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ABSTRACT
Above-ground biomass (AGB) is an important indicator of crop productivity. Destructive measure-
ments of AGB incur huge costs, and most non-destructive estimations cannot be applied to diverse 
cultivars having different canopy architectures. This insufficient access to AGB data has potentially 
limited improvements in crop productivity. Recently, a deep learning technique called convolu-
tional neural network (CNN) has been applied to estimate crop AGB due to its high capacity for 
digital image recognition. However, the versatility of the CNN-based AGB estimation for diverse 
cultivars is still unclear. We established and evaluated a CNN-based estimation method for rice AGB 
using digital images with 59 diverse cultivars which were mostly in World Rice Core Collection. 
Across two years at two locations, we took 12,183 images of 59 cultivars with commercial digital 
cameras and manually obtained their corresponding AGB. The CNN model was established by 
using 28 cultivars and showed high accuracy (R2 = 0.95) to the test dataset. We further evaluated 
the performance of the CNN model by using 31 cultivars, which were not in the model establish-
ment. The CNN model successfully estimated AGB when the observed AGB was lesser than 924  
g m−2 (R2 = 0.87), whereas it underestimated AGB when the observed AGB was greater than 924  
g m−2 (R2 = 0.02). This underestimation might be improved by adding training data with a greater 
AGB in further study. The present study indicates that this CNN-based estimation method is highly 
versatile and could be a practical tool for monitoring crop AGB in diverse cultivars.
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Introduction

The global food demand for 2050 is projected to 
increase by 35–56% compared to 2010 (van Dijk et al., 
2021). To meet the rising food demand, crop production 
per unit area needs to be enhanced through improve-
ments in field management and genetic potential 
(Cooper et al., 2021). Above-ground biomass (AGB), 
which is defined as the above-ground dry weight per 
unit area, is one of the most important indicators for 
determining crop productivity (Long et al., 2006). Crop 
AGB increases with crop growth and is greatly affected 
by the cultivar, growth environment, and field manage-
ment (de Bossoreille de Ribou et al., 2013). 
Conventionally, AGB has been evaluated through 
destructive sampling of crops, which requires a large 
area of land and considerable effort. The availability of 
AGB data with sufficient quality and quantity has been 

limited in various situations, such as farmers’ fields in 
developing countries or the screening of high-yielding 
cultivars in breeding programs. Insufficient access to 
AGB data has been a potential barrier to achieving sus-
tainable and increased crop production.

To monitor crop AGB, several non-destructive estima-
tion methods have been developed. In previous studies, 
the AGB of various crops was successfully estimated by 
regression analysis using vegetation indices (VIs). VIs are 
generally calculated from optical information gathered 
using special sensors, such as hyperspectral and multi-
spectral sensors mounted on unmanned aerial vehicles 
(UAV) or satellites (Alebele et al., 2020; Y. Wang et al., 
2019). Recently, the estimation accuracy of VI-based 
methods has improved with the addition of input vari-
ables, such as textural, structural, and meteorological 
features (Q. Jiang et al., 2019; Xu et al., 2022), and the 
introduction of improved feature extraction methods, 
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including machine-learning techniques (Jimenez-Sierra 
et al., 2021; L. Wang et al., 2016). However, these VI- 
based methods are limited in terms of versatility and 
cost. First, the relationship between crop AGB and VIs 
can vary depending on crop species, cultivars, canopy 
architecture, and growth environment (Aparicio et al., 
2002; Hatfield & Prueger, 2010; ten Harkel et al., 2019). 
Second, special knowledge and expensive sensors are 
required to obtain VIs (Ma et al., 2019). Such low versa-
tility and high cost have been major obstacles to the 
practical and widespread use of VI-based estimations by 
crop producers and scientists. Although there are also 
Red Green Blue (RGB) image-based VIs, which can be 
taken with low-cost and easy-to-use devices, including 
digital cameras, the estimation accuracy of RGB image- 
based VIs tends to be lower than that of VIs from hyper-
spectral and multispectral sensors (T. Wang et al., 2021). 
Therefore, highly versatile and low-cost methods for 
estimating crop AGB should be explored.

Deep learning (DL) technology has been developing 
rapidly. Among the different approaches in DL, convolu-
tional neural network (CNN) has achieved state-of-the- 
art results in RGB image-based recognition tasks 
(Mochida et al., 2019). A CNN consists of several layers, 
including convolutional and pooling layers. In convolu-
tional layers, feature maps are extracted from high- 
dimensional data, such as RGB images, through convo-
lutional calculations. In the pooling layers, feature maps 
are compressed while retaining the important features. 
By combining these layers, the final output can be cal-
culated based on the features extracted from the input 
RGB images. In the training process of the CNN, the 
parameters in each layer were gradually modified 
based on the error calculated from the difference 
between the estimated value and the ground truth. By 
repetitive modification of the parameters, the CNN 
model can extract important features from RGB images 
and calculate accurate outputs. The trained CNN model 
shows higher accuracy and versatility than other feature 
extraction methods for image analyses in the agricul-
tural domain (Kamilaris & Prenafeta-Boldú, 2017). 
Therefore, CNN is expected to accelerate plant pheno-
typing (Y. Jiang & Li, 2020).

Owing to the high accuracy and versatility of the 
CNN model, many agronomical studies have already 
applied CNN not only to classification tasks, such as 
disease detection (Fuentes et al., 2017) and weed 
segmentation (Milioto et al., 2018) but also to 
regression tasks, such as yield estimation (Yang 
et al., 2019) and leaf-area-index (LAI) estimation 
(Yamaguchi et al., 2020). There are also many studies 
that utilized CNN to estimate crop AGB from RGB 
images and showed high estimation accuracy (Han 

et al., 2022; Ma et al., 2019; Schreiber et al., 2022). 
However, previous study used only a few cultivars to 
establish a CNN-based estimation model for crop 
AGB. Since different image quality caused by diverse 
canopy architecture can largely affect the accuracy 
of the model, the versatility of CNN-based AGB esti-
mation for diverse cultivars having different canopy 
architectures should be investigated.

In the present study, we focused on rice, which is 
an important cereal crop and has the third-highest 
production quantity among cereal crops (FAOSTAT, 
2020). We used a rice diversity panel, World Rice 
Core Collection (WRC) with some reference cultivars 
in the present study. The WRC consists of 69 culti-
vars. These cultivars were selected from approxi-
mately 30 thousand accessions and cover over 90% 
of genetic diversity (Kojima et al., 2005). Considering 
that genetic factors are responsible for the diversity 
of canopy architecture in rice (Y. Wang & Li, 2005; 
Zhao et al., 2011), the cultivars in the WRC were 
expected to have diverse canopy architectures. 
These cultivars are considered to be an ideal mate-
rial for this research. We constructed a large-scale 
database of the RGB images of 59 rice cultivars and 
their corresponding AGB. We then established a CNN 
model to estimate rice AGB from RGB images by 
training the CNN with the established dataset. After 
establishing the model, we evaluated its estimation 
accuracy for the test and independent prediction 
datasets to confirm its versatility.

Materials and methods

Cultivation condition

The field experiment was conducted in 2019 and 
2020 across two locations: an experimental paddy 
field in the Graduate School of Agriculture, Kyoto 
University, Japan (hereinafter called ‘Kyoto’) (35.2N, 
135.47E); and an experimental paddy field in the 
Field Museum Honmachi, Tokyo University of 
Agriculture and Technology, Honmachi, Fuchu-shi, 
Tokyo (hereinafter called ‘Tokyo’) (35.41N, 139.29E). 
In total, 59 cultivars were grown. In 2019, four culti-
vars were grown in Kyoto. One of these was the 
temperate subspecies japonica (Koshihikari), while 
the other three cultivars were indica (Kasalath, 
Takanari, and Hokuriku 193). In 2019, three cultivars 
were grown in Tokyo. Two of them were temperate 
japonica (Koshihikari and Akitakomachi), and one 
cultivar was indica (Takanari). In 2020, 54 and 26 
cultivars were cultivated in Kyoto and Tokyo, respec-
tively, and 52 of the 54 and 21 of the 26 cultivars 
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were selected from WRC. Details of the cultivars are 
presented in Table S1. All the fields were sufficiently 
irrigated during the growing season. All the plants 
were transplanted. In Kyoto, the transplanting dates 
were 17 May 2019, and 15 May 2020. In Tokyo, the 
transplanting dates were May 22, June 6, and 
19 June 2019, and May 20, June 3, and 
17 June 2020. One or three rice plants were trans-
planted per hill. Planting density ranged from 11.1 
to 25.0 hills m−2. Total nitrogen fertilizer application 
ranged from 0 to 18 g m−2. The detailed cultivation 
conditions are listed in Supplementary Table S4.

The seeds of WRC were provided by the Genebank at 
National Agriculture and Food Research Organization, 
Japan, with the standard material transfer agreement. 
All the field experiments in this study complied with 
relevant institutional, national, and international guide-
lines and legislation.

Construction of database with RGB images and 
corresponding AGB

RGB images of the rice canopy and its corresponding AGB 
were manually collected. The procedure for the database  

Figure 1. Procedure for database construction. We took RGB images of canopy at harvested plots using a commercial digital camera. 
We then harvested two successive rice plants and dried it at 80°C for 48 hours to determine the AGB.

Figure 2. Summary of the collected data. (a) Bar plot showing the distribution of the observed above-ground biomass (AGB) in each 
dataset; (b) Pie-chart of the dataset composition of each location and year with the number of plots in each location and year.
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construction is shown in Figure 1. Across all experiments, 
data collection was conducted 97 times from 2 weeks after 
transplanting to approximately 1 week after heading. Two 
successive hills were set as one harvesting plot. In total, 
12183 images were taken from 2,579 harvested plots. 
Figure 2 and Supplementary Table 5 summarize the 
database.

At each harvesting plot, RGB images were taken to 
cover 0.12 m−2. Two target rice plants were located in 
the right and left halves of the image, respectively. All 
images were taken vertically downward from approxi-
mately 1.5 m above the ground using an OLYMPUS TG-5 
(Olympus, Tokyo, Japan) digital camera. Even when the 
plant height exceeded over 1.5 m, the way of taking 
images didn’t change. In that case, the camera was 
inside the canopy. The optical zoom was set to 3×, 
which was identical to a focal length of 75 mm (35 m 
film equivalent). All images were taken at a 4000 × 3000 
pixels spatial resolution, with flash always off, and stored 
in JPG file format. In Kyoto, four or five images were 
captured by moving the camera slightly for data aug-
mentation. In 2020, at 62, 79, and 93 DAS, plant height 
and SPAD values were measured for all 54 cultivars in 
Kyoto. Each value was measured from five hills around 
the harvesting plot and was averaged. SPAD values were 
measured using a portable chlorophyll meter (SPAD-502, 
Minolta, Japan). The plants in the two successive hills at 
each harvesting plot where RGB images were taken were 
immediately harvested and dried at 80°C for 48 hours. 
Each dried sample was weighed to determine the 
AGB (g m−2).

Construction of datasets for model establishment 
and prediction

All data were categorized into two parts: model estab-
lishment and prediction. Table S1 shows the detailed list 
of cultivars in each category. The model establishment 
category consisted of 28 cultivars grown for two years 
across two locations. The prediction category consisted 
of the other 31 cultivars grown in Kyoto in 2020. The 
model establishment category was further separated 
into the training, validation, and test datasets. The 

training dataset contained 7,911 images from 1,688 har-
vested plots and was used to determine the model 
parameters. The validation dataset contained 1,373 
images from 293 plots and was used to verify the deter-
mined parameters. The test dataset contained 1,389 
images from 296 plots and was used to verify the accu-
racy of the established model. The prediction category 
contained a dataset of 1,510 images from 302 plots and 
was designed to verify the accuracy of the established 
model, particularly for the independent dataset. Table 1 
summarizes each dataset.

Images in all datasets were resized to 300 × 225 pixels 
with a bilinear algorithm, and used as inputs for the CNN 
model. The ground sample distance of the resized 
images was approximately 1.3 mm per pixels. For data 
augmentation, the images taken in Tokyo over two years 
were cropped to 296 × 222 pixels in four ways by mov-
ing the position of the cropping frame. The cropped 
images were resized to 300 × 225 pixels using a bilinear 
algorithm.

Establishment of the CNN model

The CNN structure developed in our previous study 
(Tanaka et al., 2021) for estimating rice grain yield was 
applied in the present study. In our previous study, an 
automated search for CNN structure in Neural Network 
Console software (Sony Network Communications Inc., 
Japan) was conducted to create diverse patterns of CNN 
structure. Then, the CNN structure which showed low 
computational cost and satisfactory high accuracy was 
chosen (Tanaka et al., 2021). This CNN structure also 
showed the high accuracy for estimating rice AGB in 
the preliminary analyses. The structure of the CNN is 
shown in Supplementary Figure . S1. The CNN structure 
had three branches, nine convolutional layers, and one 
fully connected layer. The CNN model was implemented 
using Python (version 3.6.8) with TensorFlow framework 
(version 2.1.0). The weights and biases of the network 
were initialized to a uniform distribution and zero, 
respectively, according to the defaults of the 
TensorFlow framework. The Adam algorithm was used 
as the optimizer. The loss function was defined by the 

Table 1. Composition of the dataset category.
Category name Location & Year Dataset name No. of cultivars No. of images No. of harvested plots

Model  
establishment

2019 Kyoto,  
2019 Tokyo,  
2020 Kyoto,  
2020 Tokyo

Training

28

7,911 1,688

Validation 1,373 293
Test 1,389 296

Prediction 2020 Kyoto Prediction 31 1,510 302
59 12,183 2,579
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RMSE. The number of epochs was set as 100. In all trials, 
the best parameters in the model were determined 
when the lowest validation loss was recorded. Learning 
rate decay was conducted by dropping the learning rate 
every 20 epochs. The learning rate for every 20 epochs 
was calculated by multiplying the initial learning rate by 
0.8, 0.6, 0.4, and 0.2.

The hyperparameters were tuned by changing the 
batch size and initial learning rate. The optimal combi-
nation of batch size and initial learning rate was deter-
mined by changing both values. The batch size was 
changed to 4, 8, 16, 32, 64, 128, or 256. The initial 
learning rate was changed to 0.1, 0.01, 0.001, 0.0001, or 
0.00001. The best combination of the batch size and 
initial learning rate was determined based on the esti-
mation accuracy for the test dataset. The CNN model 
was trained using the best combination of the batch size 
and initial learning rate. The trained model was used to 
estimate rice AGB.

AGB estimation with the established model

All RGB images of the validation, test, and prediction 
datasets were input into the established model to esti-
mate rice AGB. Four or five points of estimated AGB from 
the same harvested plots were obtained from the aug-
mented images. The values were averaged to evaluate 
the estimation accuracy for each harvested plot. RMSE, 
rRMSE, and R2 were calculated as indicators of estima-
tion accuracy. RMSE and rRMSE were defined as shown 
in Eq. 1 and Eq. 2: 

where n is the number of harvested plots, yi and byi are 
the individual estimated and observed AGB, respec-
tively, and �y is the average of the observed AGB. Linear 
regression analysis was applied to show the estimation 
tendency.

Segmented linear regression analysis (Eq. (3)) was 
additionally performed on the results of the prediction 
dataset because it was clear that the estimated AGB 
saturated in greater AGB. The segmented linear regres-
sion analysis was used to determine the applicable range 
of the model and to discuss the results separately within 
and outside the range. 

where y is the estimated AGB, parameters a and b are 
constants, x is the measured AGB, c is the junction point 
of the segments, and I is a step function defined as 
follows:

I x� cð Þ ¼
0 x � cð Þ

1ðx > cÞ

�

(Eq. 4)The coefficients a, b, and 
c were determined by minimizing the sum of squared 
residuals between the estimated AGB (as the true 
y value) and predicted values from the regression line 
with the Solver Add-in in Microsoft Excel (Microsoft, 
Redmond, WA, USA).

The rRMSE of each cultivar in the prediction dataset 
was calculated using the AGB data less than the junction 
point to reveal differences in estimation accuracy among 
cultivars. The time course of plant height and SPAD 
values for 31 cultivars of the prediction dataset were 
plotted to explore the visual characteristics of the cultivar 
with a significantly high rRMSE. The correlations between 
the rRMSE of the 31 cultivars calculated in this study and 
several traits measured in the previous study (Kojima 
et al., 2005) were investigated. All analyses in this study 
were conducted using Microsoft Excel (Microsoft, 
Redmond, WA, USA) and Python version 3.6.8 (http:// 
www.python.org) with TensorFlow framework version 
2.1.0 (https://www.tensorflow.org). The code for imple-
menting the established model is available at https:// 
github.com/KotaNakajima/rice_biomass_CNN.git.

Results

Construction of database and the CNN model for 
AGB estimation

Across two years at two locations, 59 cultivars mainly 
from WRC were cultivated and 12,183 images were taken 
from 2,579 harvested plots (Figure 2a). Of the 2,579 
harvested plots, 58% and 42% of the data were collected 
in Kyoto and Tokyo, respectively (Figure 2b). The 
observed AGB ranged from 0.7 g m−2 to 1,770 g m−2, 
with an average of 3.80 g m−2 (Figure 2a). The frequency 
of the observed AGB data decreased as the observed 
AGB value increased. The observed AGB value was 
higher than 1,000 g m−2 for only 5.9% of the entire data.

We applied the RGB-based CNN structure with nine 
convolutional layers and three branches (Supplementary 
Figure . S1), reported previously for estimating rice yield 
(Tanaka et al., 2021). To determine the hyperparameters 
for obtaining the best accuracy, we tuned the hyper-
parameters by a grid search. We tested the combination 
of batch size and initial learning rate from 4 to 256 and 
0.1 to 0.00001, respectively, with ten replicated trials. We 
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found that the combination of a batch size of 256 and an 
initial learning rate of 0.001 resulted in the lowest rela-
tive root mean square error (rRMSE) for the test dataset 
(Figure. 3a). The CNN model was trained using the best 
combination of batch size and initial learning rate. 
Figure. 3b shows the learning curve of the model. The 
loss value of the training dataset decreased smoothly. 
The loss value for the validation dataset decreased 
smoothly at first and then reached a plateau. The lowest 
validation loss was recorded at the 70th epoch, and the 
model with parameters determined at the 70th epoch 
was used for all subsequent analyses.

Evaluation of the established CNN model

Using the rice RGB images as input, the CNN model 
could estimate the rice AGB of the validation and test 

datasets, which ranged from approximately 0 to 1,500  
g m−2 (Figure 4). here was no clarity regarding the over-
estimation or underestimation of data across different 
cultivars, growth stages, locations, and years. The model 
estimated the AGB of 28 cultivars included in the valida-
tion dataset with root mean square error (RMSE) of 77  
g m−2, rRMSE of 21.0%, and coefficient of determination 
(R2) of 0.94 (Figure 4a). The slope and intercept of the 
regression line were 0.96 and 4.46, respectively. The 
model also estimated the AGB from the test dataset 
with RMSE of 72 g m−2, rRMSE of 18.6%, and R2 of 0.95 
(Figure 4b). The slope and intercept of the regression 
line were 0.95 and 2.27, respectively.

For the 31 cultivars in the prediction dataset that 
were not included in the model establishment category, 
the AGB estimated by the model showed a clear correla-
tion with the observed AGB, but a significant 

Figure 3. Establishment of a convolutional neural network (CNN) model for AGB estimation. (a) the loss value for validation and test 
datasets at different batch sizes and initial learning rates; (b) the learning curve of the determined model.

Figure 4. Correlations between observed AGB and estimated AGB at each harvested plot. (a) Estimated AGB of the validation dataset; 
(b) Estimated AGB of the test dataset. The three RGB images in Figure 4(b) are examples of input RGB images used for the estimation. 
The dotted line represents the 1:1 line, and the solid line represents the fitted line.
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underestimation was observed with higher values of 
AGB (Figure 5a). The model estimated the AGB from 
the prediction dataset with RMSE of 166 g m−2, rRMSE 
of 36.8%, and R2 of 0.82, respectively. When segmented 
regression was applied, it was revealed that the CNN 
model could not estimate AGB well when the observed 
AGB was greater than 924 g m−2 (R2 of 0.02). On the 
other hand, it successfully estimated AGB when the 
observed AGB was lesser than 924 g m−2 with RMSE of 
96 g m−2, rRMSE of 27.7% and R2 of 0.87 (Figure 5a). The 
slope and intercept of the segmented regression line for 
this range was 0.90 and 15.20, respectively.

A significant difference was observed in the rRMSE 
calculated for each cultivar in the prediction dataset 
(Table S2). For observed AGB lower than 924 g m−2, the 
rRMSE of each cultivar ranged from 14.5% (for Puluik 
Arang) to 66.1% (for ARC 11,094), with an average of 
27.0% and a median of 24.7% (Figure 5b and Table S3). 
The rRMSE of 29 cultivars was lower than 37.6%, whereas 
the rRMSE of two cultivars, ARC 11,094 and Shoni, were 
outliers. To elucidate the visual characteristics of these 
two cultivars, the plant height and soil-plant analysis 
development (SPAD) value (an indicator of the chloro-
phyll content in leaves) of 31 cultivars in the prediction 
dataset were measured 62, 79, and 93 days after sowing 
(DAS). Figures 5c and 5d show the time course of plant 
height and SPAD value of the 31 cultivars. ARC 11,094 
showed one of the lowest plant heights. The SPAD values 
of ARC 11,094 at 62 and 79 DAS were one of the highest 
among the 31 cultivars, while it decreased drastically at 93 
DAS. Shoni showed a plant height lower than the average. 
The SPAD values of Shoni were relatively stable 

throughout all measurements and were near the average 
value for the 31 cultivars. Table S6 and Supplementary 
Figure . S1 shows the correlation between rRMSE of the 31 
cultivars and each of several traits measured in the pre-
vious study (Kojima et al., 2005). The traits that showed 
the highest correlation (−0.3) and second highest correla-
tion (−0.27) with rRMSE were panicle length and culm 
length, respectively.

Discussion

Most non-destructive estimations of crop AGB are based 
on optical information, such as VIs, taken from UAVs or 
satellites (Chao et al., 2019). The AGB of various crop 
species, including rice, has been successfully estimated 
using VI-based methods. However, these methods have 
limitations in terms of their versatility and cost. First, the 
established model tends to be case-sensitive because 
the relationship between VIs and AGB varies depending 
on crop species, cultivars, and growth environments 
(Aparicio et al., 2002; Hatfield & Prueger, 2010; ten 
Harkel et al., 2019). Second, specialized knowledge and 
expensive devices, such as multispectral or hyperspec-
tral sensors and UAVs, are required to obtain VIs (Ma 
et al., 2019). The insufficient versatility and high cost of 
most previous AGB estimation methods are barriers to 
the full utilization of these technologies by crop produ-
cers and scientists.

In the present study, we established and evaluated 
a CNN-based estimation model for rice AGB using RGB 
images. Regarding the AGB range, the model was 

Figure 5. Estimation result on the prediction dataset: (a) Correlations between observed AGB and estimated AGB of the prediction 
dataset at each harvested plot. The dotted line represents the 1:1 line, and the solid line represents the fitted segmented regression 
line; (b) the bar plot depicting the distribution of the calculated rRMSE of each cultivar in the prediction dataset; (c) the time-course 
change of plant height of 31 cultivars in the prediction dataset; (d) the time-course change of the SPAD value of 31 cultivars in the 
prediction dataset.
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applicable up to approximately 1,500 g m−2 and 924 g m−2 

for the test and prediction datasets, respectively. This indi-
cates that our model is applicable until the heading stage 
in many cultivars. Regarding the estimation accuracy, the 
model estimated rice AGB with R2 of 0.95 and 0.82 for the 
test and prediction datasets, respectively. For the predic-
tion dataset, R2 was 0.87 when the observed AGB was lesser 
than 924 g m−2. These estimation accuracies are compar-
able to or even higher than those reported in previous VI- 
based studies (Alebele et al., 2020; Jimenez-Sierra et al., 
2021; Q. Jiang et al., 2019; Xu et al., 2022; Y. Wang et al., 
2019).

While there are several studies on estimating crop AGB 
using CNN (Han et al., 2022; Ma et al., 2019; Schreiber 
et al., 2022), these studies used only a few cultivars. 
Therefore, little is known about the versatility of the CNN- 
based estimation method for different image quality 
caused by diverse cultivars having various canopy archi-
tectures. Our　model was applicable not only to the 28 
cultivars in the test dataset but also to the 31 indepen-
dent cultivars in the prediction dataset. These 59 diverse 
cultivars were mainly from WRC which expected to have 
diverse plant architecture. Notably, the cultivars in the 
prediction dataset were not included in any other data-
set. These results indicate that the CNN model has suffi-
cient versatility to accommodate diverse image quality 
and the plant architectures of different cultivars.

In addition, considering that the data in the test 
dataset were obtained at two locations, our results 
imply that the CNN-based estimation for crop AGB also 
has the potential of versatility for the environment. In 
terms of cost, our CNN model only requires RGB images, 
which can be obtained using commercial digital cameras 
or smartphones. In addition, our CNN structure is much 
smaller than the typical CNN models for image recogni-
tion such as VGG16 and ResNet (He et al., 2016; 
Simonyan & Zisserman, 2014). These features can 
empower crop producers and scientists by enabling 
them to perform on-site estimation of rice AGB for 
diverse cultivars and environments.

However, the established model presents several 
challenges. First, for the prediction dataset, which 
included 31 independent cultivars, the estimated 
AGB saturated when the observed AGB was greater 
than 924 g m−2. In the training dataset, only 7.7% of 
data showed AGB greater than 924 g m−2. Generally, 
the accuracy and versatility of CNN models increase 
as the model is trained with more data (Marcus, 2018; 
Sun et al., 2017). Thus, further studies should include 
more data with a greater AGB in the training dataset. 
Second, the rRMSE of each cultivar in the prediction 
dataset was significantly different. The rRMSE values 

of the ARC 11,094 and Shoni cultivars were much 
greater than those of the other cultivars. The plant 
height and SPAD values of the 31 cultivars in the 
prediction dataset were measured, and the plant 
height of ARC 11,094 and Shoni tended to be the 
lowest among the 31 cultivars. This may imply that 
the estimation accuracy of the model is significantly 
worse for cultivars with low plant heights. Among the 
correlations between the rRMSE calculated in this 
study and the traits measured in the previous study, 
the highest correlation coefficient was −0.3 and the 
relationships were not clear (Table S6, Supplementary 
Figure . S1). The effects of other factors such as tiller 
number and leaf angle should be investigated. Third, 
the shooting range of the images was considered too 
small to monitor rice AGB across the field. Each 
image covered two successive hills, which were 
approximately 0.12 m−2. It would be labor-intensive 
to apply this CNN-based method to large farmland. 
The shooting range of the images should be 
expanded in further study. Fourth, the model’s versa-
tility for the diversity of growth conditions among 
rice production fields has not been sufficiently veri-
fied. In the present study, all data were collected over 
two years in two experimental fields under proper 
management. The planting densities of all cultivars 
were almost the same. There were no data indicating 
that the plants were affected by the lodging, lack of 
hills, weeds, diseases, or abiotic stresses. It is well 
known that crop AGB is strongly affected not only 
by cultivars but also by growth conditions, including 
environmental factors and field management prac-
tices (Cossani et al., 2009). Therefore, future studies 
should establish a model with more diverse growth 
condition data.

In conclusion, we investigated the versatility of 
CNN-based AGB estimation for diverse cultivars hav-
ing different canopy architectures. We established and 
evaluated the CNN model using RGB images with 59 
diverse cultivars, which were mainly from WRC. The 
established model accurately estimated the rice AGB 
of 28 cultivars in the test dataset. It is noteworthy that 
the model was also applicable to 31 cultivars that 
were not included in the model establishment. The 
results emphasize the high versatility of the CNN 
model for diverse cultivars having various plant archi-
tectures. In addition, the CNN model only requires 
RGB images, which can be easily obtained using 
a low-cost device. Our results will be the basis to 
enable crop producers and scientists to monitor the 
AGB of diverse rice cultivars on-site and at 
a reasonable cost. Such on-site monitoring will 
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contribute to enhancing rice productivity by allowing 
better field management, enabling the crop to 
achieve its full genetic potential.
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