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Let G = GL2n(R) or G = GLn(H) and H = GLn(C) regarded as a subgroup of G.

Here, H is the quaternion division algebra over R. For a character χ on C×, we say

that an irreducible smooth admissible moderate growth representation π of G is

χH-distinguished if HomH(π , χ ◦ detH) �= 0. We compute the root number of a χH-

distinguished representation π twisted by the representation induced from χ . This

proves an Archimedean analogue of the conjecture by Prasad and Takloo-Bighash (J.

Reine Angew. Math., 2011). The proof is based on the analysis of the contribution

of H-orbits in a flag manifold of G to the Schwartz homology of principal series

representations. A large part of the argument is developed for general real reductive

groups of inner type. In particular, we prove that the Schwartz homology H∗(H, π ⊗ χ) is

finite-dimensional and hence it is Hausdorff for a reductive symmetric pair (G, H) and a

finite-dimensional representation χ of H.
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17854 M. Suzuki and H. Tamori

1 Introduction

1.1 Main results

Let D = R or D = H, where H is the quaternion division algebra and n be a positive

integer. Put

G = Gn =
⎧⎨⎩GL2n(R) if D = R

GLn(H) if D = H,
ε(D) =

⎧⎨⎩−1 if D = R

1 if D = H.

Let H = Hn be a subgroup of G, which is isomorphic to GLn(C). Such a subgroup is unique

up to conjugation by the Skolem–Noether theorem.

Let χ be a character on C×. For F = R,C,H, we write det = detGLn(F) for the

determinant map on GLn(R) when F = R,C, and for the reduced norm on GLn(H) when

F = H. We put χGLn(F) := χ ◦ det.

By an SAF representation of G, we mean a smooth admissible moderate growth

Fréchet representation (cf. [2]). We say that an SAF representation π of G is (H, χH)-

distinguished (or χH-distinguished) if there exists a nonzero continuous H-intertwining

operator from π to χH , that is, HomH(π , χH) �= 0. The space HomH(π , χH) is at most one-

dimensional if π is irreducible [15].

The goal of this paper is to prove the following theorem. This is an Archimedean

counterpart of the conjecture of Prasad and Takloo-Bighash [18] about representations

of p-adic groups.

Theorem 1.1. Let π be an irreducible SAF representation of G and φπ : WR → GL2n(C)

its L-parameter. Let χ be a character on C×. If π is χH-distinguished, then

1. the L-parameter φπ takes values in GSp2n(C) with similitude factor χ |R× .

In other words, there exists a symplectic form 〈·, ·〉 on C2n such that

〈φπ(w)v1, φπ(w)v2〉 = χ |R×(w)〈v1, v2〉 for any w ∈ WR and any v1, v2 ∈ C2n.

Here, χ |
R× is regarded as a character on W

R
via the reciprocity isomorphism

Wab
R

∼= R×;

2. the root number satisfies ε
(
φπ ⊗ IndWR

C× (χ−1)
)

= ε(D)nχ(−1)n.

Conversely, if π is an essentially square integrable representation and satisfies

(1) and (2), then π is χH-distinguished.

In the case of p-adic groups, the first author [20] reduced the conjecture to

the case of essentially square integrable representations. Xue [27] and Sécherre [19]
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Epsilon Dichotomy for Linear Models 17855

proved a large part of the case of supercuspidal representations. The first author and

Xue [21] reduced the case of essentially square integrable representations to that of

supercuspidal representations. Note that the character χ is assumed to be trivial in these

works.

In the Archimedean case, there are no supercuspidal representations and the

assertion for essentially square integrable representations is easy to check. Therefore,

the main step toward Theorem 1.1 is the reduction to the case of essentially square

integrable representations.

For an irreducible SAF representation π of GLN(D), there exist a parabolic

subgroup P of GLN(D) with a Levi subgroup isomorphic to GLn1
(D) × · · · × GLnr

(D) and

irreducible essentially square integrable representations πi of GLni
(D) for each i with a

certain condition on central characters such that π is a unique irreducible quotient of

π1 × · · · × πr. Here, the product π1 × · · · × πr means the normalized parabolic induction

IndGLN (D)
P (π1�· · ·�πr). Such a parabolically induced representation is called the standard

module above π .

The idea is to find a necessary condition on πi’s for the representation π to be

χH-distinguished. Then we deduce the conditions 1 and 2 in Theorem 1.1 from those on

πi’s. The precise statement of the necessary condition we need is as follows.

Theorem 1.2 (Theorem 5.13). Let π and χ be as in Theorem 1.1 and let π̃ = π1 × π2 ×
· · · × πr be a standard module above π . Here, each πi is an irreducible essentially square

integrable representation of GLni
(D). Suppose that π is χH-distinguished. Then there

exists an involutive permutation ς ∈ Sr such that nς(i) = ni and⎧⎨⎩ni = 2 when D = R and πi is χGL1(C)-distinguished if ς(i) = i,

πς(i)
∼= π∨

i · χGLni (D) if ς(i) �= i.

This is an Archimedean analogue of [20, Theorem 1.3]. As a byproduct of

Theorem 1.2, we get the following corollary. See Section 5.4 for the proof.

Corollary 1.3. Let π be an irreducible SAF representation of G and χ a character on C×.

If π is χH-distinguished, then

π ∼= π∨ · χG.

This is a generalization of the self-duality of distinguished representations when

χ is trivial [4, Theorem 6.7].
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17856 M. Suzuki and H. Tamori

1.2 Outline of the proof

Let the notation be as in Theorem 1.2. Write π̃ as a parabolically induced representation

IndGLN (D)
P (γ ) from a standard parabolic subgroup P, where γ = π1 � · · · � πr is an

essentially square integrable representation of a Levi subgroup L. We fix a Cartan

involution of G and we may assume that P and L are standard with respect to it. Let

X = G/P be the flag manifold and V := G×P (γ ·δ1/2
P ) the homogeneous tempered bundle on

X (cf. [6, Proposition 6.7]). Here, δP is the modular character of P. Then, the representation

π̃ is realized on the space S(X,V) of the Schwartz sections of V.

We take an decreasing sequence of open subsets U0 := X ⊃ U1 ⊃ · · · ⊃ Uj0−1 ⊃
Uj0 , so that j0 is the number of H-orbits in X and Uj \ Uj+1 is an H-orbit for each

j = 0, . . . , j0 − 1. Set 	j := S(Uj,V|Uj
), the space of Schwartz sections of the restriction

to Uj of V. Then each 	j is a smooth Fréchet representation of moderate growth (we say

SF representation for short) of H, 	0 = π̃ |H and we obtain a descending sequence of

H-subrepresentations

	0 · χ−1
H ⊃ 	1 · χ−1

H ⊃ · · · ⊃ 	j0 · χ−1
H

of (π̃ |H) · χ−1
H . In the case of p-adic groups, we can write the successive quotients

ρj := 	j−1/	j explicitly as compactly induced representations. Hence, the problem

quickly reduces to the distinction of essentially square integrable representations. This

is the content of [20]. However, in the current situation, this is not the case and we must

carefully analyze ρj taking into account their topology. To that end, we use the theory of

Schwartz homology introduced by [6]. Our proof is inspired by [26].

The Schwartz homology H∗(H, 	) of an SF representation 	 of H is the derived

functor of the coinvariant functor

	 → H0(H, 	) = 	H := 	/
∑
h∈H

(h − 1)	.

They are linear topological spaces, which are not necessarily Hausdorff. In particular,

the continuous dual of H0(H, 	·χ−1
H ) is HomH(	, χH). Write the H-orbit Uj−1\Uj as HgjP/P

with some gj ∈ G and set Qj := H ∩ gjPg−1
j . Let g, h, and p be the Lie algebras of G, H,

and P, respectively. Then, each ρj has a descending sequence of H-subrepresentations

ρj = ρj,0 ⊃ ρj,1 ⊃ ρj,2 ⊃ · · · such that

ρj
∼= lim←−

k

ρj/ρj,k, ρj,k/ρj,k+1
∼= S(H/Qj, H ×Qj

(
g−1

j (γ · δ
1/2
P ) ⊗ Symk(g/sj)

∨
C
)), (1)
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Epsilon Dichotomy for Linear Models 17857

where sj = h + Ad(gj)p and H ×Qj
(g/sj)

∨
C

is the complexification of the conormal bundle

for the closed subset HgjP/P of Uj−1.

The short exact sequences 0 → 	j → 	j−1 → ρj → 0 and 0 → ρj,k+1 → ρj,k →
ρj,k/ρj,k+1 → 0 yield long exact sequences of Schwartz homologies

· · · → Hl(H, 	j · χ−1
H ) → Hl(H, 	j−1 · χ−1

H ) → Hl(H, ρj · χ−1
H ) → Hl−1(H, 	j · χ−1

H ) → · · · ,

and

· · · → Hl(H, ρj,k+1 · χ−1
H ) → Hl(H, ρj,k · χ−1

H ) → Hl(H, (ρj,k/ρj,k+1) · χ−1
H )

→ Hl−1(H, ρj,k+1 · χ−1
H ) → · · · .

Set dl,j,k = dim Hl(H, (ρj,k/ρj,k+1) · χ−1
H ). From (1) and the above two long exact sequences,

at least formally we obtain

dim Hl(H, 	0 · χ−1
H ) ≤

j0∑
j=1

∞∑
k=0

dl,j,k. (2)

We show that dl,j,k < ∞ for any l, j, k and dl,j,k = 0 except for finitely many k. Thus,

the right-hand side of (2) makes sense and this inequality holds. These arguments are

developed for more general setting to obtain dim Hl(H, 	 ⊗ χ) < ∞ for any reductive

symmetric pair (G, H), any finite length SAF representation 	 of G, and any finite-

dimensional SF representation χ of H. By [6, Proposition 1.9], this proves that Hl(H, 	⊗χ)

is Hausdorff.

Let σ be the involution on G so that H = Gσ and set σj = �(gj)
−1 ◦ σ ◦ �(gj). Here,

�(gj) denotes the inner automorphism of G attached to gj. Then we prove the following

two vanishing results on dl,j,k:

• For any j and k > 0, d0,j,k = 0.

• If σj(L) �= L, then d0,j,k = 0, where L is the standard Levi subgroup of P.

Hence, (2) for l = 0 becomes

dim HomH(	0, χH) = dim H0(H, 	0 · χ−1
H ) ≤

∑
j:σj(L)=L

d0,j,0.

One can see that H0(H, (ρj,0/ρj,1)·χ−1
H ) is isomorphic to H0(Lσj , γ ·gjχ−1

H ) if σj(L) = L. Hence,

the right-hand side of the above inequality is the sum of d0,j,0 = dim HomL
σj (γ , gjχH).

Now we write L = GLn1
(D) × GLn2

(D) × · · · × GLnr
(D). Note that ni ∈ {1, 2} and

n1 +· · ·+nr = 2n if D = R and r = n and ni = 1 for all i if D = H. By the explicit choice of
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17858 M. Suzuki and H. Tamori

the representatives {gj}j given by [7], we obtain the following description on σj|L, which

preserves L. There exists an involution ς ∈ Sr such that nς(i) = ni for each i, ni = 2 if

ς(i) = i and D = R, and

σj(x1, x2, . . . , xr) = (υ1(xς(1)), υ2(xς(2)), . . . , υr(xς(r))), xi ∈ GLni
(D).

Here, υi is an inner automorphism of GLni
(D), which satisfies υ2

i = id and GLni
(D)υi is

isomorphic to GL1(C) if ς(i) = i. It is also checked that the character (gjχH)|Lσj is given

by

gjχH(x1, . . . , xr) =
∏

ς(i)<i

χGLni (D)(xi)
∏

ς(i)=i

χGL1(C)(xi).

Therefore, HomL
σj (γ , gjχH) �= 0 if and only if

⎧⎨⎩πi is χGL1(C)-distinguished if ς(i) = i

πς(i)
∼= π∨

i · χGLni (D) if ς(i) �= i.

This proves Theorem 1.2.

This paper is organized as follows. In Section 2, we recall the local Langlands

correspondence for GLN(D) and deduce Theorem 1.1 from Theorem 1.2. Section 3 is

devoted to recall the necessary definitions and facts about Schwartz homology and

relative Lie algebra homology. Several lemmas about the structure of symmetric pairs

are prepared in Section 4. In Section 5.1, we obtain an upper bound for the dimension

of the Schwartz homology and in Section 5.2, we prove dim H∗(H, π ⊗ χ) < ∞ for an SAF

representation π of finite length of a real reductive group G, a symmetric subgroup H,

and a finite-dimensional representation χ of H. We show in Section 5.3 that under certain

conditions, the (normal derivatives for) H-orbits in a flag manifold do not contribute to

the upper bound for dim H0(H, π). Using this fact, we prove Theorem 1.2 in Section 5.4.

1.3 Notations

In this section, we introduce notations, which are used throughout this paper.

For a positive integer n, set [1, n] := {1, 2, . . . , n} and let Sn be the symmetric

group of degree n. For a complex number z, let z̄ be its complex conjugate and |z| = √
zz̄

the usual absolute value. The unit circle of the norm 1 complex numbers is denoted

as C1. Let H = R+Ri+Rj+Rk denote Hamilton’s quaternion division algebra. The main
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Epsilon Dichotomy for Linear Models 17859

involution (conjugation) on H is denoted by z → z̄. Let sgn denote the sign character

on R×. We regard it as a character on Gn by composing with detGn
.

Lie groups will be denoted by Latin capital letters and their Lie algebras by

corresponding lower case German letters. We put subscript C to denote their complex-

ifications. Given an involution σ on a Lie group G, we use the same letter to write the

corresponding involution on g, and the one on the root system of g with respect to a σ -

invariant Cartan subalgebra. We write gσ , g−σ for the eigenspace of σ with eigenvalue 1,

−1, respectively. If g is abelian and V is a semisimple g-module, we also use σ to write

the corresponding involution on the set � of weights in V, and write �σ , �−σ for the set

of fixed weights by σ , −σ , respectively, and put ρV := 1
2 tr(ad(·)|V) ∈ g∨. Here g∨ denotes

the linear dual of g.

We write z(g), zg(s) for the center of g, the centralizer of a subspace s in g,

respectively.

For g ∈ G, let �(g) : x → gxg−1 be the inner automorphism of G. Given a

representation π of G and g ∈ G, we write gπ for the representation of G where the

representation space equals the one of π and the action is given by gπ(h) = π(�(g)(h)) =
π(ghg−1) for any h ∈ G.

By a real reductive group, we use the definition of [24, Section 2.1.1]. We call

a symmetric pair (G, H) reductive if G is real reductive. For a parabolic subgroup

P of a real reductive group G with a Langlands decomposition P = MAN, let P̄

be the opposite of P such that P ∩ P̄ = MA and N̄ denote the unipotent radical

of P̄.

Smooth Fréchet representations of moderate growth are called SF representa-

tions for short. Similarly, smooth admissible Fréchet representations of moderate growth

are called SAF representations. Recall that an SAF globalization of a Harish–Chandra

module V is unique up to isomorphisms and is a nuclear Fréchet space (see [2] for

example). It is called the Casselman–Wallach globalization of V.

For a real reductive group G and an SAF representation π of finite length of G,

we write π∨ for the contragredient SAF representation, that is, the Casselman–Wallach

globalization of the contragredient of the underlying (g
C

, K)-module of π for a maximal

compact subgroup K of G.

Write (SO(2)∼)∧ for the unitary dual of the universal cover SO(2)∼ of the special

orthogonal group SO(2). We fix an isomorphism R ∼= (SO(2)∼)∧; t → ξt of topological

groups so that sl2(R) ∼= ξ−2 ⊕ ξ0 ⊕ ξ2 via the adjoint action.
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2 Reduction

2.1 Langlands correspondence for GLN(D)

Let N be a positive integer. In this subsection, we summarize basic facts about

L-parameters and root numbers of representations of GLN(D). For details, see [11], [10],

and [22].

First we recall the classification of semisimple representations of the Weil group

of R. The Weil group WR of R is the non-split extension of C× by Z/2Z:

W
R

= C× � C×j, jzj−1 = z̄, j2 = −1.

The commutator subgroup [W
R

, W
R

] is C1 and the abelianization Wab
R

= W
R
/[W

R
, W

R
] is

identified with R× via the reciprocity map r
R

: R× ∼−→ Wab
R

given by

rR(x) =
⎧⎨⎩

√
x · [WR, WR] (x > 0),

j
√−x · [W

R
, W

R
] (x < 0).

Let �(WR) (resp. Irr(WR)) be the set of equivalence classes of finite-dimensional semisim-

ple (resp. irreducible) complex representations of WR.

Lemma 2.1. For k ∈ Z and λ ∈ C, let θk,λ be the character on C× given by θk,λ(z) =
(z/|z|)k|z|2λ. We denote the two-dimensional representation IndWR

C× (θk,λ) of WR as φ
(2)

k,λ ∈
�(W

R
). For k ∈ {0, 1} and λ ∈ C, let φ

(1)

k,λ be the character on W
R

given as φ
(1)

k,λ(z) = |z|2λ

and φ
(1)

k,λ(j) = (−1)k.

(1) The representation φ
(2)

k,λ is reducible if and only if k = 0. When k = 0, φ
(2)
0,λ =

φ
(1)
0,λ ⊕ φ

(1)
1,λ.

(2) For k, k′ ∈ Z and λ, λ′ ∈ C, we have φ
(2)

k,λ
∼= φ

(2)

−k,λ, det
(
φ

(2)

k,λ

)
= φ

(1)

k+1,2λ
, and

φ
(2)

k,λ ⊗ φ
(2)

k′,λ′ ∼= φ
(2)

k+k′,λ+λ′ ⊕ φ
(2)

k−k′,λ+λ′ .

(3) Irreducible representations of WR are of dimension one or two. A one-

dimensional representation φ is written uniquely as φ = φ
(1)

k,λ with k ∈
{0, 1} and λ ∈ C. A two-dimensional irreducible representation φ is written

uniquely as φ = φ
(2)

k,λ with k ∈ Z≥1 and λ ∈ C.

(4) The contragredient representations of φ
(1)

k,λ, φ(2)

k,λ are φ
(1)

k,−λ
, φ(2)

k,−λ
, respectively.

Next, we recall the classification of irreducible SAF representations of GLN(D).

Let Irr(GLN(D)) be the set of equivalence classes of irreducible SAF representations of

GLN(D).
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Suppose that D = R. For k ∈ {0, 1} and λ ∈ C, let π
(1)

k,λ denote the character sgnk | · |λ
on GL1(R). For k ∈ Z≥1 and λ ∈ C, we define π

(2)

k,λ to be the irreducible SAF representation

of GL2(R) characterized by the following properties:

• the central character of π
(2)

k,λ equals sgnk+1 | · |2λ,

• the space (π
(2)

k,λ)SO(2)-fin of SO(2)-finite vectors is isomorphic to⊕
ε∈{±1}

⊕
l∈N ξε(k+1+2l) as representations of SO(2) (see Section 1.3 for the

definition of ξt).

Lemma 2.2. (Classification for Irr(GLN(R)))

1. Representations π
(1)

k,λ and π
(2)

k,λ are essentially square integrable represen-

tations. Any irreducible essentially square integrable representation π of

GLN(R) is uniquely written as π = π
(m)

k,λ with m ∈ {1, 2}.
2. For general N, let (n1, . . . , nr) be a partition of N consisting of 1 or 2 and

πj = π
(nj)

kj,λj
be an irreducible essentially square integrable representation of

GLnj
(R). If π1, . . . , πr satisfy

n−1
1 Re(λ1) ≥ n−1

2 Re(λ2) ≥ · · · ≥ n−1
r Re(λr), (3)

then π1 ×π2 ×· · ·×πr has a unique irreducible quotient π = π1 �π2 � · · ·�πr.

Any irreducible SAF representation of GLN(R) is uniquely written in this way

up to permutations of r indices preserving (3).

For an irreducible SAF representation π ∈ Irr(GLN(R)), its L-parameter φπ ∈
�(WR) is defined as follows. We write π = π1 � π2 � · · · � πr with essentially square

integrable representations πj = π
(nj)

kj,λj
∈ Irr(GLnj

(R)) and set φπ =⊕r
j=1 φ

(nj)

kj,λj
. The induced

representation π̃ = π1 × π2 × · · · × πr in Lemma 2.2 (2) is called a standard module

above π .

Next we suppose D = H. For k ∈ Z≥1 and λ ∈ C, there is a unique irreducible

representation τk,λ ∈ Irr(GL1(H)) of dimension k with central character sgnk+1 | · |2λ. This

is an essentially square integrable representation and any irreducible essentially square

integrable representation of GL1(H) is written uniquely in this way.

Lemma 2.3. (Classification for Irr(GLN(H))) Let τ1 = τk1,λ1
, . . . , τN = τkN ,λN

be irreducible

representations of GL1(H). If they satisfy

Re(λ1) ≥ Re(λ2) ≥ · · · ≥ Re(λN), (4)

then τ1×τ2×· · ·×τN has a unique irreducible quotient τ = τ1�τ2�· · ·�τN . Any irreducible

SAF representation of GLN(H) is uniquely written in this way up to permutations of N

indices preserving (4).
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For an irreducible representation τ ∈ Irr(GLN(H)), its L-parameter φτ ∈ �(W
R
) is

defined as follows. We write τ = τ1 � τ2 � · · ·� τN with essentially square integrable rep-

resentations τj = τkj,λj
∈ Irr(GL1(H)) and set φτ =⊕N

j=1 φ
(2)

kj,λj
. The induced representation

τ̃ = τ1 × τ2 × · · · × τN in Lemma 2.3 is called a standard module above τ .

We say that φ =⊕r
j=1 φj ∈ �(WR) with φj ∈ Irr(WR) is relevant to GLN(D) if⎧⎨⎩dim φ = N when D = R,

dim φ = 2N, r = N and dim φj = 2 for all j when D = H.

Let �(GLN(D)) denote the set of L-parameters relevant to GLN(D). Now we can state the

local Langlands correspondence for GLN(D).

Theorem 2.4 (Langlands correspondence for GLN(D)). The map π → φπ defines a

bijection from Irr(GLN(D)) to �(GLN(D)).

Let ψ be a non-trivial additive character on R and take a ∈ R× so that ψ(x) =
exp(2π

√−1ax). The ε-factor ε(s, φ, ψ) of φ ∈ �(WR) is defined as follows. When φ ∈
Irr(WR), set

ε(s, φ, ψ) =
⎧⎨⎩(sgn(a)

√−1)k|a|λ+s− 1
2 if φ = φ

(1)

k,λ with k ∈ {1, 0} and λ ∈ C

(sgn(a)
√−1)k+1|a|2(λ+s)−1 if φ = φ

(2)

k,λ with k ∈ Z≥1 and λ ∈ C

For general φ, let φ = ⊕r
j=1 φj be the irreducible decomposition and set ε(s, φ, ψ) =∏r

j=1 ε(s, φj, ψ). Assume that φ is a self-dual representation and det(φ) is the trivial

character. Then ε(1
2 , φ, ψ) is independent of the choice of ψ and satisfies ε(1

2 , φ, ψ)2 = 1

[9, Proposition 5.1]. The value ε(1
2 , φ, ψ) is denoted as ε(φ). It is called the root number

of φ.

Remark 2.5. Let π , φπ and χ be as in Theorem 1.1. If the condition 1 is satisfied, then

the representation φ = φπ ⊗ IndWR

C× (χ−1) is self-dual and det(φ) is the trivial character.

Thus the notation ε
(
φπ ⊗ IndWR

C× (χ−1)
)

in the condition 2 is justified.

2.2 Reduction to Theorem 1.2

Retain notation in Section 1.1. We show that Theorem 1.2 implies Theorem 1.1.

Proof of Theorem 1.1 assuming Theorem 1.2. Let π and χ be as in Theorem 1.1. Write

χ = θk′,λ′ with k′ ∈ Z and λ′ ∈ C (see Lemma 2.1).
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First we consider the case where π is an essentially square integrable represen-

tation. If this is the case, n = 1 and the L-parameter φπ is of the form φπ = φ
(2)

k,λ with

k ∈ Z≥1 and λ ∈ C. Since φπ takes values in GL2(C) = GSp2(C) and its similitude factor

equals det
(
φπ

) = φ
(1)

k+1,2λ
, the condition 1 is equivalent to φ

(1)

k+1,2λ
◦ rR = χ |R× . The left-

hand side is sgnk+1 | · |2λ and the right-hand side is sgnk′ | · |2λ′
. Hence, the condition 1 in

this case is equivalent to λ = λ′ and k − k′ is odd.

Let D = R and π = π
(2)

k,λ . We may regard H = GL1(C) as the subgroup of G = GL2(R)

generated by the central elements diag(a, a) (a > 0) and SO(2). Since the projection from

π to an SO(2)-isotypic component is continuous, π is χH-distinguished if and only if

|a|2λ = |a|2λ′
for any a > 0 and the SO(2)-type of π , which we saw before Lemma 2.2,

contains ξk′ . Hence, π is χH-distinguished if and only if λ = λ′, |k′| > k, and k − k′ is odd.

Let D = H and π = τk,λ. Write R>0 for the center of G = GL1(H). Then

H ∼= R>0 × SO(2) under an isomorphism G ∼= R>0 × SU(2). The k-dimensional irreducible

representation of SU(2) decomposes into
⊕

l ξl as a representation of SO(2), where l runs

over integers satisfying |l| ≤ k − 1 and k − 1 − l ∈ 2Z. Therefore, π is χH-distinguished if

and only if λ = λ′, |k′| < k, and k − k′ is odd.

On the other hand, it is easy to check that for ψ(x) = exp(2π
√−1ax),

ε(1
2 , φπ ⊗ IndWR

C× (χ−1), ψ) =
⎧⎨⎩(−1)k′+1|a|4(λ−λ′) if |k′| > k,

(−1)k+1|a|4(λ−λ′) if |k′| < k

by Lemma 2.1 (2). Therefore, π is χH-distinguished if and only if the conditions 1

and 2 hold.

Next, we treat the general case. Suppose that π is χH-distinguished. Let π̃ =
π1 ×π2 ×· · ·×πr be a standard module above π and ς ∈ Sr the involution in Theorem 1.2.

Note that the condition πς(i)
∼= π∨

i · χGLni (D) is equivalent to φπς(i)
= φ∨

πi
· χ |R× . Hence, the

condition 1 for the representation π follows from that for essentially square integrable

representations and the properties of the involution ς . Since φπ =⊕r
i=1 φπi

, we have

ε
(
φπ ⊗ IndWR

C× (χ−1)
)

=
r∏

i=1

ε
(

1
2 , φπi

⊗ IndWR

C× (χ−1), ψ
)

.

If ς(i) = i, then ε
(

1
2 , φπi

⊗ IndWR

C× (χ−1), ψ
)

= ε(D)χ(−1) as we have seen above. If ς(i) �= i,

then

φπς(i)
⊗ IndWR

C× (χ−1) = φ∨
πi

· (χ |R×) ⊗ IndWR

C× (χ−1) =
(
φπi

⊗ IndWR

C× (χ−1)
)∨
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17864 M. Suzuki and H. Tamori

since (χ |
R×)⊗IndWR

C× (χ−1) ∼= IndWR

C× (χ) ∼=
(
IndWR

C× (χ−1)
)∨

. We get from [22, (3.4.7)] (see also

[9, page 14]),

ε
(

1
2 , φπς(i)

⊗ IndWR

C× (χ−1), ψ
)

ε
(

1
2 , φπi

⊗ IndWR

C× (χ−1), ψ
)

= det
(
φπi

⊗ IndWR

C× (χ−1)
)

◦ rR(−1)

=
⎧⎨⎩det

(
IndWR

C× (χ−1)
)

◦ r
R
(−1) = φ

(1)

−k′+1,−2λ′(j) = −χ(−1) if dim φπi
= 1,

1 if dim φπi
= 2.

Set

a = 1

2
· #{i | ς(i) �= i, dim φπi

= 1}, b = 1

2
· #{i | ς(i) �= i, dim φπi

= 2},

c = #{i | ς(i) = i}.

Then a + 2b + c = n and

ε
(
φπ ⊗ IndWR

C× (χ−1)
)

= (ε(D)χ(−1))a+c = (ε(D)χ(−1))n.

�

3 Preliminaries on Homology

3.1 Schwartz homology

Let G be an almost linear Nash group and π an SF representation of G. Recall

that a finite cover of an open subgroup of a linear algebraic group defined over R

has a natural structure of an almost linear Nash group. In this section, we recall

basic properties of the Schwartz homology H∗(G, π). See [6] for the precise definition

and proofs.

The Schwartz homology groups H∗(G, π) are (not necessarily Hausdorff) linear

topological spaces, and there is a natural identification

H0(G, π) = πG := π/
∑
g∈G

(g − 1)π ,

where πG is equipped with the quotient topology of π .

Let K be a maximal compact subgroup of G. The space πK-fin of K-finite vectors

in π has a natural structure of (g, K)-module, and is equipped with the relative topology

of π . Consider the complex

· · · → (∧l+1(g/k) ⊗ πK-fin)K
∂l+1−−→ (∧l(g/k) ⊗ πK-fin)K

∂l−→ (∧l−1(g/k) ⊗ πK-fin)K → · · · ,
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Epsilon Dichotomy for Linear Models 17865

which gives the relative Lie algebra homology groups H∗(g, K; πK-fin). We equip (∧l(g/k)⊗
πK-fin)K with the quotient topology of ∧l(g/k) ⊗ πK-fin, Ker(∂l) with the relative topology

of (∧l(g/k) ⊗ πK-fin)K , and Hl(g, K; πK-fin) with the quotient topology of Ker(∂l).

Lemma 3.1 ([6, Theorem 7.7]). There exists a natural isomorphism H∗(G, π) ∼= H∗(g, K; πK-fin)

of linear topological spaces.

Remark 3.2. More precisely, it is proved in [6, Theorem 7.7] that there exists a natural

isomorphism between H∗(G, π) and the homology of the complex

· · · → (∧l+1(g/k) ⊗ π)K → (∧l(g/k) ⊗ π)K → (∧l−1(g/k) ⊗ π)K → · · · (5)

as linear topological spaces. By Lemma 3.3, we have

(∧l(g/k) ⊗ π)K = ((∧l(g/k) ⊗ π)K-fin)K = (∧l(g/k) ⊗ πK-fin)K

and the assertion of Lemma 3.1 follows.

Lemma 3.3. For any SF representation 	 of K, the linear topological spaces 	K ,

(	K-fin)K are naturally isomorphic to the closed subspace 	K consisting of K-invariant

elements.

Lemma 3.3 is well-known, but we write the proof in Appendix for the convenience

of the reader.

Remark that π → πK-fin is an exact functor from the category of SF representa-

tions of G to the category of (g, K)-modules (without topology). From long exact sequences

for relative Lie algebra homology, Lemma 3.1 gives the following

Lemma 3.4 ([6, Corollary 7.8]). For an exact sequence (which is not necessarily strongly

exact)

0 → π1 → π2 → π3 → 0

of SF representations of G, we have the following long exact sequence of vector spaces:

· · · → Hl(G, π1) → Hl(G, π2) → Hl(G, π3) → Hl−1(G, π1) → · · · ,

where Hl(G, π1) → Hl(G, π2) and Hl(G, π2) → Hl(G, π3) are continuous.
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17866 M. Suzuki and H. Tamori

Let M be a G-Nash manifold, Z a closed G-Nash submanifold, and E a tempered

Fréchet G-vector bundle over M. Put U := M \ Z. Then we obtain an SF representation

of G on the space S(M, E) of Schwartz sections of E, and a subrepresentation on the

space S(U, E|U) of Schwartz sections on U. We define SZ(M, E) := S(M, E)/S(U, E|U) and

its subrepresentation

SZ(M, E)k :=
{

f ∈ S(M, E)

∣∣∣∣∣ Df = 0 on Z for any differential

operator D on M of order ≤ k − 1

}
/S(U, E|U).

for k ∈ N. Write N∨
Z (M) for the complexification of the conormal bundle for Z ⊂ M.

Lemma 3.5 ([6, Propositions 8.2 and 8.3]). The canonical homomorphisms

SZ(M, E) → lim←−
k

SZ(M, E)/SZ(M, E)k,

SZ(M, E)k/SZ(M, E)k+1 → S(Z, Symk(N∨
Z (M)) ⊗ E) (k ∈ N)

are isomorphisms of SF representations of G.

Our aim is to give an upper bound for the dimension of coinvariants of a principal

series representation with respect to a symmetric subgroup. In order to apply the

following lemma, we will prove the finite-dimensionality of higher homology groups.

Lemma 3.6 ([6, Lemma 8.4]). Let l ∈ N. Assume that Hl+1(G,SZ(M, E)/SZ(M, E)k) is finite-

dimensional for any k ∈ N. Then the canonical map

Hl(G,SZ(M, E)) → lim←−
k

Hl(G,SZ(M, E)/SZ(M, E)k)

is a linear isomorphism.

Let δG : G → R>0 be the modular function of G, which is given by δG(g) =
| det Adg(g)|. Remark that δG is an SF representation of G. The next lemma describes the

Schwartz homology of induced representations.

Lemma 3.7 (Shapiro’s lemma, [6, Proposition 6.7]). Let l ∈ N. Let H be a closed Nash

subgroup of G and γ an SF representation of H. Then there exists a natural isomorphism

Hl(G,S(G/H, G ×H γ )) ∼= Hl(H, γ · δG · δ−1
H )

as linear topological spaces.
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Epsilon Dichotomy for Linear Models 17867

The following lemma relates the zeroth homology and the distinguishedness of

an SF representation.

Lemma 3.8 ([6, Proposition 1.9]). Let π be an SF representation of G and l ∈ N. If Hl(G, π)

is finite-dimensional, then it is Hausdorff. In particular, if H0(G, π) is finite-dimensional,

then we have a natural identification H0(G, π)∨ ∼= HomG(π , triv).

The next lemma gives the zeroth homology of tensor products of two irreducible

SAF representations by Lemma 3.8 and Proposition 5.5.

Lemma 3.9. Let G be a real reductive group, π1, π2 irreducible SAF representations of

G, and χ a character of G. Then HomG(π1⊗̂π2, χ) is one-dimensional if π1
∼= π∨

2 · χ , and

zero otherwise. Here ⊗̂ stands for the completed tensor product of two nuclear Fréchet

spaces.

Proof. Assume that f is a nonzero element in HomG(π1⊗̂π2, χ). Then f restricts to a

nonzero (gC, K)-homomorphism from (π1)K-fin ⊗ (π2) K -fin to χ , which induces a (gC, K)-

homomorphism from (π1)K -fin into (π2)∨K-fin ·χ , where (π2)∨K-fin denotes the contragredient

(g
C

, K)-module of (π2)K-fin. Since it is nonzero, it is an isomorphism. Then the uniqueness

of the Casselman–Wallach globalization proves π1
∼= π∨

2 · χ , which proves the latter

assertion.

We next assume π1
∼= π∨

2 · χ . By Casselman’s subrepresentation theorem, π1

can be imbedded into a normalized parabolic induction IndG
P (γ ), where P denotes a

minimal parabolic subgroup of G and γ denotes a finite-dimensional irreducible SF

representation of P. From (π1)K-fin
∼= (π2)∨K-fin · χ , we may regard π2 as a quotient of

the SAF representation IndG
P (γ ∨) · χ ∼= (IndG

P (γ ))∨ · χ . Then the canonical nonzero G-

homomorphism from IndG
P (γ )⊗̂ IndG

P (γ ∨) · χ to χ induces the one from π1⊗̂π2 to χ . Since

nonzero (gC, K)-homomorphisms from (π1) K -fin to (π2)∨K -fin · χ are unique up to a scalar

multiple and the subspace (π1) K -fin ⊗(π2) K -fin of π1⊗̂π2 is dense, we see HomG(π1⊗̂π2, χ)

is one-dimensional, which completes the proof. �

3.2 Lie algebra homology

In this section, we prepare a criterion (Lemma 3.12) for the vanishing of relative Lie

algebra homologies, which will be used in Section 5.

Let G be a real reductive group and K a maximal compact subgroup. Write θ for

the Cartan involution on g with k = gθ . Fix a maximally abelian subspace s of g−θ and a
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17868 M. Suzuki and H. Tamori

positive system �+ of the root system � for (g, s). Let P = LN be a standard parabolic

subgroup of G and its Levi decomposition.

Let Z(gC) be the center of the enveloping algebra U(gC). A U(gC)-module V is

called Z(gC)-finite if V is annihilated by an ideal of finite codimension of Z(gC).

For any (gC, K)-module V, we have a natural isomorphism

H∗(gC, K; V)∨ ∼= H∗(gC, K; V∨)

of vector spaces, and a natural isomorphism

H∗(nC, V)∨ ∼= H∗(n
C

, V∨)

of (l
C

, K ∩ L)-modules by [13, Theorem 3.1], where the symbols ∨ of H∗(gC, K; V)∨, V∨,

H∗(nC, V)∨ denote the contragredient, K-finite contragredient, (L ∩ K)-finite contragre-

dient, respectively. Hence, we can translate results on relative Lie algebra cohomology

(resp. nC-cohomology) into those on relative Lie algebra homology (resp. nC-homology) as

follows.

Lemma 3.10 ([3, Corollary I.4.2 and Section I.5.1]). Let V1, V2 be Z(gC)-finite (gC, K)-

modules. Assume that V1 is finite-dimensional, and that any infinitesimal character of

the composition factors of V2 as (g
C

, K)-modules does not appear in the infinitesimal

characters of composition factors of the contragredient (gC, K)-module V∨
1 of V1. Then

H∗(gC, K; V1 ⊗ V2) = 0.

Lemma 3.11 ([23, Corollary 3.1.6]). Let l ∈ N and V be a Z(gC)-finite gC-module. Then the

l
C

-module Hl(nC, V) is Z(l
C
)-finite.

Lemma 3.12. Let l ∈ N and L′ be a closed subgroup of L. Write P′ = L′N. Let v be a finite-

dimensional real Lie algebra where P′ acts as Lie algebra automorphisms. Let V be a

Z(gC)-finite (gC, K)-module and W a finite-dimensional ((p′ � v)C, K ∩ L′)-module. Assume

that the action of n on v and W are nilpotent, and that there exists X ∈ l′ ∩ z(l) such that

for any p, q ∈ N with p+q ≤ l, the eigenvalues of X on the l′
C

-module Hp(nC, V)⊗∧qvC⊗W

are nonzero. Then

Hl((p
′ � v)C, K ∩ L′; V ⊗ W) = 0.

Here, we regard V as a ((p′ � v)C, K ∩ L′)-module by letting v act trivially.
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Epsilon Dichotomy for Linear Models 17869

Proof. By the Hochschild–Serre spectral sequence for relative Lie algebra homology, we

have

Hl((p
′ � v)

C
, K ∩ L′; V ⊗ W) ∼=

⊕
0≤q≤l

Hl−q(p′
C

, K ∩ L′; V ⊗ Hq(v
C

, W)).

The (p′
C

, K ∩ L′)-module Hq(vC, W) can be written as a subquotient of ∧qvC ⊗ W by the

standard complex. By long exact sequences, it suffices to prove

Hl−q(p′
C

, K ∩ L′; V ⊗ Z1) = 0

for any q ∈ [0, l] and any composition factor Z1 of the (p′
C

, K∩L′)-module ∧qvC⊗W. Since n

acts on v and W nilpotently, the action of n on Z1 is trivial. Again by the Hochschild–Serre

spectral sequence, we see

Hl−q(p′
C

, K ∩ L′; V ⊗ Z1) ∼=
⊕

0≤p≤l−q

Hl−p−q(l′
C

, K ∩ L′; Hp(n
C

, V) ⊗ Z1). (6)

Fix p ∈ [0, l − q]. Since V is Z(gC)-finite, Lemma 3.11 shows that the (lC, L ∩ K)-module

Hp(n
C

, V) admits a finite filtration whose graded pieces Z2 have infinitesimal characters.

Since z(l) acts on Z1 by a character, the element X in l′ ∩ z(l) acts on Z2 ⊗ Z1 by a scalar

C. By the assumption, we have C �= 0 and obtain Hl−p−q(l′
C

, K ∩ L′; Z2 ⊗ Z1) = 0 by Lemma

3.10. By long exact sequences, we see that (6) is zero, and the proof is complete. �

4 Preliminaries on Symmetric Subgroups

In this section, we prepare technical lemmas, which will play important roles in

Section 5.

Let G be a real reductive group, H a symmetric subgroup of G, that is, there exists

an involution σ on G with Gσ
0 ⊂ H ⊂ Gσ . Here Gσ

0 denotes the neutral component of Gσ .

We take a Cartan involution θ on g, which commutes with σ , and a σ -stable

maximally abelian subspace s of g−θ . Write � = �(g, s) for the root system for (g, s),

and fix a positive system �+ of �. Write Nmin for the unipotent radical of the minimal

parabolic subgroup Pmin corresponding to �+. Let P = MAN be a standard parabolic

subgroup and its Langlands decomposition. Put L = MA.
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17870 M. Suzuki and H. Tamori

Lemma 4.1. The map

(H ∩ L) � (L ∩ σN) → (H ∩ P)/(H ∩ N); (l, σn) → l · exp ◦(id +σ) ◦ log(σn)(H ∩ N) (7)

is an isomorphism of Nash groups. Here log denotes the inverse of the exponential map

from σn to σN.

Proof. We recall that the exponential map for a nilpotent subalgebra of g and the

logarithm map for a closed unipotent Nash subgroup of G are Nash. Hence the map

(7) is Nash.

Consider a closed unipotent Nash subgroup N′
min := (L ∩ σNmin)N of G. Since

u := (p ∩ σn) + (n ∩ σp) is a σ -stable subalgebra of n′
min, the image U := exp(u) of the

exponential map is a closed normal σ -stable unipotent Nash subgroup of P ∩ σP. Hence,

P ∩ σP has a subgroup (L ∩ σL) � U.

Let us prove

P ∩ σP = (L ∩ σL) � U. (8)

It suffices to show P ∩ σP ⊂ (L ∩ σL)�U. Let p ∈ P ∩ σP. Then p = ln for some l ∈ L, n ∈ N.

By multiplying an element in exp(n ∩ σp) from the right, we may assume n ∈ N ∩ σ N̄. By

Ad(n−1)a = Ad(p−1l)a = Ad(p−1)a ⊂ σp, we see a−1n−1an ∈ σP ∩ σ N̄ = {1} for any a ∈ A.

Hence n = 1 and p = l ∈ L ∩ σP.

Write p = σ(l′)σ (n′) for some l′ ∈ L, n′ ∈ N. Then from p ∈ L we see that

Ad(σ (n′))a = Ad(σ (l′)−1p)a = Ad(σ (l′)−1)a ⊂ σ l. Hence, aσ(n′)a−1σ(n′)−1 ∈ σL ∩ σN = {1}
for any a ∈ A, and σ(n′) belongs to L ∩ σ(N) = exp(l∩ σn) ⊂ U. Therefore, σ(l′) = pσ(n′)−1

belongs to L ∩ σL and p = σ(l′)σ (n′) belongs to (L ∩ σL) � U, which proves (8).

Since the factorization (8) is σ -stable, we obtain

H ∩ P = (H ∩ L) � Uσ (9)

by taking intersections with H. The Lie algebra of Uσ equals uσ = (id +σ)(l∩ σn)+ (h∩ n)

and has an ideal h∩n. By [(id +σ)X, (id +σ)Y] ∈ (id +σ)[X, Y]+ (h∩n) for any X, Y ∈ l∩σn,

the linear map

l ∩ σn → uσ /(h ∩ n); X → (id +σ)X + (h ∩ n)

is an isomorphism of nilpotent Lie algebras. It induces an isomorphism

L ∩ σN
∼=−→ Uσ /(H ∩ N); σn → exp ◦(id +σ) ◦ log(σn) · (H ∩ N) (10)
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Epsilon Dichotomy for Linear Models 17871

of 1-connected nilpotent Lie groups, which is Nash as discussed at the beginning of the

proof. The assertion now follows from (9) and (10). �

For α ∈ �, we write gα for the root space of root α.

Let us recall the definition of the associated (resp. the dual) symmetric pair

of (g, h). The associated symmetric pair of (g, h) is the symmetric pair (ga, ha) :=
(g, gθσ ). Recall that ha is stable under the Cartan involution θ of ga. Write gC for the

complexification of g and extend θ and σ to g
C

so that they are complex linear. Then

gd := gσθ + √−1g−σθ is a real form of g
C

, and hd := (gd)θ is stable under the Cartan

involution σ of gd. the symmetric pair (gd, hd) is called the dual symmetric pair of (g, h).

Lemma 4.2. Assume that (g, h) is one of the following symmetric pairs:

1. (g′ ⊕ g′, g′) where g′ denotes a real simple Lie algebra,

2. (sl2n(R), sln(C) + √−1R), or

3. (e6(6), sl3(H) ⊕ su(2)).

Then �σ is empty and gα ⊂ gθσ for any α ∈ �−σ (see Section 1.3 for the definition

of �σ , �−σ ).

Proof. It suffices to show

zg(s
−σ ) = zg(s), zg(s

σ ) ⊂ ha + zg(s). (11)

By the assumption on (g, h), the description of (ga, ha) [17, Lemma (1.13.1) and

(1.16)] and data of the restricted root systems of (g, h) and (ga, ha) [17, (6.8) and Table

V], the sum of the split rank of (g, h) and that of (ga, ha) equals the real rank of g. Hence,

maximally abelian σ -stable subspaces of g−θ are conjugate under the neutral component

of K ∩ H by [17, Lemma 2.4]. Hence we may take a particular choice of s.

We first consider the case (g, h) = (g′ ⊕ g′, g′), where g′ denotes a real simple Lie

algebra. In this case, s = s′ ⊕ s′ for some maximally abelian subspace s′ of (g′)−θ . Then

we see that zg(s
σ ) and zg(s

−σ ) are equal to zg(s), and (11) follows.

We next consider the case (g, h) = (sl2n(R), sln(C) + √−1R). Take a Cartan

involution θ on g given by θ(Y) = −tY for Y ∈ g. Fix a complex structure J =
(

0 −Jn

Jn 0

)
on R2n, where Jn denotes the anti-diagonal n-by-n matrix with anti-diagonal entries

one. Write sln(C) as the subalgebra of sl2n(R) commuting with the complex structure.

We choose s to be the subalgebra consisting of diagonal matrices with trace zero. Then
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17872 M. Suzuki and H. Tamori

by

s−σ =
⎧⎨⎩diag(h1, . . . , hn, −hn, . . . , −h1)

∣∣∣∣∣∣
∑

1≤i≤n

hi = 0

⎫⎬⎭ ,

we see zg(s
−σ ) = s = zg(s). Moreover, we have zg(s

σ ) = {anti-diagonal matrices}+s ⊂ ha+s

since anti-diagonal matrices belong to ha.

We finally consider the case (g, h) = (e6(6), sl3(H) ⊕ su(2)). In this case, we see

ha = f4(4) by [17, (1.16)]. Take sC as in [28, page 78]. Then the description of roots [28,

Theorem 3.6.4] implies (11), which completes the proof. �

For a closed subgroup R of G, define

�R := {α ∈ �
∣∣gα ⊂ r

}
.

Since l ∩ σn is nilpotent, the modular function δL∩σN of L ∩ σN is trivial. Via the

isomorphism (7), we extend the domain of δL∩σN to H ∩ P and regard it as the modular

function δ(H∩P)/(H∩L).

Lemma 4.3. Assume that any simple component of the symmetric pair (g, h) is written

as

1. (g′ ⊕ g′, g′) or (g′
C

, g′) for some real simple Lie algebra g′,
2. (sl2n(R), sln(C) + √−1R) or (sln(H), sln(C) + √−1R), or

3. (e6(6), sl3(H) ⊕ su(2)) or (e6(−26), sl3(H) ⊕ su(2)).

Then δ
1/2
P · δ−1

H∩P = δ
−1/2
L∩σN as characters of H ∩ P, and we have sσ ∩ [g, g] = sσ ∩ [h, h].

Proof. From (9), we have h ∩ p = (h ∩ l) � uσ . The adjoint actions of the subalgebra

uσ on p, h ∩ p and uσ /(h ∩ n) ∼= l ∩ σn are all nilpotent. Since h ∩ l is reductive, we see

h ∩ l = sσ + [h ∩ l, h ∩ l]. From these observations, it suffices to prove ρp − 2ρh∩p = −ρl∩σn

as linear functionals of sσ (see Section 1.3 for the definition of ρ∗). Set

�1 := �P ∩ �σ , �2 := (�P ∩ σ�P) \ �1, �3 := �L ∩ σ�N̄ , �4 := �N ∩ σ�N̄ .

We see �P =⊔1≤i≤4 �i and

ρp = 1

2

∑
1≤i≤4

∑
α∈�i

dim gα · α|sσ , ρl∩σn = −1

2

∑
α∈�3

dim gα · α|sσ ,

ρh∩p = 1

2

∑
α∈�1

dim g
σj
α · α|sσ + 1

2

∑
α∈�2

dim gα

2
· α|sσ .
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Epsilon Dichotomy for Linear Models 17873

Since �4 is (−σ)-stable, we see
∑

α∈�4
dim gα · α|sσ = 0. Hence, we have

ρp − 2ρh∩p + ρl∩σn = 1

2

∑
α∈�1

(dim g−σ
α − dim gσ

α ) · α|sσ .

Therefore, the first half of the assertion reduces to proving dim gσ
α = dim g−σ

α for α ∈ �σ .

It also reduces to proving dim gσ
α = dim g−σ

α for any nonzero sσ -weights in g.

We take a maximally abelian subspace j of h ∩ g−θ containing sσ . Then the set

�(g, j) of nonzero j-weights in g is naturally identified with the restricted root system for

(ga, ha) (cf. [17, Theorem 2.11]). Let us prove the following stronger assertion: dim gσ
α =

dim g−σ
α for α ∈ �(g, j).

We may assume that g is simple. Recall the definitions of the associated (ga, ha)

and the dual (gd, hd) symmetric pair of a symmetric pair (g, h) before Lemma 4.2. For

each case 1–3, a symmetric pair is written as the associated (gada, hada) = (gada, h) of the

dual of the associated of the other symmetric pair (g, h). Since the dimension of g±σ
α for

α ∈ �(g, j) does not change if we replace (g, h) by (gada, hada), we only need to consider

the case (g, h) = (g′ ⊕ g′, g′), (sl2n(R), sln(C) + √−1R), or (e6(6), sl3(H) ⊕ su(2)). In this case,

the proof of Lemma 4.2 shows j = sσ , and �σ = ∅ implies dim gσ
α = dim g−σ

α for any

α ∈ �(g, sσ ).

Moreover, dim gσ
α = dim g−σ

α for α ∈ �(g, j) shows �(g, j) = �(h, j). Hence, j∩ [g, g] =
j ∩ [h, h] and the second half of the assertion follows. �

Write Xα for the elements in s ∩ [g, g] corresponding to α ∈ � under the

identification s ∩ [g, g] ∼= (s ∩ [g, g])∨ given by the Killing form (·, ·) of [g, g].

Lemma 4.4. The sσ -module g decomposes into (h+p)⊕ (n̄∩σ n̄)−σ . Moreover, if g �= h+p,

then there exists X ∈ sσ ∩ [g, g] with the following properties:

1. X belongs to
∑

α∈� R>0Xα, where � := (�N ∩ σ�L) ∪ (σ�N ∩ �L) ∪ (�N ∩ σ�N).

2. α(X) > 0 for any α ∈ �.

3. X commutes with l ∩ σ l.

Proof. Let us prove the first statement. By � = �P � (�N̄ ∩ σ�P) � (�N̄ ∩ σ�N̄) and

gα ⊂ (id +σ)g + σgα ⊂ h + p for any α ∈ �N̄ ∩ σ�P, we have g = h + p + (n̄ ∩ σ n̄). By

(h + p) ∩ n̄ ∩ σ n̄ = (n̄ ∩ σ n̄)σ , we obtain g = (h + p) ⊕ (n̄ ∩ σ n̄)−σ .

We next prove the second statement. Let WL∩σL be the Weyl group for (l ∩ σ l, s).

We remark that the groups WL∩σL and {id, σ } act on the set �. Write S� for the group of

permutations of � generated by WL∩σL and σ . By the assumption g �= h + p, the subset �
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17874 M. Suzuki and H. Tamori

of �+ is nonempty. Hence, the convex cones

E := R≥0

⎧⎨⎩ ∑
τ∈S�

Xτα ∈ sσ ∩ [g, g]

∣∣∣∣∣∣α ∈ �

⎫⎬⎭ ⊂ V := RE

satisfy E �= 0, V and E ∩ (−E) = 0. Any element X in E satisfies 3 since X is invariant

under the reflections with respect to roots in �L ∩ σ�L. Since the dual cone E∗ of E in V

is written as

E∗ = {X ∈ V |α(X) ≥ 0 for any α ∈ � } ,

it suffices to show that the closed convex cone E ∩ E∗ has an inner point in V, which

is equivalent to (E + E∗) ∩ −(E + E∗) = 0 by the general theory of convex cones (cf. [8,

Theorem 1.2.5]). Let u ∈ (E + E∗) ∩ −(E + E∗) and write u = v1 + w1 = −v2 − w2 for some

v1, v2 ∈ E and w1, w2 ∈ E∗. We see 0 = ‖v1 + w1 + v2 + w2‖2 = ‖v1 + v2‖2 + ‖w1 + w2‖2 +
2(v1 + v2, w1 + w2) and the three terms on the right-hand side are nonnegative. Hence,

v1 = −v2, w1 = −w2. From E ∩ (−E) = 0 and E∗ ∩ (−E∗) = 0, we obtain u = 0. Hence,

(E + E∗) ∩ −(E + E∗) = 0. �

5 Homology of Principal Series Representations and Orbit Decompositions

5.1 Decomposition into H-orbits

Retain notation in Section 3.2. Let H be a closed (not necessarily symmetric) Nash

subgroup of G. Assume that the set of double cosets X := H\G/P is finite.

Let γ be an SF representation of L. By letting N act trivially, we regard γ

as a representation of P. Consider the normalized induction 	 = IndG
P (γ ) of γ ,

which is given by the space S(G/P,V) of Schwartz sections of the homogeneous

tempered bundle V := G ×P (γ · δ
1/2
P ). Let χ be a finite-dimensional SF representation

of H.

In this section, we give an upper estimate of the dimension of HomH(	, χ∨).

Let {gj}j0
j=1 be a complete set of representatives of X = H\G/P. Equip X with the

closure relation. Let us fix an order-preserving bijection from X to [1, j0]. For j ∈ [1, j0], we

write Oj for the preimage of j. Since Uj := (
⊔

j<k≤j0 Ok)/P is an H-invariant open subset

of G/P, the space of Schwartz sections

	j := S(Uj,V|Uj
)
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Epsilon Dichotomy for Linear Models 17875

of the restriction V|Uj
is an H-subrepresentation of 	. Hence, we obtain a descending

sequence

	0 ⊗ χ∨ ⊃ 	1 ⊗ χ∨ ⊃ 	2 ⊗ χ∨ ⊃ · · · ⊃ 	j0 ⊗ χ∨ = 0

of SF representations of H, where we set 	0 := 	.

Put ρj := 	j−1/	j for j ∈ [1, j0]. Since tensoring with χ∨ is an exact functor, the

short exact sequence 0 → 	j → 	j−1 → ρj → 0 and Lemma 3.4 gives us an long exact

sequence

· · · → Hl(H, 	j ⊗ χ∨) → Hl(H, 	j−1 ⊗ χ∨) → Hl(H, ρj ⊗ χ∨) → Hl−1(H, 	j ⊗ χ∨) → · · · .

In particular, dim Hl(H, 	j−1 ⊗ χ∨) ≤ dim Hl(H, 	j ⊗ χ∨) + dim Hl(H, ρj ⊗ χ∨) for any l.

Hence

dim Hl(H, 	 ⊗ χ∨) ≤
j0∑

j=1

dim Hl(H, ρj ⊗ χ∨). (12)

Fix j ∈ [1, j0]. Set Qj := H ∩ gjPg−1
j . Recall that Oj is a closed Nash submanifold of

Uj−1 and isomorphic to H/Qj. By Lemma 3.5, ρj admits a descending sequence {ρj,k}k∈N
of H-subrepresentations satisfying ρj,0 = ρj and

ρj ⊗ χ∨ ∼= lim←−
k

(ρj/ρj,k) ⊗ χ∨,

(ρj,k/ρj,k+1) ⊗ χ∨ ∼= S(H/Qj, H ×Qj
(
g−1

j (γ · δ
1/2
P ) ⊗ Symk(g/(h + Ad(gj)p))

∨
C
)) ⊗ χ∨

∼= S(H/Qj, H ×Qj
(
g−1

j (γ · δ
1/2
P ) ⊗ Symk(g/(h + Ad(gj)p))

∨
C

⊗ χ∨)) (k ∈ N)

as H-representations. For l, k ∈ N, we define

dl,j,k := dim Hl(H, (ρj,k/ρj,k+1) ⊗ χ∨). (13)

Put Hj := g−1
j Hgj. For a closed subgroup R of G, we define Rj := Hj ∩ R.

Remark 5.1. When H is the group of fixed points of an involution σ on G, the group Rj

equals the group (R∩σj(R))σj of fixed points in R of the involution σj := �(gj)
−1 ◦σ ◦�(gj)

on G.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/20/17853/7188055 by Kyoto U
niversity user on 06 N

ovem
ber 2023



17876 M. Suzuki and H. Tamori

By Lemmas 3.1 and 3.7, we obtain the following isomorphisms of vector spaces:

Hl(H, (ρj,k/ρj,k+1) ⊗ χ∨) (14)

∼= Hl(Qj,
g−1

j (γ · δ
1/2
P ) ⊗ Symk(g/(h + Ad(gj)p))

∨
C

⊗ χ∨ · δH · δ−1
Qj

)

∼= Hl(P
j, γ ⊗ Symk(g/(hj + p))∨

C
⊗ gjχ∨ · δHj · δ

1/2
P · δ−1

Pj )

∼= Hl(p
j
C

, K ∩ Lj; γ(K∩Lj)-fin ⊗ Symk(g/(hj + p))∨
C

⊗ gjχ∨ · δHj · δ
1/2
P · δ−1

Pj ).

Lemma 5.2. Let l ∈ N. If dl+1,j,k is finite for any j ∈ [1, j0] and k ∈ N, then

dim Hl(H, 	 ⊗ χ∨) ≤
j0∑

j=1

∞∑
k=0

dl,j,k.

In particular, if γ is finite-dimensional and dl,j,k = 0 for sufficiently large k, then Hl(H, 	⊗
χ∨) is finite-dimensional.

Proof. By the short exact sequence 0 → ρj,a/ρj,a+1 → ρj/ρj,a+1 → ρj/ρj,a → 0 for

a ∈ [0, k − 1] and Lemma 3.4, we obtain

dim Hl(H, (ρj/ρj,k) ⊗ χ∨) ≤
k−1∑
a=0

dl,j,a.

Hence Hl+1(H, (ρj/ρj,k) ⊗ χ∨) is finite-dimensional by the assumption, and

dim Hl(H, ρj ⊗ χ∨) = dim lim←−
k

Hl(H, (ρj/ρj,k) ⊗ χ∨) ≤
∞∑

k=0

dl,j,k

by Lemma 3.6. Therefore, the assertion follows from the inequality (12). �

5.2 Finiteness for symmetric subgroups

From this section, we assume that a real reductive group G is of inner type (i.e., Ad(G) is

contained in the group of inner automorphisms of gC), that H is a symmetric subgroup

of G, and that an SF representation γ of L has finite length, unless otherwise stated. Take

θ , s, Nmin, Pmin as in Section 4. Retain notation as in Section 5.1.

In this section, we prove the finite-dimensionality of the Schwartz homology

H∗(H, π ⊗ χ) for any SAF representation π of finite length of G (Proposition 5.5).
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Since G is of inner type, there exists a canonical surjection

(H ∩ [G, G]0)\[G, G]0/(P ∩ [G, G]0) → H\G/P.

By the description of the former double coset in [16, Theorem 3], we may choose a

complete set of representatives {gj}j0
j=1 for H\G/P so that σj preserves s for any j ∈ [1, j0].

Define an involution σj of G by

σj := �(gj)
−1 ◦ σ ◦ �(gj).

Lemma 5.3. We have dl,j,k < ∞ (see (13) for the definition) for any j ∈ [1, j0] and l, k ∈ N.

Proof. Fix j ∈ [1, j0]. By (14), it suffices to show that Hl(P
j, γ ⊗ V) is finite-dimensional

for any SAF representation γ of finite length of L and any finite-dimensional SF repre-

sentation V of Pj.

Let us prove it by induction on l. By taking a composition series of γ and applying

Lemma 3.4, we may assume that γ is irreducible.

Write PL = LLNL for the standard minimal parabolic subgroup of L and its Levi

decomposition with LL ⊂ L and NL ⊂ Nmin. By Casselman’s subrepresentation theorem,

there exists a finite-dimensional SF representation γL of LL such that the contragredient

γ ∨ is a subrepresentation of the induced representation IndL
PL

(γ ∨
L ). Hence, γ can be

written as an irreducible quotient of IndL
PL

(γL). Put γ ′ to be the kernel of the quotient

map, which has finite length as an SAF representation of L. By Lemma 3.4, we see

dim Hl(P
j, γ ⊗ V) ≤ dim Hl−1(Pj, γ ′ ⊗ V) + dim Hl(P

j, IndL
PL

(γL) ⊗ V).

From the induction hypothesis, it suffices to show that Hl(P
j, IndL

PL
(γL) ⊗ V) is finite-

dimensional for any finite-dimensional SF representation γL of LL and any finite-

dimensional SF representation V of Pj. We have isomorphisms

Hl(P
j, IndL

PL
(γL) ⊗ V) ∼= Hl(p

j
C

, K ∩ Lj; IndL
PL

(γL)(K∩Lj)-fin ⊗ V)

∼=
⊕

0≤p≤l

Hp(l
j
C
� (l ∩ σjn)C, K ∩ Lj; IndL

PL
(γL)(K∩Lj)-fin ⊗ Hl−p(n

j
C

, V))

∼=
⊕

0≤p≤l

Hp(Lj � (L ∩ σjN), IndL
PL

(γL) ⊗ Hl−p(n
j
C

, V)) (15)

of vector spaces, where we used Lemma 3.1 at the first and the third isomorphisms, the

Hochschild–Serre spectral sequences for the relative Lie algebra homology groups at the

second isomorphism.
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17878 M. Suzuki and H. Tamori

To prove the finite-dimensionality of (15), we replace (G, H, P, γ , χ∨) in Section 5.1

by (L, Lj � (L ∩ σjN), PL, γL, Hl−p(n
j
C

, V)) and apply the same arguments. Recall that L is a

real reductive group of inner type, that Lj is a symmetric subgroup of L ∩ σjL, and that

(L ∩ σjL) � (L ∩ σjN) is a parabolic subgroup of L. From the Bruhat decomposition and

the double coset decomposition [16, Theorem 3] for a symmetric group and a parabolic

subgroup, the cardinality of (Lj � (L∩σjN))\L/PL is finite and we may take a complete set

{lc}1≤c≤c0
of representatives so that the involution σj,c := �(lc)

−1 ◦ σj ◦ �(lc) preserves s

for any 1 ≤ c ≤ c0. For a closed subgroup R of G, we put Rj,c := R ∩ l−1
c g−1

j Hgjlc. Then we

see

�(lc)
−1(Lj � (L ∩ σjN))=Lj,c � (L ∩ σj,cN), (Lj,c � (L ∩ σj,cN)) ∩ PL =Lj,c

L � (Nj,c
L (NL ∩ σj,cN)).

From the finite-dimensionality of γL, Lemma 5.2 and (14), it suffices to show that given

p ∈ N and a finite-dimensional SF representation W of Lj,c
L � (NL ∩ σj,cN),

Hp(l
j,c
L,C � (n

j,c
L + (nL ∩ σj,cn))C, K ∩ Lj,c

L ; Symk(l/(lj,c + (l ∩ σj,cn) + pL))∨
C

⊗ W) = 0 (16)

for sufficiently large k ∈ N.

If l = lj,c + (l ∩ σj,cn) + pL, then Symk(l/(lj,c + (l ∩ σj,cn) + pL))∨
C

= 0 for k ≥ 1 and

there is nothing to prove. Hence we may assume l �= lj,c + (l ∩ σj,cn) + pL.

As in the proof of Lemma 4.4, the sσj,c -module l is a submodule of lj,c + (l∩σj,cn)+
pL + (n̄min ∩ σj,cn̄min). By applying Lemma 4.4 to the case (G, σ , P) = (G, σj,c, Pmin), we

obtain an element X in sσj,c such that the eigenvalues of the action of X on n
j,c
L , nL ∩ σj,cn

and (l/(lj,c + (l ∩ σj,cn) + pL))∨ are all positive. Hence, the real parts of the eigenvalues of

the action of X on

∧∗ (n
j,c
L + (nL ∩ σj,cn))C ⊗ Symk(l/(lj,c + (l ∩ σj,cn) + pL))∨

C
⊗ W

are positive for sufficiently large k from the assumption l �= lj,c + (l∩σj,cn)+pL. Since sσj,c

is contained in the center of lj,cL , we may apply Lemma 3.12 to the case

(g, l, l′, v, V) = (lL, lL, lj,cL , nj,c
L + (nL ∩ σj,cn),C)

and obtain (16). �

Lemma 5.4. For l ∈ N and j ∈ [1, j0], we have dl,j,k = 0 for sufficiently large k.
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Proof. Fix l ∈ N, j ∈ [1, j0]. Since Hj is reductive, the modular function δHj of Hj is trivial.

From (14) and Lemma 4.1, dl,j,k equals the dimension of

Hl((l
j + (l ∩ σjn))C � n

j
C

, K ∩ Lj; γ(K∩Lj)-fin ⊗ Symk(g/(hj + p))∨
C

⊗ gjχ∨ · δ
1/2
P · δ−1

Pj ).

If g = hj + p, then Symk(g/(hj + p))∨
C

= 0 for k ≥ 1 and there is nothing to prove.

Hence, we may assume g �= hj + p.

By Lemma 4.4, there exists X ∈ sσj ∩ z(l ∩ σjl) where the eigenvalues of the

adjoint actions of X on nj, (g/(hj + p))∨ are all positive. Lemma 3.11 shows that Hp(lC ∩
σjnC, γ(K∩Lj)-fin) is Z(lC ∩ σjlC)-finite. Hence, the real parts of the eigenvalues of the action

of X on

Hp(lC ∩ σjnC, γ(K∩Lj)-fin) ⊗ ∧∗nj
C

⊗ Symk(g/(hj + p))∨
C

⊗ gjχ∨ · δ
1/2
P · δ−1

Pj )

are positive for sufficiently large k from the assumption g �= hj + p. Then the assertion

follows from Lemma 3.12 (consider the case (g, l, l′, v, V) = (l, l ∩ σjl, l
j, nj, γ(K∩Lj)-fin)). �

Proposition 5.5. Let G be a real reductive group, H a symmetric subgroup of G, π an

SAF representation π of finite length of G, and χ a finite-dimensional representation

of H. For any l ∈ N, Hl(H, π ⊗ χ) is finite-dimensional.

Proof. The proof is similar to the first half of the proof of Lemma 5.3. We may assume

that G and H are connected (hence are of inner type), and that π is irreducible. Let

Pmin = LminNmin be the standard minimal parabolic subgroup of G. The Casselman’s sub-

representation theorem shows that π can be written as a quotient of 	 = IndG
Pmin

(γ ) for

some irreducible representation γ of Lmin. Recall that any finite-dimensional continuous

representation χ of the real reductive group H is an SAF representation. By Lemmas 5.2,

5.3, and 5.4, Hl(H, 	⊗χ) is finite-dimensional for any l ∈ N. Then the long exact sequence

(Lemma 3.4) and the induction argument show the finite-dimensionality of Hl(H, π ⊗ χ)

for any l ∈ N. �

5.3 Normal derivatives and stable Levi subgroups

Retain notation in Section 5.2. In this section, we prove vanishing of dl,j,k assuming the

following conditions on (G, H, P, γ , χ).

(A) Any simple component of (g, h) is one of the following symmetric pairs;
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(1) (g′ ⊕ g′, g′) or (g′
C

, g′) where g′ denotes a real simple Lie algebra,

(2) (sl2n(R), sln(C) + √−1R) or (sln(H), sln(C) + √−1R), or

(3) (e6(6), sl3(H) ⊕ su(2)) or (e6(−26), sl3(H) ⊕ su(2)).

(B) The parabolic subgroup P is cuspidal, and the representation γ of L = MA

is written as τλ = τ � exp(λ), where τ denotes a square integrable SAF

representation of M and λ denotes an element of a∨
C

with Re λ(Xα) ≥ 0 for

any α ∈ �+ (see the sentence before Lemma 4.4 for the definition of Xα).

(C) Any simple ideal of l is compact or sl2(R).

(D) The finite-dimensional representation χ of H is a character.

Remark 5.6. For any linear connected semisimple Lie group G, any irreducible SAF

representation of G can be written as a quotient of IndG
P (γ ) with (P, γ ) satisfying the

condition (B) above (see [12, Theorem 14.92] for example).

Remark 5.7. Assume g = g′
C

, sln(H), e6(−26), where g′ denotes a real simple Lie algebra.

Since cuspidal parabolic subalgebras of g are minimal, (B) implies (C).

Let us define

J := {j ∈ [1, j0]|σjl = l}.

If j ∈ J , then σj preserves L and the character δL∩σjN
of Pj is trivial (see the sentence

before Lemma 4.3 for the definition).

Theorem 5.8. Assume conditions (A)–(D). Then we have

dim HomH(IndG
P (γ ), χ) ≤

∑
j∈J

dim HomLσj (γ , gjχ).

Proof. By Lemma 3.8 and Proposition 5.5, we have

H0(H, IndG
P (γ ) · χ−1)∨ ∼= HomH(IndG

P (γ ), χ), H0(Lσj , γ · gjχ−1)∨ ∼= HomLσj (γ , gjχ).

From Lemma 5.2 and Proposition 5.5, it suffices to prove d0,j,k = 0 if j ∈ [1, j0]\J or k > 0.

As in the proof of Lemma 5.4, d0,j,k equals the dimension of

H0((lj + (l ∩ σjn))C � n
j
C

, K ∩ Lj; γ(K∩Lj)-fin ⊗ Symk(g/(hj + p))∨
C

⊗ gjχ−1 · δ
1/2
P · δ−1

Pj ).
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By multiplying gj (1 ≤ j0) by elements of L from the right if necessary, we may

assume

�L ∩ σj�N ⊂ �+. (17)

We remark that this does not change the definition of J , dl,j,k for any l, j, k. Then, there

exists X ∈ sσj ∩ [g, g] ∩ z(l ∩ σjl) such that

(i) X belongs to
∑

α∈�+ R>0Xα,

(ii) the eigenvalues of the adjoint action of X on (g/(hj + p))∨
C

are all positive,

(iii) α(X) > 0 for any α ∈ �L ∩ σj�N

from Lemma 4.4. Our assumption (A) shows δ
1/2
P · δ−1

Pj = δ
−1/2
L∩σjN

and sσj ∩ [g, g] =
sσj ∩ [hj, hj] by Lemma 4.3. By the assumption (D), X ∈ sσj ∩ [g, g] = sσj ∩ [hj, hj] acts trivially

on gjχ . Therefore, Lemma 3.12 reduces the assertion to proving that the eigenvalues of

the action of X on

H0(lC ∩ σjnC, γ(K∩Lj)-fin) ⊗ Symk(g/(hj + p))∨
C

⊗ δ
−1/2
L∩σjN

(18)

are nonzero if j ∈ [1, j0] \ J or k > 0.

Since K ∩ Lj has finitely many connected components, the assumption (B) shows

H0(lC ∩ σjnC, γ(K∩Lj)-fin) = H0(mC ∩ σjnC, τ
(k∩lj)-fin) ⊗ exp(λ) (19)

as (l
j
C

, (K ∩ Lj) × A)-modules, where (·)
(k∩lj)-fin denotes the subspace of U(kC ∩ l

j
C
)-finite

vectors. Let us consider the eigenvalues of the action of X on H0(mC ∩ σjnC, τ
(k∩lj)-fin).

Let i be a noncompact simple ideal in l. By the assumption (C), i ∼= sl2(R) and iθ ∼= so(2).

By the assumption (A) and Remark 5.7, the ideal i is contained in a simple component of

the symmetric pair (g, h) isomorphic to (g′⊕g′, g′), (sl2n(R), sln(C)+√−1R) or (e6(6), sl3(H)⊕
su(2)). Since i has real rank one, either of the following holds.

(I) σji ∩ n �= 0.

(II) σji is an ideal of l and σji �= i.

(III) σji = i. In this case, σj acts on i ∩ s by the scalar multiple (−1) by Lemma 4.2

and the space iσj ∩ k is one-dimensional.

Set n1, 2n2, n3 to be the number of noncompact simple ideals i satisfying the

condition (I), (II), (III), respectively. We remark that n1 = 0 if and only if j ∈ J . Then we
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obtain the following decomposition

m = mcpt ⊕ m1 ⊕ m2 ⊕ m3, (20)

m1 =
⊕

1≤i≤n1

sl2(R)1
i , m2 =

⊕
1≤i≤n2

sl2(R)2
i,1 ⊕ sl2(R)2

i,2, m3 =
⊕

1≤i≤n3

sl2(R)3
i , (21)

where mcpt, {sl2(R)1
i }1≤i≤n1

, {sl2(R)3
i }1≤i≤n3

denote the maximal compact ideal in m, the

noncompact simple ideals of l satisfying (I), and those satisfying (III), respectively, and

σj interchanges sl2(R)2
i,1 and sl2(R)2

i,2 for 1 ≤ i ≤ n2. Put ni to be the nilradical of the

minimal parabolic subalgebra of sl2(R)1
i corresponding to �(sl2(R)1

i , sl2(R)1
i ∩ s) ∩ �+ for

1 ≤ i ≤ n1. By the assumption (17), ni = sl2(R)1
i ∩ σjn. We see

m ∩ σjn =
⊕

1≤i≤n1

ni, k ∩ lj = (mcpt)
j ⊕ (k ∩ m2)j ⊕

⎛⎝ ⊕
1≤i≤n3

so(2)3
i

⎞⎠ . (22)

Since M has finitely many components, the irreducible SAF representation τ of

M can be written as a finite direct sum of the form

τ0 = τcpt ⊗ τ1⊗̂τ2⊗̂τ3

as representations of M0, where ⊗̂ denotes the tensor product of nuclear Fréchet spaces,

τcpt denotes an irreducible finite-dimensional mcpt-module and

τ1 =
⊗̂

1≤i≤n1

τ1
i , τ2 =

⊗̂
1≤i≤n2

τ2
i,1⊗̂τ2

i,2, τ3 =
⊗̂

1≤i≤n3

τ3
i

for some square integrable SAF representations τ1
i , τ2

i,1, τ2
i,2, τ3

i of finite covers of PSL2(R).

From (22), the representation τ3 is (K ∩ Lj)0-admissible. Hence

(τ0)
(k∩lj)-fin = τcpt ⊗ (τ1⊗̂τ2)

(k∩lj)-fin ⊗ τ3
(k∩lj)-fin

.

Write U for the unitary dual of the analytic subgroup of k∩m2. For ξ ∈ U , write τ2(ξ) for the

ξ-isotypic component of τ2, which is a closed subspace. Then we see (τ1⊗̂τ2)
(k∩lj)−fin =⊕

ξ∈U τ1⊗̂τ2(ξ) and obtain

H0(mC ∩ σjnC, (τ0)
(k∩lj)-fin) =

⊕
ξ∈U

τcpt ⊗ H0(mC ∩ σjnC, τ1⊗̂τ2(ξ)) ⊗ τ3
(k∩lj)-fin

. (23)
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Since m ∩ σjn is the nilradical of the minimal parabolic subalgebra of m1

corresponding to �+, Casselman’s unpublished result (for the case of minimal parabolic

groups, see [14, Theorem 5.2]) implies

H0(m
C

∩ σjnC, τ1) = H0(m
C

∩ σjnC, τ1
(k∩m1)-fin) =

⊗
1≤i≤n1

H0(ni,C, (τ1
i )so(2)1

i -fin),

where we used (22) and τ1
(k∩m1)-fin

= ⊗1≤i≤n1
(τ1

i )so(2)i−fin at the last equality. Since τ1
i is

a square integrable representation of the analytic subgroup of sl2(R)1
i , which is a finite

cover of PSL2(R), there exist εi ∈ {±} and ki ∈ Q>0 such that the infinitesimal character

of τ1
i equals kiρni

and

(τ1
i )so(2)1

i -fin =
⊕
l∈N

ξεi(ki+1+2l)

as so(2)1
i -modules (see [13, Section XI.8], for example). See Section 1.3 for the definition of

ξε(1+ki+2l). Then we see that H0(n, (τ1
i )so(2)1

i −fin) is one-dimensional and its s-weight equals

(ki + 1)ρni
from a general result concerning zeroth n-homology groups of irreducible

highest weight modules [24, Lemma 2.7].

Recall that tensoring with the nuclear Fréchet space τ2(ξ) preserves short exact

sequences of nuclear Fréchet spaces with continuous maps [5, Lemma A.3], and that

the Schwartz homology groups can be written as the homology groups of complexes

of nuclear Fréchet spaces (5). Therefore, we have

H0(mC ∩ σjnC, τ1⊗̂τ2(ξ)) ∼= H0(M ∩ σjN, τ1⊗̂τ2(ξ)) (24)

∼= H0(M ∩ σjN, τ1) ⊗ τ2(ξ) ∼= H0(m
C

∩ σjnC, τ1) ⊗ τ2(ξ)

from the finite-dimensionality of H0(mC ∩ σjnC, τ1) and Lemmas 3.1 and 3.8. Hence, (23)

shows

H0(m
C

∩ σjnC, (τ0)
(k∩lj)-fin) = τcpt ⊗ H0(m

C
∩ σjnC, τ1) ⊗ τ2

(k∩lj)-fin
⊗ τ3

(k∩lj)-fin
.

Therefore, the element X in sσj ∩ z(l ∩ σjl) acts on H0(m
C

∩ σjnC, (τ0)
(k∩lj)-fin) ⊗ δ

−1/2
L∩σjN

by a

scalar
∑

1≤i≤n1
(ki + 1)ρni

(X) − ρl∩σjn
(X) =∑1≤i≤n1

kiρni
(X).

From the above arguments and (19), the eigenvalues of X on (18) are of the form

∑
1≤i≤n1

kiρni
(X) + λ(X) +

∑
1≤i≤k

αi(X), (25)
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17884 M. Suzuki and H. Tamori

where αi denotes an sσj-weight appearing in (g/(hj + p))∨. Now ki > 0 and (iii) implies

kiρni
(X) > 0 for any i ∈ [1, n1]. Moreover, Re λ(X) ≥ 0 by the assumption (B) and (i).

Furthermore, (ii) shows αi(X) > 0 for any i ∈ [1, k]. Therefore, (25) is nonzero unless

n1 = k = 0, which is the desired conclusion. �

5.4 Proof of Theorem 1.2 and Corollary 1.3

Let (G, H) = (GL2n(R), GLn(C)) or (GLn(H), GLn(C)). In this section, we first recall from [7]

the orbit decomposition H\G/P and the description of the associated involutions {σj} on

G. Then we apply Theorem 5.8 to obtain Theorem 1.2. Moreover, we prove Corollary 1.3.

We take a Cartan involution θ on G given by θ(g) = tḡ−1 for g ∈ G and set K = Gθ .

Moreover, we define an involution σ on G by �

((
0 −Jn

Jn 0

))
if G = GL2n(R), and by �(iIn)

if G = GLn(H), where Jn denotes the anti-diagonal n-by-n matrix with anti-diagonal

entries one and In denotes the n-by-n unit matrix. The group H is identified with Gσ

via the embeddings Cn → R2n; (z1, . . . , zn) → (Re(z1), . . . , Re(zn), Im(zn), . . . , Im(z1)) and

C → H; a + b
√−1 → a + bi.

Let (n1, . . . , nr) be a partition of 2n with ni ∈ {1, 2} if G = GL2n(R), and a partition

of n with ni = 1 if G = GLn(H). In particular, we see r = n if G = GLn(H). We define

I :=
⎧⎨⎩
{
S ∈ Mr(Z≥0)

∣∣∣tS = S,
∑

1≤j≤r Si,j = ni, Si,i ∈ 2Z for 1 ≤ i ≤ r
}

if G = GL2n(R),{
permutation matrices S ∈ Mn(Z≥0) with S2 = 1

}
if G = GLn(H).

Given S ∈ I, we set gS ∈ K as follows.

When G = GL2n(R), let Ii,j (1 ≤ i, j ≤ r) be the Si,j-tuples defined by

(1, 2, . . . , 2n) =
r∏

i=1

r∏
j=1

Ii,j = I1,1 · I1,2 · I1,3 · · · Ir,r,

and I+
i,j, I−

i,j the tuples defined by

Ii,j = I+
i,j · I−

i,j, I−
i,j = ()if i < j, I+

i,j = ()if i > j, and I+
i,i, I−

i,i are Si,i/2-tuples,

where () denotes the 0-tuple. For example, I1,1 = (1, 2, . . . , S1,1), I1,2 = (S1,1 + 1, S1,1 +
2, . . . , S1,1 + S1,2), and I+

1,1 = (1, 2, . . . , S1,1/2). In this case, we set gS ∈ K to be the
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permutation matrix satisfying

(g−1
S (1), . . . , g−1

S (2n)) =
⎛⎝ r∏

i=1

r∏
j=i

I+
i,j

⎞⎠ ·
⎛⎝ r∏

j=1

j∏
i=1

I−
r+1−i,r+1−j

⎞⎠ .

When G = GLn(H), let Vi,j be the right H-vector space spanned by

⎧⎨⎩ea ∈ Hn

∣∣∣∣∣∣
i−1∑
k=1

r∑
l=1

Sk,l +
j−1∑
l=1

Si,l < a ≤
i−1∑
k=1

r∑
l=1

Sk,l +
j∑

l=1

Si,l

⎫⎬⎭ ,

where {e1, . . . , en} denotes the canonical basis of the right H-vector space Hn. In this case,

we set gS ∈ K by

gS = 1 on Vi,i (1 ≤ i ≤ r), gS =
(

1 1

j −j

)
on Vi,j + Vj,i (i �= j).

Let P = LN be the standard parabolic subgroup of G consisting of upper triangu-

lar block matrices corresponding to the partition (n1, . . . , nr) and its Levi decomposition.

Lemma 5.9 ([7, Propositions 2.1 and 3.1]). The map I → H\G/P; S → HgSP is bijective.

Set σS := �(gS)−1 ◦ σ ◦ �(gS) for S ∈ I. Now the involution σS on G preserves L if

and only if S is a monomial matrix, that is, an invertible matrix of the form S1S2 where

S1 (resp. S2) denotes a diagonal matrix (resp. a permutation matrix). By considering the

permutation associated to S, we may identify the set of such matrices with

S :=
⎧⎨⎩
{
ς ∈ Sr

∣∣∣ς2 = 1, ni = nς(i) for 1 ≤ i ≤ r, ni = 2 if ς(i) = i
}

if G = GL2n(R),{
ς ∈ Sn

∣∣ς2 = 1
}

if G = GLn(H).

For ς ∈ S, let us write σς (resp. gς ) for the involution σS preserving L (resp. gS), where S

is the element in I corresponding to ς .

Lemma 5.10 ([7, pages 206 and 214]). Let ς ∈ S. Under the block-wise decomposition L =∏r
i=1 Li (Li = GLni

(R) if G = GL2n(R) and Li = GLni
(H) if G = GLn(H)), the isomorphism
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υi = σς |Li
from Li onto Lς(i) is written as

υi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

id if G = GL2n(R) and ni = 1,

�

⎛⎝⎛⎝0 −1

1 0

⎞⎠⎞⎠ if G = GL2n(R), ni = 2 and ς(i) = i,

�(J2) if G = GL2n(R), ni = 2 and ς(i) �= i,

�(i) if G = GLn(H).

For 1 ≤ i ≤ r with i ≤ ς(i), define an injective homomorphism

ϒi :

⎧⎨⎩L
σς

i → Lσς ; x → diag(In1
, . . . , Ini−1

, x, Ini+1
, . . . , Inr

) if i = ς(i),

Li → Lσς ; x → diag(In1
, . . . , Ini−1

, x, 1, Ini+1
, . . . , Inς(i)−1

, υ(x), Inς(i)+1
, . . . , Inr

) if i < ς(i).

A simple computation gives the following

Lemma 5.11. The composite of detGLn(C) ◦�(gς ) : Lσς → Lσ → C× and ϒi equals detL
σς

i

if i = ς(i), detLi
if i < ς(i).

We set

T :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨⎪⎪⎪⎩ς ∈ Sr

∣∣∣∣∣∣∣∣∣
ς2 = 1, ni = nς(i)for 1 ≤ i ≤ r, and

ni = 2 and πi is χGL1(C)-distinguished if ς(i) = i,

πi⊗̂πς(i) is χGLni (R)-distinguished if ς(i) �= i

⎫⎪⎪⎪⎬⎪⎪⎪⎭ if G = GL2n(R),

⎧⎪⎪⎪⎨⎪⎪⎪⎩ς ∈ Sn

∣∣∣∣∣∣∣∣∣
ς2 = 1,

πi is χGL1(C)-distinguished if ς(i) = i,

πi ⊗ πς(i) is χGL1(H)-distinguished if ς(i) �= i

⎫⎪⎪⎪⎬⎪⎪⎪⎭ if G = GLn(H).

Remark 5.12. Let us write the character χ of C× as χ(z) = (z/|z|)l|z|η with l ∈ Z, η ∈ C.

For any irreducible SAF representations π1, π2 of a general linear group G′ over R or H,

the representation π1⊗̂π2 is χG′-distinguished if and only if π1
∼= π∨

2 · χG′ by Lemma 3.9,

which is also equivalent to

λ1 + λ2 = η,

⎧⎨⎩k1 + k2 ∈ l + 2Z when (G′, πi) = (GL1(R), π(1)

ki,λi
),

k1 = k2 when (G′, πi) = (GL2(R), π(2)

ki,λi
), (GL1(H), τki,λi

)
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where (ki, λi) belongs to {0, 1}×C in the former case, and to Z≥1 ×C in the latter case for

i = 1, 2. Moreover, the representation π = π
(2)

k,λ (resp. τk,λ) of G′ = GL2(R) (resp. GL1(H))

with k ∈ Z≥1, λ ∈ C is χGL1(C)-distinguished if and only if

2λ = η,

⎧⎨⎩k + 1 ∈ |l| − 2Z≥0 when G′ = GL2(R),

k − 1 ∈ |l| + 2Z≥0 when G′ = GL1(H)

as we saw in Section 2.2. In this case, π ∼= π∨ · χG′ also holds.

Theorem 1.2 follows from the following:

Theorem 5.13. We have dim HomH(π1 × · · · × πr, χH) ≤ #T. In particular, if π1 × · · · × πr

is χH-distinguished, then T is not empty.

Proof. Recall that (G, H, P, π1⊗̂ · · · ⊗̂πr, χH) satisfies the conditions (A)–(D). Therefore, by

Theorem 5.8 and Lemma 5.9, we have

dim HomH(π1 × · · · × πr, χH) ≤
∑
ς∈S

dim H0(l
σς

C
, K ∩ Lσς ; (π1⊗̂ · · · ⊗̂πr)(K∩Lσς )-fin · gς χ−1

H ). (26)

Write Iς = {1 ≤ i ≤ r|i < ς(i)}. Since πi is (K ∩ Li)-admissible for any i ∈ [1, r]ς , we have

(π1⊗̂ · · · ⊗̂πr)(K∩Lσς )-fin
∼=
⊗

i∈[1,r]ς
(πi)(K∩Li)-fin ⊗

⎛⎝̂⊗
i∈Iς

πi⊗̂πς(i)

⎞⎠
(K∩Li)-fin

.

From Lemma 5.10, we have πς(i) ◦ υi
∼= πς(i) for any i ∈ Iς . Therefore, Lemma 5.11 shows

that the right-hand side of (26) equals

∑
ς∈S

dim

⎛⎝ ⊗
i∈[1,r]ς

H0((l
σς

i )C, K ∩ L
σς

i ; (πi)(K∩Li)-fin · χ−1
L

σς

i

)

⎞⎠ · dimAς ,

where

Aς := H0

⎛⎜⎝⊕
i∈Iς

(li)C, K ∩
∏
i∈Iς

Li;

⎛⎝̂⊗
i∈Iς

(πi⊗̂πς(i)) · χ−1
Li

⎞⎠
(K∩Li)-fin

⎞⎟⎠
∼= H0

⎛⎝∏
i∈Iς

Li,
⊗̂
i∈Iς

(πi⊗̂πς(i)) · χ−1
Li

⎞⎠
∼=
⊗
i∈Iς

H0(Li, (πi⊗̂πς(i)) · χ−1
Li

).
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Here we used Lemma 3.1 for the first isomorphism, and Proposition 5.5 and similar

arguments as (24) for the second one. Hence, again by Lemmas 3.1 and 3.8 and Proposition

5.5, the right-hand side of (26) equals

∑
ς∈S

⎛⎝ ∏
i∈[1,r]ς

dim HomL
σς

i
(πi, χL

σς

i
)

⎞⎠⎛⎝∏
i∈Iς

dim HomLi
(πi⊗̂πς(i), χLi

)

⎞⎠ .

When i ∈ [1, r]ς , we have dim HomL
σς

i
(πi, χLi

) ≤ 1 since (πi)(K∩L
σς

i )m-fin is (K ∩
L

σς

i )-multiplicity free. When i ∈ Iς , we have dim HomLi
(πi⊗̂πς(i), χLi

) ≤ 1 by Lemma

3.9. From the above arguments, the right-hand side of (26) equals #T, and the proof

is complete. �

Proof of Corollary 1.3. Assume that an irreducible SAF representation π of G is

χH-distinguished. Let π̃ = π1 × π2 × · · · × πr be a standard module above π , (n1, . . . , nr)

the corresponding partition, φπ the L-parameter of π , and ζ ∈ T ⊂ Sr the involution in

Theorem 1.2. Now πi (1 ≤ i ≤ r) is of the form π
(1)

ki,λi
, π(2)

ki,λi
or τki,λi

(ki ∈ Z, λi ∈ C). Write

χ(z) = (z/|z|)l|z|η with l ∈ Z, η ∈ C.

From [1, Theorem 1.3] and the Langlands correspondence for GLN(D), we see

that the L-parameter of the contragredient π∨ equals the contragredient φ∨
π of the L-

parameter of π . By ζ ∈ T and Remark 5.12, we have −λζ(i) = λi − η. Since π1, π2, . . . , πr

satisfy (3) or (4), so do π∨
ζ(1), π

∨
ζ(2), . . . , π∨

ζ(r). Therefore, π∨
ζ(1) ×π∨

ζ(2) ×· · ·×π∨
ζ(r) is a standard

module above π∨, and (π∨
ζ(1) ·χGLn1 (D))×(π∨

ζ(1) ·χGLn2 (D))×· · ·×(π∨
ζ(1) ·χGLnr (D)) is a standard

module above π∨ · χG. We see πi
∼= π∨

ζ(i) · χGLni (D) for any 1 ≤ i ≤ r from ζ ∈ T and Remark

5.12, and π ∼= π∨ · χG follows. �

5.4 Appendix: Proof of Lemma 3.3

Write S(G) for the space of Schwartz functions on G, and I(G) for the subspace consisting

of f ∈ S(G) with
∫

f (g)dg = 0, where dg denotes a right invariant Haar measure.

Lemma 5.14 ([6, Theorem 1.7]). If A ⊂ G intersects all connected components of G, then∑
g∈G

(g − 1)π = I(G)V = gV +
∑
a∈A

(a − 1)V.

Proof of Lemma 3.3. Let K̂ be the unitary dual of K. For δ ∈ K̂, write 	(δ) for the δ-

isotypic component of 	. Let Pδ(k) = dim(δ)t̄rδ(k) for k ∈ K. Then the action of the

function Pδ is a continuous projection from 	 onto 	(δ). Put � to be 	 or 	 K-fin, which

contains 	(δ). The homomorphism Ptriv induces a surjective continuous homomorphism
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P from �K onto 	K = 	(triv). Since P|	K = id	K , we have a direct sum decomposition

� = 	K ⊕ Ker(Ptriv|�) as linear topological spaces.

Let Q be the composition of the inclusion 	K → � and the quotient � → �K .

Then Q is continuous and P ◦ Q = id	K . Therefore, what is left is to show Q is surjective.

More generally, let us prove v = Ptrivv for any v ∈ �, where v̄ denotes the image of v

under the quotient � → �K .

Fix v ∈ �. When � = 	, the series
∑

δ∈K̂ Pδv absolutely converges to v by [25,

Theorem 4.4.2.1]. When � = 	 K-fin, the same statement holds since Pδv = 0 for almost

all δ ∈ K̂. Put � to be K/K0, where K0 denotes the neutral component of K. Then �̂ can be

regarded as a finite subset of K̂. Define v1, v2 ∈ � by

v1 :=
∑

δ∈�̂−{triv}
Pδv, v2 :=

∑
δ∈K̂−�̂

Pδv.

Let us consider the case δ ∈ �̂−{triv}. We see
∑

γ∈� γ x = 0 for x ∈ δ since δK = {0}.
Hence, we have x = (#�)−1∑

γ∈�(1 − γ )x, and δK = 0. Therefore, v1 = 0.

We next consider the case δ ∈ K̂ − �̂. In this case, the Casimir element � for k acts

on δ by a positive scalar c(δ). Moreover, we see c(δ) > 1 for almost all δ ∈ K̂ − �̂. Hence,

we can define

u :=
∑

δ∈K̂−�̂

c(δ)−1Pδv ∈ �

since
∑

δ∈K̂ Pδv absolutely converges in �. By Lemma 5.14, � ∈ k
C

U(k
C
) and �u = v2, we

have v2 = 0. Therefore, v = Ptrivv + v1 + v2 = Ptrivv and the proof is complete. �
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