equation (5.7)

shows that the traffic flowing into a node equals the traffic flowing out of the

node except the source node 𝑝 and destination node 𝑞. Equation (5.8) shows

that the net flow out of the source node 𝑝 is 1. The traffic flow conservation

law at the destination node 𝑞 is guaranteed when Eqs. (5.7)–(5.8) are satisfied,

which is proved in [79]. Equation (5.9) shows the constraint of link capacity,

and Eqs. (5.10)–(5.11) show the range of variables. Since traffic demands

between nodes 𝜏
𝑝𝑞
𝑡 in Eq. (5.9) are determined by the traffic demands 𝑩𝑡 , user

placements 𝒁, and VM allocation 𝒀 𝑡 , the relational equations between both

constraints can be formulated as follows:

𝝉𝑡 = 𝒁⊤𝑩⊤𝑡 𝒀 𝑡

𝜏
𝑝𝑞
𝑡 =

∑︁
𝑖∈𝑾

∑︁
𝑗∈𝑽

𝑧𝑖𝑝𝑏
𝑖
𝑡𝑦 𝑗𝑞,𝑡 . (5.12)

Here, this work defines a traffic matrix as 𝝉𝑡 :=
{
𝜏
𝑝𝑞
𝑡

}
and each 𝜏

𝑝𝑞
𝑡 is a positive

real number. Equation (5.12) converts the VN traffic demands into the traffic

matrix of the physical network.

The dynamic VN allocation problem is formulated to minimize Eq. (5.1)

and the constraints Eqs. (5.3)–(5.12). This problem is NP-hard [66] and cate-

gorized mixed-integer nonlinear problems. Since the optimal solution takes a

90

Section 5.2

D
N

N
D

N
N

D
N

N
D

N
N

M
IX

D
N

N

(a) Single-agent
architecture

(b) Independent
Multi-agent architecture

(c) Cooperative
Multi-agent architecture

Figure 5.2: Three types of DRL architectures: (a) single-agent, (b) indepen-

dent multi-agent, and (c) cooperative multi-agent. (©2022 IEEE.)

long time to calculate, most previous studies have targeted small-scale or static

VN demands. Conversely, this work uses RL to solve the problem. Whereas

the methods not based on RL take a long time to find the optimal solution

each time, RL can instantly output the close-to-optimal solution by learning

the relationship between resource demand patterns and optimal VN allocation

in advance. However, RL needs to efficiently learn the optimal allocation for

a wide variety of demand patterns to improve performance. Therefore, this

work develops a cooperative multi-agent technique for an RL-based method to

prevent VN allocation decisions from exponentially increasing.

5.2 Proposed method

5.2.1 Overview

In the RL-based dynamic VN allocation method, an agent observes the current

VN demands and physical network states and learns how to change the VN

allocation to more efficiently use network resources. By applying DRL to agent

learning, the agent can handle continuous traffic demand and high-dimensional

network states. Furthermore, to reduce the action space, this work develops a

cooperative multi-agent technique to be used with the proposed method.

Figure 5.2 shows three types of DRL architectures: single-agent, indepen-

dent multi-agent, and cooperative multi-agent. To simplify the discussion, this

work assumes the number of agents is set to 2 in this figure. In the single-agent

91

Chapter 5

Server

A

Server

B

VN

User
Node

VMUser

Figure 5.3: Overview of VN allocation in a simple network topology. (©2022

IEEE.)

case, an agent outputs 𝑄(𝑠, 𝑎) with the global state 𝑠 as input, where state

𝑠 includes all information of a physical network and VNs. The dimension of

output is equal to the action space |A| and is determined by the combination

of all VN allocations. When assuming there are |𝑺 | servers, 𝐾 VN demands,

and the shortest path from the origin to destination is chosen, the number of

candidate actions |A| = |𝑺 |𝐾 . Moreover, as |𝑺 | and 𝐾 increase, |A| increases
exponentially. In the multi-agent case, each VN allocation control is assigned

to each agent. The 𝑘th agent outputs 𝑄𝑘 (𝑜𝑘 , 𝑎𝑘) with its own local observation

𝑜𝑘 as input, where observation 𝑜𝑘 is part of the global state 𝑠 and is related to

a physical network and 𝑘th VN information. The dimension of output is equal

to the action space
��A𝑘

��, which is determined only by 𝑘th VN allocation, i.e.,��A𝑘
�� drastically decreases to |𝑆 |.

This work describes the multi-agent behavior in a simple example. Fig-

ure 5.3 shows the VN allocation for a simple network topology consisting of

only two servers. Since the path is uniquely determined, each VN allocation

is determined from two choices; the VM is assigned to server A or server B.

In the single-agent case, if 𝐾 = 4, the agent should find the optimal allocation

from |A| = 24 actions. However, if 𝐾 = 10, the agent should find the optimal

allocation from 210 actions. The multi-agent technique reduces the number of

candidate actions per agent. This work prepared 𝐾 agents for 𝐾 VN demands,

92

Section 5.2

and each agent decides each VN allocation. In the multi-agent case, whether

𝐾 = 4 or 𝐾 = 10, 𝑘th agent only finds the optimal allocation of 𝑘th VN from

the
��A𝑘

�� = 2 actions. In other words, each agent only decides whether it is

better to assign each VM to server A or server B.

When each agent is independent, the non-stationary learning problem de-

scribed in Chapter 1 arises. In the cooperative multi-agent case, a mixed layer

that calculates a joint action-value function 𝑄𝑡𝑜𝑡 from each action-value func-

tion 𝑄𝑘 is added to cooperate with each agent. In the training phase, the

loss of DNN is calculated by the shared reward and the joint action value

𝑄𝑡𝑜𝑡 , thereby solving the non-stationary learning problem between agents and

improving performance. It corresponds to centralized training. In the actual

control phase, each agent can determine the best action on the basis of each

observation 𝑜𝑘 and each action value 𝑄𝑘 because the forward network of each

agent DNN learns to output 𝑄𝑘 to minimize 𝑄𝑡𝑜𝑡 during the training phase.

In other words, agents can output globally optimal action by only calculating

the forward network of their DNNs without a mixed network calculation. It

corresponds to decentralized execution without other agent information.

5.2.2 Modeling

Table 5.5 summarizes the definitions of the variables of Coop-MADRL. This

work introduces 𝐾 agents equal to the number of VNs. Each VN control is

assigned to each agent, and the 𝑘th agent learns how to optimize VN allocation

for the 𝑘th VN.

A state is defined as 𝑠𝑡 = [𝑩𝑡 , 𝑫𝑡 , 𝑹
𝐿
𝑡 , 𝑹

𝑆
𝑡], where 𝑩𝑡 and 𝑫𝑡 are the traffic

and VM demands at 𝑡, and 𝑹𝐿𝑡 and 𝑹𝑆𝑡 are the residual resources of each link

and server at 𝑡. Each 𝑟𝐿
𝑖 𝑗 ,𝑡

is calculated by 𝑟𝐿
𝑖 𝑗 ,𝑡

= 1 − 𝑐𝐿
𝑖 𝑗
𝑢𝐿
𝑖 𝑗 ,𝑡

, and each 𝑟𝑆
𝑖,𝑡

is

similar. An observation for agent 𝑔𝑘 is defined as 𝑜𝑘𝑡 = [𝑏𝑘𝑡 , 𝑑𝑘𝑡 , 𝑹𝐿𝑡 , 𝑹𝑆𝑡]. The

state represents fully observed global information, and the observation repre-

sents agent-dependent information. Here, each VN demand such as 𝑏𝑘𝑡 and

𝑑𝑘𝑡 shows local information, and a physical resource such as 𝑹𝐿𝑡 and 𝑹𝑆𝑡 shows

global information. By including the residual resources in agents’ observation,

each agent can take into account not only its demand information but also

network-wide information. The action set A𝑘 is defined as a set of allocation

93

Chapter 5

Table 5.5: Symbol descriptions for Coop-MADRL.

Symbols Definitions

𝑒 ∈ 𝐸 Episode (𝐸 : Total episodes)

G := {𝑔𝑘 } Agent set (1 ≤ 𝑘 ≤ 𝐾)
𝑠𝑡 ∈ S State at step 𝑡 (S: State space)

O := {O𝑘 } Observation sets for all agents

𝑜𝑘𝑡 ∈ O𝑘 Observation for agent 𝑔𝑘 at step 𝑡

𝒐𝑡 := {𝑜𝑘𝑡 } All observation at step 𝑡

A := {A𝑘 } Action sets for all agents (A𝑘 : Action space)

𝑎𝑘𝑡 ∈ A𝑘 Action for agent 𝑔𝑘 at step 𝑡

𝒂𝑡 := {𝑎𝑘𝑡 } All action at step 𝑡

𝑟𝑡 Reward for agent 𝑔𝑘 at step 𝑡

𝑄𝑘

(
𝑜𝑘𝑡 , 𝑎

𝑘
𝑡

)
Action-value function for agent 𝑘

𝑄𝑡𝑜𝑡 (𝒐𝑡 , 𝒂𝑡) Joint action-value function for all agent

M Replay memory

ℎ𝑖 ∈ 𝒉 observation-action history

𝒉 observation-action history of all agents

combinations included in agent 𝑔𝑘 (
��A𝑘

�� = |𝑺 |). To design rewards, this work

gives a large negative value if the constraints are not satisfied; otherwise, a

positive value depends on the objective function value. A certain negative

value is also given when VN allocation is changed to avoid unnecessary VN

reallocation.

5.2.3 Formulation

The Coop-MADRL-based dynamic VN allocation method consists of two phases:

centralized training and decentralized execution. The decentralized agents con-

tinually execute the dynamic VN allocation control after centralized training.

Algorithm 7 shows the centralized training of Coop-MADRL. Line 1 shows

the initialization of agent parameters. A series of procedures (lines 2–15) is

repeatedly executed until learning is complete. Lines 3–4 show the generation

of the training-traffic sequences and the initialization of environment parame-

ters and observation. A series of actions is called an episode, and each episode

94

Section 5.2

Algorithm 7 Centralized training of Coop-MADRL.

1: initialize: agent parameters

2: while 𝑡 < 𝑇 do

3: generate training-traffic sequences for all VNs

4: initialize: environment parameters

5: for 𝑒 = 0, 𝐸 do

6: for each 𝑔𝑘 ∈ G do

7: 𝑜𝑘𝑡 ← observation

8: 𝑎𝑘𝑡 ← select epsilon greedy action
(
𝑜𝑘𝑡

)
9: 𝒐𝑡+1 ← update environment (𝒐𝑡 , 𝒂𝑡) by Alg. 9

10: 𝑟𝑡 ← calculate reward (𝒐𝑡 , 𝒂𝑡 , 𝒐𝑡+1) by Alg. 10

11: if 𝑟𝑡 ≤ −1 then

12: terminate episode: 𝑒 ← 𝐸

13: 𝑡 ← 𝑡 + 1
14: store episodic transition

(
𝒐 𝑗 , 𝒂 𝑗 , 𝑟 𝑗

)
,∀ 𝑗 ∈ episode steps

15: train all agents G by random episodic transition

Algorithm 8 Dynamic VN allocation using Coop-MADRL.

1: 𝑄𝑘

(
𝑜𝑘 , 𝑎𝑘

)
← train all agents G by Alg. 7

2: while True do

3: for each 𝑔𝑘 ∈ G do

4: 𝑜𝑘𝑡 ← observation

5: 𝑎𝑘𝑡 ← arg max
𝑎′∈A𝑘

𝑄𝑘

(
𝑜𝑘𝑡 , 𝑎

′)
6: 𝒐𝑡+1 ← update environment (𝒐𝑡 , 𝒂𝑡) by Alg. 9

7: 𝑡 ← 𝑡 + 1

(lines 5–13) is repeatedly executed. In each episode, agents collect learning

samples that are combinations of ⟨𝒐𝑡 , 𝒂𝑡 , 𝑟𝑡 , 𝒐𝑡+1⟩. Each agent executes lines

6–8 in parallel. Line 7 shows the observation of 𝑜𝑘𝑡 from the VN environment.

Line 8 means the action selected on the basis of the strategy that a random

action is selected with probability Y; otherwise, an action 𝑎𝑘𝑡 that maximizes

𝑄𝑘

(
𝑜𝑘𝑡 , 𝑎

′) is selected (i.e., argmax𝑎′∈A𝑘 𝑄𝑘

(
𝑜𝑘𝑡 , 𝑎

′)) with probability 1−Y. This
is to avoid convergence to a local optimum solution. In line 9, VN allocation is

95

Chapter 5

Algorithm 9 Update environment.

1: 𝑫𝑡+1, 𝑩𝑡+1 ← update VN demand (𝑡)
2: 𝒀 𝑡+1 ← calculate next VM allocation (𝒂𝑡 ,𝒀 𝑡)
3: 𝝉𝑡 ← convert traffic demands (𝑫𝑡+1,𝒀 𝑡+1, 𝒁)
4: 𝑹𝐿

𝑡+1,𝑈
𝐿
𝑡+1 ← calculate next link utilization (𝝉t)

5: 𝑹𝑆
𝑡+1,𝑈

𝑆
𝑡+1 ← calculate next server utilization (𝑫t,𝒀t)

6: 𝑜𝑘
𝑡+1 = [𝑑

𝑘
𝑡+1, 𝑏

𝑘
𝑡+1, 𝑹

𝐿
𝑡+1, 𝑹

𝑆
𝑡+1],∀𝑘

7: return 𝒐𝑡+1 = [𝑜1𝑡+1, . . . , 𝑜
𝐾
𝑡+1]

updated in accordance with 𝒂𝑡 by Alg. 9 and returns the 𝒐𝑡+1. Line 10 shows

the reward calculation. Lines 11–12 mean the termination condition of agent

learning. In this algorithm, 𝑟𝑡 ≤ −1 is the termination condition, i.e., the state

that does not satisfy at least one constraint. Line 14 shows stores in replay

memory M. The reason for storing the samples once in replay memory is to

eliminate the time dependence of collecting training samples [9]. In line 15, all

agents G are trained by the history of episodic transition, which is randomly

taken from M.

This work describes the DNN architecture of Coop-MADRL. As shown in

Fig. 5.2, DNN architecture consists of each agent’s DNN layer and a mixed

layer. For each agent’s DNN layer, this work introduced DRQN [45] to han-

dle time-series data as input, which incorporates recurrent neural networks

(RNNs) into DQN. This work used a three-layer NN consisting of two fully

connected layers and the gated recurrent unit (GRU) layer [80]. This work

adopted Double-DQN [31] as the DRL algorithm. For the mixed layer, this

work uses a mixed layer of VDN and QMIX as it is.

Algorithm 8 shows dynamic VN allocation using the Coop-MADRL. Lines

1 show the pre-training of G by using Alg. 7 and calculation of 𝑄𝑘

(
𝑜𝑘 , 𝑎𝑘

)
.

Next, this algorithm continually repeats lines 2–7 at every fixed 𝑡. In line 5,

each agent selects an 𝑎𝑘𝑡 that maximizes 𝑄𝑘

(
𝑜𝑘 , 𝑎𝑘

)
.

5.2.4 Update environment

In this formulation, the action sets that are changed by candidate VN allo-

cation are determined only from the VM allocation, and the routes between

96

Section 5.2

Algorithm 10 Reward calculation.

1: 𝑟𝑡 ← Eff
(
𝑈𝐿
𝑡+1

)
+ Eff

(
𝑈𝑆
𝑡+1

)
2: if 𝒀 𝑡 ≠ 𝒀 𝑡+1 then

3: 𝑟𝑡 ← 𝑟𝑡 − 𝛼𝑃𝑡
4: return max(−5,min(1, 𝑟𝑡))

users and VMs are uniquely determined in the environment update. This work

updates the environment on the basis of the extendable resource-integrated

control architecture [56] that coordinates multiple control algorithms specified

for individual metrics. This work uses the route-optimization algorithm as

the specified optimization algorithm. By using this architecture, the routes

between users and VMs are uniquely determined when the destination server

is determined. The route-optimization calculates a routing variable 𝑥
𝑝𝑞

𝑖 𝑗 ,𝑡
to

minimize the link utilization 𝑈𝐿
𝑡 while satisfying the constraints in Eqs. (5.7)–

(5.11). Since the routing variable 𝑥
𝑝𝑞

𝑖 𝑗 ,𝑡
is a continuous value within 0–1 as

shown in Eq. (5.11), this problem class is classified as a LP problem. If the

routing variable 𝑥
𝑝𝑞

𝑖 𝑗 ,𝑡
is changed to a binary variable, it is classified as an MIP

problem.

Algorithm 9 shows the procedure of the update environment. Line 1 shows

the observation of the next demands. In line 2, the next VM allocation is

calculated from 𝒂𝑡 and current VM allocation. Line 3 means the calculation of

the traffic matrix 𝝉𝑡 from the origin node, destination server, and VN traffic

demands 𝑩𝑡 . The origin node is determined by the user placement 𝒁, and the

destination server is determined by the VM allocation 𝒀 𝑡 . Lines 4–5 show the

calculation of next link and server utilization. Finally, Algorithm 9 returns

𝒐𝑡+1.

5.2.5 Reward calculation

This work designs the reward function on the basis of the objective function

Eq. (5.1). Algorithm 10 shows the procedure of the reward calculation for G.
The G learns how to maximize the reward. The term Eff (𝑥) in Alg. 10 shows

97

Chapter 5

the efficiency function and is defined as follows:

Eff (𝑥) =

0.5 (𝑥 ≤ 0.4)
−𝑥 + 0.9 (0.4 < 𝑥 ≤ 0.9)
−2𝑥 + 1.8 (0.9 < 𝑥 ≤ 1)
−𝑥 − 0.5 (1 < 𝑥).

(5.13)

This function returns a positive value depending on 𝑥 if 𝑥 < 0.9; otherwise it

returns a negative value. This work designed a handcrafted efficiency function

so that the efficiency decreases as 𝑥 increases. The decrease of efficiency dou-

bles when 𝑥 is more than 0.9, and the values of 0.5 indicate the upper limit

of this function. This work also designed the function to drastically decrease

efficiency when 𝑥 > 1, i.e., when the constraints are not satisfied. Note that

this design is just one example that the proposed method performed suitably,

and there is still room for improvement in the design of the efficient func-

tion. Elucidating the relationship between reward function and VN allocation

performance remains one of the future challenges.

Line 1 show the Eff (𝑥) calculation. In lines 2–3, it adds −𝛼𝑃𝑡 as a penalty

shown in Eq. (5.2) if the 𝒀 𝑡 is changed. Finally, it returns a clipped reward

within −5 ≤ 𝑟𝑡 ≤ 1. The reason for clipping the reward is to increase the

stability of agent learning [9].

5.3 Evaluation

This work evaluated the effectiveness of the proposed method through sim-

ulations in terms of performance, computation time, and scalability for the

number of VNs and network topology size. This work also evaluated the gen-

eralization performance for unknown traffic patterns. This work prepared two

environments and five comparison methods. This work implemented the DRL

algorithm based PyTorch [81] and PyMARL [82] and route-optimization algo-

rithm using the GNU Linear Programming Kit (GLPK) [65].

5.3.1 Evaluation conditions

This work sets the number of VNs to 𝐾 = 20 as the default settings. In

evaluating scalability, this work increased the 𝐾 from 20 to 60 and increased

98

Section 5.3

32

64

26G

13G

User
node

Server
node

Server
node

Figure 5.4: Simple network topology. (©2022 IEEE.)

link capacity and server capacity in proportion to 𝐾. This work also sets total

time steps to 𝑇 = 3.0 × 105 and total episodes to 𝐸 = 200, and the weight of

the penalty function of VM migration to 𝛼 = 0.01 for all evaluations.

For the VN-demand conditions, the 𝒁 is randomly generated and fixed for

all evaluations. The 𝑫𝑡 is randomly generated integer values within 1–5 and is

reset at the beginning of each episode. The 𝑩𝑡 is 200-step time-series sequences

randomly generated by various traffic models at the beginning of each episode.

After generating traffic sequences, all the traffic data were normalized so that

the average traffic volume was 1 Gbps and the minimum traffic volume was 0.

This work generated the 𝑩𝑡 for training and evaluation. The details of each

model are described in Section 5.3.2.

For the physical-network conditions, this work prepared simple and prac-

tical networks. Figures 5.4 and 5.5 show the network topology for the simple

and practical networks, respectively. This work assumed that all users and

VMs are placed in the user node and server node, respectively. The values in

these figures show the server capacity and link capacity when 𝐾 = 20. When

𝐾 increases, server capacity and link capacity increase in proportion to 𝐾. All

evaluations except for the scalability evaluation for the network topology size

are on the basis of these two topologies. This work prepared other topologies

to evaluate scalability for the topology size (see Section 5.3.4 in detail).

Simple-network conditions

This work used the 3-node topology, which consists of 1 user node and 2

server nodes. When 𝐾 = 20, the number of candidate VM allocations was

220 ≃ 1.0 × 106, and that of the candidate actions of 𝑔𝑘 was 2.

99

Chapter 5

30

60 60

30

7.2G

3.6G

3.6G

3.6G

3.6G

3.6G

7.2G

3.6G3.6G

3.6G
7.2G

7.2G
3.6G

Figure 5.5: Practical network topology. (©2022 IEEE.)

Practical-network conditions

This work used the 9-node topology based on Internet2 [64], which consists

of 5 user nodes and 4 server nodes as shown in Fig. 5.5, and all users and all

VMs are allocated in user nodes and server nodes, respectively. When 𝐾 = 20,

the number of candidate VM allocations was 420 ≃ 1.1 × 1012, and that of the

candidate actions of 𝑔𝑘 was 4.

5.3.2 Traffic models

Figures 5.6 and 5.7 show the six types of generated traffic sequences used in

this evaluation. It shows the generated samples of traffic sequences normal-

ized within 0–2 Gbps after generating them. To evaluate the performance of

the proposed method under various traffic patterns, this work prepared five

different models to generate time-series traffic sequences and one option to

modify the generated traffic sequences. This option can apply to all traffic

models, which assumes the case when unexpected heavy traffic demand sud-

denly emerges. This work describes the models and option as follows.

ARMA model

Figure 5.6(a) shows the traffic sequences generated by the autoregressive mov-

ing average (ARMA) model. This model assumes general traffic patterns, such

as aggregated broadband traffic. The (𝑝, 𝑞)–order ARMA model is formulated

100

Section 5.3

0 100 200

Steps

0.0

0.5

1.0

1.5

2.0

T
ra

ff
ic

 D
em

an
d
 [
G

b
p
s]

0 100 200

Steps

0.0

0.5

1.0

1.5

2.0

0 100 200

Steps

0.0

0.5

1.0

1.5

2.0

(a) ARMA model.

0 100 200

Steps

0.0

0.5

1.0

1.5

2.0

T
ra

ff
ic

 D
em

an
d
 [
G

b
p
s]

0 100 200

Steps

0.0

0.5

1.0

1.5

2.0

0 100 200

Steps

0.0

0.5

1.0

1.5

2.0

(b) ARMA model with other parameters.

0 100 200

Steps

0.0

0.5

1.0

1.5

2.0

T
ra

ff
ic

 D
em

an
d
 [
G

b
p
s]

0 100 200

Steps

0.0

0.5

1.0

1.5

2.0

0 100 200

Steps

0.0

0.5

1.0

1.5

2.0

(c) SARIMA model.

Figure 5.6: Various traffic models (1). (©2022 IEEE.)

as follows:

𝑓 (𝑡) = Y𝑡 +
𝑝∑︁
𝑖=1

𝜙𝑖 𝑓 (𝑡 − 𝑖) +
𝑞∑︁
𝑖=1

\𝑖Y𝑡−𝑖, (5.14)

where 𝑓 (𝑡) is the time-series data at time-step 𝑡, 𝑝 is the order of AR(𝑝), 𝑞
is the order of MA(𝑞), 𝜙𝑖 are AR(𝑝) model parameters, \𝑖 are MA(𝑞) model

parameters, and Y𝑡 is the distributed error at time-step 𝑡. This work sets

𝑝 = 2, 𝑞 = 50, and Y𝑡 ∼ N(0, 1). Here, N(0, 1) is the normal distribution with

a mean of 0 and variance of 1. This work also sets hyper-parameters 𝜙1 = 0.9,

𝜙2 = −0.1, and \𝑖 = 0.95 (∀𝑖, 1 ≤ 𝑖 ≤ 50). These hyper-parameters were set to

101

Chapter 5

0 100 200

Steps

0.0

0.5

1.0

1.5

2.0

T
ra

ff
ic

 D
em

an
d
 [
G

b
p
s]

0 100 200

Steps

0.0

0.5

1.0

1.5

2.0

0 100 200

Steps

0.0

0.5

1.0

1.5

2.0

(a) Poisson model.

0 100 200

Steps

0.0

0.5

1.0

1.5

2.0

T
ra

ff
ic

 D
em

an
d
 [
G

b
p
s]

0 100 200

Steps

0.0

0.5

1.0

1.5

2.0

0 100 200

Steps

0.0

0.5

1.0

1.5

2.0

(b) Random model.

0 100 200

Steps

0.0

0.5

1.0

1.5

2.0

T
ra

ff
ic

 D
em

an
d
 [
G

b
p
s]

0 100 200

Steps

0.0

0.5

1.0

1.5

2.0

0 100 200

Steps

0.0

0.5

1.0

1.5

2.0

(c) ARMA model with anomaly option.

Figure 5.7: Various traffic models (2). (©2022 IEEE.)

represent long-term fluctuations.

ARMA model with other parameters

Figure 5.6(b) shows the traffic sequences generated by the ARMA model when

changing the hyper-parameters from Fig. 5.6(a). This work sets 𝑝 = 2, 𝑞 = 5

for Eq. (5.14) in this model. This work also sets hyper-parameters 𝜙1 = 0.5,

𝜙2 = −0.1, and \𝑖 = 0.15 (∀𝑖, 1 ≤ 𝑖 ≤ 5). These hyper-parameters were set

to represent short-term fluctuations. This work changed 𝑞 and \𝑖 from (1)

ARMA model, which is equivalent to weakening the effect of MA factors.

102

Section 5.3

SARIMA model

Figure 5.6(c) shows the traffic sequences generated by the seasonal autore-

gressive integrated moving average (Seasonal ARIMA; SARIMA) model. This

model assumes periodical traffic patterns, such as daily traffic trends. The

(𝑝, 𝑑, 𝑞) × (𝑃, 𝐷,𝑄)𝑚–order SARIMA model is formulated as follows:

𝜙𝑝 (𝐵)Φ𝑃 (𝐵) (1 − 𝐵)𝑑 (1 − 𝐵𝑚)𝐷 𝑓 (𝑡) = \𝑞 (𝐵)Θ𝑄 (𝐵)Y𝑡 , (5.15)

where 𝑓 (𝑡) is the time-series data at time-step 𝑡, 𝐵 is the backward shift

operator and is defined as 𝐵𝑘 𝑓 (𝑡) := 𝑓 (𝑡 − 𝑘). The 𝜙𝑝 (𝐵) and Φ𝑃 (𝐵) are
called AR operators, and the \𝑞 (𝐵) and Θ𝑄 (𝐵) are called MA operators. Each

operator is defined as follows:

𝜙𝑝 (𝐵) := 1 − 𝜙1𝐵 − 𝜙2𝐵2 − · · · − 𝜙𝑝𝐵𝑝 (5.16)

\𝑞 (𝐵) := 1 − \1𝐵 − \2𝐵2 − · · · − \𝑞𝐵𝑞 (5.17)

Φ𝑃 (𝐵) := 1 −Φ1𝐵
𝑚 −Φ2𝐵

2𝑚 − · · · −Φ𝑃𝐵
𝑃𝑚 (5.18)

Θ𝑄 (𝐵) := 1 − Θ1𝐵
𝑚 − Θ2𝐵

2𝑚 − · · · − Θ𝑄𝐵𝑄𝑚 . (5.19)

Here, (𝑝, 𝑑, 𝑞) and (𝑃, 𝐷,𝑄) show the order of the ARIMA model, and 𝑚

shows the period of time-serial sequences. This work sets (𝑝, 𝑑, 𝑞) = (2, 0, 5),
(𝑃, 𝐷,𝑄) = (1, 0, 1), and 𝑚 = 50. This work also sets hyper-parameters 𝜙1 =

0.9, 𝜙2 = −0.1, \𝑖 = 1 − 0.1 × 𝑖 (∀𝑖, 1 ≤ 𝑖 ≤ 5) and Φ1 = Θ1 = 0.9. These

hyper-parameters were set to represent periodical fluctuations based on (2)

ARMA model with other parameters.

Poisson model

Figure 5.7(a) shows the traffic sequences generated by the Poisson process.

This model assumes traffic patterns for IoT applications. The traffic model

for IoT applications is often described by periodic patterns from asynchronous

sources. This superposition of IoT traffic streams can be approximated by the

Poisson process [83]. The Poisson model is formulated as follows:

𝑓 (𝑡) = 𝑣P𝑡 , P𝑡 ∼ Pr(𝑋=𝑘;_) = _
𝑘𝑒−_

𝑘!
,

where P𝑡 is the Poisson distribution, the parameter _ is the number of IoT

devices per unit time, and the 𝑣 is the average traffic volume per IoT device.

103

Chapter 5

Table 5.6: Summary of the proposed methods and comparison methods.

Methods Methodology Dynamic Cooperation

QMIX (Ours) Coop-MADRL ✓ ✓

VDN (Ours) Coop-MADRL ✓ ✓

IQL MADRL ✓ -

Static Allocation (SA) Heuristic - -

Exhaustive Search (ES) Meta-Heuristic ✓ -

Random model

Figure 5.7(b) shows the traffic sequences generated by white noise. This work

sets the traffic volume at each time-step to a random value in the range of 0–1.

With anomaly option

Figure 5.7(c) shows the traffic sequences with the anomaly option applied to

the ARMAmodel. This work randomly injected 5 steps between 0–200 steps as

anomaly steps. This work sets the traffic volume of an anomaly step to 2 Gbps

on the assumption that unexpected heavy traffic demand would emerge. After

the anomaly traffic was injected, this work normalized the average traffic to 1

Gbps. This normalization reduces the average traffic volume for the step that

does not inject an anomaly since this work sets the average traffic volume that

includes anomaly traffic to 1 Gbps. This work applies this option to ARMA,

SARIMA, Poisson, and Random models in this evaluation.

Mixed model

This work defines a mixed model consisting of five traffic models and four

traffic models with the anomaly option mentioned above. At the beginning of

each episode, each user randomly selects one of the nine traffic patterns.

5.3.3 Comparative methods

Table 5.6 summarizes the proposed methods and the comparison methods.

QMIX and VDN indicate the Coop-MADRL-based dynamic VN allocation

104

Section 5.3

method shown in Alg. 8, which each use QMIX and VDN in a mixed network

and use Eq. (2.7) for end-to-end training. IQL indicates the MADRL-based

method without cooperation, i.e., each agent learns on the basis of their re-

ward and Eq. (2.5) is used for end-to-end training. IQL does not impose any

restrictions on an agent’s action at each time. Note that the previous method

of this work [27] restricted one agent that could act at each time, and it is dif-

ferent from IQL. Also note that single-agent DRL was not evaluated because

learning is clearly unsuccessful due to requirements for huge training iterations

until the Q-values for all actions are sufficiently close to the optimal. When

a single agent trains in a practical network, it is estimated that at least 1012

training steps will be required even if the agent learned each action once.

Static Allocation (SA) is the heuristic method where VM allocation is fixed

to minimize the sum of 𝑈𝐿
0 and 𝑈𝑆

0 for an average amount of past demands,

and routes were dynamically changed as with other methods. Since finding

the initial VM allocation for SA is also NP-hard, in this evaluation, this work

sequentially decided on the best VM allocation that minimizes the sum of 𝑈𝐿
0

and 𝑈𝑆
0 for average VN demands consisting of 1 Gbps traffic demand and VM

size of 3. By comparing SA and other methods, this work expects to determine

the effectiveness of dynamic allocation.

Exhaustive Search (ES) is the meta-heuristic method where the action that

maximizes the reward 𝑟𝑡 is selected from all candidate actions A at 𝑡. ES finds

the best action by exhaustively calculating each reward one by one for all

candidate actions at 𝑡, which is equivalent to solving an optimization problem

every 𝑡. The objective of ES is to maximize the immediate reward, which is

the reward obtained in the present. Alternatively, the objective of RL is to

maximize the delayed reward, which is the expectation of the total rewards

to be obtained in the future. By comparing ES and other MADRL-based

methods, this work expects to evaluate the difference in performance between

the two types of rewards. Note that the solution of ES is different from the

global optimal solution because the global optimal allocation is defined as

the solution that maximizes the sum of the rewards at each time, as shown

in Eq. (5.1). To find the global optimal solution, it is necessary to perfectly

predict all future demands and calculate the optimal allocation that maximizes

the sum of the rewards at each time. Therefore, the global optimal solution

105

Chapter 5

0 1 2 3
Steps ×10

5

0

25

50

75

100

125
To

ta
l R

et
ur

n
QMIX
VDN
IQL

(a) Simple network.

0 1 2 3
Steps ×10

5

0

25

50

75

100

125

To
ta

l R
et

ur
n

QMIX
VDN
IQL

(b) Practical network.

Figure 5.8: Training curves tracking the agent’s total return (training by Mixed

model). (©2022 IEEE.)

is challenging to calculate within a realistic computation time, even for the

simple-network condition.

5.3.4 Evaluation results

Training curve

Figure 5.8 shows the training curves tracking the agent’s total return under

simple- and practical-network conditions. The total return is defined as the

sum of rewards at each time until the end of the episode. This work carried

out 5 evaluations for every 1 × 104 steps with random initial conditions. The

width of each bar indicates the standard deviation (±𝜎). This work adopted

a mixed model for traffic patterns in training and evaluation.

Figure 5.8(a) shows that the average total return of the three MADRL-

based methods increased as the training progressed. It also shows that the

curves of the total return of the three methods are almost the same. Fig-

ure 5.8(b) shows that the average total return of the Coop-MADRL (QMIX

and VDN) based methods increased as the training progresses, while that of

the non-Coop-MADRL (IQL) does not increase. This means that IQL cannot

learn the suitable allocation that maximizes the objective function while satis-

fying constraints. This work discusses the performance details in Section 5.3.4.

106

Section 5.3

M
et

ho
ds

0.
6

0.
4

0.
2

0.
0

0.
2

0.
4

Ave. Reward

M
et

ho
ds

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Ave. Max. Server Utilization

M
et

ho
ds

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Ave. Max. Link Utilization

Q
M

IX
 (O

ur
s,

 w
/ c

oo
pe

ra
tio

n)
V

D
N

 (O
ur

s,
 w

/ c
oo

pe
ra

tio
n)

IQ
L

(w
/o

 c
oo

pe
ra

tio
n)

S
ta

tic
 A

llo
ca

tio
n

(S
A

)
E

xh
au

st
iv

e
S

ea
rc

h
(E

S
)

M
et

ho
ds

02040608010
0

Total Constraint Violation

M
et

ho
ds

0

20
0

40
0

60
0

80
0

Total VN Migration

(a
)
T
ra
in
in
g
a
n
d
ev
a
lu
a
ti
o
n
b
y
M
ix
ed

m
o
d
el
,
fo
r
si
m
p
le

n
et
w
o
rk
.

M
et

ho
ds

0.
0

0.
2

0.
4

0.
6

0.
8

Ave. Reward

M
et

ho
ds

0.
0

0.
5

1.
0

1.
5

Ave. Max. Server Utilization

M
et

ho
ds

0.
0

0.
5

1.
0

1.
5

Ave. Max. Link Utilization
Q

M
IX

 (O
ur

s,
 w

/ c
oo

pe
ra

tio
n)

V
D

N
 (O

ur
s,

 w
/ c

oo
pe

ra
tio

n)
IQ

L
(w

/o
 c

oo
pe

ra
tio

n)
S

ta
tic

 A
llo

ca
tio

n
(S

A
)

M
et

ho
ds

01020304050 Total Constraint Violation

M
et

ho
ds

0

10
0

20
0

30
0

40
0

50
0

Total VN Migration

(b
)
T
ra
in
in
g
a
n
d
ev
a
lu
a
ti
o
n
b
y
M
ix
ed

m
o
d
el
,
fo
r
p
ra
ct
ic
a
l
n
et
w
o
rk
.

F
ig
u
re

5.
9:

P
er
fo
rm

an
ce

ev
al
u
at
io
n
fo
r
ea
ch

m
et
h
o
d
.
(©

20
22

IE
E
E
.)

107

Chapter 5

Performance

Figure 5.9 shows the average performance of each method under simple- and

practical-network conditions. This work carried out 20 calculations with ran-

dom initial conditions and set the same random seeds for all evaluations. The

width of each bar indicates the standard deviation (±𝜎). This work used agents

trained with the mixed model as described in Fig. 5.8. This work also used

the mixed model for the traffic model in this evaluation. The mixed model

includes large demand fluctuations by the Random and Poisson models. The

performance of each method can roughly be compared with the average re-

ward. This work also investigates the details of performance as shown in the

2–5th metrics in Figs. 5.9(a) and 5.9(b). That is, the performance metrics are

the average maximum server utilization 𝑈𝑆
𝑡 , average maximum link utilization

𝑈𝐿
𝑡 , total constraint violation, and total VM migration. The server and link

utilization usually take a value in the range of 0–1 if all constraints are sat-

isfied. On the other hand, if constraint violations occur at 𝑡, the server and

link utilization at 𝑡 may take a value greater than 1 depending on the amount

of exceeded resources. When 𝑘 VMs migrate at a certain time, the total VM

migration adds 𝑘.

In summary, Coop-MADRL reduced the maximum server and link utiliza-

tion and drastically reduced the total constraint violations compared with SA.

Therefore, the proposed method is effective for simple- and practical-network

conditions.

Performance on simple network

This work first compares SA and the other four dynamic allocation methods.

Figure 5.9(a) shows that the four dynamic methods performed better than SA.

The reason is that the dynamic allocation methods can prevent constraint vio-

lations by changing the VN allocation in accordance with the demand change.

This also indicates that three MADRL methods performed better than SA and

that reducing the action space by using the multi-agent technique is effective.

In particular, even IQL performed better than SA. MADRL can reduce the

constraint violations without information of the next demand because the RL

agent indirectly predicts the next demand and learns the effective VN alloca-

108

Section 5.3

tion change through the relationship between the network state and network

efficiency. However, since MADRL calculates rewards on the basis of the cur-

rent demand and not the next-step demand, constraint violations cannot be

absolutely eliminated.

This work next compares ES and the other three MADRL-based methods.

ES performed slightly lower than three MADRL-based methods. In addi-

tion, the number of total VM migrations is notable in ES, even though ES

also considers a VM migration penalty described in Eq. (5.2) as well as other

MADRL-based methods. The reason is that, since ES calculates the solution

that maximizes the reward for the current demand, not for the next demand

as described in Section 5.3.3, the optimal action for ES is frequently changed

when the VN demand fluctuates. As a result, VM migration is increased, and

its performance worsens. On the other hand, the MADRL-based methods learn

a policy that maximizes the expected value of the cumulative reward obtained

in the future. Thus, the MADRL-based methods can reduce VM migrations

and improve the average reward. The result shows that the optimization for

immediate rewards does not necessarily maximize the average reward, and the

optimization of delayed reward by RL is effective when demand is fluctuating.

Finally, this work compares three MADRL-based methods. Figure 5.9(a)

shows that the performance of the three MADRL-based methods was almost

the same. It assumes that the performance of the three methods is saturated

because this condition is too simple. This can be seen from the training curves

in Fig. 5.8. Although QMIX and VDN perform roughly the same, they differ

in terms of total VM migration. This work considers that QMIX can simulta-

neously reduce the constraint violations and unnecessary VM migrations since

agents of QMIX acquired a higher level of cooperation knowledge than those

of VDN.

Performance on practical network

Figure 5.9(b) shows the average performance of four of the methods under

practical-network conditions. Note that SA changed routes calculated with

the route-optimization algorithm at each 𝑡, and ES could not evaluate within

a practical time because its computation time dramatically increased. Also,

109

Chapter 5

Table 5.7: Average computation time per step for 𝐾 = 20.

Methods Simple Network Practical Network

QMIX (Ours) 2.3 ms 75 ms

VDN (Ours) 2.3 ms 75 ms

IQL 2.3 ms 75 ms

Static Allocation (SA) 1.8 ms 74 ms

Exhaustive Search (ES) 69 s (estimate) 7.2 × 107 s

note that the average reward was higher for the practical network than for the

simple network, which is due to the difference in evaluation conditions, and

both reward values are not directly comparable.

Similar to the simple-network condition, three dynamic methods performed

better than SA. Comparing its performance under simple- and practical-network

conditions, both Coop-MADRL-based methods (QMIX and VDN) performed

better than non-Coop-MADRL (IQL) based methods because the degree of

freedom of allocation and cooperation improved as the numbers of nodes and

links increased. In particular, both cooperative methods were able to reduce

the number of total constraint violations drastically. Since each agent in IQL

only considers its action without other agents’ actions, the agents concentrate

on lightly loaded resources in some cases, and this causes violations. On the

other hand, QMIX and VDN have higher maximum server utilization than

SA. The reason is that agents chose the action that maximized the average

reward and minimized the constraint violations even if the maximum server

utilization was increased.

Computation time

Table 5.7 shows the average computation time per 𝑡 of each method, which

includes the time to decide the action, update the next state, and evaluate

the performance. This work used Intel core i9-9980HK for the evaluation.

In the evaluation phase, the computational complexity is the same for the

three MADRL methods because the three methods only calculate the forward

network of their DNNs without a mixed network calculation in a decentralized

manner as described in Section 5.2.1. Under the simple-network conditions,

110

Section 5.3

Table 5.8: Scalability evaluation results for the number of VNs in practical

network (QMIX, training by ARMA model).

Number of VNs Ave. Reward

20 0.57 ± 0.10
40 0.47 ± 0.07
50 0.34 ± 0.08
55 0.20 ± 0.24
60 −5.0 ± 0.02

the computation time per 𝑡 of four methods except ES was less than a few

milliseconds, and that of ES drastically increased. MADRL took less than 1 ms

for an agent to decide the next action. Though ES was the best method from

the viewpoint of performance, it was not effective due to the huge computation

time. Under the practical-network conditions, the computation time per 𝑡 of

all methods other than ES was less than one second. The computation times of

the four methods except ES were almost equal because the time of the route-

optimization calculation became dominant. The computation time of ES is

estimated from the computational quantities of iteration since it was difficult

to find in conventional time. The optimal solution may be found faster by

improving the search algorithm, but it would be difficult to achieve the same

speed as MADRL. Finally, this work revealed that the proposed method is also

useful as a dynamic VM allocation method in terms of computation time.

This work also mentions the computation time of training agents. For the

simple network, QMIX took about 100 minutes and VDN and IQL took about

70 minutes to finish the training of the total time steps 𝑇 = 3.0 × 105. For

the practical network, QMIX and VDN took about 7.1 hours and IQL took

about 6.5 hours to finish the training of the total time steps 𝑇 = 3.0 × 105.

This indicates that the proposed method can learn the optimal VN allocation

in less than half a day for networks of the scale used in the evaluation.

Scalability for number of VNs

Table 5.8 shows the scalability of QMIX for the number of VNs 𝐾 under

practical-network conditions. This work carried out 20 calculations with ran-

111

Chapter 5

dom initial conditions and calculated the mean value and the standard de-

viation of rewards. This work used the ARMA model for the traffic model

in training and evaluation. This work increased the number of VNs 𝐾 until

the performance decreased. This work also increased link capacity and server

capacity in proportion to 𝐾, keeping the average traffic demands and average

VM size constant.

As a result, the average reward rapidly decreased when the number of VNs

exceeded 60 VNs, and the proposed method was effective up to about 50 VNs.

RL should heuristically discover actions that improve the reward and satisfy all

constraints in the early learning steps when the agent acts randomly. It seems

that scalability could be improved by supporting the initial learning process

by providing correct training data by a person. The proposed method is as

scalable as the previous methods [25–27] because they simultaneously handled

less than 50 VNs at each time step. In this work, a VN is assumed to be a

resource-isolated network slice provided by each service provider and shared

by many users or IoT devices. This work believes that the proposed method

is sufficiently scalable considering the number of services handled by today’s

networks.

112

Section 5.3

T
ab

le
5.
9:

C
om

p
u
ta
ti
on

ti
m
e
fo
r
va
ri
ou

s
p
h
y
si
ca
l
n
et
w
or
k
to
p
ol
og
ie
s.

T
o
p
o
lo
g
y

#
o
f
N
o
d
e
s

#
o
f
L
in
k
s

E
x
e
cu

ti
o
n

T
im

e
L
P

T
im

e
T
ra

in
in
g
ti
m
e

In
te
rn
et
2

9
13

0.
06

s
0.
05

s
0.
30

d
ay

A
b
il
en
e

12
15

0.
17

s
0.
15

s
0.
83

d
ay

A
tl
an

ta
15

22
0.
43

s
0.
39

s
1.
6
d
ay

G
ea
n
t

22
36

3
s

2.
7
s

10
d
ay
∗

F
ra
n
ce

25
45

5.
3
s

4.
9
s

18
d
ay
∗

In
d
ia
35

35
80

21
s

20
s

73
d
ay
∗

G
er
m
an

y
50

50
88

96
s

89
s

3
.3
×
10

2
d
ay
∗

T
a2

65
10
8

30
5
s

28
6
s

1
.0
×
10

3
d
ay
∗

∗ E
st
im

at
ed

va
lu
e

T
ab

le
5.
10
:
C
om

p
u
ta
ti
on

ti
m
e
fo
r
va
ri
ou

s
p
h
y
si
ca
l
n
et
w
or
k
to
p
ol
og
ie
s
(w

it
h
sh
or
te
st

p
at
h
).

T
o
p
o
lo
g
y

#
o
f
N
o
d
e
s

#
o
f
L
in
k
s

E
x
e
cu

ti
o
n

T
im

e
T
ra

in
in
g
ti
m
e

G
ea
n
t

22
36

1.
6
m
s

8.
1
h

F
ra
n
ce

25
45

1.
8
m
s

16
.9

h

In
d
ia
35

35
80

2.
0
m
s

11
.9

h

G
er
m
an

y
50

50
88

3.
0
m
s

10
.3

h

T
a2

65
10
8

3.
9
m
s

19
.8

h

113

Chapter 5

T
ab

le
5.
11
:
P
er
fo
rm

an
ce

ev
al
u
at
io
n
re
su
lt
s
in

A
tl
an

ta
n
et
w
or
k
(t
ra
in
in
g
b
y
A
R
M
A

m
o
d
el
).

M
e
th

o
d
s

A
v
e
.
R
e
w
a
r
d

A
v
e
.
M

a
x
.
S
e
r
v
e
r
U
ti
l.

A
v
e
.
M

a
x
.
L
in

k
U
ti
l.

C
o
n
st
r
a
in
t
V
io
la
ti
o
n

T
o
ta

l
V
M

M
ig
r
a
ti
o
n

Q
M
IX

(O
u
rs
)

0
.4
3
±
0
.1
4

0
.9
7
±
0
.3
9

1
.1
±
0
.2
1

9
.5
±
1
2

1
8
9
±
6
2

S
ta
ti
c
A
ll
o
ca

ti
o
n
(S

A
)

0
.3
7
±
0
.1
1

0
.5
0
±
0
.0
7

1
.1
±
0
.0
7

1
4
±
1
3

0
.0
0
±
0
.0

T
ab

le
5.
12
:
P
er
fo
rm

an
ce

ev
al
u
at
io
n
re
su
lt
s
in

In
d
ia
35

n
et
w
or
k
(t
ra
in
in
g
b
y
A
R
M
A

m
o
d
el
,
w
it
h
sh
or
te
st

p
at
h
).

M
e
th

o
d
s

A
v
e
.
R
e
w
a
r
d

A
v
e
.
M

a
x
.
S
e
r
v
e
r
U
ti
l.

A
v
e
.
M

a
x
.
L
in

k
U
ti
l.

C
o
n
st
r
a
in
t
V
io
la
ti
o
n

T
o
ta

l
V
M

M
ig
r
a
ti
o
n

Q
M
IX

(O
u
rs
)

0
.5
6
±
0
.0
8

0
.9
0
±
0
.1
6

0
.9
4
±
0
.2
8

0
.7
0
±
1
.9

2
6
3
±
2
9

S
ta
ti
c
A
ll
o
ca

ti
o
n
(S

A
)

−0
.4
0
±
0
.3
3

0
.4
5
±
0
.0
7

1
.3
±
0
.0
8

1
0
2
±
3
8

0
.0
0
±
0
.0

T
ab

le
5.
13
:
P
er
fo
rm

an
ce

ev
al
u
at
io
n
re
su
lt
s
in

G
er
m
an

y
50

n
et
w
or
k
(t
ra
in
in
g
b
y
A
R
M
A

m
o
d
el
,
w
it
h
sh
or
te
st

p
at
h
).

M
e
th

o
d
s

A
v
e
.
R
e
w
a
r
d

A
v
e
.
M

a
x
.
S
e
r
v
e
r
U
ti
l.

A
v
e
.
M

a
x
.
L
in

k
U
ti
l.

C
o
n
st
r
a
in
t
V
io
la
ti
o
n

T
o
ta

l
V
M

M
ig
r
a
ti
o
n

Q
M
IX

(O
u
rs
)

0
.6
8
±
0
.0
6

0
.8
4
±
0
.2
6

0
.8
7
±
0
.2
7

0
.1
0
±
0
.4
5

1
1
8
±
3
2

S
ta
ti
c
A
ll
o
ca

ti
o
n
(S

A
)

−0
.7
8
±
0
.2
2

0
.4
5
±
0
.0
7

1
.5
±
0
.1
2

1
4
2
±
2
7

0
.0
0
±
0
.0

T
ab

le
5.
14
:
P
er
fo
rm

an
ce

ev
al
u
at
io
n
re
su
lt
s
in

T
a2

n
et
w
or
k
(t
ra
in
in
g
b
y
A
R
M
A

m
o
d
el
,
w
it
h
sh
or
te
st

p
at
h
).

M
e
th

o
d
s

A
v
e
.
R
e
w
a
r
d

A
v
e
.
M

a
x
.
S
e
r
v
e
r
U
ti
l.

A
v
e
.
M

a
x
.
L
in

k
U
ti
l.

C
o
n
st
r
a
in
t
V
io
la
ti
o
n

T
o
ta

l
V
M

M
ig
r
a
ti
o
n

Q
M
IX

(O
u
rs
)

0
.5
3
±
0
.2
6

0
.8
7
±
0
.3
2

1
.1
±
0
.6
7

2
.8
±
1
0

1
7
4
±
4
4

S
ta
ti
c
A
ll
o
ca

ti
o
n
(S

A
)

−1
.3
±
0
.1
9

0
.4
5
±
0
.0
7

1
.9
±
0
.1
9

1
8
1
±
1
6

0
.0
0
±
0
.0

114

Section 5.3

Network topology dependency

To verify the effectiveness of the proposed method for larger physical network

topologies, this work evaluates the computation time and performance of the

proposed method for various network topologies. The network topology used

in the evaluation refers to SNDLib [84], which is a library of test instances

of survivable fixed telecommunication network design. In all evaluations, this

work used QMIX as the learning algorithm and the ARMA model as the

traffic model, and this work sets the number of VNs to 𝐾 = 20. This work also

randomly sets user nodes and server nodes for all topologies. Other conditions

are the same as in the above evaluation.

Table 5.9 shows the computation time for various physical network topolo-

gies. The execution time shows the computation time required to select the

agent’s action, update the VN allocation, and calculate the reward in each

execution step, which corresponds to lines 3–7 in Alg. 8. The LP time shows

the computation time required to calculate the route-optimization algorithm

in each execution step, which is a part of execution time and corresponds to

line 4 in Alg. 9. The training time shows the computation time required for

the agents to complete the training of the total time steps 𝑇 = 3 × 105. The

result shows that all computation times drastically increase as the number of

topology nodes increases. The result also shows that most of the execution

and training time is spent solving the route-optimization problem. Due to the

drastic increase in computation time, this work estimated the training time

for large topologies based on the execution time and the total training steps.

Here, this work assumes that the total training steps 𝑇 = 3× 105 are sufficient

for all topologies, but larger ones may require more training steps.

This work considers the practical limits of topology size in terms of compu-

tation time. The execution time determines the VN allocation control interval.

For example, when the execution time takes 5 minutes, the control interval can-

not be shorter than 5 minutes. If we aim to keep the control interval under

one minute, the limit of the number of nodes can be estimated to be about 30

nodes. Similarly, if we aim for a control interval of 5 minutes or less, the limit

can be estimated to be about 50 nodes. As for the training time, assuming that

the reasonable training time is less than one week, the limit of the number of

115

Chapter 5

nodes can be estimated to be about 20 nodes. In conclusion, unless speeding

up the computation time, this work can estimate that the upper limit of the

number of nodes to which the proposed method can be applied is about 20.

Parallelization is one of the promising candidates for speedup the proposed

method. Existing studies have reported that a distributed DRL can dramat-

ically speed up the agent training process. For example, Espeholt et al. [85]

developed a distributed DRL architecture that scales up to thousands of ma-

chines without sacrificing data efficiency or resource utilization. The proposed

method may be applied to up to 30 nodes by parallelizing the agent training

process.

To verify the effectiveness of the proposed method for network topologies

within 20 nodes, this work evaluated the performance of the proposed method

on Atlanta network with 15 nodes and 22 links. Figure 5.10 shows the train-

ing curves tracking the agent’s total return for Atlanta network. As in the

practical-network condition, this work sets each server capacity to 30 and each

link capacity to 3.6 Gbps. The result shows that the average total return of

QMIX increased as the training progressed. Table 5.11 shows the average per-

formance of QMIX and SA. Note that, as described in Section 5.3.3, SA also

dynamically selects an optimal routes calculated with the route-optimization

algorithm at each 𝑡. The result shows that QMIX performed better than SA

because QMIX can prevent constraint violations by changing the VN allocation

by the demand change. Although this work can confirm the effectiveness of

QMIX, this work found that the relative performance improvement decreases

compared to the result of Fig. 5.9(b). This work considers two reasons for the

decrease in the performance difference between the two methods. First, this

work supposes that the larger network topology makes dynamic routing more

effective, and the dynamic routing improved the performance of VN allocation

regardless of VM placement. In other words, the dynamic routing could com-

pensate for the performance degradation of SA caused by the inefficient VM

placement. Next, this work also supposes that the larger network topology

has increased the required training steps. If so, this work can improve the

performance of QMIX by increasing the training steps.

Next, based on the above results, this work discusses applying the proposed

method for larger network topologies by drastically reducing computation time.

116

Section 5.3

0 1 2 3
Steps ×10

5

0

20

40

60

80

To
ta

l R
et

ur
n

QMIX

Figure 5.10: Training curves tracking the agent’s total return in Atlanta net-

work. (©2022 IEEE.)

0.0 0.5 1.0 1.5 2.0
Steps ×10

6

0

25

50

75

100

125

To
ta

l R
et

ur
n

QMIX

(a) India35.

0.0 0.5 1.0 1.5 2.0
Steps ×10

6

0

50

100

150
To

ta
l R

et
ur

n

QMIX

(b) Germany50.

Figure 5.11: Training curves tracking the agent’s total return with the pro-

posed method using the shortest path. (©2022 IEEE.)

Since most of the computation time is spent solving the route-optimization

problem as shown in Table 5.9, relaxing the route-optimization problem and

replacing dynamic path allocation with static path allocation is an effective way

of speeding up the method. Specifically, this work replaces the optimal path by

LP with the shortest path by Dijkstra’s algorithm, which corresponds to line

4 in Alg. 9. This work then evaluates the computation time and performance

for various network topologies. Finally, this work shows that the proposed

method using the shortest path is adequate for practical topology size.

Table 5.10 shows the computation time in the proposed method using the

117

Chapter 5

shortest path for various physical network topologies. To ensure sufficient

training, this work increased the total time steps to 𝑇 = 2 × 106. The results

show that all computation times are drastically faster than those estimated

in Table 5.9. For all conditions, the execution time is less than one second,

and the training time is less than one day. Moreover, since Ta2 network is the

largest topology that mimics the core network in SNDLib, this work concludes

that the proposed method using the shortest path has no limitation on the

number of nodes in the range of practical network topologies. The result

also shows that the training time does not depend on the number of nodes.

The reason is that other parameters, e.g., physical network and VN request

parameters, are more dominant factors in determining the training time than

the number of nodes.

Figure 5.11 shows the training curves tracking the agent’s total return for

India35 network and German50 network. This work sets each server capacity

to 30 and each link capacity to 5.0 Gbps. This work increased link capacities

because the shortest path concentrates the traffic load on some links. The

result shows that the average total return of QMIX increased as the training

progressed. Tables 5.12–5.14 show the average performance of QMIX and SA.

Both QMIX and SA used the shortest path for route calculation, since solving

LP at each step is difficult for both methods due to the computation time.

The results show that QMIX performed significantly better than SA. This

performance difference is since QMIX dynamically changes the placement of

VMs or not. In particular, the performance of SA dramatically decreased due

to static routing. The reason is that, as mentioned before, the performance

of SA was strongly dependent on dynamic routing. In conclusion, this work

revealed that the proposed method using the shortest path performs sufficiently

in large network topologies.

In summary, this work revealed that the proposed method could be applied

to network topologies with less than 65 nodes. More precisely, the proposed

method with route-optimization could be applied to network topologies with

less than 20 nodes. The proposed method that uses the shortest path for

route calculation could be applied regardless of the topology size. In addition,

this work revealed that the proposed method outperforms SA in terms of

performance regardless of the topology size.

118

Section 5.3

T
ab

le
5.
15
:
E
va
lu
at
io
n
of

av
er
ag
e
re
w
ar
d
s
fo
r
va
ri
ou

s
tr
affi

c
m
o
d
el
s
in

si
m
p
le

n
et
w
or
k
(t
ra
in
in
g
b
y
M
ix
ed

m
o
d
el
).

T
ra

ffi
c
M

o
d
e
ls

Q
M
IX

,
M
ix

V
D
N
,
M
ix

IQ
L
,
M
ix

S
ta
ti
c
A
ll
o
ca
ti
o
n
(S
A
)

A
R
M
A

0
.4
6
±
0
.1
1

0
.4
6
±
0
.1
2

0
.1
5
±
0
.7
7

−0
.2
2
±
0
.6
8

A
R
M
A

w
it
h
ot
h
er

p
ar
a
m
et
er
s

0
.4
4
±
0
.1
2

0
.4
3
±
0
.1
5

0
.3
6
±
0
.4
1

−0
.3
2
±
0
.7
1

S
A
R
IM

A
0
.4
3
±
0
.1
1

0
.4
2
±
0
.1
1

0
.3
5
±
0
.2
5

−0
.3
0
±
0
.7
3

P
oi
ss
on

0
.3
6
±
0
.1
1

0
.3
5
±
0
.1
2

0
.3
5
±
0
.1
4

−0
.4
1
±
0
.7
3

R
an

d
om

0
.2
3
±
0
.8
2

0
.2
3
±
0
.7
4

0
.3
1
±
0
.5
5

−0
.2
6
±
0
.7
3

A
R
M
A

w
it
h
an

om
al
y

0
.3
9
±
0
.1
3

0
.3
8
±
0
.1
3

0
.3
2
±
0
.4
3

−0
.3
6
±
0
.7
2

S
A
R
IM

A
w
it
h
an

om
al
y

0
.4
5
±
0
.0
9

0
.4
4
±
0
.0
9

0
.4
3
±
0
.1
1

−0
.3
8
±
0
.7
5

P
oi
ss
on

w
it
h
an

om
al
y

0
.4
6
±
0
.1
1

0
.4
4
±
0
.1
5

0
.3
4
±
0
.5
3

−0
.1
0
±
0
.6
0

R
an

d
om

w
it
h
an

om
al
y

0
.3
9
±
0
.1
3

0
.3
8
±
0
.1
3

0
.3
2
±
0
.4
3

−0
.3
6
±
0
.7
2

M
ix

A
ll
T
ra
ffi
c

0
.4
4
±
0
.1
0

0
.4
2
±
0
.1
1

0
.4
3
±
0
.1
1

−0
.3
2
±
0
.7
0

A
v
e
.
A
ll

T
ra

ffi
c
M

o
d
e
ls

0
.4
1
±
0
.2
8

0
.4
0
±
0
.2
6

0
.3
4
±
0
.4
2

−0
.3
0
±
0
.7
0

119

Chapter 5

T
ab

le
5.
16
:
E
va
lu
at
io
n
of

av
er
ag
e
re
w
ar
d
s
fo
r
va
ri
ou

s
tr
affi

c
m
o
d
el
s
in

p
ra
ct
ic
al

n
et
w
or
k
(t
ra
in
in
g
b
y
M
ix
ed

m
o
d
el
).

T
ra

ffi
c
M

o
d
e
ls

Q
M
IX

,
M
ix

V
D
N
,
M
ix

IQ
L
,
M
ix

S
ta
ti
c
A
ll
o
ca
ti
o
n
(S
A
)

A
R
M
A

0
.6
7
±
0
.0
7

0
.5
8
±
0
.0
8

0
.2
0
±
0
.3
2

0
.2
0
±
0
.2
1

A
R
M
A

w
it
h
ot
h
er

p
ar
a
m
et
er
s

0
.7
0
±
0
.0
4

0
.6
1
±
0
.0
6

0
.2
3
±
0
.2
4

0
.3
1
±
0
.1
4

S
A
R
IM

A
0
.6
7
±
0
.0
5

0
.6
0
±
0
.0
7

0
.1
9
±
0
.2
0

0
.1
6
±
0
.2
0

P
oi
ss
on

0
.6
6
±
0
.0
5

0
.5
8
±
0
.0
5

0
.1
1
±
0
.3
2

0
.0
8
±
0
.1
3

R
an

d
om

0
.6
7
±
0
.0
5

0
.5
8
±
0
.0
7

0
.1
5
±
0
.3
6

0
.1
3
±
0
.1
2

A
R
M
A

w
it
h
an

om
al
y

0
.6
6
±
0
.0
4

0
.5
7
±
0
.0
5

0
.2
2
±
0
.1
5

0
.0
7
±
0
.1
0

S
A
R
IM

A
w
it
h
an

om
al
y

0
.6
9
±
0
.0
5

0
.6
1
±
0
.0
6

0
.2
2
±
0
.1
6

0
.1
3
±
0
.1
9

P
oi
ss
on

w
it
h
an

om
al
y

0
.7
2
±
0
.0
6

0
.6
3
±
0
.0
6

0
.3
0
±
0
.1
8

0
.2
7
±
0
.1
4

R
an

d
om

w
it
h
an

om
al
y

0
.6
6
±
0
.0
4

0
.5
7
±
0
.0
5

0
.2
2
±
0
.1
5

0
.0
7
±
0
.1
0

M
ix

A
ll
T
ra
ffi
c

0
.6
8
±
0
.0
6

0
.6
0
±
0
.0
6

0
.2
6
±
0
.1
5

0
.1
5
±
0
.1
2

A
v
e
.
A
ll

T
ra

ffi
c
M

o
d
e
ls

0
.6
8
±
0
.0
6

0
.5
9
±
0
.0
6

0
.2
1
±
0
.2
4

0
.1
6
±
0
.1
7

120

Section 5.3

T
ab

le
5.
17
:
E
va
lu
at
io
n
of

av
er
ag
e
re
w
ar
d
s
fo
r
va
ri
ou

s
tr
affi

c
m
o
d
el
s
in

p
ra
ct
ic
al

n
et
w
or
k
(t
ra
in
in
g
b
y
ea
ch

m
o
d
el
).

T
ra

ffi
c
M

o
d
e
ls

Q
M
IX

,
A
R
M
A

Q
M
IX

,
A
R
M
A

w
/
a
n
o
.

Q
M
IX

,
P
o
is
so
n

Q
M
IX

,
R
a
n
d
o
m

Q
M
IX

,
M
ix

A
R
M
A

0
.5
7
±
0
.1
0

0
.5
8
±
0
.1
3

0
.6
9
±
0
.0
6

0
.6
3
±
0
.0
7

0
.6
7
±
0
.0
7

A
R
M
A

w
it
h
ot
h
er

p
ar
am

et
er
s

0
.5
9
±
0
.0
8

0
.6
5
±
0
.0
8

0
.7
2
±
0
.0
7

0
.6
7
±
0
.0
6

0
.7
0
±
0
.0
4

S
A
R
IM

A
0
.5
6
±
0
.0
9

0
.6
2
±
0
.1
1

0
.6
9
±
0
.0
5

0
.6
5
±
0
.0
6

0
.6
7
±
0
.0
5

P
oi
ss
on

0
.4
3
±
0
.1
3

0
.5
6
±
0
.1
4

0
.6
5
±
0
.0
6

0
.6
0
±
0
.0
5

0
.6
6
±
0
.0
5

R
an

d
om

0
.4
2
±
0
.0
9

0
.5
9
±
0
.1
3

0
.6
7
±
0
.0
7

0
.6
2
±
0
.0
7

0
.6
7
±
0
.0
5

A
R
M
A

w
it
h
an

om
al
y

0
.4
4
±
0
.0
8

0
.6
0
±
0
.1
0

0
.6
7
±
0
.0
4

0
.6
2
±
0
.0
6

0
.6
6
±
0
.0
4

S
A
R
IM

A
w
it
h
an

om
al
y

0
.5
5
±
0
.0
8

0
.6
2
±
0
.0
8

0
.6
9
±
0
.0
6

0
.6
4
±
0
.0
5

0
.6
9
±
0
.0
5

P
oi
ss
on

w
it
h
an

om
al
y

0
.5
9
±
0
.0
5

0
.6
4
±
0
.1
2

0
.7
3
±
0
.0
5

0
.6
9
±
0
.0
5

0
.7
2
±
0
.0
6

R
an

d
om

w
it
h
an

om
al
y

0
.4
4
±
0
.0
8

0
.6
0
±
0
.1
0

0
.6
7
±
0
.0
4

0
.6
2
±
0
.0
6

0
.6
6
±
0
.0
4

M
ix

A
ll
T
ra
ffi
c

0
.5
2
±
0
.0
5

0
.5
8
±
0
.1
2

0
.6
9
±
0
.0
5

0
.6
5
±
0
.0
5

0
.6
8
±
0
.0
6

A
v
e
.
A
ll

T
ra

ffi
c
M

o
d
e
ls

0
.5
1
±
0
.1
1

0
.6
0
±
0
.1
1

0
.6
9
±
0
.0
6

0
.6
4
±
0
.0
6

0
.6
8
±
0
.0
6

121

Chapter 5

Generalization performance

The generalization performance is a measure of how accurately an algorithm

is able to perform outcomes for previously unseen data. To evaluate the gen-

eralization performance for traffic demands, this work evaluated the average

reward using various traffic models that were different from those during train-

ing. Tables 5.15 and 5.16 show the average rewards of each method when

evaluated with various traffic models under simple- and practical-network con-

ditions. This work carried out 20 calculations with random initial conditions

and set the same random seeds for all evaluations. This work used agents

trained with the mixed model as described in Fig. 5.8. This work also used 10

types of various traffic models for evaluation as described in the first columns

of Tables 5.15 and 5.16. The row “Mix all Traffic” corresponds to the results

in Fig. 5.9. The row “Ave. all traffic models” means the average results of 10

types of traffic models.

For simple-network conditions, QMIX and VDN performed better than

IQL for the average of all traffic models. SA also performed lower than other

dynamic allocation methods. In QMIX and VDN, since the mixed model’s

performance and the average of all model’s performance are approximately

equal, training with the mixed model was effective for many traffic patterns.

Moreover, the performance of QMIX and VDN does not decrease even for

traffic models with the anomaly. Therefore, QMIX and VDN training with

the mixed model obtains a generalization performance for traffic demands. In

contrast, QMIX and VDN underperformed in the Poisson and Random models

because these models include the traffic patterns which were not experienced.

IQL sufficiently performed on the mixed traffic model but unsuccessfully per-

formed on other traffic models. This shows that QMIX and VDN learn more

superior policies through cooperative learning.

For practical-network conditions, the results are mostly the same as those

under simple-network conditions. As mentioned in Section 5.3.4, though the

average reward for the practical network was higher than that for the simple

network, both reward values are not directly comparable. Comparing their

performances under simple- and practical-network conditions, QMIX and VDN

for the Poisson and Random models improved. This work considers that, since

122

Section 5.3

freedom of allocation improved as the numbers of nodes and links increased in

the practical network, more flexible allocation has become possible even when

traffic fluctuates.

Next, this work comprehensively analyzed the relationship between the

generalization performance for traffic demands and the traffic models used

during training. This evaluation can determine the best traffic models used

during training for obtaining a generalization performance for traffic demands.

Table 5.17 shows the average rewards of QMIX when this work used various

traffic models for training and evaluation under practical-network conditions.

This work adopted five types of traffic models for training: ARMA, ARMA

with the anomaly, Poisson, Random, and Mixed model. As in the evaluation in

Table 5.16, this work carried out 20 calculations with random initial conditions

and set the same random seeds for all evaluations.

When the ARMA model was used for training, the performance of QMIX

did not decrease with the ARMAmodel with other parameters and the SARIMA

model. The performance for some models with the anomaly option was not

decreased because of the normalization in the traffic generation process as

described in Section 5.3.2. However, the performance decreased with un-

known traffic, such as the Poisson model, the Random model, and models

with anomaly options.

When the ARMA model with an anomaly was used for training, all traffic

models performed better than when the ARMA model was used for training.

This is because agents experience more traffic changes and learn how to act to

avoid congestion when anomaly traffic occurs in advance.

When the Poisson, Random, and mixed models were used for training,

QMIX performed outstandingly in all evaluation conditions. Moreover, when

the ARMA model was used for evaluation in the first row of Table 5.17, the

average reward for training with the mixed model was higher than that for

training with the ARMA model. Therefore, this work concludes that training

with the mixed model is suitable for obtaining high generalization performance

for traffic demands. This work considers that the reason is that the mixed

model contains various traffic fluctuation patterns. While the mixed model

performs well, each traffic model needs to be prepared so that it is composed

of a part of a mixed model and assumes user traffic patterns when a mixed

123

Chapter 5

model for training is generated. On the other hand, interestingly, the Poisson

model for training performed equal to or better than the mixed model. This

work assumes the reason to be that this model also contains various traffic

changes. Since the Poisson model is easy to generate, training with this model

will always be beneficial if it leads to a high generalization performance for

various traffic demands. To analyze the results in more detail, it is necessary

to solve the interpretability problem of DRL, which is an unsolved challenge

in machine learning theory and is a future work of this work.

5.3.5 Discussion

This work discusses the future work of the proposed method. This work re-

vealed the effectiveness of the proposed method, but there are still important

challenges that should be researched for applying the proposed method in a

commercial environment.

A major challenge is the generalization of agent training, i.e., an agent

trained in one environment might not perform in other environments not ex-

perienced during training. For example, when changing user placement, the

number of VNs, and the physical network topology, or when observing new

traffic patterns, the agent should retrain from the beginning. This is a general

challenge in machine learning, not unique to DRL-based dynamic allocation.

As mentioned in Section 5.3.4, since the proposed method takes a long time

to train agents, such as a few hours or a day, the re-training could be a signifi-

cant problem when the network conditions are frequently changed. While this

work shows that training by the mixed or Poisson model achieves generaliza-

tion performance for traffic demands, whole new traffic patterns will possibly

emerge with the development of 5G and other technologies in the future. One

potential solution is grouping VNs, which can keep the number of VN groups

constant (e.g., using [27]). This grouping will also lead to improving scala-

bility. Another solution is aggregating all traffic to a small number of flows

and handling only predictable flow patterns (e.g., using [86]). Although these

grouping and aggregation are effective to limit the demand patterns, the per-

formance of allocation will be decreased due to coarse-grained allocation. The

other solution is transfer learning, which focuses on storing knowledge gained

124

Section 5.4

while solving one domain and applying it to a different domain so that it can

be learned efficiently.

This work also discusses the challenge of interpretability of machine learn-

ing related to the challenge of generalization of machine learning. Since the

DNN model included in the DRL is a black box, it is difficult to explain why

the DNN outputs the results. For example, in this work, it is impossible to

understand why the Poisson model achieved the best performance. When ap-

plying these DRL-based techniques in actual network operations, the challenge

also arises that the operator cannot trust the agents’ outputs.

The other challenge is the ideal migration. As mentioned in Section 5.1.1,

the proposed method assumes ideal VM migration, i.e., the system can im-

mediately reallocate VM without interrupting the running service. Note that

the proposed method can be applied even if the migration takes a long time.

However, when migration becomes a bottleneck, the dynamic allocation has

difficulty following the demand fluctuations. One possible solution that a con-

trol algorithm can contribute is developing a more realistic penalty function

of VM migration taking into account the availability and sustainability of the

service (e.g., using [87]).

5.4 Chapter summary

This chapter proposed a dynamic virtual network (VN) allocation method

based on cooperative multi-agent deep reinforcement learning (Coop-MADRL).

This method can quickly optimize the network resources even when traffic de-

mands change drastically by applying MADRL for dynamic VN allocation. It

can also reduce the agents’ constraint violations such as network congestion

and server overload and reduce the reallocation such as virtual machine (VM)

migration by introducing a cooperative element for MADRL. Simulations re-

vealed that the proposed dynamic VN allocation method can reduce the maxi-

mum server and link utilization and drastically reduce the constraint violations

compared with that of a static VN allocation method under practical-network

conditions. In contrast, the evaluation also revealed that the Exhaustive Search

(ES) that maximizes the reward at each time does not necessarily maximize

the average rewards when the traffic demands fluctuate. Moreover, the com-

125

Chapter 5

putation time of the proposed method was less than one second, which is

significantly shorter than that of ES. As a result, this work revealed that the

proposed method simultaneously enables efficient and immediate dynamic VN

allocation. Finally, this work evaluated the generalization performance for var-

ious traffic demands. The results revealed that the agent training with mixed

various traffic models could achieve a high generalization performance for all

traffic models.

For future work, this work plans to evaluate the performance of the pro-

posed method in more complicated use-cases, e.g., service function chaining

(SFC), in real-world demands and applications, and a test-bed environment.

This work also plans to improve the interpretability of deep reinforcement

learning (DRL) by analyzing the relationship between the network state, the

agent’s actions, and the allocation results in detail. Moreover, this work plans

to evaluate the methods involving the approach described in Section 5.3.5.

126

Chapter 6

Cooperative multi-agent deep

reinforcement learning for task

offloading

Edge computing is a new paradigm to provide computing capability at the edge

servers close to end devices. A significant research challenge in edge computing

is finding efficient task offloading to edge and cloud servers considering various

task characteristics and limited network and server resources. Several rein-

forcement learning (RL)-based task-offloading methods have been developed,

because RL can immediately output efficient offloading by pre-learning. How-

ever, these methods do not take into account clouds or focus only on a single

cloud. They also do not take into account the bandwidth and topology of the

backbone network. Such shortcomings strongly limit the range of applicable

networks and degrade task-offloading performance. Therefore, this work for-

mulates a task-offloading problem for multi-cloud and multi-edge networks con-

sidering network topology and bandwidth constraints. This work also proposes

a task-offloading method that is based on cooperative multi-agent deep RL

(Coop-MADRL). A part of this work in this chapter was presented in [88,89].

This method introduces a cooperative multi-agent technique through central-

ized training and decentralized execution, improving task-offloading efficiency.

Simulations revealed that the proposed method can minimize network utiliza-

tion and task latency while minimizing constraint violations in less than one

127

Chapter 6

millisecond in various network topologies. It also shows that cooperative learn-

ing improves the efficiency of task offloading. This work demonstrated that

the proposed method has generalization performance for various task types by

pre-training with many resource-consuming tasks.

This chapter is structured as follows. Section 6.1 describes the formula-

tion of the task-offloading problem. Section 6.2 describes the proposed Coop-

MADRL-based task-offloading method. Section 6.3 describes the evaluation

of its performance, and Section 6.4 concludes the chapter.

6.1 Problem formulation

6.1.1 Overview

This work describes an overview of the task-offloading problem. This work

assumes a network consisting of EDs, edges, and clouds. EDs generate various

tasks with diverse applications. Each task consists of the required computing

demand, traffic demand, and maximum permissible latency to accomplish the

task. Each ED can compute its tasks locally or offload tasks to the neighboring

edge or cloud. This work collectively refers to edges and clouds as nodes. All

nodes have computing resources to execute the tasks instead of EDs, called

edge or cloud servers. All nodes also have a function of traffic forwarding to

another node as a router. Only each edge has a function that determines the

optimal node to offload each task. Each cloud cannot offload tasks to other

nodes, only execute the tasks. This work assumes that the ED determines

whether to offload its tasks; optimizing the ED’s decision is outside the scope

of this work. This work aims to optimize the offloaded server and the route

between ED and server for the accepted task.

This work describes the procedure of the proposed task-offloading method.

This work considers a discrete time-step 𝑡 and assumes that each ED has one

or more tasks and consider K tasks during 𝑡 ∈ [0, 𝑇]. At the beginning of

each 𝑡, each task arrives at the nearest edge of each ED. Each edge observes

the information about tasks accepted at each edge and the overall network

usage of all nodes and links. On the basis of the observation, the proposed

method deployed in each edge calculates the optimal node to offload the task

128

Section 6.1

Table 6.1: Notation definitions for physical-network model.

Notation Definition

𝐺 (𝑵, 𝑳) Network graph

𝑛 ∈ 𝑵 Node

link (𝑖, 𝑗) ∈ 𝑳 Link from node 𝑖 to node 𝑗

𝑒 ∈ 𝑬 ⊂ 𝑵 Edge

𝑐 ∈ 𝑪 ⊂ 𝑵 Cloud

𝑣𝑁
𝑖

𝑖th node-processing capability

𝑤𝑁
𝑖

𝑖th node capacity

𝑤𝐿
𝑖 𝑗

(𝑖, 𝑗) link capacity

𝛼𝐿
𝑖 𝑗

Propagation latency of link (𝑖, 𝑗)

(see Section 6.2 for details). The offloading node is calculated only once, and

the neighboring edges that receive the tasks cannot offload it again to the other

edge or cloud. When multiple tasks arrive simultaneously on each edge at 𝑡, the

proposed method repeats determining the offloading node in a first-in-first-out

(FIFO) manner. The method then aggregates the traffic-demand information

between nodes and calculates and updates the optimal route between nodes.

Next, each edge forwards tasks to the optimal nodes through the optimal route,

and the node executes the task and returns the result to the ED. The upload

and download routes of each task may differ since the proposed method handles

the upload and download traffic as individual traffic demands. After a certain

amount of time, it proceeds to the next 𝑡 + 1. The executing tasks continue to

consume the resources of the offloaded node and the link(s) it traverses until it

returns a result to the ED. The tasks accepted at 𝑡 do not need to be completed

before 𝑡 + 1. Note that it is also adequate to calculate and update the route

once every several steps. In this case, the proposed method calculates the

optimal route on the basis of the average traffic volumes between nodes for

several steps.

6.1.2 Network model

Table 6.1 summarizes the notation definitions of the physical-network model.

This work considers the physical-network graph 𝐺 (𝑵, 𝑳) consisting of a phys-

129

Chapter 6

Table 6.2: Notation definitions for task model.
Notation Definition

𝑡 ∈ 𝑇 Time-step (𝑇 : Total time steps)

D := {𝑫𝑘 } Task set (𝑘 ∈ K, K: Total tasks)
𝑡𝑘 Acceptance time of 𝑘th task

𝛽𝑘 Task type of 𝑘th task

𝐶𝑘 Computing demand of 𝑘th task

𝐵
up
𝑘
, 𝐵down

𝑘
Upload/Download traffic demand of 𝑘th task

𝜏max
𝑘

Maximum permissible latency of 𝑘th task

ical node set 𝑵 and physical link set 𝑳. This work assumes that each physical

node has a role as an edge or cloud. This work also assumes that EDs con-

nect to the nearest edge through the access network, which is not included in

𝐺 (𝑵, 𝑳). This work also assumes that the routes in the access network take

the shortest path, and route optimization in the access network is outside the

scope of this work.

This work denotes the edge as 𝑒 ∈ 𝑬 ⊂ 𝑵 and the cloud as 𝑐 ∈ 𝑪 ⊂ 𝑵.

This work also denotes the numbers of nodes, edges, and clouds as |𝑵 |, |𝑬 |,
and |𝑪 |, respectively. This work denotes the node-processing capability of the

𝑖th node as 𝑣𝑁
𝑖
∈ R+, which indicates the limit of computing resources, e.g., the

CPU capability per second in the 𝑖th node ([G cycles/s]). Here, R+ indicates

the set of positive real numbers. This work also denotes the node capacity

of the 𝑖th node as 𝑤𝑁
𝑖
∈ N, which indicates the upper limit of the number of

allocated tasks. This work assigns one CPU core to each task, i.e., 𝑤𝑁
𝑖
equals

the number of CPU cores in the 𝑖th node. This work denotes the bandwidth

capacity of link (𝑖, 𝑗) as 𝑤𝐿
𝑖 𝑗
∈ R+, which indicates the limit of bandwidth

resources ([Mbps]). All links also have propagation latency depending on the

distance between each node. This work defines the propagation latency of link

(𝑖, 𝑗) as 𝛼𝐿
𝑖 𝑗
∈ R+ ([ms]). A concrete example is shown in Fig. 6.1.

6.1.3 Task model

Table 6.2 summarizes the notation definitions of the task model. This work

describes a task model for uniformly representing various types of tasks of

130

Section 6.1

EDs. This work defines the task set as D = {𝑫𝑘 } and the 𝑘th task as 𝑫𝑘 :=

[𝑡𝑘 , 𝛽𝑘 , 𝐶𝑘 , 𝐵up𝑘 , 𝐵
down
𝑘

, 𝜏max
𝑘
]. Here, 𝑡𝑘 ∈ 𝑇 is the accepted time of the 𝑘th

task, 𝛽𝑘 ∈ N is the task type uniquely given for each application, 𝐶𝑘 is the

required computing demand ([G cycles]), 𝐵up
𝑘
∈ R+ and 𝐵down

𝑘
∈ R+ are the

required upload and download traffic demands ([Mbits]), and 𝜏max
𝑘
∈ R+ is the

maximum permissible latency to accomplish the 𝑘th task ([ms]). Regarding

the relationship between 𝑡𝑘 and 𝜏
max
𝑘

, if this work can complete the processing

of the task 𝑘 by the time 𝑡𝑘 + 𝜏max
𝑘

, this work satisfies the requirements of

the task 𝑘. The computing demand refers to the total amount of CPU cycles

needed to accomplish the task. The traffic demand refers to the amount of

traffic generated by the task. The reason for distinguishing between upload and

download traffic is to accommodate tasks, the traffic volume of which changes

before and after the computation process on the assigned server. When 𝑫𝑘

is accepted, it consumes the computing and bandwidth resources on 𝐺 (𝑵, 𝑳)
depending on the amount of computing and traffic demand of 𝑫𝑘 . If the task

is assigned to the nearest edge of the ED, the bandwidth resources consumed

on 𝐺 (𝑵, 𝑳) are regarded as 0. Note that if the task parameters are unknown,

other systems need to be used to estimate the parameters, which is out of the

scope of this work.

6.1.4 Optimization problem

This work formulates the optimal task-offloading problem, which aims to min-

imize Eq. (6.1) while satisfying the constraints in Eqs. (6.2)–(6.14). Table 6.3

summarizes the notation definitions of the task-offloading problem. This work

aims to find optimal task-allocation variables 𝒀 and routing variables 𝑿𝑡 . Here,

𝒀 := {𝑦𝑘𝑛} shows the task allocation in which 𝑦𝑘𝑛 is 1 if the computing demand

of the 𝑘th task is assigned to the 𝑛th node; otherwise, 0. The 𝑿𝑡 :=
{
𝑥
𝑝𝑞

𝑖 𝑗 ,𝑡

}
shows the proportion of traffic demand 𝑚

𝑝𝑞
𝑡 from the origin node 𝑝 to desti-

nation node 𝑞 passing through link (𝑖, 𝑗) at 𝑡. Here, 𝑴 𝑡 := {𝑚𝑝𝑞
𝑡 } shows the

traffic demand matrix between nodes 𝑝 and 𝑞 at 𝑡. The 𝑚
𝑝𝑞
𝑡 represents the

total traffic demand between nodes 𝑝 and 𝑞 at 𝑡. The nodes 𝑝 and 𝑞 in 𝑚
𝑝𝑞
𝑡 are

determined by device placements and task-allocated servers. A detailed for-

mulation is shown in Eqs. (6.12)–(6.13). Since this work assumes multi-path

131

Chapter 6

Table 6.3: Notation definitions for task-offloading problem.

Notation Definition

𝑿𝑡 :=
{
𝑥
𝑝𝑞

𝑖 𝑗 ,𝑡

}
Proportion of passed 𝑚

𝑝𝑞
𝑡 on link (𝑖, 𝑗)

𝒀 := {𝑦𝑘𝑛} Task allocation (task 𝑘, node 𝑛)

𝑴 𝑡 :=
{
𝑚
𝑝𝑞
𝑡

}
Traffic matrix from node 𝑝 to node 𝑞

𝒁 := {𝑧𝑘𝑒} Device placement (task 𝑘, edge 𝑒)

𝑼𝑁
𝑡 :=

{
𝑢𝑁
𝑖,𝑡

}
𝑖th node utilization at step 𝑡

𝑼𝐿
𝑡 :=

{
𝑢𝐿
𝑖 𝑗 ,𝑡

}
(𝑖, 𝑗) link utilization at step 𝑡

𝑈𝑁
𝑡 = max𝑖

(
𝑼𝑁
𝑡

)
Maximum node utilization at step 𝑡

𝑈𝐿
𝑡 = max𝑖 𝑗

(
𝑼𝐿
𝑡

)
Maximum link utilization at step 𝑡

𝜏𝑁
𝑘
, 𝜏RTT

𝑘
Node latency and RTT latency of 𝑘th task

_ Weighting parameter of objective function

I𝑘,𝑡 Binary variable indicating executing tasks

Pup
𝑘
, Pdown

𝑘
Upload and download path set of 𝑘th task

𝜏𝑝 Latency coefficient of path 𝑝

L𝑝 Link set along with path 𝑝

𝑟𝑝 Traffic-splitting ratio of path 𝑝

routing, 𝑥
𝑝𝑞

𝑖 𝑗 ,𝑡
can take a continuous value between 0 and 1. This work also

defines the ED placement as 𝒁 := {𝑧𝑘𝑒}, in which 𝑧𝑘𝑒 is 1 if the nearest edge

of the ED requested 𝑘th task is the 𝑒th edge; otherwise, 0. This work assumes

that 𝒁 is constant during 𝑡 ∈ [0, 𝑇] to ignore the effects of ED movement,

e.g., handover. In other words, this work assumes that the ED requesting to

process the task at edge 𝑒 stays near edge 𝑒 for the processing time, e.g., at

least a few seconds.

This work introduces the objective function:

min :
∑︁
𝑡∈𝑇

(
𝑈𝑁
𝑡 +𝑈𝐿

𝑡

)
+ _

∑︁
𝑘∈K

(
𝜏𝑁
𝑘
+ 𝜏RTT

𝑘

𝜏max
𝑘

)
/|K|, (6.1)

where 𝑈𝑁
𝑡 and 𝑈𝐿

𝑡 show the maximum node and link utilization at 𝑡, which

are respectively defined as 𝑈𝑁
𝑡 := max𝑖 (𝑼𝑁

𝑡) and 𝑈𝐿
𝑡 := max𝑖 𝑗 (𝑼𝐿

𝑡). This work
denotes the 𝑖th node utilization as 𝑢𝑁

𝑖,𝑡
∈ 𝑼𝑁

𝑡 and the link (𝑖, 𝑗) utilization as

𝑢𝐿
𝑖 𝑗 ,𝑡
∈ 𝑼𝐿

𝑡 . The terms 𝜏𝑁
𝑘
and 𝜏RTT

𝑘
show the node and round-trip time (RTT)

132

Section 6.1

latency of the 𝑘th task. RTT is the time it takes to get from the source to the

destination and back from the destination to the source. Their definitions and

formulations are described in the subsection on the latency constraints. The

term _ indicates the weighting parameter determining the importance ratio of

resource efficiency and task latency.

This work imposes three types of constraints: node capacity, link capacity,

and task latency. This work first defines the binary variable I𝑘,𝑡 as follows:

I𝑘,𝑡 :=

{
1 (𝑡𝑘 ≤ 𝑡 ≤ 𝑡𝑘 + 𝜏𝑁𝑘 + 𝜏

RTT
𝑘
)

0 (otherwise),
(6.2)

where I𝑘,𝑡 is 1 if the 𝑘th task is executing at 𝑡; otherwise, 0. Here, 𝑡𝑘 is the

acceptance time of the 𝑘th task and 𝑡𝑘 + 𝜏𝑁𝑘 + 𝜏
RTT
𝑘

shows the completion time

of the 𝑘th task. The total latency 𝜏𝑁
𝑘
+ 𝜏RTT

𝑘
of the 𝑘th task can be modeled by

Eqs. (6.15)–(6.16) (details below). Latency in a real-world environment does

not necessarily occur as modeled. However, in a real-world environment, this

work can measure latency and can use measured values instead of the modeled

equations.

Node-capacity constraints

A task-allocation variable 𝑦𝑘𝑛 is formulated to minimize the maximum node

utilization 𝑈𝑁
𝑡 while satisfying the node-capacity constraints as follows:

s.t. :
∑︁
𝑛∈𝑵

𝑦𝑘𝑛 = 1 (∀𝑘 ∈ K) (6.3)∑︁
𝑘∈K
I𝑘,𝑡 𝑦𝑘𝑛 ≤ 𝑤𝑁𝑛 𝑈𝑁

𝑡 (∀𝑛 ∈ 𝑵) (6.4)

𝑦𝑘𝑛 ∈ {0, 1} (∀𝑘 ∈ K,∀𝑛 ∈ 𝑵) (6.5)

0 ≤ 𝑈𝑁
𝑡 ≤ 1. (6.6)

Equation (6.3) shows that the computing demand of each task must be allo-

cated to any node. Equation (6.4) shows the constraint of node capacity. The

term I𝑘,𝑡 𝑦𝑘𝑛 in Eq. (6.4), the product of two binary variables, is 1 if the 𝑘th

task is allocated to node 𝑛 and is executing at 𝑡, because I𝑘,𝑡 𝑦𝑘𝑛 = 1 if I𝑘,𝑡 = 1

and 𝑦𝑘𝑛 = 1. By calculating the sum over 𝑘, the left side of Eq. (6.4) shows

the number of tasks executing at node 𝑛 at 𝑡. The left side of Eq. (6.4) shows

133

Chapter 6

the 𝑛th node capacity at 𝑡 when the maximum node utilization is 𝑈𝑁
𝑡 . In other

words, it shows the maximum number of tasks that the 𝑛th node can perform

at 𝑡. This work imposes the upper bound 𝑤𝑁𝑛 𝑈
𝑁
𝑡 , which is stronger than 𝑤𝑁𝑛 .

Equations (6.5)–(6.6) show the range of variables.

Link-capacity constraints

This work formulates the link-capacity constraints as a multi-commodity flow

problem, which is a network flow problem with multiple commodities (i.e.,

traffic flow demands) between source and destination nodes. These equations

give the capacity and flow conservation constraints that the routing variables

must satisfy. If we find routing variables that pass through the shortest path,

we can use the shortest path algorithm, such as Dijkstra or Bellman-Ford.

However, these algorithms do not take capacity constraints into account. If all

traffic demands pass through the shortest path, traffic may concentrate on a

single link, causing congestion.

A routing variable 𝑥
𝑝𝑞

𝑖 𝑗 ,𝑡
is formulated to minimize the maximum link uti-

lization 𝑈𝐿
𝑡 while satisfying the link-capacity constraints as follows:

s.t. :
∑︁

𝑗 :(𝑖, 𝑗)∈𝐿
𝑥
𝑝𝑞

𝑖 𝑗 ,𝑡
−

∑︁
𝑗 :(𝑗 ,𝑖)∈𝐿

𝑥
𝑝𝑞

𝑗𝑖,𝑡
= 0 (6.7)

(∀𝑝, 𝑞 ∈ 𝑵, 𝑖 ≠ 𝑝, 𝑖 ≠ 𝑞)∑︁
𝑗 :(𝑖, 𝑗)∈𝐿

𝑥
𝑝𝑞

𝑖 𝑗 ,𝑡
−

∑︁
𝑗 :(𝑗 ,𝑖)∈𝐿

𝑥
𝑝𝑞

𝑗𝑖,𝑡
= 1 (6.8)

(∀𝑝, 𝑞 ∈ 𝑵, 𝑖 = 𝑝)∑︁
𝑝,𝑞∈𝑵

𝑚
𝑝𝑞
𝑡 𝑥

𝑝𝑞

𝑖 𝑗 ,𝑡
≤ 𝑤𝐿𝑖 𝑗𝑈𝐿

𝑡 (6.9)

(∀(𝑖, 𝑗) ∈ 𝐿,∀𝑝, 𝑞 ∈ 𝑵)
0 ≤ 𝑥𝑝𝑞

𝑖 𝑗 ,𝑡
≤ 1 (∀(𝑖, 𝑗) ∈ 𝐿,∀𝑝, 𝑞 ∈ 𝑵) (6.10)

0 ≤ 𝑈𝐿
𝑡 ≤ 1. (6.11)

Equations (6.7)–(6.8) show the traffic-flow conservation law. Equation (6.7)

shows that the traffic flowing into a node equals the traffic flowing out of the

node except the source node 𝑝 and destination node 𝑞. Equation (6.8) shows

that the flow out of the source node 𝑝 is 1. The traffic-flow conservation law at

the destination node 𝑞 is guaranteed when Eqs. (6.7)–(6.8) are satisfied, which

134

Section 6.1

is proved in [79]. Equation (6.9) shows the link-capacity constraints. This work

imposes the upper bound 𝑤𝐿
𝑖 𝑗
𝑈𝐿
𝑡 , which is stronger than 𝑤𝐿

𝑖 𝑗
. Equations (6.10)–

(6.11) show the range of variables. The term 𝑚
𝑝𝑞
𝑡 in Eq. (6.9) can be formulated

as follows:

𝑚
𝑝𝑞
𝑡 =

∑︁
𝑘∈K

𝐵
up
𝑘
I𝑘,𝑡 𝑧𝑘 𝑝 𝑦𝑘𝑞 (6.12)

𝑚
𝑞𝑝
𝑡 =

∑︁
𝑘∈K

𝐵down𝑘 I𝑘,𝑡 𝑧𝑘 𝑝 𝑦𝑘𝑞 (6.13)

(∀𝑝 ∈ 𝑬,∀𝑞 ∈ 𝑵, 𝑝 ≠ 𝑞).

Equation (6.12) shows the upload traffic demands from origin node 𝑝 to des-

tination node 𝑞. Here, 𝑧𝑘 𝑝 and 𝑦𝑘𝑞 determine the node 𝑝 and node 𝑞, and

I𝑘,𝑡 extracts the executing tasks. Equation (6.13) shows the download traffic

demands from node 𝑞 to node 𝑝, which is the opposite of the upload.

Latency constraints

Task latency is the sum of all possible delays a task experiences during of-

floading, including processing, transmission, propagation, and queuing latency.

Processing latency is the delay it takes to process the task at the edge or cloud

server. This work refers to this latency as node latency 𝜏𝑁
𝑘
. Transmission

latency is the time it takes to push all the traffic onto the link, calculated

by dividing the number of bits by the transfer rate. Propagation latency is

the time it takes for traffic to travel from the origin to the destination, de-

termined by the distance between nodes and the speed of signal propagation.

For a wired network, propagation latency can be assumed to depend only on

distance because the speed of light is constant in fiber. Queuing latency is

the time that traffic waits in the queue before it can be processed. This work

considers the sufficient buffer and assumes that the queuing latency is zero.

This work refers to the sum of the transmission latency and the propagation

latency as RTT latency 𝜏RTT
𝑘

.

Latency constraints of 𝑘th task are formulated as follows:

s.t. : 𝜏𝑁𝑘 + 𝜏
RTT
𝑘 ≤ 𝜏max

𝑘 (∀𝑘 ∈ K). (6.14)

135

Chapter 6

The definitions of the node latency 𝜏𝑁
𝑘

and RTT latency 𝜏RTT
𝑘

of the 𝑘th task

are as follows:

𝜏𝑁𝑘 :=
∑︁
𝑛∈𝑵

𝑦𝑘𝑛
𝐶𝑘

𝑣𝑁𝑛
(6.15)

𝜏RTT𝑘 := max
𝑝∈Pup

𝑘

(
𝜏𝑝 (𝐵up𝑘)

)
+ max
𝑝∈Pdown

𝑘

(
𝜏𝑝 (𝐵up𝑘)

)
. (6.16)

Equation (6.15) shows that 𝜏𝑁
𝑘
is determined by the computing-demand size of

the task 𝐶𝑘 and the node-processing capability per second 𝑣𝑁𝑛 . The term 𝐶𝑘/𝑣𝑁𝑛
is the time it takes to process 𝐶𝑘 at node 𝑛. The term 𝑦𝑘𝑛 determines the node

𝑛 to which the task 𝑘 is allocated, as explained in Eq. (6.15). Equation (6.16)

shows that 𝜏RTT
𝑘

is determined by the bottleneck path with the maximum

latency when the task goes through multiple paths. Here Pup
𝑘

and Pdown
𝑘

are

the set of upload and download paths of the 𝑘th task, which is calculated on the

basis of 𝑿𝑡 , 𝒀, and 𝒁. The term 𝜏𝑝 (𝑏) is the function that shows the latency

when the traffic demand 𝑏 goes through the path 𝑝. The 𝜏𝑝 (𝑏) is formulated

as follows:

𝜏𝑝 (𝑏) := 𝑟𝑝 ·
𝑏

min(𝑖, 𝑗)∈L𝑝
(𝑤𝐿

𝑖 𝑗
)
+

∑︁
(𝑖, 𝑗)∈L𝑝

𝛼𝐿𝑖 𝑗 . (6.17)

The first term in Eq. (6.17) shows the transmission latency when the traffic

demand 𝑏 goes through the path 𝑝. The term 𝑟𝑝 is the traffic-splitting ratio

of path 𝑝 calculated by 𝑿𝑡 that satisfies the following constraints:
∑
𝑝 (𝑟𝑝) = 1.

The term L𝑝 is the link set along with path 𝑝. The term min(𝑖, 𝑗)∈L𝑝
(𝑤𝐿

𝑖 𝑗
)

indicates the bottleneck bandwidth on path 𝑝. The second term in Eq. (6.17)

shows the propagation latency of path 𝑝, which is the sum of the propagation

latency 𝛼𝐿
𝑖 𝑗
of the link (𝑖, 𝑗) ∈ L𝑝.

6.2 Proposed method

6.2.1 Overview

This work gives an overview of the proposed task-offloading method, which is

based on Coop-MADRL. This work aims to find the optimal task offloading

that minimizes Eq. (6.1) while satisfying the constraints in Eqs. (6.2)–(6.14).

136

Section 6.2

The decision variables are the task-allocation variables 𝒀 and routing variables

𝑿𝑡 . The proposed method consists of two parts: Coop-MADRL and mathe-

matical optimization. Coop-MADRL is responsible for finding the optimal

𝒀, and mathematical optimization is responsible for finding the optimal 𝑿𝑡 .

Another possible way to find the solution of two variables is to solve them

in sequence, such as finding the 𝒀 and then finding the 𝑿𝑡 . However, in this

case, the 𝒀 is determined on the basis of a non-optimal 𝑿𝑡 , which may degrade

the performance of the solution compared with that of the proposed method.

Therefore, the proposed method jointly optimizes 𝒀 and 𝑿𝑡 . Concretely, this

work calculates the reward of Coop-MADRL to find the optimal 𝒀 on the basis

of the 𝑿𝑡 calculated by mathematical optimization. The concept is based on

current methods [56,75,76]. The proposed method also consists of centralized

training and decentralized execution. The decentralized agents continually

execute the task offloading after centralized training.

Table 6.4 summarizes the notation definitions of the proposed method. This

work introduces |𝑬 | agents equal to the number of edges and assigns each agent

for each edge offloading control. The 𝑒th agent 𝑔𝑒 ∈ G learns how to optimize

task offloading for the 𝑒th edge. In centralized training, each task arrives at the

nearest edge at the beginning of each 𝑡. Each agent 𝑔𝑒 observes the information

𝑜𝑒𝑡 . On the basis of the observation, the 𝑔𝑒 determines the node to offload the

task as an action 𝑎𝑒𝑡 . Each agent randomly determines offloading nodes in the

early stages of training but can select the best node as training progresses. The

proposed method then aggregates the traffic demands between nodes, then the

mathematical-optimization solver calculates the optimal route between nodes.

The solver calculates a routing variable 𝑿𝑡 to minimize the link utilization 𝑈𝐿
𝑡

while satisfying the constraints in Eqs. (6.7)–(6.11). Since the routing variable

𝑿𝑡 is a continuous value within 0–1, as shown in Eq. (6.11), this problem is

classified as a linear programming problem. Next, each edge forwards tasks

to the offloading nodes through the optimal route, and the proposed method

calculates the reward 𝑟𝑡 . By repeating these steps, agents collect learning

samples that are combinations of ⟨𝒐𝑡 , 𝒂𝑡 , 𝑟𝑡⟩. On the basis of these samples,

the agents are trained using Coop-MADRL. In decentralized execution, the

trained agents repeat the above steps except for the learning steps. Since each

agent has already learned the cooperative action for all agents in centralized

137

Chapter 6

Table 6.4: Notation definitions for proposed method.

Notation Definition

𝑡sim ∈ 𝑇 sim Time-step for simulator (𝑇 sim: Total time steps)

G := {𝑔𝑒} Agent set (1 ≤ 𝑒 ≤ |𝑬 |)
𝑠𝑡 ∈ S State at step 𝑡 (S: State space)

O := {O𝑒} Observation sets for all agents

𝑜𝑒𝑡 ∈ O𝑒 Observation for agent 𝑔𝑒 at step 𝑡

𝒐𝑡 := {𝑜𝑒𝑡 } All observations at step 𝑡

A := {A𝑒} Action sets for all agents (A𝑒: Action space)

𝑎𝑒𝑡 ∈ A𝑒 Action for agent 𝑔𝑒 at step 𝑡

𝒂𝑡 := {𝑎𝑒𝑡 } All actions at step 𝑡

𝑟𝑡 Reward for agent 𝑔𝑒 at step 𝑡

𝑄𝑒

(
𝑜𝑒𝑡 , 𝑎

𝑛
𝑡

)
Action-value function for agent 𝑔𝑒

𝑄𝑡𝑜𝑡 (𝒐𝑡 , 𝒂𝑡) Joint action-value function for all agent

M Replay memory

ℎ𝑖 ∈ 𝒉 Observation-action history

𝒉 Observation-action history of all agents

training, each agent can act independently in decentralized execution.

6.2.2 Modeling

This work first defines the variables that represent a subset of tasks as follows:

K𝑡 := {𝑘 ∈ K | I𝑘,𝑡 = 1} (6.18)

K𝑒 := {𝑘 ∈ K | 𝑧𝑘𝑒 = 1} (6.19)

D𝑡 := {𝑫𝑘 ∈ D | 𝑡𝑘 = 𝑡} (6.20)

D𝑒,𝑡 := {𝑫𝑘 ∈ D | 𝑡𝑘 = 𝑡, 𝑘 ∈ K𝑒}. (6.21)

The K𝑡 indicates the index subset of tasks executed at time step 𝑡. The K𝑒
indicates the index subset of tasks accepted at edge 𝑒. The D𝑡 indicates the

subset of tasks accepted at 𝑡. The D𝑒,𝑡 indicates the subset of tasks accepted

on edge 𝑒 at 𝑡, i.e., D𝑒,𝑡 ⊂ D𝑡 ⊂ D.

A state is defined as 𝑠𝑡 = [D𝑡 ,𝑼𝐿
𝑡 ,𝑼

𝑆
𝑡]. An observation for agent 𝑔𝑒 is de-

fined as 𝑜𝑒𝑡 = [D𝑒,𝑡 ,𝑼
𝐿
𝑡 ,𝑼

𝑁
𝑡]. The candidate action set A𝑒 is defined as the set

138

Section 6.2

of nodes that offload tasks. The node set consists of the nearest edge, neigh-

boring edges, and neighboring clouds. The neighboring edges and clouds are

one or more nodes determined by the physical-network graph 𝐺 (𝑵, 𝑳). This

work excludes nodes from A𝑒 that have no remaining resources and edges that

are more than two hops away from edge 𝑒. When edge 𝑒 does not receive

any tasks at 𝑡, agent 𝑔𝑒 chooses the action “do nothing.” This work designs

the reward function to return a negative value if the constraints are not sat-

isfied; otherwise, a positive value depends on the objective-function value (see

Section 6.2.5 for details).

6.2.3 Formulation

Algorithm 11 shows the centralized training using Coop-MADRL. Line 1 shows

the initialization of agent parameters. A series of procedures (lines 2–18) is

repeatedly executed until learning is complete. Lines 3–4 show the generation

of tasks and initialization of environment parameters. A series of actions is

called an episode, and each episode (lines 5–16) is repeatedly executed. In each

episode, agents collect learning samples that are combinations of ⟨𝒐𝑡 , 𝒂𝑡 , 𝑟𝑡⟩.
This work denotes a time step for the network simulator as 𝑡sim ∈ 𝑇 sim, which

is reset at the beginning of each episode. In line 7, when edge 𝑒 accepts mul-

tiple tasks at 𝑡sim, agent 𝑔𝑒 selects one task in an FIFO manner. The two task

subsets can be written as the following relationship: D𝑒,𝑡 ⊆ D𝑒,𝑡sim (⊂ D). In

line 9, a random action is selected with probability Y; otherwise, an action that

maximizes 𝑄𝑒

(
𝑜𝑒𝑡 , 𝑎

′) is selected with probability 1−Y. This is to avoid conver-

gence to a local optimum solution. Each agent executes lines 7–9 in parallel.

In line 10, task offloading is updated in accordance with 𝒂𝑡 by Alg. 13. Line 11

shows the reward calculation. Lines 12–13 mean the termination condition

of agent learning. In this algorithm, 𝑟𝑡 ≤ −1 is the terminate condition, i.e.,

the state that does not satisfy at least one constraint. In lines 14–15, if all

tasks accepted at 𝑡sim are allocated, it proceeds to the next 𝑡sim + 1. Line 17

shows stores in replay memory M. The reason for storing the samples once

in replay memory is to eliminate the time dependence of collecting training

samples [9]. Lines 3–17 can be paralleled because the samples of the episodic

transitions stored in replay memory are independent of the storing order. In

139

Chapter 6

Algorithm 11 Centralized training of Coop-MADRL.

1: initialize: agent parameters, 𝑡 ← 0

2: while 𝑡 ≤ 𝑇 do

3: generate tasks D for training

4: initialize: environment parameters

5: for 𝑡sim = 0, 𝑇 sim do

6: for each 𝑔𝑒 ∈ G do

7: D𝑒,𝑡 ← select one task (D𝑒,𝑡sim)
8: 𝑜𝑒𝑡 ← observation (D𝑒,𝑡 ,𝑼

𝐿
𝑡 ,𝑼

𝑁
𝑡)

9: 𝑎𝑒𝑡 ← select epsilon greedy action
(
𝑜𝑒𝑡

)
10: update environment (𝒐𝑡 , 𝒂𝑡) by Alg. 13

11: 𝑟𝑡 ← calculate reward by Alg. 14

12: if 𝑟𝑡 ≤ −1 then

13: terminate episode: 𝑡sim ← 𝑇 sim

14: if all D𝑡sim are allocated then

15: 𝑡sim ← 𝑡sim + 1
16: 𝑡 ← 𝑡 + 1
17: store episodic transition

(
𝒐 𝑗 , 𝒂 𝑗 , 𝑟 𝑗

)
,∀ 𝑗 ∈ episode steps

18: train all agents G by random episodic transition

line 18, all agents G are trained by the history of episodic transition, which is

randomly taken fromM. This work used VDN [54] as the learning algorithm

for all agents (see Section 2.1.2 for details). To achieve global optimization, all

agents learn to maximize a shared objective function, namely the joint action-

value function 𝑄𝑡𝑜𝑡 (𝒐𝑡 , 𝒂𝑡), which helps prevent competition among the agents.

In the proposed architecture, each edge has a replay memory M. Since the

observation 𝑜𝑒𝑡 of the edge 𝑒 is composed of local task information and shared

network information, episodic transitions can be stored at each edge without

aggregating data from other agents.

Algorithm 12 shows the Coop-MADRL algorithm of the proposed task-

offloading method. Line 1 shows the pre-training of G by using Alg. 11. Next,

this algorithm continually repeats lines 2–9 as long as the proposed method

accepts new tasks. In line 6, each agent selects an 𝑎𝑒𝑡 that maximizes𝑄𝑒

(
𝑜𝑒𝑡 , 𝑎

′).
140

Section 6.2

Algorithm 12 Decentralized execution of Coop-MADRL.

1: 𝑡sim ← 0, 𝑄𝑒 (𝑜𝑒, 𝑎𝑒) ← train all agents G by Alg. 11

2: while all tasks are allocated do

3: for each 𝑔𝑒 ∈ G do

4: D𝑒,𝑡 ← select one task (D𝑒,𝑡sim)
5: 𝑜𝑒𝑡 ← observation (D𝑒,𝑡 ,𝑼

𝐿
𝑡 ,𝑼

𝑁
𝑡)

6: 𝑎𝑒𝑡 ← arg max
𝑎′∈A𝑒

𝑄𝑒

(
𝑜𝑒𝑡 , 𝑎

′)
7: update environment (𝒐𝑡 , 𝒂𝑡) by Alg. 13

8: if all D𝑡sim are allocated then

9: 𝑡sim ← 𝑡sim + 1

Algorithm 13 Update environment.

1: 𝒀 ← allocate tasks (𝒂𝑡 ,D𝑡)
2: 𝑼𝑁

𝑡 ← calculate node utilization (Dt,𝒀)
3: 𝑴 𝑡 ← calculate traffic matrix (D𝑡 ,𝒀 , 𝒁)
4: 𝑼𝐿

𝑡 , 𝑿𝑡 ← calculate link utilization (𝑴t)
5: 𝜏𝑁

𝑘
, 𝜏RTT
𝑘
← calculate latency (𝑿t,𝒀 , 𝒁)

6: return 𝑼𝑁
𝑡 ,𝑼

𝐿
𝑡 , 𝜏

𝑁
𝑘
, 𝜏RTT
𝑘

Algorithm 14 Reward calculation.

1: 𝑟𝑡 ← Eff
(
𝑈𝐿
𝑡+1

)
+ Eff

(
𝑈𝑁
𝑡+1

)
+ Eff

(
𝜏ave𝑡

)
2: if 𝑈𝐿

𝑡+1 > 1 or 𝑈𝐿
𝑡+1 > 1 then

3: return -3

4: return max(−3,min(3, 𝑟𝑡))

6.2.4 Update environment

Algorithm 13 shows the procedure of the update environment. The task-

allocation variables 𝒀 and routing variables 𝑿𝑡 are updated in Alg. 13. Line 1

shows the calculation of 𝒀, line 2 the calculation of 𝑼𝑁
𝑡 , line 3 the calculation

of 𝑴 𝑡 using Eqs. (6.12)–(6.13), and line 4 the calculation of 𝑼𝑁
𝑡 . In line 4,

this work solves the route-optimization problem, which calculates 𝑿𝑡 using

Eqs. (6.7)–(6.11). Line 5 shows the calculation of latency. Finally, Alg. 13

returns variables for the reward calculation.

141

Chapter 6

6.2.5 Reward calculation

This work designs the reward function on the basis of the objective function

in Eq. (6.1). Algorithm 14 shows the procedure of the reward calculation for

G. The term Eff (𝑥) shows the efficiency function and is defined as follows:

Eff (𝑥) =

{
−𝑥 + 1 (𝑥 ≤ 1)
−2𝑥 (1 < 𝑥).

(6.22)

This work designs this function so that the efficiency decreases as 𝑥 increases.

It returns a positive value depending on 𝑥 if 𝑥 < 1; otherwise, it returns a

negative value. The decrease in efficiency doubles when 𝑥 > 1. Note that this

design is essentially independent of the effectiveness of the proposed method.

The term 𝜏ave𝑡 indicates the average task latency efficiency at 𝑡, which shows

the average satisfaction of latency and is defined as follows:

𝜏ave𝑡 =
∑︁
𝑘∈K𝑡

(
𝜏𝑁
𝑘
+ 𝜏RTT

𝑘

𝜏max
𝑘

)
/|K𝑡 |. (6.23)

The terms 𝜏𝑁
𝑘
and 𝜏RTT

𝑘
are calculated using Eqs. (6.15)–(6.16). If it does not

satisfy 𝑈𝐿
𝑡+1 > 1 or 𝑈𝐿

𝑡+1 > 1, it returns −3. Finally, it returns a clipped reward

within −3 ≤ 𝑟𝑡 ≤ 3. The reason for clipping the reward is to increase the

stability of agent learning [9].

6.3 Evaluation

This work evaluated the effectiveness of the proposed method through simu-

lations in terms of performance, network topology dependency, computation

time, and scalability regarding the number of tasks. This work also evalu-

ated its generalization performance for unknown task patterns. This work

prepared five comparison methods and four network topologies for the eval-

uation. For each agent’s DNN layer, this work introduced DRQN [45]. This

work used a three-layer DNN consisting of two fully connected layers and the

GRU layer [80]. This work used Adam [90] to optimize all DNNs and set

the number of neurons in the hidden layers to 64 for all DNNs. This work

used Double-DQN [31] as the DRL algorithm. This work implemented the

142

Section 6.3

20, 2

20, 2 20, 2 20, 2

20, 2 20, 2 20, 2

20, 220, 2

(1 Gbps, 1 ms)

100, 10

100, 10

100, 10

Task Requests

(3 Gbps, 0.5 ms)

Cloud
(capacity, capability [G cycles/s])

Edge-Cloud Link
(capacity [Gbps], latency [ms])

Edge
(capacity, capability [G cycles/s])

Edge-Edge Link
(capacity [Gbps], latency [ms])

Figure 6.1: Network topology (Internet2). (©2023 IEEE.)

DRL-algorithm-based PyTorch [81], PyMARL [82], and PyMARL2 [91]. This

work solved the route optimization using the GNU Linear Programming Kit

(GLPK) [65]. For the hyperparameters of DRL, the learning rate was set to

𝛼 = 0.001, and the discount factor was set to 𝛾 = 0.99. The parameter Y, which

determines the probability of random actions, was linearly decreased from 1.0

to 0.05 over the first 105 steps and then fixed at 0.05. This work accelerated

the centralized training with parallel counts of 8.

143

Chapter 6

T
ab

le
6.
5:

T
as
k
-g
en
er
at
io
n
p
ar
am

et
er
s.

P
a
ra

m
e
te
r

T
y
p
e
1
:

T
y
p
e
2
:

T
y
p
e
3
:

T
y
p
e
4
:

B
a
si
c
T
a
sk

D
o
w
n
lo
a
d
-h

e
a
v
y
T
a
sk

C
o
m
p
u
ti
n
g
-h

e
a
v
y
T
a
sk

L
a
te
n
c
y
-s
e
n
si
ti
v
e
T
a
sk

𝐵
u
p

𝑘
[M

b
it
s]

0.
1–
50

0
.1
–
1

9
0
–
1
0
0

0
.1
–
1
0

𝐵
d
o
w
n

𝑘
[M

b
it
s]

0.
1–
50

9
0
–
1
0
0

0
.1
–
1

0
.1
–
1
0

𝐶
𝑘
[G

cy
cl
es
]

0–
1

0
–
1

1
0
–
2
0

0
–
0
.1

𝜏
m
a
x

𝑘
[m

s]
5
(𝐵

u
p

𝑘
+
𝐵
d
o
w
n

𝑘
)+

50
0𝐶

𝑘
5
(𝐵

u
p

𝑘
+
𝐵
d
o
w
n

𝑘
)+

5
0
0𝐶

𝑘
5
(𝐵

u
p

𝑘
+
𝐵
d
o
w
n

𝑘
)+

2
5
0𝐶

𝑘
2
.5
(𝐵

u
p

𝑘
+
𝐵
d
o
w
n

𝑘
)+

2
5
0𝐶

𝑘

1–
10
00

4
5
0
.5
–
1
0
0
5

2
9
5
0
.5
–
5
5
0
5

0
.5
–
7
5

R
at
io

40
%

2
0
%

2
0
%

2
0
%

144

Section 6.3

T
ab

le
6.
6:

N
et
w
or
k
-t
op

ol
og
y
p
ar
am

et
er
s.

P
a
ra

m
e
te
r

N
o
ta
ti
o
n

In
te
rn

e
t2

A
b
il
e
n
e

A
tl
a
n
ta

G
e
a
n
t

#
of

E
d
ge
s

|𝑵
|

9
12

15
22

#
of

C
lo
u
d
s

|𝑪
|

3
3

3
3

#
of

L
in
k
s

|𝑳
|

16
18

25
39

E
d
ge
-p
ro
ce
ss
in
g
ca
p
ab

il
it
y

𝑣𝐸 𝑖
[G

cy
cl
es
/s
]

2
2

2
2

C
lo
u
d
-p
ro
ce
ss
in
g
ca
p
ab

il
it
y

𝑣𝐶 𝑖
[G

cy
cl
es
/s
]

10
10

10
10

E
d
ge

ca
p
ac
it
y

𝑤
𝐸 𝑖

20
20

20
20

C
lo
u
d
ca
p
ac
it
y

𝑤
𝐶 𝑖

10
0

10
0

10
0

10
0

E
d
ge
–E

d
ge

li
n
k
ca
p
ac
it
y

𝑤
𝐿 𝑖𝑗
[G

b
p
s]

1
1

1
1

E
d
ge
–C

lo
u
d
li
n
k
ca
p
ac
it
y

𝑤
𝐿 𝑖𝑗
[G

b
p
s]

3
3

3
3

E
d
ge
–E

d
ge

p
ro
p
ag
at
io
n
la
te
n
cy

𝛼
𝐿 𝑖𝑗
[m

s]
1

1
1

1

E
d
ge
–C

lo
u
d
p
ro
p
ag
at
io
n
la
te
n
cy

𝛼
𝐿 𝑖𝑗
[m

s]
0.
5

0.
5

0.
5

0.
5

145

Chapter 6

6.3.1 Evaluation conditions

This work sets the number of tasks to K = 1000, total time steps to 𝑇 = 5.0 ×
105, total time steps of each episode to 𝑇 sim = 50, and weighting parameter to

_ = 1. This work assumes that each ED has one task during 𝑡sim ∈ [1, 𝑇 sim], the
acceptance time 𝑡𝑘 is randomly generated within 1–50, and the ED placement

𝒁 is randomly generated. This work sets the time-step interval from 𝑡 to 𝑡 + 1
on the network simulator to 100 ms. Since this interval is merely a parameter

of the network simulator, the actual training time per step need not be less

than 100 ms. However, the execution time of real-world task offloading should

be less than 100 ms. The proposed method satisfies these time constraints (see

Section 6.3.4 for details).

For task generation, this work prepares four types of tasks assuming various

use cases. This work uses a generalized task model to reveal that the proposed

method can effectively allocate tasks even when many types of tasks are mixed.

Table 6.5 summarizes the parameters for task generation. The task model

is parameterized by upload and download traffic demand, 𝐵up
𝑘

and 𝐵down
𝑘

,

computation demand 𝐶𝑘 , and maximum permissible latency to accomplish

the task 𝜏max
𝑘

. This work determines the maximum permissible latency on

the basis of the upload and download traffic and computation demand. This

work models Type 1 tasks as basic tasks and models other types of tasks by

modifying the parameters of basic tasks. Each task parameter randomly takes

a continuous value within a specified range. The task parameters are reset at

the beginning of each episode.

For the physical network, this work prepares four network topologies. This

work first prepares the 12-node topology on the basis of Internet2 [64], which

consists of nine edges and three clouds, as shown in Fig. 6.1. This work con-

nects each cloud to one randomly selected edge and fixes the cloud placements

for all evaluations. The values in this figure show the pair of node-processing

capability and node capacity (𝑤𝑁
𝑖
, 𝑣𝑁
𝑖
) and the pair of link capacity and prop-

agation latency (𝑤𝐿
𝑖 𝑗
, 𝛼𝐿

𝑖 𝑗
). All evaluations except for the network-topology

dependency evaluation were based on this topology. This work then prepares

the other topologies that refer to SNDLib [84], a library of test instances of

survivable fixed telecommunication network design. Table 6.6 summarizes the

146

Section 6.3

Table 6.7: Summary of the proposed method and comparison methods.

Method Methodology RL-based Cooperation

VDN (Ours) Coop-MADRL ✓ ✓

IQL MADRL ✓ -

RA Random Algorithm - -

GA Greedy Algorithm - -

HA Heuristic Algorithm - -

ES Exhaustive Search - -

network-topology parameters. For each network topology, this work defines

neighboring edges and clouds for each edge. This work defines the edges with

a hop count of one as the neighboring edges for each edge. This work also de-

fines the cloud(s) other than the farthest cloud from each edge as neighboring

clouds for each edge.

This work performs training and evaluation steps on the prepared tasks and

physical networks. This work runs Algorithm 11 for training and Algorithm 12

for evaluation. Tasks in training and evaluation are generated under the same

conditions. Note that the tasks generated during training and evaluation are

different because some parameters are randomly generated. In the evaluation,

the MADRL-based methods select the best action (i.e., the offloading server)

on the basis of the trained agents in line 6 of Algorithm 12. The non-DRL-

based methods select the offloading server on the basis of their respective

algorithms, rather than selecting actions by agents.

6.3.2 Comparison methods

Table 6.7 summarizes the proposed method and the comparison methods.

VDN indicates the proposed Coop-MADRL-based method. IQL indicates the

MADRL-based method without cooperation, i.e., each agent learns on the

basis of their reward. As mentioned in Section 2.4, there is no method for

considering multi-cloud networks and network topology, but IQL corresponds

to such a method [35] when it considers them. Note that this work did not

evaluate single-agent DRL because learning will clearly be unsuccessful due to

requirements for huge training iterations until the Q-values for all actions are

147

Chapter 6

sufficiently close to the optimal.

This work also compared the proposed method with three algorithms that

may be able to offload tasks in a computation time close to RL-based meth-

ods. The random algorithm (RA) has a policy that allocates each task to a

node randomly chosen from all candidate nodes at each 𝑡. The greedy algo-

rithm (GA) has a policy that allocates tasks to the nearest edge until the node

utilization of the nearest edge exceeds a threshold and allocates tasks to the

neighboring cloud after exceeding that threshold. This work selected the best

threshold with the best performance after evaluating all patterns in increments

of 0.1 through a preliminary experiment. The GA threshold was set to 0.2,

0.2, 0.2, and 0.1 for Internet2, Abilene, Atlanta, and Geant, respectively. The

heuristic algorithm (HA) has a policy that allocates tasks to suitable nodes

depending on the characteristics of the task type. For this evaluation, HA allo-

cated tasks to random nodes when the task type was 1 or 2, to the neighboring

clouds when the task type was 3, and to the nearest edge when the task type

was 4. This is based on the empirical rule that allocating computing-heavy

tasks to the clouds and latency-sensitive tasks to the nearest edge are suit-

able. Note that these three algorithms also optimize routes calculated with

the route-optimization algorithm at each 𝑡.

This work also evaluated exhaustive search (ES), which has a policy that

finds the best offloading node by exhaustively calculating each reward for all

candidate nodes at 𝑡, equivalent to solving an online optimization problem ev-

ery 𝑡. Note that the solution of ES is different from the exact optimal solution.

Whereas the optimal solution is defined as the solution that maximizes the

sum of the rewards at each time, as shown in Eq. (6.1), ES aims to maximize

the immediate reward obtained in the present. ES also independently calcu-

lates the optimal offload node for each edge at 𝑡 on the basis of the information

obtained at 𝑡 − 1, which may concentrate the tasks on certain nodes.

6.3.3 Evaluation results

6.3.4 Training curve

Figure 6.2 shows the training curves tracking the agent’s total return of VDN

and IQL under the Internet2 topology. The total return is defined as the sum

148

Section 6.3

0.0 0.2 0.4 0.6 0.8 1.0
Steps ×106

0

20

40

60

80

100

To
ta

l R
et

ur
n

VDN
IQL

Figure 6.2: Training curves tracking agent’s total return in Internet2 topology.

(©2023 IEEE.)

of rewards at each time until the end of the episode. For this evaluation, the

total time step was set to 𝑇 = 1.0× 106 to ensure that the agent’s learning has

converged sufficiently. This work conducted five trials for every 1.0× 104 steps

with random initial conditions. The width of each bar indicates the standard

deviation (±𝜎).
The results indicate that the average total return of the two MADRL meth-

ods increased as the training progress and converged around 𝑇 = 3.0×105. The
results also indicate that the final return of VDN was higher than IQL, which

means that IQL cannot learn the suitable task offloading that maximizes the

objective function while satisfying constraints. This work discusses the perfor-

mance details in Section 6.3.4.

149

Chapter 6

V
D

N
IQ

L
R

A
G

A
H

A
ES

M
et

ho
ds

21012

Ave. Reward

V
D

N
IQ

L
R

A
G

A
H

A
ES

M
et

ho
ds

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ave. Max. Node Util.

V
D

N
IQ

L
R

A
G

A
H

A
ES

M
et

ho
ds

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ave. Max. Link Util.

V
D

N
IQ

L
R

A
G

A
H

A
ES

M
et

ho
ds

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ave. Task Latency Eff.

V
D

N
IQ

L
R

A
G

A
H

A
ES

M
et

ho
ds

010203040 Ave. Const. Violation

F
ig
u
re

6.
3:

P
er
fo
rm

an
ce

in
In
te
rn
et
2
to
p
ol
og
y.

(©
20
23

IE
E
E
.)

150

Section 6.3

0.0

0.2

0.4

0.6

0.8

1.0
A

llo
ca

tio
n

R
at

io
VDN IQL RA

Type 1 Type 2 Type 3 Type 4
Task Types

0.0

0.2

0.4

0.6

0.8

1.0

A
llo

ca
tio

n
R

at
io

GA

Type 1 Type 2 Type 3 Type 4
Task Types

HA

Type 1 Type 2 Type 3 Type 4
Task Types

ES

Nearest Edge Neighboring Edge Neighboring Cloud

Figure 6.4: Allocation ratio of each task type in Internet2 topology. (©2023

IEEE.)

VDN IQL RA GA HA ES
Methods

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Av
e.

 T
as

k
La

te
nc

y
Ef

f.

Task-Type = Type 1

VDN IQL RA GA HA ES
Methods

Task-Type = Type 2

VDN IQL RA GA HA ES
Methods

Task-Type = Type 3

VDN IQL RA GA HA ES
Methods

Task-Type = Type 4

Figure 6.5: Task latency of each task type in Internet2 topology. (©2023

IEEE.)

Performance

Figure 6.3 shows the average performance of each method. This work carried

out 20 calculations with random initial conditions and set the same random

seeds for all trials. The width of each bar indicates the standard deviation

(±𝜎). This work can roughly compare the performance of each method with

the average reward. This work also investigated the performance details in

terms of the second to fifth metrics in Fig. 6.3. These metrics are the average

maximum node utilization 𝑈𝑁
𝑡 , average maximum link utilization 𝑈𝐿

𝑡 , average

151

Chapter 6

task-latency efficiency 𝜏ave𝑡 , and average constraint violation. The higher re-

ward means better performance, whereas the lower values for other indicators

mean better performance. When all constraints are satisfied, the node utiliza-

tion, link utilization, and task latency take a value within 0–1. The constraint

violation denotes the total number of times each method violates either node

utilization, link utilization, or task-latency constraints.

Figure 6.3 shows that the proposed method (VDN) performed comparably

to ES and outperformed the other methods. These results indicate that VDN

and ES can maximize network-utilization efficiency and minimize task latency

while reducing constraint violations. Note that constraint violations occurred

for all methods because this work evaluated performance under severe condi-

tions that put heavy loads on the network. Although ES performed the best,

it is problematic in terms of computation time (see Section 6.3.4 for details).

Next, this work discusses the performance comparison between VDN and

other methods. This work first compared VDN and IQL. Figure 6.3 shows

that VDN performed better than IQL for all metrics. This indicates that

the coordination among agents with VDN improves the performance of task

offloading and can prevent constraint violations. Since each agent of IQL acts

independently, task offloading is concentrated on lightly loaded resources in

some cases, causing constraint violations as described in Chapter 1.

This work next compared VDN and the three non-RL-based computation-

ally lightweight methods: RA, GA, and HA. The GA threshold was set to

0.2 because the best performance was obtained in the preliminary experiment.

Figure 6.3 shows that VDN outperformed the three methods in terms of av-

erage reward. However, VDN had a higher maximum node utilization than

GA and HA and higher maximum link utilization than RA. The reason is that

agents choose the action that maximizes the average reward even if the node

and link utilization are increased. As a characteristic of each method, GA

performed comparably to or better than VDN in terms of maximum node uti-

lization, maximum link utilization, and task latency efficiency by setting the

best threshold in the preliminary experiment. However, GA had more con-

straint violations because it could not dynamically select allocations on the

basis of the situation, resulting in a lower average reward than VDN. In ad-

dition, the maximum node utilization and task latency efficiency of HA were

152

Section 6.3

Table 6.8: Average reward of each method for various network topologies.

Method Internet2 Abilene Atlanta Geant

VDN 1.13 ± 0.21 0.64 ± 0.39 1.23 ± 0.15 1.32 ± 0.18
RA −1.00 ± 0.18 −0.79 ± 0.30 −0.53 ± 0.22 −0.34 ± 0.15
GA 0.71 ± 0.61 −0.83 ± 0.51 0.61 ± 0.49 0.89 ± 0.34
HA 0.13 ± 0.76 −1.83 ± 0.21 −0.15 ± 0.63 −0.06 ± 0.55
ES 1.35 ± 0.15 0.92 ± 0.28 1.35 ± 0.23 1.53 ± 0.18

competitive with those of the other methods because HA designs the appro-

priate offloading node depending on the characteristics of each task. However,

the other indicators of HA showed the worst performance because HA does

not take into account the link constraints.

This work discusses the reasons for the performance shown in Fig. 6.3 by

analyzing the latency and allocation ratio of each task type. Figures 6.4 and 6.5

show the latency and allocation ratio of each task type in the evaluation in

Fig. 6.3. Here, the allocation ratio indicates the proportion of where tasks

allocated to the nearest edge, neighboring edges, or neighboring clouds. The

allocation ratios for VDN, IQL, and ES are determined by the task and net-

work conditions. In contrast, the allocation ratios for RA and HA are fixed,

regardless of the task and network conditions, and are determined by the algo-

rithm design. The allocation ratio for GA is determined by the GA threshold

value, which was set to 0.2 in this evaluation.

Figure 6.4 shows that VDN, IQL, GA, and ES primarily allocated tasks

to the neighboring cloud. The result shows that the neighboring cloud is the

preferred node for allocating tasks. This is because of the sufficient cloud-

processing capacity and the short transmission delay between the edge and

cloud, making assigning tasks to the cloud preferable in this evaluation con-

dition. However, this result is only an example of an evaluation and does not

deny the effectiveness of EC. The allocation to the edge may become dominant

depending on the evaluation conditions.

Figure 6.4 shows that VDN changed the allocation ratio in accordance

with the task type. VDN mainly allocated all types of tasks to the neigh-

boring cloud. Looking at the ratio using the edges, VDN allocated most

153

Chapter 6

Type 1 Type 2 Type 3 Type 4
Task Types

0.0

0.2

0.4

0.6

0.8

1.0

A
llo

ca
tio

n
R

at
io

VDN

Type 1 Type 2 Type 3 Type 4
Task Types

ES

Nearest Edge Neighboring Edge Neighboring Cloud

Figure 6.6: Allocation ratio of each task type in Abilene topology. (©2023

IEEE.)

Type 1 Type 2 Type 3 Type 4
Task Types

0.0

0.2

0.4

0.6

0.8

1.0

A
llo

ca
tio

n
R

at
io

VDN

Type 1 Type 2 Type 3 Type 4
Task Types

ES

Nearest Edge Neighboring Edge Neighboring Cloud

Figure 6.7: Allocation ratio of each task type in Atlanta topology. (©2023

IEEE.)

Type 1 Type 2 Type 3 Type 4
Task Types

0.0

0.2

0.4

0.6

0.8

1.0

A
llo

ca
tio

n
R

at
io

VDN

Type 1 Type 2 Type 3 Type 4
Task Types

ES

Nearest Edge Neighboring Edge Neighboring Cloud

Figure 6.8: Allocation ratio of each task type in Geant topology. (©2023

IEEE.)

154

Section 6.3

download-heavy tasks with high transmission costs (Task 2) to the edges. How-

ever, it allocated more computing-heavy tasks (Task 3) to neighboring clouds,

even though the average traffic volumes of Tasks 2 and 3 were equal. This

work concludes that VDN learns a superior policy through cooperative learn-

ing. However, the latency-sensitive tasks (Task 4) were primarily allocated to

neighboring clouds, even though they should be allocated to the nearest edge

to minimize latency. This work assumes the reason is that VDN attempts to

maximize the overall network efficiency by allocating lightweight tasks to the

cloud because of limited resources at the nearest edge.

Figure 6.4 shows that IQL changed the allocation ratio in accordance with

the task type, although it is not associated with satisfactory performance,

as shown in Figure 6.3. RA and GA did not change the allocation ratio in

accordance with the task type, which is assumed to be one reason for the low

performance of these methods. Figures 6.4 and 6.5 show that HA was suitable

for latency for Tasks 3 and 4 because it changes the allocation node depending

on the task type. However, as mentioned above, HA performed poorly because

it does not take into account the link constraints.

Figure 6.4 shows that ES can use the nearest edges compared with VDN,

which is assumed to be one reason that ES performed better than VDN. Even

though ES selects the node that maximizes the reward for all candidate nodes,

the performance difference between VDN and ES is slight. This is because

ES aims to maximize the immediate reward obtained in the present. That is,

selecting the node that maximizes the immediate reward in the present may

not maximize the expectation of the sum of rewards obtained in the future.

Network-topology dependency

Table 6.8 shows the average reward of each method for various network topolo-

gies. This work carried out 20 calculations with random initial conditions and

calculated the mean value and standard deviation of rewards. This work did

not evaluate IQL because it is evident that learning agents is more difficult

in larger topologies. The results indicate that VDN outperformed the other

methods except for ES in all network topologies. Thus, the proposed method

can be applied to larger network topologies.

155

Chapter 6

This work first discusses the average performance with each topology. Ta-

ble 6.8 shows that the average performance of all methods in Abilene decreased

compared with that of other topologies. Comparing the conditions between

Internet2 and other topologies, as shown in Table 6.6, only the network size is

larger, and the other parameters are the same. This work considers that the

graph structure of the topology determines the performance.

This work next discusses the performance of each method. Table 6.8 shows

that VDN performed comparably to ES in all topologies, whereas the perfor-

mance difference between VDN and ES increased in Abilene. Since all methods

performed worse in Abilene, the performance difference between VDN and ES

could be significant in environments where agent learning is complex. Table 6.8

also shows that the performance trends of GA and HA remain unchanged. On

the other hand, the performance of RA improved as the topology size increased.

This is because a larger topology provides more control options, enables load

balancing, and improves performance regardless of the control method.

Figures 6.6–6.8 show the allocation ratio of each task type for larger topolo-

gies. This work omits the results of RA, GA, and HA because these methods

do not change the allocation ratio depending on evaluation conditions. These

figures show that VDN mainly allocated all types of tasks to the neighboring

cloud, similar to that of Internet2. On the other hand, the allocation ratio of

ES depended on network topology.

Figure 6.6 shows that the allocation ratio of VDN in Abilene was about the

same as that in Internet2, while it increased the task allocation to the nearest

edge. This means that VDN changed the allocation ratio in accordance with

Abilene and learned the superior policy in accordance with the environment.

Figures 6.7–6.8 show that the allocation ratio in larger topologies was similar

to that of Internet2. However, the difference in the allocation ratio for each

task type became smaller as the topology size increased. This means that

learning in accordance with task type becomes more difficult as the topology

size increases.

In summary, VDN outperformed the other methods except for ES in all

network topologies. In addition, VDN can allocate tasks in accordance with

the task type when the topology is small, but this becomes more difficult

as the topology size increases. Although VDN cannot learn by task type in

156

Section 6.3

Table 6.9: Execution times for various network topologies.

Method Internet2 Abilene Atlanta Geant

VDN (Ours) 0.19 ms 0.26 ms 0.26 ms 0.25 ms

RA 0.07 ms 0.08 ms 0.09 ms 0.10 ms

GA 0.08 ms 0.12 ms 0.12 ms 0.11 ms

HA 0.11 ms 0.23 ms 0.28 ms 0.45 ms

ES 0.89 s 2.5 s 6.0 s 32.4 s

Table 6.10: Training times for various network topologies.

Method Internet2 Abilene Atlanta Geant

VDN (Ours) 0.3 days 0.6 days 1.7 days 5.8 days

larger topologies, it achieves superior performance competitive with that of ES

by learning the appropriate allocation to edges and clouds depending on the

situation.

Computation time

Table 6.9 shows the average execution time of each method for various net-

work topologies. The execution time denotes the computation time required

to determine the allocated node for a single task, which corresponds to line 4

in Alg. 12 for VDN. This work used Apple M1 Ultra for the evaluation. The

execution time of all methods except for ES was less than 1 ms for all topolo-

gies. The execution time tended to increase as topology size increases, but

the increase is almost negligible for task latency. This means that VDN per-

forms sufficiently in terms of computation time. However, the execution time

of ES was about one second in the fastest case. The execution time of these

task-offloading methods was added to the task latency in real-world scenarios.

When the execution time takes one second, the task latency cannot be shorter

than one second. Therefore, it is a critical for many tasks to keep latency to less

than a few tens of milliseconds. The execution time drastically increased as the

topology size increased because the computational complexity of the optimiza-

tion calculation also drastically increased. This work concludes that VDN is

the best task-offloading method, considering the allocation performance shown

157

Chapter 6

in Table 6.8 and execution times shown in Table 6.9.

Table 6.10 shows the training time of VDN for various network topologies.

The training time denotes the computation time required for the agents to

complete the training of all time-steps 𝑇 = 5×105. The training time increases

as topology size increases. Most of the increase in the training time was due

to the increased computational complexity of the network simulation, which

corresponds to Alg. 13. Although larger topologies require longer training

times, this is not problematic since the training only needs to be done once.

158

Section 6.3

T
ab

le
6.
11
:
L
at
en
cy
-w

ei
gh

ti
n
g-
p
ar
am

et
er

d
ep

en
d
en
cy
.

C
a
se

A
v
e
.
M

a
x
.
N
o
d
e
U
ti
l.

A
v
e
.
M

a
x
.
L
in
k
U
ti
l.

A
v
e
.
T
a
sk

L
a
te
n
c
y
E
ff
.

C
o
n
st
ra

in
t
V
io
la
ti
o
n

_
=
1

0
.5
2
±
0
.0
6

0
.6
9
±
0
.0
2

0
.3
5
±
0
.0
0

2
.1
±
2
.5

_
=
2

0
.5
5
±
0
.0
7

0
.7
1
±
0
.0
2

0
.3
4
±
0
.0
0

2
.8
±
2
.4

_
=
3

0
.3
4
±
0
.0
4

0
.7
4
±
0
.0
3

0
.3
3
±
0
.0
0

3
.8
±
3
.2

159

Chapter 6

Table 6.12: Network parameters for scalability evaluation.

Case 𝑤𝐸
𝑖

𝑤𝐶
𝑖

𝑤𝐿
𝑖 𝑗

𝑤𝐿
𝑖 𝑗

K = 1000 20 100 1 3

K = 2000 38 190 1.9 5.7

K = 5000 95 475 4.75 14.25

K = 10000 180 900 9 27

Table 6.13: Scalability evaluation regarding number of tasks.

Case Ave. Reward

K = 1000 1.13 ± 0.21
K = 2000 1.36 ± 0.25
K = 5000 1.25 ± 0.60
K = 10000 1.19 ± 0.61

Latency-weighting-parameter dependency

Table 6.11 shows the weighting-parameter dependency of the objective func-

tion shown in Eq. (6.1). The weighting parameter _ determines the importance

ratio of resource efficiency and task latency. This work carried out 20 calcu-

lations with random initial conditions and set the same random seeds for all

calculations. The results indicate that, as _ increased, VDN improved in task-

latency efficiency and worsened the sum of node and link utilization. This

work revealed that the proposed method can adjust the importance of the ob-

jective function by _. However, these indicators show no drastic change for

the increase in _. This is because reducing task latency leads to better node

and link utilization. For example, to reduce task latency, the task-offloading

method must balance server loads between clouds and edges in accordance

with the task characteristics, which improves node utilization. To reduce task

latency, it must minimize the route length of the task, which decreases link

loads and improves link utilization.

160

Section 6.3

Scalability regarding number of tasks

This work evaluated the scalability of VDN regarding the number of tasks K.
This work simultaneously evaluated the generalization performance of VDN

regarding the number of tasks. The generalization performance measures how

accurately a method can perform for previously unseen data. In other words,

this work evaluated the performance of VDN with a different number of tasks

than during training. This work increased link capacity and node capacity

depending on K, as shown in Table 6.12. Therefore, the relative load on the

system is kept constant and this work can only evaluate the scalability of VDN.

Other parameters were those in Table 6.6. This work evaluated performance

under strict conditions where the capacity increase is 95% of the constant

multiple.

Table 6.13 shows the scalability of VDN regarding the number of tasks K in

Internet2. This work carried out 20 calculations with random initial conditions

and calculated the average and the standard deviation of rewards. This work

uses agents trained when K = 1000 for all conditions. VDN kept the average

rewards even as the number of tasks increased. The agents of VDN learn

the policy from accepted task information and each node and link utilization

information. Since this information of the physical network is normalized and

independent of the number of tasks, VDN can determine the preferred task

allocation without depending on the number of tasks. This work concludes that

the proposed method has scalability and generalization performance regarding

the number of tasks. However, the variance of rewards tends to increase as the

number of tasks increases. Therefore, retraining the agents is advisable when

the number of tasks significantly differs from the training condition.

161

Chapter 6

Table 6.14: Various cases for generalization-performance evaluation.

Case Task 1 Task 2 Task 3 Task 4

Default 40% 20% 20% 20%

Task2–30% 30% 30%

20% 20%Task2–40% 20% 40%

Task2–50% 10% 50%

Task3–22% 38%

20%

22%

20%Task3–23% 37% 23%

Task3–25% 35% 25%

Task4–30% 30%

20% 20%

30%

Task4–40% 20% 40%

Task4–50% 10% 50%

All–15% 55% 15% 15% 15%

All–25% 25% 25% 25% 25%

All–30% 10% 30% 30% 30%

162

Section 6.3

T
ab

le
6.
15
:
G
en
er
al
iz
at
io
n
-p
er
fo
rm

an
ce

ev
al
u
at
io
n
fo
r
va
ri
ou

s
ta
sk

ty
p
es
.

C
a
se

A
v
e
.
R
e
w
a
r
d

A
v
e
.
M

a
x
.
N
o
d
e
U
ti
l.

A
v
e
.
M

a
x
.
L
in

k
U
ti
l.

A
v
e
.
T
a
sk

-l
a
te

n
c
y

E
ff
.

C
o
n
st
r
a
in
t
V
io
la
ti
o
n

D
ef
a
u
lt

1
.1
3
±
0
.2
1

0
.5
2
±
0
.0
6

0
.6
9
±
0
.0
2

0
.3
5
±
0
.0
0

2
.1
±
2
.5

T
a
sk

2
–
3
0
%

1
.0
3
±
0
.2
6

0
.5
4
±
0
.0
5

0
.6
9
±
0
.0
3

0
.3
6
±
0
.0
0

2
.8
±
2
.9

T
a
sk

2
–
4
0
%

1
.0
3
±
0
.2
4

0
.5
5
±
0
.0
8

0
.7
0
±
0
.0
3

0
.3
6
±
0
.0
0

2
.6
±
2
.7

T
a
sk

2
–
5
0
%

0
.9
4
±
0
.3
7

0
.5
6
±
0
.0
5

0
.7
0
±
0
.0
4

0
.3
6
±
0
.0
0

4
.1
±
5
.0

T
a
sk

3
–
2
2
%

0
.7
0
±
0
.3
6

0
.5
8
±
0
.0
3

0
.7
5
±
0
.0
3

0
.3
7
±
0
.0
0

6
.1
±
4
.8

T
a
sk

3
–
2
3
%

0
.3
4
±
0
.6
0

0
.5
9
±
0
.0
3

0
.7
9
±
0
.0
7

0
.3
7
±
0
.0
0

1
0
.6
±
7
.7

T
a
sk

3
–
2
5
%

−0
.3
6
±
0
.6
9

0
.6
1
±
0
.0
4

0
.8
8
±
0
.0
7

0
.3
8
±
0
.0
0

1
9
.6
±
9
.0

T
a
sk

4
–
3
0
%

1
.0
8
±
0
.2
3

0
.4
9
±
0
.0
5

0
.7
0
±
0
.0
3

0
.3
8
±
0
.0
0

2
.9
±
3
.1

T
a
sk

4
–
4
0
%

0
.8
8
±
0
.2
8

0
.4
8
±
0
.0
7

0
.7
3
±
0
.0
4

0
.4
2
±
0
.0
0

5
.3
±
3
.8

T
a
sk

4
–
5
0
%

0
.6
0
±
0
.3
8

0
.4
3
±
0
.0
4

0
.7
6
±
0
.0
3

0
.4
4
±
0
.0
0

9
.9
±
5
.1

A
ll
–
1
5
%

1
.5
7
±
0
.1
1

0
.3
5
±
0
.0
5

0
.6
1
±
0
.0
3

0
.3
1
±
0
.0
1

0
.3
±
1
.1

A
ll
–
2
5
%

−0
.1
4
±
0
.5
3

0
.6
2
±
0
.0
4

0
.8
5
±
0
.0
4

0
.3
9
±
0
.0
0

1
6
.6
±
7
.3

A
ll
–
3
0
%

−1
.2
8
±
0
.4
7

0
.6
3
±
0
.0
4

1
.0
3
±
0
.0
8

0
.4
2
±
0
.0
0

3
2
.4
±
6
.3

163

Chapter 6

Generalization performance for task types

This work evaluates the generalization performance of VDN for various task

types. This work evaluates the average reward when each task type ratio dif-

fered from the training condition. Table 6.14 shows various cases with different

ratios of task types. This work sets the conditions in Table 6.5 as default. This

work prepared cases that increase the ratio of each task type and decrease the

ratio of basic tasks. This work also prepared cases that change the ratio of

three task types per 5% and the ratio of basic tasks per 15%.

Table 6.15 shows the average reward and other indicators for various cases

changing the ratio of task types. This work carried out 20 calculations with

random initial conditions and set the same random seeds for all calculations.

The average reward decreased as the ratio of Tasks 2–4 increased from the

training condition. For Task 3, VDN had generalization performance until

the task ratio increased by 2%. The average reward notably decreased for

increases of 5%. This is because tasks with high average computing demand

occupy the computing resources over a long period and reduce node utiliza-

tion. For Tasks 2 and 4, VDN had generalization performance even when the

task ratio increased by 20%. This is because Tasks 2 and 4 occupy comput-

ing resources for only a short time. Similarly, when this work simultaneously

increased the ratio of the three task types by 5%, VDN showed no general-

ization performance. In other words, the proposed method has generalization

performance when the prediction error in the proportion of computing-heavy

tasks is within 2%. Conversely, for the case in which this work simultaneously

decreased the ratio of the three task types, the performance of VDN improved.

Therefore, this work concludes that the proposed method can have general-

ization performance for various task types by pre-training with the predicted

maximum percentage of resource-consuming tasks.

6.3.5 Discussion

This work discusses the future work of the proposed method. This work has

demonstrated the effectiveness of the proposed method. However, there are

still challenges that this work should explore for applying the proposed method

in a commercial environment or a future network.

164

Section 6.3

This work discusses the challenge of the applicability of the proposed

method. This work assumes that the routes in the access network take the

shortest path. Current wired access networks with optical fiber automatically

select the shortest path from a few routing options. Current wireless access

networks for cellular automatically select the best BS for each ED on the basis

of the received signal power. Therefore, the proposed method is applicable

in real-world scenarios of the current network. However, there are some chal-

lenges in applying the proposed method in a commercial environment or a

future network.

The first challenge is scalability for edges. The proposed method may

only be applicable to networks with EC servers with dozens of edges. This

work targets commercial networks that cover a large area, such as networks in

multiple regions or parts of a country. Such an access network includes more

than 10 000 edges. Similar to other methods [32–39] that can only handle

a few dozen BSs at most, as described in Section 2.4, the proposed method

also cannot control more than 10 000 edges. This work deploys each agent

at each edge (i.e., at each BS), and each agent learns cooperative control.

Therefore, the agents should learn cooperative control among many agents in

the mentioned environment. However, this is difficult to achieve with current

technology and is one of the future works. As a possible solution, the combined

method of Mean-field Game (MFG) theory and DRL may handle a large-scale

task-offloading system with many BSs. MFG theory [92] studies strategic

decision-making by small interacting agents in large populations, inspired by

mean-field theory in physics. Each agent minimizes or maximizes the problem

objective, taking into account the decisions of the other agents. Several studies

have addressed network control methods that combine MFG theory and DRL,

such as unmanned aerial vehicle control [93,94] and computation offloading in

EC [95–97].

The next challenge is scalability for tasks. The processing time of the

proposed method for determining the offload server is about 0.2 ms per task.

Also, because the proposed method processes tasks sequentially, one at a time,

it cannot handle thousands or millions of tasks per second required in real-

world environments. Therefore, sufficient scalability for tasks is one of the

future works. One possible solution is parallelization. Assigning many trained

165

Chapter 6

agents at each edge makes it possible to process many tasks simultaneously.

Many trained agents working independently may cause new problems.

The other challenge is to optimize task offloading for an entire end-to-end

network. Since task latency can be expressed as the sum of backbone and

access networks, this work can find near-optimal task offloading and routes

between EDs and servers by optimizing the backbone and access networks in-

dependently. However, future networks will require more efficient optimal task

offloading by considering the entire end-to-end multi-domain between EDs and

servers, such as backbone network, access network, edge servers, and cloud

servers. For this purpose, the proposed method should consider the latency

and link quality of the wireless network between EDs and BSs. The diffi-

culty in the wireless network is that the observed information is incomplete

or uncertain. Several studies have addressed task offloading in the wireless

network under imperfect channel state information (CSI) [98–103]. In partic-

ular, security is one of the major concerns for mobile EC with incomplete CSI.

Several studies have been conducted on security-aware task allocation under

incomplete CSI [104–106]. In addition, several studies have been conducted

on end-to-end network slicing or multi-domain network slicing to integrate the

multiple controls [107–109]. Although much research has been done, optimiz-

ing task offloading in an end-to-end network remains an unsolved problem and

one of the major challenges. By combining the proposed method with above

studies, the problem should be addressed in the future.

6.4 Chapter summary

This chapter formulated an optimal task-offloading problem and proposed a co-

operative task-offloading method for multi-cloud and multi-edge networks con-

sidering network topology and bandwidth constraints. This method is based

on cooperative multi-agent deep reinforcement learning (Coop-MADRL). This

method can quickly achieve efficient task offloading by learning the relation-

ship between network-demand patterns and optimal task offloading by using

deep reinforcement learning in advance. This method also introduces a co-

operative multi-agent technique, improving the efficiency of task offloading.

Evaluations revealed that the proposed method can minimize network utiliza-

166

Section 6.4

tion and task latency while minimizing constraint violations in less than 1 ms

in various network topologies. They also revealed that cooperative learning

improves the efficiency of task offloading. This work demonstrated that the

proposed method can have generalization performance for various task types by

pre-training with many resource-consuming tasks. This work plans to evaluate

the performance of the proposed method and conduct further detailed analysis

in more complicated use cases or real-world applications. This work also plans

to improve the scalability and interpretability of the proposed method.

167

Chapter 6

168

Chapter 7

Conclusions

Network functions virtualization (NFV) and edge computing (EC) are the key

technologies of future networks. In NFV, a significant research challenge is to

determine the optimal allocation of virtual networks (VNs) while taking into

account the constraints of limited network and server resources. Similarly, in

EC, a critical research challenge is to identify efficient strategies for offloading

tasks to edge servers or cloud servers, taking into account the diverse character-

istics of tasks and the constraints of network and server resources. Network re-

source management of future networks must be optimized to maximize resource

utilization efficiency in a network with limited physical resources. The perfor-

mance of allocation algorithms is critical for future network management, as it

determines the overall network’s resource utilization efficiency. This thesis fo-

cused on reinforcement learning (RL) as a solution to the resource management

problem because it can quickly calculate a near-optimal resource allocation by

learning the relationship between input network resource patterns and output

resource allocation in advance. This thesis studied four specific problems about

network resource management using multi-agent deep reinforcement learning

(MADRL). Each problem corresponds to resource-integrated control in NFV,

dynamic VN allocation, and task offloading for multi-cloud-edge networks, re-

spectively.

Firstly, this thesis presented an extendable resource-integrated control method

in NFV by coordinating multiple control algorithms. This work developed an

efficient coordination algorithm on the basis of RL, which makes it possible to

169

Chapter 7

find better solutions with fewer explorations by learning a strategy that can

improve resource-utilization efficiency with each exploration step. Simulations

revealed that the proposed algorithm can improve solution exploration for 12

representative types of the virtual network allocation use cases modeled from

previous studies. This qualitatively revealed that the proposed method has

extendability. This work also found that it can improve resource-utilization

efficiency by 22% and total reliability by 8% in less than 5000 steps in the case

of several hundred virtual machines (VMs) and a hundred intrusion detection

systems (IDSs).

Secondly, this thesis proposed a dynamic virtual network allocation method

based on the proposed Safe-MADRL. This method can quickly optimize the

network resources even when traffic demand change drastically. It can also

reduce the agent’s constraint violations such as the control that leads to net-

work congestion and server overload. Simulations revealed that the proposed

method can reduce the maximum link utilization to half while maintaining the

maximum server utilization compared to the static allocation method under

practical-network conditions. Moreover, the computation time of the proposed

method was less than one second, which is a significant increase in speed com-

pared to exhaustive search. As a result, this work revealed that the proposed

method simultaneously enables efficient and immediate dynamic VN alloca-

tion.

Thirdly, this thesis proposed a dynamic VN allocation method based on

cooperative multi-agent deep reinforcement learning (Coop-MADRL). This

method can quickly optimize the network resources even when traffic demands

change drastically by applying MADRL for dynamic VN allocation. It can

also reduce the agents’ constraint violations such as network congestion and

server overload and reduce the reallocation such as VM migration by introduc-

ing a cooperative element for MADRL. Simulations revealed that the proposed

dynamic VN allocation method can reduce the maximum server and link uti-

lization and drastically reduce the constraint violations compared with that of

a static VN allocation method under practical-network conditions. In contrast,

the evaluation also revealed that the Exhaustive Search (ES) that maximizes

the reward at each time does not necessarily maximize the average rewards

when the traffic demands fluctuate. Moreover, the computation time of the

170

Section 7.0

proposed method was less than one second, which is significantly shorter than

that of ES. As a result, this work revealed that the proposed method simulta-

neously enables efficient and immediate dynamic VN allocation. Finally, this

work evaluated the generalization performance for various traffic demands.

The results revealed that the agent training with mixed various traffic models

could achieve a high generalization performance for all traffic models.

Fourthly, this thesis proposed a cooperative task-offloading method for

multi-cloud and multi-edge networks considering network topology and band-

width constraints. This method is based on Coop-MADRL. This method can

quickly achieve efficient task offloading by learning the relationship between

network-demand patterns and optimal task offloading by using deep reinforce-

ment learning (DRL) in advance. This method also introduces a cooperative

multi-agent technique, improving the efficiency of task offloading. Evaluations

revealed that the proposed method can minimize network utilization and task

latency while minimizing constraint violations in less than 1 ms in various

network topologies. They also revealed that cooperative learning improves

the efficiency of task offloading. This work demonstrated that the proposed

method can have generalization performance for various task types by pre-

training with many resource-consuming tasks.

The four proposed methods of network resource management based on RL

enable rapid calculations of near-optimal resource allocation by learning ef-

ficient resource allocation strategies in advance. The near-optimal resource

allocation achieved through these methods can accommodate more VNs and

tasks using existing network resources. This efficient network management

minimizes capital expenditure (CAPEX) and maximizes the profit of telecom-

munication service providers (TSPs). Moreover, the quick calculations per-

formed by RL enable the maintenance of a near-optimal allocation, even in

dynamic fluctuations of network resource demands. This capability allows

for timely responses to unexpected changes in demand and network failures,

maximizing service quality.

For future works, there are three directions of study for network resource

management using MADRL. One direction is expanding the control domain

of the proposed methods to new control domains. While this thesis focused

on network-resource-integrated control in NFV, other domains are beyond the

171

Chapter 7

scope of this research, e.g., 5th/6th Generation Mobile Communication Sys-

tems (5G/6G). In particular, end-to-end network slicing has been focused on

recently, which extends the concept of VN to wireless networks, wired net-

works, and edge/cloud computing. In addition, it is crucial to consider task

allocation incorporating emerging technology, e.g., Multi-Access Edge Com-

puting (MEC). The proposed network-resource-integrated control could be

further strengthened by incorporating these new control domains. The sec-

ond direction is developing models and simulations that accurately replicate

real-world networks. RL typically learns through trial and error, but real-world

networks often do not allow for trial and error. To overcome this challenge,

future works should develop techniques to bridge the gap between network sim-

ulations and real-world networks. Advanced simulation platforms, such as the

Digital Twin platform, can be leveraged to accurately replicate network behav-

ior and provide more effective training and evaluation of RL. The third direc-

tion is improving the interpretability of DRL. While this thesis demonstrated

the effectiveness of MADRL-based network resource management methods in

achieving effective allocation, DRL often needs more interpretability, making

it difficult for network operators to understand the decision-making process

behind their actions. To address this challenge, future works should focus on

enhancing the interpretability of MADRL. This involves developing techniques

to explain the reasoning behind agent decision-making, enabling network oper-

ators to gain insights into the reasons for agent control and devise appropriate

recovery plans in case of agent errors. By improving interpretability, trust in

network resource management using MADRL can be increased.

172

Bibliography

[1] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and

R. Boutaba, “Network function virtualization: State-of-the-art and re-

search challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp.

236–262, 2015.

[2] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtual-

ization: Challenges and opportunities for innovations,” IEEE Commun.

Mag., vol. 53, no. 2, pp. 90–97, 2015.

[3] R. Mijumbi, J. Serrat, J.-l. Gorricho, S. Latre, M. Charalambides, and

D. Lopez, “Management and orchestration challenges in network func-

tions virtualization,” IEEE Commun. Mag., vol. 54, no. 1, pp. 98–105,

2016.

[4] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-

molky, and S. Uhlig, “Software-defined networking: A comprehensive

survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, 2014.

[5] L. E. Li, V. Liaghat, H. Zhao, M. Hajiaghayi, D. Li, G. Wilfong, Y. R.

Yang, and C. Guo, “Pace: Policy-aware application cloud embedding,”

in Proc. IEEE INFOCOM, 2013, pp. 638–646.

[6] L. Cui, R. Cziva, F. P. Tso, and D. P. Pezaros, “Synergistic policy and

virtual machine consolidation in cloud data centers,” in Proc. IEEE IN-

FOCOM, 2016, pp. 1–9.

[7] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A compre-

hensive survey,” IEEE Trans. Netw. Service Manag., vol. 13, no. 3, pp.

518–532, 2016.

173

Bibliography

[8] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.

MIT press Cambridge, 1998, vol. 1.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,

“Human-level control through deep reinforcement learning,” Nature, vol.

518, no. 7540, pp. 529–533, 2015.

[10] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint VM place-

ment and routing for data center traffic engineering,” in Proc. IEEE

INFOCOM, 2012, pp. 2876–2880.

[11] M. Yoshida, W. Shen, T. Kawabata, K. Minato, and W. Imajuku,

“MORSA: A multi-objective resource scheduling algorithm for NFV in-

frastructure,” in Proc. APNOMS, 2014, pp. 1–6.

[12] Y. Jin, Y. Wen, and C. Westphal, “Towards joint resource allocation

and routing to optimize video distribution over future Internet,” in Proc.

IFIP Netw. Conf., 2015, pp. 1–9.

[13] M. T. Beck and J. F. Botero, “Coordinated allocation of service function

chains,” in Proc. IEEE GLOBECOM, 2015, pp. 1–6.

[14] H. Li, L. Wang, X. Wen, Z. Lu, and J. Li, “MSV: An algorithm for co-

ordinated resource allocation in network function virtualization,” IEEE

Access, vol. 6, pp. 76 876–76 888, 2018.

[15] S. Dräxler, H. Karl, and Z. Á. Mann, “Jasper: Joint optimization of

scaling, placement, and routing of virtual network services,” IEEE Trans.

Netw. Service Manag., vol. 15, no. 3, pp. 946–960, 2018.

[16] J. Li, W. Shi, Q. Ye, W. Zhuang, X. Shen, and X. Li, “Online joint

VNF chain composition and embedding for 5G networks,” in Proc. IEEE

GLOBECOM, 2018, pp. 1–6.

[17] K. Tsagkaris, G. Nguengang, A. Galani, I. Grida Ben Yahia, M. Ghader,

A. Kaloxylos, M. Gruber, A. Kousaridas, M. Bouet, S. Georgoulas et al.,

174

Bibliography

“A survey of autonomic networking architectures: towards a unified man-

agement framework,” Int. J. Netw. Manage., vol. 23, no. 6, pp. 402–423,

2013.

[18] K. Tsagkaris, M. Logothetis, V. Foteinos, G. Poulios, M. Michaloliakos,

and P. Demestichas, “Customizable autonomic network management:

integrating autonomic network management and software-defined net-

working,” IEEE Veh. Technol. Mag., vol. 10, no. 1, pp. 61–68, 2015.

[19] A. Stamou, G. Kakkavas, K. Tsitseklis, V. Karyotis, and S. Papavassil-

iou, “Autonomic network management and cross-layer optimization in

software defined radio environments,” Future Internet, vol. 11, no. 2,

p. 37, 2019.

[20] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach,

“Virtual network embedding: A survey,” IEEE Commun. Surveys Tuts.,

vol. 15, no. 4, pp. 1888–1906, 2013.

[21] A. Laghrissi and T. Taleb, “A survey on the placement of virtual re-

sources and virtual network functions,” IEEE Commun. Surveys Tuts.,

vol. 21, no. 2, pp. 1409–1434, 2018.

[22] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and

S. Davy, “Design and evaluation of algorithms for mapping and schedul-

ing of virtual network functions,” in Proc. IEEE NetSoft, 2015, pp. 1–9.

[23] R. Mijumbi, J.-L. Gorricho, J. Serrat, M. Claeys, J. Famaey, and

F. De Turck, “Neural network-based autonomous allocation of resources

in virtual networks,” in Proc. IEEE EuCNC, 2014, pp. 1–6.

[24] R. Mijumbi, J.-L. Gorricho, J. Serrat, M. Shen, K. Xu, and K. Yang, “A

neuro-fuzzy approach to self-management of virtual network resources,”

Expert systems with applications, vol. 42, no. 3, pp. 1376–1390, 2015.

[25] M. Dolati, S. B. Hassanpour, M. Ghaderi, and A. Khonsari, “DeepViNE:

Virtual network embedding with deep reinforcement learning,” in Proc.

IEEE INFOCOM Workshops, 2019, pp. 879–885.

175

Bibliography

[26] Z. Yan, J. Ge, Y. Wu, L. Li, and T. Li, “Automatic virtual network

embedding: A deep reinforcement learning approach with graph con-

volutional networks,” IEEE J. Sel. Areas Commun., vol. 38, no. 6, pp.

1040–1057, 2020.

[27] A. Suzuki and S. Harada, “Safe multi-agent deep reinforcement learning

for dynamic virtual network allocation,” in Proc. IEEE GLOBECOM,

2020, pp. 1–7.

[28] X. Zheng, Y. Zhang, H. Zhang, and Q. Xue, “An RBF neural network–

based dynamic virtual network embedding algorithm,” Concurrency and

Computation: Practice and Experience, vol. 31, no. 23, p. e4516, 2019.

[29] C. K. Dehury and P. K. Sahoo, “DYVINE: Fitness-based dynamic virtual

network embedding in cloud computing,” IEEE J. Sel. Areas Commun.,

vol. 37, no. 5, pp. 1029–1045, 2019.

[30] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource manage-

ment with deep reinforcement learning,” in Proc. ACM HotNets, 2016,

pp. 50–56.

[31] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning

with double q-learning,” in Proc. AAAI, 2016, pp. 2094–2100.

[32] Y. Wang, X. Tao, X. Zhang, P. Zhang, and Y. T. Hou, “Cooperative

task offloading in three-tier mobile computing networks: An ADMM

framework,” IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2763–2776,

2019.

[33] H. Yuan and M. Zhou, “Profit-maximized collaborative computation of-

floading and resource allocation in distributed cloud and edge computing

systems,” IEEE Trans. Autom. Sci. Eng., 2020.

[34] C. Kai, H. Zhou, Y. Yi, and W. Huang, “Collaborative cloud-edge-end

task offloading in mobile-edge computing networks with limited com-

munication capability,” IEEE Trans. on Cogn. Commun. Netw., vol. 7,

no. 2, pp. 624–634, 2020.

176

Bibliography

[35] Y. Zhan, S. Guo, P. Li, and J. Zhang, “A deep reinforcement learn-

ing based offloading game in edge computing,” IEEE Trans. Comput.,

vol. 69, no. 6, pp. 883–893, 2020.

[36] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, “Deep

reinforcement learning for collaborative offloading in heterogeneous edge

networks,” in Proc. IEEE/ACM CCGrid. IEEE, 2021, pp. 297–303.

[37] W. Hou, H. Wen, H. Song, W. Lei, and W. Zhang, “Multi-agent deep

reinforcement learning for task offloading and resource allocation in cy-

bertwin based networks,” IEEE Internet Things J., 2021.

[38] S. Ding and D. Lin, “Multi-agent reinforcement learning for cooperative

task offloading in distributed edge cloud computing,” IEICE Trans. Inf.

Syst., vol. 105, no. 5, pp. 936–945, 2022.

[39] Y. Zhang, B. Di, Z. Zheng, J. Lin, and L. Song, “Distributed multi-

cloud multi-access edge computing by multi-agent reinforcement learn-

ing,” IEEE Trans. Wireless Commun., vol. 20, no. 4, pp. 2565–2578,

2020.

[40] G. J. Laurent, L. Matignon, L. Fort-Piat et al., “The world of indepen-

dent learners is not markovian,” International Journal of Knowledge-

based and Intelligent Engineering Systems, vol. 15, no. 1, pp. 55–64,

2011.

[41] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru,

and Y. Tassa, “Safe exploration in continuous action spaces,”

arXiv:1801.08757, 2018.

[42] H. Van Seijen, M. Fatemi, J. Romoff, R. Laroche, T. Barnes, and

J. Tsang, “Hybrid reward architecture for reinforcement learning,” in

Advances in Neural Information Processing Systems, 2017, pp. 5392–

5402.

[43] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,

D. Silver, and D. Wierstra, “Continuous control with deep reinforcement

learning,” arXiv:1509.02971, 2015.

177

Bibliography

[44] Y. Fujita, T. Kataoka, P. Nagarajan, and T. Ishikawa, “ChainerRL: A

deep reinforcement learning library,” in Proc. NeurIPS Workshop, 2019.

[45] M. Hausknecht and P. Stone, “Deep recurrent Q-learning for partially

observable MDPs,” in Proc. AAAI Fall Symposium Series, 2015.

[46] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning:

A selective overview of theories and algorithms,” Handbook of reinforce-

ment learning and control, pp. 321–384, 2021.

[47] A. Oroojlooy and D. Hajinezhad, “A review of cooperative multi-agent

deep reinforcement learning,” Applied Intelligence, pp. 1–46, 2022.

[48] S. Gronauer and K. Diepold, “Multi-agent deep reinforcement learning:

a survey,” Artificial Intelligence Review, pp. 1–49, 2022.

[49] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The com-

plexity of decentralized control of markov decision processes,” Mathe-

matics of operations research, vol. 27, no. 4, pp. 819–840, 2002.

[50] F. A. Oliehoek, C. Amato et al., A concise introduction to decentralized

POMDPs. Springer, 2016.

[51] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,

“Multi-agent actor-critic for mixed cooperative-competitive environ-

ments,” arXiv:1706.02275, 2017.

[52] M. TAN, “Multi-agent reinforcement learning: Independent vs. cooper-

ative agents,” in Proc. ICML, 1993.

[53] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru,

J. Aru, and R. Vicente, “Multiagent cooperation and competition with

deep reinforcement learning,” PloS one, vol. 12, no. 4, p. e0172395, 2017.

[54] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. F. Zam-

baldi, M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls

et al., “Value-decomposition networks for cooperative multi-agent learn-

ing based on team reward.” in Proc. AAMAS, 2018, pp. 2085–2087.

178

Bibliography

[55] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and

S. Whiteson, “QMIX: Monotonic value function factorisation for deep

multi-agent reinforcement learning,” in Proc. ICML, 2018, pp. 4295–

4304.

[56] A. Suzuki, R. Kawahara, M. Kobayashi, S. Harada, Y. Takahashi, and

K. Ishibashi, “Extendable NFV-integrated control method using rein-

forcement learning,” IEICE Trans. Commun., vol. E103.B, no. 8, pp.

826–841, 2020.

[57] A. Suzuki, M. Kobayashi, Y. Takahashi, S. Harada, K. Ishibashi, and

R. Kawahara, “Extendable NFV-integrated control method using rein-

forcement learning,” in Proc. IEEE ICC, 2018, pp. 1–7.

[58] R. Sun and C. Sessions, “Self-segmentation of sequences: automatic for-

mation of hierarchies of sequential behaviors,” IEEE Trans. Syst. Sci.

Cybern., vol. 30, no. 3, pp. 403–418, 2000.

[59] A. Yousafzai, A. Gani, R. M. Noor, M. Sookhak, H. Talebian, M. Shiraz,

and M. K. Khan, “Cloud resource allocation schemes: review, taxonomy,

and opportunities,” Knowledge and Information Systems, vol. 50, no. 2,

pp. 347–381, 2017.

[60] J. Son and R. Buyya, “A taxonomy of software-defined networking

(SDN)-enabled cloud computing,” ACM Computing Surveys (CSUR),

vol. 51, no. 3, p. 59, 2018.

[61] F. L. Pires and B. Barán, “A virtual machine placement taxonomy,” in

Proc. IEEE/ACM CCGrid, 2015, pp. 159–168.

[62] H. Saito, H. Honda, and R. Kawahara, “Disaster avoidance control

against heavy rainfall,” in Proc. IEEE INFOCOM, 2017, pp. 1–9.

[63] H. Honda and H. Saito, “Nation-wide disaster avoidance control against

heavy rain,” IEEE/ACM Trans. Netw., vol. 27, no. 3, pp. 1084–1097,

2019.

[64] R. Summerhill, “The new Internet2 network,” in GLIF Meeting, 2006.

179

Bibliography

[65] “GLPK,” https://www.gnu.org/software/glpk/.

[66] E. Amaldi, S. Coniglio, A. M. Koster, and M. Tieves, “On the computa-

tional complexity of the virtual network embedding problem,” Electronic

Notes in Discrete Mathematics, vol. 52, pp. 213–220, 2016.

[67] T. Jaakkola, M. I. Jordan, and S. P. Singh, “Convergence of stochastic

iterative dynamic programming algorithms,” in Proc. NIPS, 1994, pp.

703–710.

[68] W. E. Hart, J.-P. Watson, and D. L. Woodruff, “Pyomo: modeling and

solving mathematical programs in Python,” Mathematical Programming

Computation, vol. 3, no. 3, pp. 219–260, 2011.

[69] W. E. Hart, C. D. Laird, J.-P. Watson, D. L. Woodruff, G. A. Hacke-

beil, B. L. Nicholson, and J. D. Siirola, Pyomo–optimization modeling in

python, 2nd ed. Springer Science & Business Media, 2017, vol. 67.

[70] D. E. Bernal, Q. Chen, F. Gong, and I. E. Grossmann, “Mixed-integer

nonlinear decomposition toolbox for Pyomo (MindtPy),” in Computer

Aided Chemical Engineering. Elsevier, 2018, vol. 44, pp. 895–900.

[71] A. Wächter and L. T. Biegler, “On the implementation of an interior-

point filter line-search algorithm for large-scale nonlinear programming,”

Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

[72] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent, “A fully

asynchronous multifrontal solver using distributed dynamic scheduling,”

SIAM Journal on Matrix Analysis and Applications, vol. 23, no. 1, pp.

15–41, 2001.

[73] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet, “Hybrid

scheduling for the parallel solution of linear systems,” Parallel Comput-

ing, vol. 32, no. 2, pp. 136–156, 2006.

[74] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,

D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-

forcement learning,” in Proc. ICML, 2016, pp. 1928–1937.

180

Bibliography

[75] A. Suzuki, R. Kawahara, and S. Harada, “Cooperative multi-agent deep

reinforcement learning for dynamic virtual network allocation with traffic

fluctuations,” IEEE Trans. Netw. Service Manag., vol. 19, no. 3, pp.

1982–2000, 2022.

[76] ——, “Cooperative multi-agent deep reinforcement learning for dynamic

virtual network allocation,” in Proc. ICCCN, 2021, pp. 1–11.

[77] F. Zhang, G. Liu, X. Fu, and R. Yahyapour, “A survey on virtual ma-

chine migration: Challenges, techniques, and open issues,” IEEE Com-

mun. Surveys Tuts., vol. 20, no. 2, pp. 1206–1243, 2018.

[78] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P. Pi-

wonka, and D.-M. Popa, “Firecracker: Lightweight virtualization for

serverless applications,” in Proc. NSDI, 2020, pp. 419–434.

[79] E. Oki, Linear Programming and Algorithms for Communication Net-

works. CRC Press, 2012.

[80] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of

gated recurrent neural networks on sequence modeling,” in Proc. NIPS

Workshop, 2014.

[81] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “PyTorch: An im-

perative style, high-performance deep learning library,” in Proc. NIPS,

2019, pp. 8026–8037.

[82] M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli,

T. G. J. Rudner, C.-M. Hung, P. H. S. Torr, J. Foerster, and S. Whiteson,

“The StarCraft Multi-Agent Challenge,” CoRR, vol. abs/1902.04043,

2019.

[83] F. Metzger, T. Hoßfeld, A. Bauer, S. Kounev, and P. E. Heegaard, “Mod-

eling of aggregated IoT traffic and its application to an IoT cloud,” Proc.

IEEE, vol. 107, no. 4, pp. 679–694, 2019.

181

Bibliography

[84] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, “SNDlib

1.0—survivable network design library,” Networks: An International

Journal, vol. 55, no. 3, pp. 276–286, 2010.

[85] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,

Y. Doron, V. Firoiu, T. Harley, I. Dunning et al., “IMPALA: Scalable dis-

tributed deep-rl with importance weighted actor-learner architectures,”

in Proc. ICML, 2018, pp. 1407–1416.

[86] Y. Takahashi, K. Ishibashi, M. Tsujino, N. Kamiyama, K. Shiomoto,

T. Otoshi, Y. Ohsita, and M. Murata, “Separating predictable and un-

predictable flows via dynamic flow mining for effective traffic engineer-

ing,” IEICE Trans. Commun., vol. 101, no. 2, pp. 538–547, 2018.

[87] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,

“Dynamic service migration in mobile edge-clouds,” in IFIP Networking,

2015, pp. 1–9.

[88] A. Suzuki, M. Kobayashi, and E. Oki, “Multi-agent deep reinforcement

learning for cooperative computing offloading and route optimization in

multi cloud-edge networks,” IEEE Trans. Netw. Service Manag., 2023.

[89] A. Suzuki and M. Kobayashi, “Multi-agent deep reinforcement learning

for cooperative offloading in cloud-edge computing,” in Proc. IEEE ICC,

2022, pp. 1–7.

[90] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv:1412.6980, 2014.

[91] J. Hu, S. Jiang, S. A. Harding, H. Wu, and S.-w. Liao, “Rethinking

the implementation tricks and monotonicity constraint in cooperative

multi-agent reinforcement learning,” arXiv:2102.03479, 2021.

[92] A. Vasiliadis, “An introduction to mean field games using probabilistic

methods,” arXiv:1907.01411, 2019.

[93] D. Chen, Q. Qi, Z. Zhuang, J. Wang, J. Liao, and Z. Han, “Mean field

deep reinforcement learning for fair and efficient UAV control,” IEEE

Internet Things J., vol. 8, no. 2, pp. 813–828, 2020.

182

Bibliography

[94] L. Li, Q. Cheng, K. Xue, C. Yang, and Z. Han, “Downlink transmit

power control in ultra-dense UAV network based on mean field game

and deep reinforcement learning,” IEEE Trans. Veh. Technol., vol. 69,

no. 12, pp. 15 594–15 605, 2020.

[95] D. Shi, H. Gao, L. Wang, M. Pan, Z. Han, and H. V. Poor, “Mean field

game guided deep reinforcement learning for task placement in coop-

erative multiaccess edge computing,” IEEE Internet Things J., vol. 7,

no. 10, pp. 9330–9340, 2020.

[96] R. A. Banez, H. Tembine, L. Li, C. Yang, L. Song, Z. Han, and H. V.

Poor, “Mean-field-type game-based computation offloading in multi-

access edge computing networks,” IEEE Trans. Wireless Commun.,

vol. 19, no. 12, pp. 8366–8381, 2020.

[97] R. Zheng, H. Wang, M. De Mari, M. Cui, X. Chu, and T. Q. Quek,

“Dynamic computation offloading in ultra-dense networks based on mean

field games,” IEEE Trans. Wireless Commun., vol. 20, no. 10, pp. 6551–

6565, 2021.

[98] Z. Jian, W. Muqing, and Z. Min, “Joint computation offloading and

resource allocation in C-RAN with MEC based on spectrum efficiency,”

IEEE Access, vol. 7, pp. 79 056–79 068, 2019.

[99] S. Li, Y. Tao, X. Qin, L. Liu, Z. Zhang, and P. Zhang, “Energy-aware

mobile edge computation offloading for IoT over heterogenous networks,”

IEEE Access, vol. 7, pp. 13 092–13 105, 2019.

[100] L. Tang and H. Hu, “Computation offloading and resource allocation

for the internet of things in energy-constrained MEC-enabled HetNets,”

IEEE Access, vol. 8, pp. 47 509–47 521, 2020.

[101] B. Liu, J. Song, J. Wang, H. Sun, and Q. Wang, “Robust secure wireless

powered MISO cognitive mobile edge computing,” IEEE Access, vol. 8,

pp. 62 356–62 366, 2020.

183

Publication List

[102] L. Wang, H. Shao, J. Li, X. Wen, and Z. Lu, “Optimal multi-user com-

putation offloading strategy for wireless powered sensor networks,” IEEE

Access, vol. 8, pp. 35 150–35 160, 2020.

[103] K. Wang, Y. Zhou, Q. Wu, W. Chen, and Y. Yang, “Task offloading in

hybrid intelligent reflecting surface and massive MIMO relay networks,”

IEEE Trans. Wireless Commun., vol. 21, no. 6, pp. 3648–3663, 2021.

[104] J. Xu and J. Yao, “Exploiting physical-layer security for multiuser mul-

ticarrier computation offloading,” IEEE Wireless Commun. Lett., vol. 8,

no. 1, pp. 9–12, 2018.

[105] X. Lai, L. Fan, X. Lei, Y. Deng, G. K. Karagiannidis, and A. Nal-

lanathan, “Secure mobile edge computing networks in the presence of

multiple eavesdroppers,” IEEE Trans. Commun., vol. 70, no. 1, pp. 500–

513, 2021.

[106] Y. Guo, R. Zhao, S. Lai, L. Fan, X. Lei, and G. K. Karagiannidis, “Dis-

tributed machine learning for multiuser mobile edge computing systems,”

IEEE J. Sel. Topics Signal Process., vol. 16, no. 3, pp. 460–473, 2022.

[107] I. Kovacevic, A. S. Shafigh, S. Glisic, B. Lorenzo, and E. Hossain, “Multi-

domain network slicing with latency equalization,” IEEE Trans. Netw.

Service Manag., vol. 17, no. 4, pp. 2182–2196, 2020.

[108] H. Bai, Y. Zhang, Z. Zhang, and S. Yuan, “Latency equalization policy

of end-to-end network slicing based on reinforcement learning,” IEEE

Trans. Netw. Service Manag., 2022.

[109] Y. Chiang, C.-H. Hsu, G.-H. Chen, and H.-Y. Wei, “Deep Q-learning

based dynamic network slicing and task offloading in edge network,”

IEEE Trans. Netw. Service Manag., 2022.

184

Publication List

Journal Papers

1. A. Suzuki, M. Kobayashi, and E. Oki, “Multi-Agent Deep Reinforce-

ment Learning for Cooperative Computing Offloading and Route Opti-

mization in Multi Cloud-Edge Networks,” IEEE Transactions on Net-

work and Service Management, 2023. (Early Access)

2. A. Suzuki, R. Kawahara, and S. Harada, “Cooperative Multi-Agent

Deep Reinforcement Learning for Dynamic Virtual Network Allocation

with Traffic Fluctuations,” IEEE Transactions on Network and Service

Management, Vol. 19, No. 3, pp. 1982–2000, 2022.

3. A. Suzuki, R. Kawahara, M. Kobayashi, Y. Takahashi, S. Harada, and

K. Ishibashi, “Extendable NFV-Integrated Control Method Using Re-

inforcement Learning,” IEICE Transactions on Communications, Vol.

E103.B, No. 8, pp. 826–841, 2020.

4. A. Suzuki, T. Kamioka, Y. Kamakura, and T. Watanabe, “Particle-

based Semiconductor Device Simulation Accelerated by GPU comput-

ing,” Japan Society for Simulation Technology, Vol. 2, No. 1, pp. 211–

224, 2015.

International Conference Papers

1. M. Iwamoto,A. Suzuki and M. Kobayashi, “Deep Reinforcement Learn-

ing based Antenna Selection for Cell Outage Compensation,” in Proceed-

185

Publication List

ings of IEEE International Conference on Communications (ICC), May.

2023.

2. M. Iwamoto, A. Suzuki and M. Kobayashi, “Optimal VNF Schedul-

ing for Minimizing Duration of QoS Degradation,” in Proceedings of

IEEE Consumer Communications & Networking Conference (CCNC),

Jan. 2023.

3. A. Suzuki and M. Kobayashi, “Multi-Agent Deep Reinforcement Learn-

ing for Cooperative Offloading in Cloud-Edge Computing,” in Proceed-

ings of IEEE International Conference on Communications (ICC), May.

2022.

4. A. Suzuki, R. Kawahara and S. Harada, “Cooperative Multi-Agent

Deep Reinforcement Learning for Dynamic Virtual Network Allocation,”

in Proceedings of 2021 International Conference on Computer Commu-

nications and Networks (ICCCN), Jul. 2021.

5. A. Suzuki and S. Harada, “Safe Multi-Agent Deep Reinforcement Learn-

ing for Dynamic Virtual Network Allocation,” in Proceedings of IEEE

Global Communications Conference (Globecom), Dec. 2020.

6. A. Suzuki, M. Kobayashi, Y. Takahashi, S. Harada, K. Ishibashi, and

R. Kawahara, “Extendable NFV-Integrated Control Method Using Re-

inforcement Learning,” in Proceedings of IEEE International Conference

on Communications (ICC), May. 2018.

7. A. Suzuki, T. Kamioka, Y. Kamakura, K. Ohmori, K. Yamada, and T.

Watanabe, “Source-induced RDF Overwhelms RTN in Nanowire Tran-

sistor: Statistical Analysis with Full Device EMC/MD Simulation,” in

Proceedings of IEEE International Electron Devices Meeting (IEDM),

Dec. 2014.

8. A. Suzuki, T. Kamioka, Y. Kamakura, and T. Watanabe, “Full-Scale

Whole Device EMC/MD Simulation of Si Nanowire Transistor Including

Source and Drain Regions by Utilizing Graphic Processing Units,” in

Proceedings of 2014 International Conference on Simulation of Semicon-

ductor Processes and Devices (SISPAD), Sep. 11, 2014.

186

Publication List

9. A. Suzuki, T. Kamioka, H. Imai, Y. Kamakura, and T. Watanabe,

“Accelerated parallel computing of carrier transport simulation utilizing

graphic processing units,” in Proceedings of 16th International Workshop

on Computational Electronics (IWCE), Jun. 2013.

Awards

1. Research Award on Information Networks of IEICE, Mar. 2023. (Japanese)

2. Young Researcher Encouragement Award on Information Networks of

IEICE, Mar. 2020. (Japanese)

3. Academic Encouragement Award of IEICE, Mar. 2019. (Japanese)

4. Azusa Ono Memorial Award, Mar. 2015.

5. IEEE EDS Japan Chapter Student Award, Feb. 2015.

187

