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1. Introduction

Recent machine learning networks have advanced to the point
where they have become comparable with or even surpassed

humans in a wide range of fields, such
as image recognition,[1,2] natural language
processing,[3,4] and board games.[5,6]

Despite the demand for increases in the
information-processing capability of com-
puters associated with the development
of machine learning, the rate of develop-
ment of conventional computers is yet to
catch up with this demand.[7] Given this
background, research on neuromorphic
computing devices, which are hardware
that directly implements neural networks,
is being actively conducted.[8]

The magnetic tunnel junction (MTJ),
which is a type of spintronics device, is a
promising candidate for neuromorphic
computing because of its minute size,
high-speed dynamics, and high-energy
efficiency.[8–11] It has been proposed that
spintronics devices can emulate major
building blocks in the neural network, such
as artificial synapses[12–14] and artificial
neurons,[15] using properties that are non-
volatility, plasticity, oscillatory behavior,
and stochastic behavior.[11] The application
of a spin-torque oscillator (STO), which is a

limit-cycle oscillator consisting of an MTJ, to physical reservoir
computing[16–19] is an emerging research topic in which the non-
linear dynamics of an STO are directly exploited as a computa-
tional resource.[20–31] The development of a scheme to boost the
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The rapid development in the field of artificial intelligence has increased the
demand for neuromorphic computing hardware and its information-processing
capability. A spintronics device is a promising candidate for neuromorphic
computing hardware and can be used in extreme environments due to its high
resistance to radiation. Improving the information-processing capability of
neuromorphic computing is an important challenge for implementation. Herein,
a novel neuromorphic computing framework using spintronics devices is pro-
posed. This framework is called coupled spintronics reservoir (CSR) computing
and exploits the high-dimensional dynamics of coupled spin-torque oscillators as
a computational resource. The relationships among various bifurcations of the
CSR and its information-processing capabilities through numerical experiments
are analyzed and it is found that certain configurations of the CSR boost the
information-processing capability of the spintronics reservoir toward or even
beyond the standard level of machine learning networks. The effectiveness of our
approach is demonstrated through conventional machine learning benchmarks
and edge computing in real physical experiments using pneumatic artificial
muscle-based wearables, which assist human operations in various environ-
ments. This study significantly advances the availability of neuromorphic com-
puting for practical uses.
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information-processing capability of spintronics devices towards
the standard level of machine learning networks is an urgent and
important issue to be addressed.[21]

The MTJ has also been attracting attention as a device with
significant tolerance against radiation.[32,33] Radioactive environ-
ments, such as disaster sites, nuclear accident areas, and space,
have been ongoing challenges for the areas of information
sciences and engineering for many years. For example,
information-processing devices have been used in a range of inci-
dents, from the disaster at the Three Mile Island unit 2 reactor in
1979[34,35] to the 2011 disaster at the Fukushima Daiichi Nuclear
Power Plant,[36] for various levels of use. Conventional electronic
devices that implement artificial neural networks break down
easily, and they do not perform normally with radiation
exposure.[37,38] A single-event effect is a radiation effect that
can be characterized by a temporary change in the electronic state
caused by a particle striking a sensitive node in the electronic
device.[37,38] The influence of the single-event effect is becoming
increasingly serious, owing to the minimization and high inte-
gration of electronics in recent devices. Spintronics devices are
robust to radiation in principle, because they use spin instead
of an electric charge, unlike dynamic random access memory
and flash. The tolerance of MTJs to single-event effects of differ-
ent radiation types, such as heavy ion,[39–41] neutron,[42] pro-
ton,[43] and gamma ray,[42,43] has been studied.

This article proposes a novel information-processing frame-
work based on a spintronics device that exhibits high perfor-
mance and is robust in a radioactive environment (Figure 1).
The proposed framework is called a coupled spintronics reservoir
(CSR), in which multiple STOs are randomly connected through
magnetic fields to enhance computational power for solving real-

world tasks. Through numerous numerical experiments, we
show that CSRs exhibit diverse repertoires of dynamics, which
can be generated only by tuning the input and coupling
configurations while fixing the internal configurations of
STOs, such as device size and material constants. In addition,
the performance of edge computing in physical experiments
is drastically improved in suitable input-coupling configurations.
Consequently, CSRs outperform an echo-state network (ESN),[17]

which is a typical artificial recurrent neural network, with the
same number of nodes in benchmarks and edge computing.
Our results suggest that a CSR can be a powerful option for infor-
mation processing in radioactive environments.

We demonstrate the effectiveness of our framework for real-
world tasks through edge computing in sensors of a pneumatic
artificial muscle (PAM), which is a soft actuator composed of a
rubber tube and braided codes. We chose edge computing in
PAM wearables as a touchstone of the CSR for the following
three reasons. First, reservoir computing has been proven effec-
tive in edge-computing tasks due to its low computational cost
and its ability to solve multitasking problems without learning
interference. Second, although the behavior of a PAM is difficult
to control because of its high dimensionality, nonlinearity, and
hysteresis,[44,45] the reservoir computing approach can solve
PAM sensor emulation tasks with high accuracy.[45–47] Finally,
because of the danger of radiation for humans, assistance devices
for human workers are important in radioactive environments as
well as spintronics devices. Today, at disaster sites, various tasks
are still handled by humans, such as rescue activities in rubble,
in places where large and heavy machinery cannot enter, and
other tasks in a wide range of situations. Furthermore, if a work-
er’s job requires them to visit radioactive environments, such as
exploration of the moon or Mars, assistance devices for human
workers will become essential. Therefore, in this study, to dem-
onstrate the range of validity of our approach, we use PAM sen-
sor emulation tasks and a gait classification task for a PAM-based
wearable device that assists human walking. This approach con-
tributes to retaining the softness of the wearables, which can
potentially allow for the detachment of rigid sensory devices
and the implementation of robust information processing in
radioactive environments. Performances of standard benchmark
tasks for RNNs are presented in the Supporting Information.[48]

2. Results

2.1. Spin-Torque Oscillators

Let us first introduce the concept of CSRs comprising STOs.
The MTJ is a spintronics device that consists of ferromagnetic
metal/nonmagnetic spacer/ferromagnetic metal thin films
(Figure 2a(i)). Two ferromagnets are classified as free and refer-
ence layers, where the magnetization in the former can change
its direction under the application of an electric current and/or
magnetic field to the trilayer, while that of the latter is fixed.
By injecting an electric current into the MTJ, the transfer of spin
angular emomentum[49] from conducting electrons to the free
layer excites limit cycle oscillation of the magnetization. An MTJ
used as a nanometer-scale auto-oscillator is called an STO. This
oscillation can be detected by the tunnel magnetoresistance

Figure 1. Schematic illustration of our framework. a) A radioactive envi-
ronment. b) The sensory-motor coupling system in a radioactive environ-
ment. c) Robust information processing in a radioactive environment. The
spintronics device is robust to radiation exposure, where conventional
computing devices break down.
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(TMR) effect,[50,51] where the output power is proportional to the
vector inner products between the magnetizations in the free and
reference layers. It has been recently revealed that STOs
also exihibit complex dynamics, such as synchronization and
chaos, by setting up feedback loops[52,53] or inputting external
signals.[29,54–56] The proposed CSR is a new type of physical res-
ervoir comprising multiple STOs, where we inject an input sig-
nal as a magnetic field pulse and detect the output current
resulting from the TMR effect (Figure 2a(i),b(i)).

Magnetic fields are also used to realize couplings among mul-
tiple STOs, making the system high dimensional. As mentioned
above, the output power from an STO is proportional to the
projection of the magnetization in the free layer to that in the
reference layer; therefore, it stores information pertaining to
the magnetization direction. Such an output electrical power
can be transformed to a magnetic field through Ampère’s law.
Therefore, by applying the magnetic field generated from the out-
put power of an STO to the other STOs, as illustrated in
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Figure 2. a) Schematics and dynamics of the single spintronics reservoir. b) Schematics and dynamics of the CSR. (i) Schematics of the spintronics
reservoir. (ii) Typical time series of the x component of STO magnetization with an input interval of 100 ps. The input magnitude is set to 10.02 Oe in (b).
(iii) The top-left figures are bifurcation diagrams. The top-right figures are color maps of the conditional Lyapunov exponent. The black dotted lines are the
condition sets of the horizontal lines in the bifurcation diagram. The bottom-left figures are the color maps of dimension Drank. The bottom-right figures
are the color maps of MC½499�.
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Figure 2b(i), the magnetization dynamics in CSR are coupled.
Previously, two approaches were developed that use multiple
spintronics devices as a resource for physical reservoir comput-
ing: a parallel use without coupling[21,24] and a neighborhood
interaction with dipolar fields.[25,57,58] The proposed magnetic
field coupling is less topologically restricted than neighborhood
interaction coupling,[25] as the former is performed through elec-
trical wires. In addition, the advantage of magnetic field coupling
is its high level of controllability, because it is transformed from a
current. Therefore, we can easily tune coupling configurations
after fixing the configurations of each STO.

Making the reservoir system high dimensional through cou-
plings has the following three advantages. First, the CSR with
appropriate configurations has higher information-processing
capability than a spintronics reservoir that uses the same number
of STOs in parallel due to its complex dynamics. Second, we can
select the appropriate information-processing capability from
repertories of diverse dynamics depending on the target task.
Finally, a multiinput setting CSR can be implemented naturally.
The number of input ports in physical reservoir computing is
usually limited because they are implemented as a physical
device; however, the number of input ports in a CSR can be
increased by connecting multiple STOs.

The dynamics of k th ðk ¼ 1, · · · NÞ magnetizations mk ¼
ðmk,x ,mk,y,mk,zÞT ∈ ℝ3 in a CSR can be described by the
Landau–Lifshitz–Gilbert (LLG) equation.

dmk

dt
¼ �γmk � ½Hk þHcp

k þHin
k �

� γHs,kmk � ðp�mkÞ þ αmk �
dmk

dt

(1)

Hs,k ¼
ℏηI

2eð1þ λmk ⋅ pÞMV
(2)

The magnetic field Hk ¼ ½Happl þ ðHK � 4πMÞmk,z�ez com-
prises an applied fieldHappl, interfacial magnetic anisotropy field
HK, and demagnetization field �4πM. Here, we use a Cartesian
coordinate in which the z-axis is perpendicular to the film plane,
while the x-axis is parallel to the magnetization p in the reference
layer. The output power from the STO is proportional to
mk ⋅ p because of the TMR effect mentioned earlier. The vectors
mk and p are normalized to be unit vectors. The saturation mag-
netization and volume of the free layer are denoted as M and V,
respectively. The spin-transfer torque strength Hs,k is character-
ized by the spin polarization η, the current I, and spin-transfer
torque asymmetry λ. The magnetization p in the reference
layer is fixed to a positive x. The coupling magnetic field Hcp

k

and input magnetization field Hin
k are given by the following

equations.

Hcp
k ¼ Acp

XN
i

wcp
k,imi,xex (3)

Hin
k ¼ Ain

XN in

i

win
k,iuiðtÞex (4)

where Acp and Ain are the coupling magnitude and input
magnitude, respectively, and ex is the x directional unit vector.

The internal coupling weightWcp ¼ ðwcp
k,iÞ ∈ ℝN�N is a matrix in

which all diagonal components are 0 with no self-coupling and
nondiagonal components are random variables from a uniform
distribution with the interval ½�1, 1�. The spectral radius of Wcp

is set to 1. The input weight matrix W in ¼ ðwin
k,iÞ ∈ ℝN�N in is

composed of a uniform distribution with interval ½�1, 1�, where
Nin is the number of inputs. The input signal is expressed as
uðtÞ ¼ ðu1ðtÞ · · · uNin

ðtÞÞT. We do not introduce a delay term
in these couplings. We numerically simulate Equation (1)
using the fourth-order Runge–Kutta method. The STO parame-
ters are set to reflect a real-world setting and are derived from a
previous experiment[59] together with a theoretical analysis[60]

(see Experimental Section for details). Furthermore, we tune
the applied magnetic field Happl into an experimentally reason-
able range to enhance the information-processing capability of
the reservoir. In the current study, we only tune the input
and coupling parameters that can be easily tuned, unlike an
STO’s internal parameters.

The input signal uðtÞ is a discrete-point series
unðn ¼ 0, 1, · · · Þ that is changed in the constant input interval
τ, as follows: uðtÞ ¼ unðn ¼ maxfn ∈ ℕ j n < t=τgÞ. These piece-
wise constant input forms are widely used not only in spintronics
reservoirs[20–24,29] but also in other type of physical reservoir
computing.[61–65] The reservoir states of N STOs are obtained at
every τ=L time, where L ∈ ℕ is the number of time multiplexing.
The above time multiplexing is used to increase the information-
processing capacity by extending the virtual nodes from N to
L� N.[20,22,64] Therefore, the reservoir states corresponding to
the input signal un are described by xk,ln ¼ mk,xðnτ þ τl=LÞ,
where l ðl ¼ 1, · · · , LÞ is the time multiplexing number and
k ðk ¼ 1, · · · ,NÞ is the STO number. The output vector
yn ¼ ðyn,1 · · · yn,Nout

ÞT ∈ ℝNout that is linearly generated from

the virtual nodes vector xn ¼ ð1, x1,1n , · · · , xN,L
n ÞT ∈ ℝNLþ1,

including a bias, is given as yn ¼ WoutT ⋅ xn, where the output
weight Wout ∈ ℝNout�ðNLþ1Þ is trained by linear regression (LR)
and Nout is the number of outputs.

2.2. Bifurcation and Memory Capacity of Spintronics Reservoirs

Here, we analyze the STO dynamics and its corresponding
information-processing capability as a reservoir. STOs can show
synchronization and chaos by injecting the input and incorporat-
ing coupling. In general, high-dimensional dynamical systems
display complex phenomena, such as hyperchaos,[66] chaotic
itinerancy,[67] and chimera.[68] An STO shows chimera,[69]

suggesting that the CSR has the potential to exhibit these
high-dimensional phenomena by introducing coupling.

The dynamics and information-processing capability of the
system are closely related. For example, the echo-state prop-
erty,[17,70] which guarantees the reproducibility of information
processing, depends on the sign of the input-conditional
Lyapunov exponent in the context of the generalized synchroni-
zation of dynamical systems.[71,72] Here, the Lyapunov exponent
is a criterion of the initial-state sensitivity of the system, and a
positive Lyapunov exponent usually indicates chaos for closed
dynamical systems. The input-conditional Lyapunov exponent
ensures that the searching space of the initial-state sensitivity
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is restricted only in the reservoir space without the input space.
In addition, the memory capacity (MC) of an ESN increases at the
edge of chaos, which is the border of order and chaos in the
parameter space.[73] The MC evaluates the linear memory capa-
bility of the system[74] and is bound by the rank of the covariance
matrix of the reservoir states, which is simply called dimension
Drank.

[75] Therefore, in the current study, we analyzed the
input-conditional Lyapunov exponent, dimension, and MC of
a single spintronics reservoir and CSR. Definitions of MC and
dimension are given in the Experimental Section. The input
signal un of these analyses is 50 000 uniformly random variables
with interval ½�1, 1�. The number of time multiplexing is L ¼ 10
in all reservoirs.

Before analyzing the CSR, we must analyze the dynamics and
information-processing capability of a single-spintronics reser-
voir where the number of STOs is N ¼ 1. Figure 1a(ii) presents
a time series of mx for three input magnitude conditions, where
Ain is changed to 10.02, 101.01, and 10 280 Oe from top to
bottom. When the input magnitude is 10.02 Oe, the dynamics
are almost periodic, and when the input magnitude is increased
to 101.0 Oe, the periodic structure collapses. When the input
magnitude is further increased to 10 280 Oe, the dynamics stay
in the narrow region and slightly respond to the input signal.
Figure 1a(iii) (upper left plot) shows a bifurcation diagram of
the single-spintronics reservoir this is determined by the input
magnitude, where the minima ofmx after a sufficiently long tran-
sient time are plotted. In a certain input magnitude range, where
the minima are spread like points, we confirm two-step bifurca-
tions that move from order to chaos and from chaos to order. To
analyze these bifurcations quantitatively, we calculate the input-
conditional Lyapunov exponents. These exponents, in accordance
with the input magnitude and input interval, are plotted in
Figure 2a(iii) (upper right diagram).We can confirm the existence
of two bifurcations, from order to chaos and from chaos to order,
at all input intervals. These two-step bifurcations also appear in
the STOs where random inputs are injected as a current.[29]

Drank and the MC of a single spintronics reservoir are depicted
in Figure 1a(iii) (lower-left diagram). Drank is bound by
Dtotal ¼ L ¼ 10 in this timemultiplexing, whereDtotal is the num-
ber of reservoir states; however, when the input magnitude and
input interval are small, such as Ain¼ 101Oe and τ ¼ 100 ps,
Drank is less than Dtotal, and it is apparent that multiplexed virtual
nodes are not fully used.Drank can be used as a criterion for deter-
mining the number of time multiplexing. It has been established
that the MC peaks around the edge of chaos.[29,73] The same phe-
nomena are found around the edge of chaos of our result when
the input interval is larger than 200 ps (Figure 2a(iii), lower right
diagram). However, when the input interval is less than 200 ps
andDrank is less thanDtotal, a peak does not always appear around
the edge of chaos.

We conducted the same analysis performed on the single-
spintronics reservoir for the CSR with N ¼ 10 in Figure 2b.
We also confirmed how the performance scales to the number
of STOs (See Supporting Information[48]). We fix the input inter-
val τ ¼ 100ps in the following analysis. Figure 2b(ii) presents a
time series of mx for three coupling magnitude conditions,
where Acp is changed to 0.995, 101.01, and 10 280 Oe from
top to bottom. The CSR conducts the two-step bifurcation

through not only the input magnitude but also the coupling mag-
nitude. We confirmed the order–chaos and chaos–order bifurca-
tions through input magnitude and coupling magnitude in a
time series, bifurcation diagrams, and the color map of the
input-conditional Lyapunov exponent.

The color map of the dimension indicates that the dimension
fulfills Drank ¼ Dtotal ¼ 10� 10 at certain input magnitudes and
coupling magnitudes. In addition, the dimension drastically
reduces at the chaos–order bifurcation point based on an
increase in the coupling magnitude. The MC drastically
increases rather than decreases in this region. Here, the
highest MC is 21.25, even through the dimension is
�Drank ¼ 40 � 100 ¼ Dtotal; although the total capacity of the
reservoir is small, a large proportion of the capacity occupies
a linear capacity. This highest MC is larger than 10 times
the highest value of the single spintronics reservoir
(8.0 ¼ 0.8� 10), which means the theoretical highest MC of
the parallel spintronics reservoir with the same number
of STOs.

2.3. PAM and Wearable Devices

Here, we examine a McKibben-type PAM, as shown in
Figure 3a, as a soft actuator for wearable devices.[44,76–80]

Wearable devices should be lightweight to safely provide the
wearer with soft movement or reduce the burden on the
wearer. McKibben-type PAMs are formed of flexible
polymeric materials, and because of the flexibility and lightness
of the materials themselves, they have the following characteris-
tics: 1) High force-to-weight ratio compared with conventional
cylinders and electric motors. 2) High durability against impact
and vibration because of their flexible constituent materials.
3) Novel types of flexible actuators leading to the possibility of
new applications.

Therefore, McKibben-type PAMs are promising components
for use in wearable devices and for realizing soft motion. In addi-
tion, there is no need for electronics at the actuation site and no
risk of malfunction under the radiation tolerance described ear-
lier. Simultaneously, the effect of radiation on the mechanical
properties of rubbers, which are materials used in PAMs, is rela-
tively smaller than that of other soft materials.[81,82]

Figure 3b–d shows the relationships between contraction
force and the contraction rate of the PAM, our wearable device,
and the measuring system of the PAM, respectively. When the
inside of the tube is pressurized, the PAM shrinks axially while
expanding radially. The dynamics of the rubber itself, specifically
the nonlinearity of the friction between the rubber and fiber, exi-
hibit hysteresis in the shrinkage characteristics. In our wearable
device, PAMs are used as actuators and simultaneously as sen-
sors for controlling walking assistance. The configurations of the
PAMs in our wearable device are presented in Experimental
Section 4.4. The wearer walks with support equipment: a holding
supporter and shoes in which artificial rubber muscles are
attached; the equipment is light, and the burden is small.[77]

As indicated in Figure 3c, the PAM is placed in the calf and thigh
areas. The electric resistance of the PAM is measured with a
resistance meter, and the applied pressure is measured with a
pressure gauge (Figure 3d).
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2.4. Tasks and Setting

The following three PAM tasks are solved using the CSR. 1) A
single PAM length sensor emulation task. Predicting PAM
length values from random actuating pressure values. 2) A pres-
sure sensor emulation task in the wearable device. Predicting
PAM pressure values from resistance values during walking.
3) Gait and velocity classification tasks. Classifying the gait (walk
or run) and velocity (1, 3, 5, 7, or 9mph) individually or simulta-
neously from the resistance values.

In the following analysis, the number of nodes of ESNs is fixed
as Dtotal ¼ 100, and the CSR has N ¼ 10 and L ¼ 10. Here, Ain

and Acp of the ESNs and CSRs are optimized by the grid search
for each task. We compare their performances with the ESN with
the same number of nodes as the CSRs. Detailed formulations of
the ESNs are given in Experimental Section.

The single PAM length sensor emulation task is a preliminary
task for edge computing of the wearable device. In task 1, we
predict the length sensor value of the single PAM from the pres-
sure value under random pressurized conditions. This task
demands memory and nonlinear information-processing capa-
bility and can be effectively solved by ESNs.[45] The PAM used
in the PAM length emulation task is not attached to the wearable
device, but the sampling and actuating interval is τ ¼ 0.1 s, which
is the same as the sampling interval of the wearable device con-
sidered in the following tasks. The load values added to the PAM
include three conditions: 100, 200, and 300 N. In task 2 and 3 of
the wearable devices, the load value is variable depending on
human walking. In the tasks, we use 50 000 data points, which
include 1,000 washout data points, 40 000 training data points,
and 9,000 evaluation data points. We use the following normal-
ized mean squared error (NMSE) as a measure to evaluate the
task performance.

NMSE ¼
1
K

PK
i¼1 ðỹi � yiÞ2
σ2ðỹiÞ

(5)

where K is the number of evaluation data points, yi is the predic-
tion signal, ỹi is the target signal, and σ2ðỹiÞ is the variance of ỹi.

In task 2, we emulate the pressure sensor attached to the PAM
on the calf from the electric resistances of the thigh and calf so
that we can remove the sensory device, which is often rigid, from
the platform and keep the platform flexible and soft. In addition,
Kanno et al.[77] developed a wearable device by adapting
McKibben-type PAMs; here, the timing of the assistance is esti-
mated from the pressure change of the PAM worn on the inflat-
able shank, and the walking motion is assisted by applying
pressure to the PAM at suitable time intervals. Therefore, task
2 not only involves emulating the pressure sensor and potentially
detaching it from the wearable device but also testing whether
the current scheme can be exploited to detect the timing of
the assistance.

In task 3, we predict the wearer’s gait state based on the elec-
tric resistance value of the PAM. We can also use assistance
schemes, depending on the gait type, using this information.
This information will help in realizing robust assistance controls.
Through these tasks, we investigate the potential to simplify the
equipment itself by excluding the pressure sensor and peripheral
equipment while providing more robust assistance control.

We conducted walking experiments, as presented in Table 1.
We measured resistances and pressures using just a single leg.
Using both thigh and calf PAMs, the resistance and pressure val-
ues were measured from each PAM, which yielded 1,600 tempo-
ral data points for each gait type. The data were collected at a
10 Hz sampling rate. The input–output relationship of the tasks
is summarized in Figure 3e. The two input signals, which were
used for both tasks 2 and 3, were the thigh- and calf-normalized

(a)

(b)

(c) (d)

(e)

Figure 3. PAM as a component of our wearable device, its sensing scheme, and the tasks. a) A picture of the McKibben PAM used in this study.
b) Contraction force and hysteresis under isobaric conditions. c) A picture of the wearable device used in this study. d) Schematic showing the measuring
system of PAM. e) Schematic of input/output relation in machine learning tasks used in this study.
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currents. The preprocessing of the PAM time series is presented
in Experimental Section 4.5. In task 2, we conducted the analysis
from a to g, which are points without assistance control provided
by the wearable device, as shown in Table 1. In task 3, we con-
ducted the analysis from not only a to g but also h and i, which are
points with walking assistance provided by the wearable device,
as shown in Table 1.

2.5. Task 1: Single PAM Length Sensor Emulation

The results of task 1 are presented in Figure 3 and Table 2.
A color map of a single PAM length sensor emulation perfor-
mance, in terms of an NMSE with a load of 200 N, is shown
in Figure 4a. The performances are drastically improved in
the second bifurcation when increasing the coupling magnitude,

which is similar to the behavior of the MC shown in
Figure 2b(iii), but there are minor differences here. The ordered
dynamics with a high coupling magnitude can process input sig-
nals well and not only linearly but also nonlinearly, while almost
the entire capacity is spent linearly, as shown in the dimensions
of Figure 2b(iii). Table 2 shows that the best CSRs outperform
the ESNs in all load conditions. Figure 4b illustrates the predic-
tion signals of the best performance in Table 2. We can visually
confirm that a CSR exhibits better prediction power than ESN.
These results indicate that a CSR effectively processes not only
linear information but also nonlinear information, such as the
PAM nonlinear dynamics.

2.6. Task 2: Wearable Pressure Sensor Emulation

We can solve the wearable device pressure sensor emulation task
using the CSR. The schematics of the task are presented in
Figure 5a. The calf pressure value is predicted from the normal-
ized current values of the thigh and calf PAMs in this task.
Because the calf pressure value can be used for detecting a walk-
ing state, such as a preswing phase, it is used for determining the
assistance timing.[77] Furthermore, we conducted multitasking
that predicted not only the current pressure value but also s sec-
ond future pressure values, where s is the prediction time, from
current normalized currents. Predicting future values is practi-
cally important because the air pressure of the PAM has a large
control delay and the prediction of these values can improve the
control performance.[83] Two input signals were transformed into
the corresponding output time series through the reservoir.
Although each STO has the same configuration, a difference
between the input and coupling conditions creates diversity in
the reservoir dynamics. By applying LR to these output signals
from the reservoir dynamics, the outline of the pressure from
current to 20 s later can be well predicted.

Table 3 presents the NMSEs of this task with prediction time
s ¼ 0 by LR, extreme learning machine (ELM),[84] ESN, and CSR.
LR is a model with the input signals directly combined linearly,
and ELM is the ESN with Acp ¼ 0 (detailed formulations are
given in the Experimental Section). Performances are good in
the order of ESN, ELM, and LR in all gait types. Therefore, mem-
ory and nonlinearity are required for this task. In addition, the
CSRs outperform the ESNs with the same number of nodes;

Table 2. NMSEs of single PAM length sensor emulation.

Taska) Reservoir type

ESN Dtotal ¼ 100 (Acp, Ain) CSR Dtotal ¼ 100 (Acp, Ain)

PAM 100 N 0.079 (0.5, 1) 0.069 (9192, 3740)

PAM 200 N 0.081 (0.4, 1) 0.051 (9192, 5910)

PAM 300 N 0.137 (0.5, 1) 0.116 (9192, 5910)

a)The numbers in bold represent the best performance in each line.
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Figure 4. Results of the single PAM length sensor emulation task under a load of 200 N. a) The color map of the NMSE. b) Target and prediction time
series of the best configuration of coupling and input magnitude.

Table 1. Experiment data on the wearable device.

Name Velocity [mile hour�1] Gait type Assist

a 1 walk no

b,h 3 walk no and yes

c 5 walk no

d 5 run no

e 7 walk no

f,i 7 run no and yes

g 9 run no
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therefore, the CSRs solve the tasks more efficiently than the
ESNs. Furthermore, we conducted this task with a limited sen-
sory input using either the calf or thigh currents in the 3-mile
walk experiment. The best NMSEs are 0.160 and 0.164 with only
calf current input and just thigh current input, respectively. The
differences in task performance between the case of multiple
inputs and that of a single input are relatively small.
Therefore, we can eliminate the calf sensor because the pressure
of the calf PAM can be emulated by only the current of the thigh
PAM through body coupling.

Figure 5b depicts a color map of the input-conditional
Lyapunov exponent. The ordered dynamics region with a rela-
tively lower-coupling magnitude performs similarly a region,
showing a higher-coupling magnitude, unlike the MC result
shown in Figure 2b(iii). Moreover, in the lower-coupling-
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Figure 5. Wearable pressure sensor emulation tasks for a 3mph walk. a) Schematics of the task. The top-left time series are input signals. The solid and
dotted lines are the normalized currents of the calf and thigh PAMs, respectively. The bottom-left time series are the reservoir outputs. The time multi-
plexing virtual nodes are not plotted. The coupling magnitude and input magnitude are ðAcp,AinÞ ¼ (1475 Oe, 37.98 Oe). The time series on the right are
the target signals and predicted signals for each prediction time. The black and red lines are the target and predicted signals, respectively. b) A color map
of the Lyapunov exponent analyzed in each coupling and input magnitude. c) A color map of the NMSE for each coupling and input magnitude. The black
and red cross marks correspond to the configuration in (d). d) Noise variance versus NMSE. The black line represents ðAcp,AinÞ ¼ (0.979 Oe, 94.81 Oe),
and the red line represents ðAcp,AinÞ ¼ (5818Oe, 0.963 Oe). The value is the mean of 20 trials, and the error bar shows the standard deviation. e) A color
map of NMSE for prediction time and input magnitude. The coupling magnitude is Acp ¼ 1475 Oe.

Table 3. NMSEs of the current pressure emulation of a wearable device.

Gait typea) Reservoir type

LR ELM Dtotal ¼ 100
(Acp, Ain)

ESN Dtotal ¼ 100
(Acp, Ain)

CSR Dtotal ¼ 100
(Acp, Ain)

1 mile walk 0.244 0.249 (0, 0.1) 0.244 (0.4, 1) 0.225 (6.095, 149.8)

3 mile walk 0.206 0.179 (0, 1) 0.159 (0.2, 1) 0.146 (1475, 37.98)

5 mile walk 0.390 0.301 (0, 0.1) 0.233 (0.6, 1) 0.225 (1475, 1.546)

5 mile run 0.683 0.648 (0, 1) 0.414 (1, 0.1) 0.374 (236.7, 236.7)

7 mile walk 0.633 0.434 (0, 1) 0.328 (1.1, 1) 0.327 (0.979, 590.9)

7 mile run 0.687 0.647 (0, 0.1) 0.538 (0.6, 0.1) 0.500 (1475, 0.393)

9 mile run 0.684 0.588 (0, 1) 0.424 (1.2, 10) 0.417 (5818, 236.7)

a)The numbers in bold represent the best performance in each line.
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magnitude region, the performance does not decrease, despite
the chaoticity of the reservoir dynamics. Further analyses into
the relationships between the dynamics and information proc-
essing capability of the reservoir are required to understand this
phenomenon.

Next, we analyze the noise tolerance of this task. Here, obser-
vational noise (Gaussian white noise) was added to the reservoir
output signals. The input time series, which are wearable sensor
values, include experimental noises. Input noises can potentially
affect reservoir performance in a more complex way than obser-
vational noise. This is because of the input-induced bifurcations
demonstrated in Section 2.2. Although wearable experiments
focus on analyzing the dependence of the performance on obser-
vational noise, the effect of input noise is also important to
remember in practical applications. Figure 5d illustrates the
change in NMSE through noise variance, including the NMSE
average and standard deviation of 10 different noises for each
noise variance. The performance monotonically decreases for
noise variance, and we confirmed that the CSR exhibits robust-
ness against observational noise. The variance in the observa-
tional noise in the experimental device is usually �10�4. The
noise tolerance of the lower-coupling-magnitude region is much
better than that of the higher-coupling-magnitude region, while
these regions show a similar level of task performance without
noise. The dynamics of a higher-coupling magnitude are more
sensitive to noise because they remain within the narrow region,
as confirmed in Figure 2b(ii). Finally, we can confirm the depen-
dency of the prediction time s on task performance. Figure 5e
presents a color map of NMSE through the prediction time
and input magnitude. In a certain input magnitude region,
the performance has almost no deterioration until s < 10 s,
and deterioration can be further suppressed by tuning the input
magnitude.

2.7. Task 3: Wearable Gait and Velocity Classification

We solved the wearable device gait and velocity classification
tasks using the CSR. Seven types of normalized currents in
the thigh and calf PAMs, as shown in Figure 6a, were prepared
as the input signals. The target signal has a gait that is a walk or
run; a velocity that is 1, 3, 5, 7, or 9 mph; and a combination of the
gait and velocity corresponding to an input time series. The sche-
matics of the task are presented in Figure 6b. Logistic regression
is used as a multivalue classifier. Figure 6c presents two gait
types in the principal component (PC) space. The 5mph walk
and 7mph walk overlap each other in the input signal PC space;
therefore, classifying them from the input time series is difficult.
The reservoir-state signals that have 100 dimensions are plotted
in the PC space of the reservoir output signals. The 5mph walk
and 7mph walk are clearly separated; thus, classifying them is
easier.

Table 4 presents the accuracy rate for obtaining the correct
answers in the evaluation data. The performances are good, here
in the order of ESN, ELM, and LR, which is the same as in task 1;
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Figure 6. Wearable gait classification tasks. a) The time series on the left are input signals. The solid and dotted lines are the normalized currents of the
calf and thigh PAMs, respectively. The diagrams show the cases of a 1 mile walk, 3 mile walk, 5 mile, walk, 5 mile run, 7 mile walk, 7 mile run, and 9mile
run from top to bottom. b) Schematics showing the I/O relations of the task. c) Typical examples of plots for the first- and second-principal component
spaces. The left is the input signals, and the right is the reservoir-state signals. The red and blue points represent a 5-mile walk and 7-mile walk, respec-
tively. d) A color map of the accuracy of the simultaneous classification of gait and velocity. e) Noise variance versus NMSE.
ðAcp,AinÞ ¼ ð60.01Oe, 37.98OeÞ. The value is the mean of 20 trials, and the error bar shows the standard deviation.

Table 4. Accuracy of wearable device gait classification.

Classificationa) Reservoir type

LR ELM Dtotal ¼ 100
(Acp, Ain)

ESN Dtotal ¼ 100
(Acp, Ain)

CSR Dtotal ¼ 100
(Acp, Ain)

Gait 0.687 0.806 (0, 10) 0.928 (1.2, 1) 0.935 (0.620, 37.98)

Velocity 0.271 0.381 (0, 10) 0.499 (1.2, 10) 0.499 (590.9, 590.9)

Gait and velocity 0.161 0.350 (0, 10) 0.482 (1.2, 10) 0.518 (60.01, 37.98)

a)The numbers in bold represent the best performance in each line.
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hence, memory and nonlinearity are also necessary for this task.
In addition, the CSRs outperform the ESNs with the same num-
ber of nodes, suggesting that the CSRs solve the tasks more effi-
ciently than the ESNs. The accuracy of the gait classification is
over 90%, while that of the velocity classification is �50%, sug-
gesting that the task is more difficult. Figure 6d shows the color
map of accuracy for the input and coupling configuration of
simultaneous classifications. In this task, the performance does
not improve in the high-coupling-magnitude region. Figure 6e
depicts the observational noise tolerance of this task. The noise
is added in the same way as task 1. There is almost no deteriora-
tion until the noise variance reaches 10�4, which is the same as
the experimental noise variance.

In addition, we conducted the gait classification task with
walking assistance provided by the wearable device. The types
of gaits that we considered were a 3mph walk and 7mph run.
As a result, the CSR solves this classification task with an accu-
racy of 99.8% for the best input and coupling parameters. Based
this result, a time series with walking assistance can be handled
much like that without walking assistance. The details of the
experimental setup and results are provided in Supporting
Information.[48]

3. Conclusion

This study proposes a high-performance neuromorphic comput-
ing scheme: a CSR. Our high-dimensional spintronics reservoir
shows diverse bifurcation structures depending on the input and
coupling configurations; accordingly, the information-processing
capability of the spintronics reservoir drastically changes. It is
difficult for a physical computing device to tune internal param-
eters after fixing the configurations, unlike with an artificial
neural network. Therefore, a diverse repertory obtained only
from input and coupling configurations offers a great advantage
as a physical computing device. We solved multiple benchmark
tasks and tasks of the wearable device using the CSR. The CSR
outperforms conventional neural networks in suitable task con-
figurations, and the noise tolerance of the CSR can be improved
by tuning the input and coupling configurations.

Although numerically solving the LLG equation is a promising
way to comprehensively analyze magnetization dynamics, it has
several limitations, such as high calculation costs and a lack of
quantitative prediction.[85] One limitation of the LLG equation-
based model partially relates to the fact that experimental situa-
tions cannot be fully reproduced: the sample shape might not be
perfectly circle, the concentration of atoms might not be perfectly
homogeneous, and the values of several parameters, such as spin
polarization and spin diffusion length, might not be known.
In recent years, a prediction method using neural networks
has been developed.[85] It can reduce computational costs for
the simulation of magnetization dynamics, but its limitation
is that it can ignore physical constraints. Analysis methods
for magnetization dynamics are still evolving. We should
understand the characteristics of each approach, and it is impor-
tant to choose or combine appropriate approaches for each
purpose.

There are some physical limitations of the CSR configuration
in the experimental implementation stage. The magnetic field,

which is used for inputs and coupling in the CSR, is generated
by the electric current. The region of the large magnetic field,
which was analyzed in this study, is difficult to realize using cur-
rent device technology and the energy of edge computing. In
addition, current-generated magnetic fields also limit the scal-
ability of devices. STOs are physically connected to each other
by electronic wire, so the scalability of the CSR is physically
restricted. If we plan to use more STOs, wemay consider a sparse
coupling configuration or using small CSR arrays in parallel,
which can weaken the restriction of scalability. In practical
situations, we should choose the CSR configuration considering
not only the information processing ability but also the various
constraints of devices, such as the energy cost and number of
couplings. However, we would like to note that we investigated
difficult regions for implementation, such as a large magnetic
field and fully connected nodes, to reveal the potential of the
CSR. Here, the potential means the kinds of dynamics the
CSR can exhibit and the kinds of applications for which it can
be used in the future, such as neuromorphic supercomputers,
which are not limited to edge computing.

The time scale of a real-world task for a wearable device is
much larger than the time scale of the STO. The signal frequency
of our wearable device is 10 Hz, while that of the STO is approx-
imately 1 GHz. In such a situation where sensors and computers
have a large difference of time scales, a method that uses a suffi-
cient number of task signals that are stored in the external mem-
ory can be used, and these signals can be injected into the
spintronics reservoir at a time to be solved. If it is used in a radio-
active environment, its external memory must be constructed by
a radiation-tolerant device. For example, the existing type of
radiation-tolerant memory, a spintronics device as memory,[86]

or a spintronics reservoir implemented as a shift register are can-
didates for the external memory.

Physical reservoir computing as neuromorphic computing is
implemented not only by spintronics but also other devices,
such as memristors,[87,88] atomic switches,[89–91] photonic
devices,[62,63,92,93] and quantum devices.[64,65,94] These devices
have advantages and disadvantages, such as their dynamic speed,
size, energy efficiency, and scalability. In terms of these
factors, spintronics devices have the advantage of being almost
commercial-level technology and the disadvantage that their scal-
ability has not been demonstrated yet.[8]

In the present study, we focused on the unique material
property of spintronics devices that they are robust in radioactive
environments. Other robust hardware, such as an atomic switch,
can also be physical reservoir-computing device candidates in
radioactive environments. In addition, note that this study pro-
poses an option for a radiation resilient system for not an entire
computer but a part of a computer. We can replace a conven-
tional machine learning network with the radiation-resilient
physical reservoir; however, peripheral systems, such as a
measurements system and linear readout, are still not robust
in radioactive environments.

Based on the results, our system is capable of implementing
more practical tasks than tasks treated in this study. Although we
have focused on the information-processing tasks of wearable
devices, our scheme can be applied to other types of information
processing, such as the communication required in a radioactive
environment. Furthermore, several pretraining techniques have
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been recently proposed to harness chaotic reservoirs to increase
computational capability by adjusting the internal weights.[95–97]

These techniques can be introduced to the CSR in the future.

4. Experimental Section

Parameters in STOs: The values of parameters in the LLG equation
were derived from an experimental study[59] and theoretical study,[60] as
the saturation magnetization M ¼ 1448.3 emu c:c�1, interfacial magnetic
anisotropy field HK ¼ 18.616 kOe, applied field Happl ¼ 200Oe, volume of
the free layer V ¼ π � 602 � 2 nm3, spin polarization η ¼ 0.537, gyromag-
netic ratio λ ¼ 1.764� 107rad=ðOesÞ, spin-transfer torque asymmetry
γ ¼ 1.764� 107rad ðOesÞ�1, Gilbert damping constant α ¼ 0.005, and
constant current I ¼ 2.5mA.

ESN, ELM, and LR Systems for Comparisons: We introduced the
architectures of artificial neural networks to compare them with the
CSR used in this paper. First was the ESN. The ith computational node
at time t was represented as xit, the jth input node was represented as
ujt, and the lth output node at time t was represented as ylt. The computa-
tional nodes and outputs of the ESN are given by

xit ¼ f Acp

XN
j¼1

wijx
j
t�1 þ Ain

XN
j¼1

win
ij u

j
t

 !
(6)

ylk ¼
XN
i¼0

wout
i,j x

i
k (7)

where the activation function was given by f, which was the hyperbolic
tangent in this study; each node of the input weight W in ¼ ðwin

ij Þ com-
prised a uniform distribution with ½�1, 1�, and each node of the internal
weight W ¼ ðwijÞ comprised a uniform distribution with ½�1, 1� and was
normalized because the spectral radius equaled 1. The coupling magni-
tude Acp coincided with the spectral radius of AcpW. The bias term x0t
was set as x0t ¼ 1. The output weightWout ¼ ðwout

ij Þ was tuned by training.
In the current article, the ELM was set by eliminating the internal coupling
from the ESN, so Acp ¼ 0 in Equation (6). The original definition of the
ELM is slightly different because of the existence of the bias term.
However, we selected our formulation because of its similarity to the
memoryless nonlinear feed-forward neural network and its ease of com-
parison with the ESN. Finally, LR is given by

yk ¼
XN
i¼1

wout
i uik þ wout

0 (8)

Definitions of Memory Capacity and Dimension: The memory function
mðdÞ is defined as the normalized squared correlation between the current
reservoir state and past d input signal value.

mðdÞ ¼ un�dxnh iT xnxTnh i�1 un�dxnh i
u2n�d

� � (9)

where un is the input signal value at time n, xn is the reservoir’s output
vector at time n, and u2n�d

� �
is the average of u2n�d through n. (The results

of the memory function of CSRs are given in the Supporting
Information[48]) In addition, 0 ≤ mðdÞ ≤ 1 always holds. When
mðdÞ ¼ 0, the system never reconstructs past the input value un�d from
the current reservoir-state vector xn, but when mðdÞ ¼ 1, the system can
completely reconstruct past the input value un�d . MC½D� is defined as a
sum of mðdÞ through d ¼ 0, · · · ,D; therefore, we have

MC½D� ¼
X

d¼0, · · · ,D

mðdÞ (10)

In addition, we defined Dtotal as the number of reservoir states and
dimension Drank as the number of linearly independent outputs, such that

Drank ¼ rankðXTXÞ (11)

where X ¼ ðx0 · · · xTÞT is the reservoir-state matrix. Here, the following
important equation holds.

lim
D!∞

MC½D� ≤ Drank ≤ Dtotal (12)

In particular, if the reservoir has the echo-state property,
Drank � limD!∞MC½D� coincides with the nonlinear MC.[75] In this study,
the maximum delay D was 499 in all analyses.

Configurations of the PAM: By pressurizing the inside of the tube with
fluids, the PAM shrunk axially while expanding radially. The diameter of the
PAM was 11mm and length is 250mm. Because an ordinary diene-based
rubber has low conductivity, it is difficult to measure the electrical resis-
tance using a general electrical resistance-measuring device. Therefore, it
is necessary to increase the conductivity of the PAM. In the present study,
we mixed fine-particle-size carbon in the diene-based rubber and improved
the conductivity from �1.0� 10�3 to 20 Sm�1.[45]

Preprossessing of PAM Time Series: Here we described the preprossess-
ing for PAM time series for our tasks. To wash out the STO’s transient
dynamics, we extended the data by duplicating the combination of
1–1,000 of the beginning data of the PAM time series. The total 2,600 data
points were treated as 1,100 washout data points, 1,200 training data
points, and 300 evaluation data points, respectively.

The normalized currents, which were input signals for our tasks,
ensured that the reciprocals of resistances were normalized in the interval
[0,1]. We used the normalized current value instead of using the resistance
to bring the distribution of input signals closer to uniform distribution
because the distributions of the resistance value had an exponential tail.

Human Subjects: This study involved human subjects. Approval of all
ethical and experimental procedures and protocols was granted by The
University of Tokyo under application no. UT-IST-RE-201 125-1a. These
experiments were reviewed and approved by the ethical review board of
the University of Tokyo. Written informed consent was obtained from
the trainees, including their consent to participate and for the findings
to be published.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
The authors thank Mr. Shungo Fujita from the Bridgestone corporation
for designing and creating figures. The results were partially obtained
from a project (Innovative AI Chips and Next-Generation Computing
Technology Development/(2) Development of Next-Generation
Computing Technologies/Exploration of Neuromorphic Dynamics
towards Future Symbiotic Society) commissioned by NEDO. K.N. was
supported by JSPS KAKENHI grant numbers JP18H05472 and by JST
CREST grant number JPMJCR2014.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available in the
supplementary material of this article.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2022, 4, 2200123 2200123 (11 of 13) © 2022 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202200123 by C

ochrane Japan, W
iley O

nline L
ibrary on [21/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


Keywords
neuromorphic computing, physical reservoir computing, pneumatic
artificial muscles, radioactive environments, spintronics

Received: May 12, 2022
Revised: August 20, 2022

Published online: September 20, 2022

[1] K. Kowsari, M. Heidarysafa, D. E. Brown, K. J. Meimandi, L. E. Barnes,
in Proc. of the 2nd Inter. Conf. on Information System and Data Mining,
ICISDM ’18, Association for Computing Machinery, New York, NY
2018, p. 19a 28, https://doi.org/10.1145/3206098.3206m.

[2] Advances in Neural Information Processing Systems, (Ed.: Y. Huang,
Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu, Z. Chen, I. H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alche-Buc, E. Fox, R. Garnett), in 33rd
Conference on Neural Information Processing Systems (NeurIPS
2019), Vol. 32, Curran Associates, Inc., Vancouver, Canada 2019,
pp. 103–112, https://proceedings.neurips.cc/paper/2019/file/
093f65e080a295f8076b1c5722a46aa2-Paper.pdf.

[3] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, arXiv preprint
arXiv:1810.04805 2018.

[4] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, R. Soricut, in
Int. Conf. on Learning Representations, Addis Ababa, Ethiopia 2020,
https://openreview.net/forum?id¼H1eA7AEtvS.

[5] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen,
T. Lillicrap, F. Hui, L. Sifre, G. Van den Driessche, T. Graepel,
D. Hassabis, Nature 2017, 550, 354.

[6] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. K. Maran, T. Graepel, T. Lillicrap, K. Simonyan,
D. Hassabis, Science 2018, 362, 1140.

[7] N. C. Thompson, K. Greenewald, K. Lee, G. F. Manso, arXiv preprint
arXiv:2007.05558 2020.

[8] D. Markovic, A. Mizrahi, D. Querlioz, J. Grollier, Nat. Rev. Phys. 2020,
2, 499.

[9] K. Kudo, T. Morie, Appl. Phys. Express 2017, 10, 043001.
[10] M. Romera, P. Talatchian, S. Tsunegi, F. Abreu Araujo, V. Cros,

P. Bortolotti, J. Trastoy, K. Yakushiji, A. Fukushima, H. Kubota,
S. Yuasa, M. Ernoult, D. Vodenicarevic, T. Hirtzlin, N. Locatelli,
D. Querlioz, J. Grollier, Nature 2018, 563, 230.

[11] J. Grollier, D. Querlioz, K. Camsari, K. Everschor-Sitte, S. Fukami,
M. D. Stiles, Nat. Electronics 2020, 3, 360.

[12] Y. Cao, A. Rushforth, Y. Sheng, H. Zheng, K. Wang, Adv. Funct. Mater.
2019, 29, 1808104.

[13] A. Kurenkov, S. DuttaGupta, C. Zhang, S. Fukami, Y. Horio, H. Ohno,
Adv. Mater. 2019, 31, 1900636.

[14] X. Lan, Y. Cao, X. Liu, K. Xu, C. Liu, H. Zheng, K. Wang, Adv. Intell.
Syst. 2021, 3, 2000182.

[15] J. Zhou, T. Zhao, X. Shu, L. Liu, W. Lin, S. Chen, S. Shi, X. Yan, X. Liu,
J. Chen, Adv. Mater. 2021, 33, 2103672.

[16] W. Maass, T. Natschlager, H. Markram, Neural Comput. 2002, 14,
2531.

[17] H. Jaeger, H. Haas, Science 2004, 304, 78.
[18] K. Nakajima, Jpn. J. Appl. Phys. 2020, 59, 060501.
[19] K. Nakajima, I. Fischer, Reservoir Computing Theory, Physical

Implementations, and Applications, Springer, Singapore,
2021.

[20] J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioz,
P. Bortolotti, V. Cros,K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa,
M. D. Stiles, J. Grollier, Nature 2017, 547, 428.

[21] T. Furuta, K. Fujii, K. Nakajima, S. Tsunegi, H. Kubota, Y. Suzuki,
S. Miwa, Phys. Rev. Appl. 2018, 10, 034063.

[22] S. Tsunegi, T. Taniguchi, S. Miwa, K. Nakajima, K. Yakushiji,
A. Fukushima, S. Yuasa, H. Kubota, Jpn. J. Appl. Phys. 2018, 57,
120307.

[23] S. Tsunegi, T. Taniguchi, K. Nakajima, S. Miwa, K. Yakushiji,
A. Fukushima, S. Yuasa, H. Kubota, Appl. Phys. Lett. 2019, 114,
164101.

[24] W. Jiang, L. Chen, K. Zhou, L. Li, Q. Fu, Y. Du, R. Liu, Appl. Phys. Lett.
2019, 115, 192403.

[25] T. Kanao, H. Suto, K. Mizushima, H. Goto, T. Tanamoto,
T. Nagasawa, Phys. Rev. Appl. 2019, 12, 024052.

[26] D. Markovic, N. Leroux, M. Riou, F. Abreu Araujo, J. Torrejon,
D. Querlioz, A. Fukushima, S. Yuasa, J. Trastoy, P. Bortolotti,
J. Grollier, Appl. Phys. Lett. 2019, 114, 012409.

[27] T. Yamaguchi, N. Akashi, S. Tsunegi, H. Kubota, K. Nakajima,
T. Taniguchi, Phys. Rev. Res. 2020, 2, 023389.

[28] T. Yamaguchi, N. Akashi, K. Nakajima, H. Kubota, S. Tsunegi,
T. Taniguchi, Sci. Rep. 2020, 10, 19536.

[29] N. Akashi, T. Yamaguchi, S. Tsunegi, T. Taniguchi, M. Nishida,
R. Sakurai, Y. Wakao, K. Nakajima, Phys. Rev. Res. 2020, 2,
043303.

[30] M. Riou, J. Torrejon, F. Abreu Araujo, S. Tsunegi, G. Khalsa,
D. Querlioz, P. Bortolotti, N. Leroux, D. Markovic, V. Cros,
K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M. D. Stiles,
J. Grollier, Reservoir Computing Leveraging The Transient Non-Linear
Dynamics Of Spin-Torque NanoOscillators, Springer, Singapore,
2021, pp. 307–329.

[31] T. Taniguchi, S. Tsunegi, S. Miwa, K. Fujii, H. Kubota, K. Nakajima,
Computing based on Spintronics Technology, Springer Singapore,
Singapore, 2021, pp. 331–360.

[32] F. Patten, S. Wolf, in Proc. of Nonvolatile Memory Technology Conf.,
1996, pp. 1–2.

[33] S. Gerardin, A. Paccagnella, IEEE Trans. Nucl. Sci. 2010, 57, 3016.
[34] C. Hess, S. Metzger, IAEA Bull. 1985, 27, 16.
[35] D. Lovering, Scientific American 2019, https://www.

scientificamerican.com/article/three-mile-island-robots/ (accessed:
September 2022).

[36] U. Emi, S. Stapczyski, The Japan Times 2017.
[37] P. E. Dodd, L. W. Massengill, IEEE Trans. Nucl. Sci. 2003, 50, 583.
[38] R. C. Baumann, IEEE Trans. Dev. Mater. Reliab. 2005, 5, 305.
[39] Y. Conraux, J. Nozieres, V. Da Costa, M. Toulemonde, K. Ounadjela,

J. Appl. Phys. 2003, 93, 7301.
[40] R. R. Katti, J. Lintz, L. Sundstrom, T. Marques, S. Scoppettuolo,

D. Martin, in 2009 IEEE Radiation Effects Data Workshop, IEEE,
Piscataway, NJ 2009, pp. 103–105.

[41] D. Kobayashi, Y. Kakehashi, K. Hirose, S. Onoda, T. Makino,
T. Ohshima, S. Ikeda, M. Y. Manouchi, H. Sato, E. C. Enobio,
T. Endoh, H. Ohno, IEEE Trans. Nucl. Sci. 2014, 61, 1710.

[42] F. Ren, A. Jander, P. Dhagat, C. Nordman, IEEE Trans. Nucl. Sci. 2012,
59, 3034.

[43] H. Hughes, K. Bussmann, P. J. McMarr, S. Cheng, R. Shull,
A. P. Chen, S. Schafer, T. Mewes, A. Ong, E. Chen,
M. H. Mendenhall, R. A. Reed, IEEE Trans. Nucl. Sci. 2012, 59,
3027.

[44] D. Trivedi, C. D. Rahn, W. M. Kier, I. D. Walker, Appl. Bionics Biomech.
2008, 5, 99.

[45] R. Sakurai, M. Nishida, H. Sakurai, Y. Wakao, N. Akashi, Y. Kuniyoshi,
Y. Minami, K. Nakajima, in 2020 3rd IEEE Int. Conf. on Soft Robotics
(RoboSoft), IEEE, Piscataway, NJ 2020 710–717.

[46] W. Sun, N. Akashi, Y. Kuniyoshi, K. Nakajima, in 2022 IEEE 5th
Int. Conf. on Soft Robotics (RoboSoft), IEEE, Piscataway, NJ 2022,
pp. 409–415.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2022, 4, 2200123 2200123 (12 of 13) © 2022 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202200123 by C

ochrane Japan, W
iley O

nline L
ibrary on [21/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1145/3206098.3206m
https://proceedings.neurips.cc/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://www.scientificamerican.com/article/three-mile-island-robots/
https://www.scientificamerican.com/article/three-mile-island-robots/
http://www.advancedsciencenews.com
http://www.advintellsyst.com


[47] W. Sun, N. Akashi, Y. Kuniyoshi, K. Nakajima, IEEE Rob. Autom. Lett.
2022, 7, 6862.

[48] Supporting information, which summarizes details of memory capac-
ities and benchmark tasks.

[49] J. C. Slonczewski, J. Magn. Magn. Mater. 1996, 159, L1.
[50] S. S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes,

M. Samant, S.-H. Yang, Nat. Mater. 2004, 3, 862.
[51] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Nat.

Mater. 2004, 3, 868.
[52] J. Williame, A. Difini Accioly, D. Rontani, M. Sciamanna, J.-V. Kim,

Appl. Phys. Lett. 2019, 114, 232405.
[53] T. Taniguchi, N. Akashi, H. Notsu, M. Kimura, H. Tsukahara,

K. Nakajima, Phys. Rev. B 2019, 100, 174425.
[54] Z. Yang, S. Zhang, Y. C. Li, Phys. Rev. Lett. 2007, 99, 134101.
[55] A. Slavin, V. Tiberkevich, IEEE Trans. Magn. 2009, 45, 1875.
[56] T. Yamaguchi, N. Akashi, K. Nakajima, S. Tsunegi, H. Kubota,

T. Taniguchi, Phys. Rev. B 2019, 100, 224422.
[57] A. Awad, P. Durrenfeld, A. Houshang, M. Dvornik, E. Iacocca,

R. Dumas, J. Akerman, Nat. Phys. 2017, 13, 292.
[58] M. Zahedinejad, H. Fulara, R. Khymyn, A. Houshang, M. Dvornik,

S. Fukami, S. Kanai, H. Ohno, J. Akerman, Nat. Mater. 2022, 21, 81.
[59] H. Kubota, K. Yakushiji, A. Fukushima, S. Tamaru, M. Konoto,

T. Nozaki, S. Ishibashi, T. Saruya, S. Yuasa, T. Taniguchi, H. Arai,
H. Imamura, Appl. Phys. Express 2013, 6, 103003.

[60] T. Taniguchi, T. Ito, S. Tsunegi, H. Kubota, Y. Utsumi, Phys. Rev. B
2017, 96, 024406.

[61] L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert,
S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, I. Fischer,
Nat. Commun. 2011, 2, 468.

[62] L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez,
L. Pesquera, C. R. Mirasso, I. Fischer, Opt. Express 2012, 20, 3241.

[63] L. Larger, A. Baylon-Fuentes, R. Martinenghi, V. S. Udaltsov,
Y. K. Chembo, M. Jacquot, Phys. Rev. X 2017, 1, 011015.

[64] K. Fujii, K. Nakajima, Phys. Rev. Appl. 2017, 8, 024030.
[65] K. Nakajima, K. Fujii, M. Negoro, K. Mitarai, M. Kitagawa, Phys. Rev.

Appl. 2019, 11, 034021.
[66] O. Rossler, Phys. Lett. A 1979, 71, 155.
[67] I. Tsuda, World Futures: J. Gen. Evol. 1991, 32, 167.
[68] D. M. Abrams, S. H. Strogatz, Phys. Rev. Lett. 2004, 93, 174102.
[69] M. Zaks, A. Pikovsky, Sci. Rep. 2017, 7, 4648.
[70] I. B. Yildiz, H. Jaeger, S. J. Kiebel, Neural Networks 2012, 35, 1.
[71] L. M. Pecora, T. L. Carroll, Phys. Rev. Lett. 1990, 64, 821.
[72] R. Toral, C. R. Mirasso, E. Hernandez-Garcia, O. Piro, Chaos:

Interdiscip. J. Nonlinear Sci. 2001, 11, 665.
[73] N. Bertschinger, T. Natschlager, Neural Comput. 2004, 16, 1413.
[74] H. Jaeger, GMD Technical Report, German National Research Center

for Information Technology, Bonn, Germany 2001, p. 148.

[75] J. Dambre, D. Verstraeten, B. Schrauwen, S. Massar, Sci. Rep. 2012,
2, 1.

[76] M. A. M. Dzahir, S.-I. Yamamoto, Robotics 2014, 3, 120.
[77] T. Kanno, D. Morisaki, R. Miyazaki, G. Endo, K. Kawashima, In 2015

IEEE Int. Conf. on Rehabilitation Robotics (ICORR), IEEE, Piscataway,
NJ 2015, pp. 565–570.

[78] S. Koizumi, S. Kurumaya, H. Nabae, G. Endo, K. Suzumori, IEEE Rob.
Autom. Lett. 2018, 3, 3240.

[79] T. Abe, S. Koizumi, H. Nabae, G. Endo, K. Suzumori, N. Sato,
M. Adachi, F. Takamizawa, IEEE Rob. Autom. Lett. 2019, 4, 2532.

[80] T. Miyazaki, T. Tagami, D. Morisaki, R. Miyazaki, T. Kawase, T. Kanno,
K. Kawashima, Appl. Sci. 2019, 9, 2869.

[81] W. Parkinson, O. Sisman, Nucl. Eng. Des. 1971, 17, 247.
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