
Laser-Based Noncontact Blood Pressure Estimation Using Human Body
Displacement Waveforms

Yuji Oyamada#, Takehito Koshisaka#, Grant Stankaitis$, Shekh M. M. Islam*,
Victor M. Lubecke$, Olga Borić-Lubecke$, Takuya Sakamoto#1
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Abstract — Measurement of the body’s displacement at
multiple positions allows heart pulse wave propagation to
be observed; this is an important step toward noncontact
blood pressure measurement. This study investigates the
feasibility of performing blood pressure measurements using skin
displacement waveforms measured at two positions on a human
body. To evaluate the accuracy of the proposed approach, this
study uses a pair of laser displacement sensors to enable precise
pulse transit time measurement. By comparing the displacement
waveforms from the two sensors, the relationship between pulse
transit time and blood pressure was evaluated. It is demonstrated
experimentally that the blood pressure can be estimated with
accuracy of 5.1 mmHg, which is equivalent to the error of an
ordinary cuff-type blood pressure monitor.
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measurement, physiology.

I. INTRODUCTION

Cardiovascular disease is the leading cause of death

globally, with estimated 17.9 million lives lost annually [1].

Because the risk of cardiovascular disease increases with high

blood pressure (BP) [2], it is important to measure patient BP

on a long-term basis. Recently, in addition to the conventional

measurement method for BP estimation using a contact-type

cuff [3], [4], new approaches to BP measurement without a

cuff have also been investigated.

One such method is based on the use of

photoplethysmography (PPG) sensors, and PPG-based

methods have been investigated in the following ways: BP

estimation by obtaining the pulse transit time (PTT) using

an electrocardiogram (ECG) sensor and a PPG sensor [5],

using PPG sensor waveforms and machine learning [6], and

using PPG signals alone [7]. In addition, Buxi et al. [8]

proposed a method to obtain the PTT and estimate the BP

using continuous wave radar, an ECG sensor, and the patient’s

electrical bioimpedance.

However, these methods are not suitable for long-term BP

monitoring because of the discomfort caused by the contact

between the patient’s body and the measurement device. Zhao

et al. [9] used a single radar system to obtain the PTT between

the carotid and femoral arteries and thus estimate the BP. This

study used the features found in [10], which means that the

BP cannot be obtained if these features are not observed in

the displacement waveform, as is often the case. Jung et al.

Table 1. Specifications of the laser displacement sensor.

Measurement displacement 150± 40 mm
Spot size (diameter) 120 μm

Resolution 0.2 μm
Sampling period 100 μ s

Wavelength 655 nm

[11] also studied a method for BP estimation using a single

300 GHz continuous wave radar system and machine learning.

Although their study used the dataset for machine learning

from [12], it is uncertain if the BP can be estimated correctly

using this method because their training data were not obtained

using radar.

In this study, the feasibility of BP measurement using

the body displacements caused by pulse waves at multiple

positions on a human body is investigated. It is assumed

that this approach is applied to the radar-based measurement

method reported in [13], in which pulse waveforms were

measured at two positions simultaneously using a 79-GHz

radar array and the high accuracy of the method was verified

via comparison with data from laser-based displacement

sensors. As a preliminary study, this study uses a pair of

laser displacement sensors and focuses on the feasibility of

measuring both the PTT and the BP using pulse waveforms at

two positions on a human body.

II. BODY DISPLACEMENT AND BP MEASUREMENT

In this study, to investigate the BP estimation accuracy,

pulse wave measurements are performed using laser

displacement sensors because laser displacement sensors

measure the skin displacement accurately, although they do

require the target person’s body to be exposed by partially

removing their clothing, as shown in Fig. 1. The specifications

of the laser displacement sensors CDX-150 (Optex FA Co.,

Ltd., Kyoto, Japan) used in this study are shown in Table 1.

The sensors are categorized as a diffuse reflection model. A

pair of laser sensors was used to measure the displacements

at two positions (the patient’s chest and abdomen), as shown

in Fig. 1. Specifically, laser displacement sensors with a

wavelength of 655 nm, a spot size diameter of 120 μm, a

sampling frequency of 10 kHz, and reproducibility of 0.2 μm



Fig. 1. Photograph of the measurement setting with a participant and laser
displacement sensors.
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Fig. 2. Body displacement waveforms obtained from the laser displacement
sensors.

were used. An example of the body displacements measured

using the laser displacement sensors is shown in Fig. 2. The

black and red lines represent the displacement waveforms dc(t)
and da(t), which correspond to the measurements of the chest

and abdomen, respectively.

Four healthy male adults in their twenties participated in

this study as volunteers. The BPs of each participant were

measured using a contact-type BP monitor, the HEM-7133

sphygmomanometer (Omron Corporation, Kyoto, Japan), for

use as reference data. In this study, the measurements were

performed approximately fifty times every 20 minutes for each

participant using two laser displacement sensors and the BP

monitor.

III. BP ESTIMATION USING BODY DISPLACEMENTS AT

TWO POSITIONS

In this section, the following relationship between the pulse

waveforms and the BP is investigated. The N -dimensional

vectors denoted by

dc(t) = [dc(t), dc(t+Δt), · · · , dc(t+ (N − 1)Δt)]T,
da(t) = [da(t), da(t+Δt), · · · , da(t+ (N − 1)Δt)]T

(1)

are defined, where the superscripted T denotes a

matrix transpose, and Δt is the sampling interval. The
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Fig. 3. Example of ρ(τ) for the displacement waveforms dc(t) and da(t).

cross-correlation function ρ(τ) between the displacement

waveforms for the chest and the abdomen is given by

ρ(τ) =
dT
c (t0)da(t0 + τ)

|dc(t0)||da(t0 + τ)| , (2)

where t0 is the start time for the displacement waveform of

the chest, and τ is the time lag. Note that ρ(τ) is normalized

and the condition |ρ(τ)| ≤ 1 is satisfied. Using ρ(τ), the

PTT (τPTT) is estimated as τPTT = argmaxτ |ρ(τ)|. Using

waveforms in Fig. 2, ρ(τ) was calculated as shown in Fig. 3.

We perform a linear regression between the PTT (τPTT) and

the BP (p) to estimate the BP. We performed a total of N = 50
measurements of pairs of PTT and BP values and obtained

(τ1, p1), (τ2, p2), · · · , (τN , pN ). We then normalized the PTT

and BP data as τ ′i = (τi − τ̄)/στ and p′i = (pi − p̄)/σp

(i = 1, 2, · · · , N ), respectively, where τ̄ and p̄ are the means

of the PTT and BP data, respectively, and στ and σp are the

standard deviations of the PTT and BP data, respectively.

We performed at least-squares minimization to determine

the linear regression p′i = ατ ′i , as shown in Fig. 4, where the

systolic blood pressure (SBP) is shown as an example. Here,

a k-fold cross validation was used to investigate the feasibility

of the noncontact BP measurements, where a value of k = 5
was selected. In a k-fold cross-validation, data samples are

divided into k groups, of which k − 1 groups are used for

training and the remaining one is used for testing. In Fig. 4,

the black circles represent the training data and the red line

is the orthogonal regression line. The blue line represents the

95% confidence ellipse for the data plots.

Table 2 shows the results from the 5-fold cross-validation,

including the root mean square error (RMSE) for the BP

estimation of one of the participants. The contribution ratio

values of the SBP, the mean BP (MBP), and the diastolic

BP (DBP) were 0.63, 0.68, and 0.67, respectively, indicating

a relationship between the PTT and the BP. Note that the

contribution ratio is defined as Λ1/(Λ1+Λ2) using eigenvalues

Λ1 and Λ2 of the correlation matrix, where Λ1 ≥ Λ2 holds.

The maximum RMSE was approximately 6 mmHg, which



Fig. 4. Relationship between SBP and PTT obtained from the measurements.

Table 2. Performance evaluation of BP estimation from body displacements.

training data test data

SBP

Data Mean (mmHg) 110.69 110.51
RMSE (mmHg) 5.96 6.05

Error Mean (mmHg) 0.00 0.07
Contribution Rate 0.63 -

MBP

Data Mean (mmHg) 87.63 87.39
RMSE (mmHg) 4.30 4.49

Error Mean (mmHg) 0.00 −0.04
Contribution Rate 0.68 -

DBP

Data Mean (mmHg) 76.10 75.82
RMSE (mmHg) 4.64 4.80

Error Mean (mmHg) 0.00 −0.07
Contribution Rate 0.67 -

is consistent with the results of Ringrose et al. [14], which

showed that 69% of home BP monitors have errors equal to

or greater than 5 mmHg. In this study, the SBP, and DBP

ranged from 103–121 mmHg, and 68–88 mmHg, respectively.

IV. CONCLUSION

In this study, to investigate the accuracy limit of noncontact

BP measurement using the PTT data calculated from body

displacement waveforms measured at multiple positions on the

human body, we introduced a precision measurement method

using laser displacement sensors. The resulting root mean

square error in measuring the BP was almost in the same order

as that of common home BP monitoring device, indicating

the possibility of practical application of the noncontact BP

measurement method using the body displacements at multiple

positions on the human body. Future work may include

using displacement measurements obtained by other methods,

including radar.
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