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Abstract. Plane beds develop under flows in fluvial and marine environments; they are recorded as parallel
lamination in sandstone beds, such as those found in turbidites. However, whereas turbidites typically exhibit
parallel lamination, they rarely feature dune-scale cross-lamination. Although the reason for the scarcity of dune-
scale cross-lamination in turbidites is still debated, the formation of dunes may be dampened by suspended loads.
Here, we perform, for the first time, linear-stability analysis to show that flows with suspended loads facilitate
the formation of plane beds. For a fine-grained bed, a suspended load can promote the formation of plane beds
and dampen the formation of dunes. These results of theoretical analysis were verified with observational data
of plane beds under open-channel flows. Our theoretical analysis found that suspended loads promote the forma-
tion of plane beds, which suggests that the development of dunes under turbidity currents is suppressed by the
presence of suspended loads.

1 Introduction

The interactions between fluids and erodible surfaces gen-
erate small-scale topographic features called bedforms on
both terrestrial surfaces (e.g., riverbeds, deserts, and deep-
sea floors) and extra-terrestrial surfaces (Bourke et al., 2010;
Gao et al., 2015; Hage et al., 2018; Cisneros et al., 2020).
Such bedforms are preserved in sedimentary rocks as sedi-
mentary structures such as cross-lamination and parallel lam-
ination (Harms, 1979). The types of sedimentary structures
observed vary among different types of rocks. Turbidites typ-
ically exhibit parallel lamination (Bouma, 1962), whereas
they rarely feature dune-scale cross-lamination (Talling et al.,
2012). However, the opposite is true for fluvial deposits; i.e.,
dune-scale cross-laminae are often observed in riverine sand-
stone (Miall, 2010).

Although the reason for the paucity of dune-scale cross-
lamination in turbidites is still debated (Lowe, 1988; Arnott,
2012; Schindler et al., 2015; Tilston et al., 2015), it could
be attributed to the presence of suspended loads. For exam-
ple, in the case of open-channel flows, nearly flat-bed waves

and low-angle dunes have been observed in suspension-
dominated rivers (Smith and McLean, 1977; Kostaschuk and
Villard, 1996; Bradley et al., 2013; Ma et al., 2017). Addi-
tionally, flume experiments have suggested that dune height
decreases with increasing suspended-load flux (Bridge and
Best, 1988; Naqshband et al., 2017). Therefore, the influence
of suspended loads on the suppression of dune development
and the formation of plane beds is worth investigating.

The relationships between sediment transport modes and
the formation of plane beds have received little attention
in theoretical works that performed linear-stability analyses.
The reason could be that previous studies have succeeded
in predicting the wavelength of dunes and antidunes with-
out considering suspended loads (Colombini, 2004; Di Cristo
et al., 2006; Colombini and Stocchino, 2008; Vesipa et al.,
2012; Bohorquez et al., 2019). However, this assumption
is not appropriate for analyzing open-channel flows where
the suspended load is not negligible, such as flows in rivers
with a fine sediment bed (de Almeida et al., 2016; Sam-
brook Smith et al., 2016). Moreover, although some research
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has considered both bed and suspended loads (Engelund,
1970; Nakasato and Izumi, 2008; Bose and Dey, 2009), the
hydraulic conditions of these analyses were limited, and the
results were tested using only observational data of dunes
and antidunes.

Therefore, in order to investigate the effect of sediment
transport mode on the formation of plane beds, we per-
formed a linear-stability analysis of bedforms under open-
channel flows carrying suspended loads. The model intro-
duced in Nakasato and Izumi (2008) was extended in this
study to evaluate plane bed formation under various con-
ditions of sediment diameter and flow depth. To evaluate
the suspended-load effect, linear-stability analyses were per-
formed on flows both with and without suspended loads.
Further, we tested our stability diagrams against observa-
tional data of plane beds. Our theoretical analysis reveals for
the first time that suspended loads promote the formation of
plane beds, which has implications for interpreting sedimen-
tary structures in turbidites.

2 Methods

Linear-stability analysis of fluvial bedforms can provide the
wavelengths of perturbations (i.e., bed waves) that grow over
time (Colombini, 2004; Bohorquez et al., 2019). We em-
ploy the two-dimensional Reynolds-averaged Navier–Stokes
equations as the governing equations for flows and the quasi-
steady assumption to neglect the unsteady terms in the flow
equations. The eddy viscosity is evaluated using a mixing-
length approach. In this study, bed-load discharge is esti-
mated using the Meyer-Peter and Müller formula modified as
described in Wong and Parker (2006). The entrainment rate
of the suspended load is estimated using the relationship pro-
posed in de Leeuw et al. (2020). See the following section for
details. To test the results of linear-stability analyses against
the observational data of plane beds, we plotted stability dia-
grams in the parametric space of hydraulic parameters.

2.1 Governing parameters

The instability of a system is illustrated as a contour diagram
of the perturbation growth rate ωi (Fig. 1). Generally, theo-
retical studies of bedforms based on linear-stability analyses
describe the transition of bedform phases in the parametric
space of wavenumber k and Froude number Fr, which are
given by

k =
2πh̃0

λ̃
(1)

Fr =
Ũ0√
g̃h̃0

, (2)

where λ̃ denotes the perturbation wavelength, Ũ0 is the
depth-averaged flow velocity of the uniform flow, g̃ is the

gravitational acceleration (i.e., 9.81 m2 s−1), and h̃0 is the
flow depth of the uniform flow. Hereafter, we denote dimen-
sional variables using a tilde.

Stability diagrams described on the k–Fr plane have been
commonly used to predict the development of dunes and an-
tidunes (Kennedy, 1963). A few studies have used other com-
binations of dimensionless numbers such as the friction co-
efficient C versus Fr (Colombini and Stocchino, 2008) and
the relative roughness D̃/h̃0 on the k–Fr plane (Bohorquez
et al., 2019).

Although the classic k–Fr diagrams are widely accepted,
we cannot use this approach to evaluate whether plane bed
formation can be predicted reliably because plane beds have
extremely small wavenumbers or have an infinite wavelength
(i.e., they are flat). Therefore, we illustrate stability diagrams
as contour maps of the maximum growth rate ωi,max of the
instability on theRep–Fr plane with fixedD and on theD–Fr
plane with fixed Rep to investigate the impact of suspended
loads on the formation of plane beds. Here, D denotes the
dimensionless particle diameter D̃/h̃0.

The instability of a system is illustrated as a contour di-
agram of the perturbation growth rate ωi (Fig. 1). We can
rewrite Eq. (A30) as

ω = ω
(
k,F r,D̃, h̃0

)
. (3)

Thus, we can obtain the growth rate ωi as a function of k
for a given combination of Fr, D̃, and h̃0 (Figs. A3 and A4;
Tables A1–A5). In this study, we assume that the system is
stable if ωi is not positive for all k within the domain [kmin,
kmax] for a given Fr, D̃, and h̃0 combination. In contrast, the
system is assumed to be unstable if ωi is positive for some k
(Fig. 1). We describe stability diagrams as contour maps of
the maximum growth rate of the instability in the parametric
space of

(
Rep,Fr

)
(Fig. 2) and (D,Fr) (Fig. 3).

The domain [kmin,kmax] was set as [0.01,1.5], corre-
sponding to λ ranging from ∼ 4.2h to ∼ 628h. The Froude
number range was set as 0.4–2. For the Rep–Fr diagram
(Fig. 2), we employed three grades of D: D = 10−4,10−3,
and 10−2. The particle Reynolds number Rep ranges from
5.62 to 15.9 (D̃ = 0.125–0.25 mm). For the D–Fr diagram,
we employed Rep = 5.62 and 15.9 as the fixed value of par-
ticle diameter. The dimensionless particle diameterD ranges
from 5.0×10−2 to 5.0×10−5 in the D–Fr diagram (Fig. 3).

2.2 Linear-stability analysis

Here we present the formulation of the problem and the
method used to solve the differential equations.

2.2.1 Flow equations

The governing equations for flows are the two-dimensional
Reynolds-averaged Navier–Stokes equations. On erodible
beds, the flow adjustments occur immediately relative to the
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Figure 1. Contour map of perturbation growth rateωi without suspension. The particle Reynolds number and dimensionless particle diameter
were set toRep = 15.9 andD = 2.51×10−4, respectively. The dotted line denotes the threshold of sediment motion. The dashed lines denote
the critical Froude numbers Frcd and Frca for instabilities. The region where the growth rate is positive is highlighted in gray.

bed adjustments (Fourrière et al., 2010). Therefore, we em-
ploy the quasi-steady assumption to neglect the unsteady
terms in the flow equations (Colombini, 2004; Yokokawa
et al., 2016).

Under the quasi-steady assumption, the dimensionless
forms of the Reynolds-averaged Navier–Stokes equations
and continuity equation for incompressible flow are de-
scribed as

u
∂u

∂x
+w

∂u

∂z
=−

∂p

∂x
+ 1+

∂Txx

∂x
+
∂Txz

∂z
(4)

u
∂w

∂x
+w

∂w

∂z
=−

∂p

∂z
+ S−1

+
∂Txz

∂x
+
∂Tzz

∂z
(5)

∂u

∂x
+
∂w

∂z
= 0, (6)

where u and w are the flow velocities in the x and z direc-
tions, respectively; p denotes the pressure; S is the bed slope;
and Tij (i,j = x,z) is the Reynolds stress tensor.

We employ a Boussinesq-type assumption to close the
flow equations:

Txx = 2νT
∂u

∂x
(7)

Tzz = 2νT
∂w

∂z
(8)

Txz = νT

(
∂u

∂x
+
∂w

∂z

)
. (9)

Then, the eddy viscosity νT is evaluated using a mixing-
length approach:

νT = l
2
∣∣∣∣∂u∂z

∣∣∣∣ (10)

l = κ(z−Z)

√
h+R− z

h
, (11)

where l is the mixing length, κ is the Kármán coefficient (i.e.,
0.4), h is the flow depth, Z denotes the bed height, and R is
the height of the reference level at which the flow velocity is
assumed to vanish in a logarithmic profile (Fig. A1).
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Figure 2. Contour maps of the maximum growth rate ωi,max of perturbations with a fixed dimensionless particle diameter D. Symbols are
observational data. (a)D = 10−4 without suspension. (b)D = 10−4 with suspension. (c)D = 10−3 without suspension. (d)D = 10−3 with
suspension. (e)D = 10−2 without suspension. (f)D = 10−2 with suspension. (a, b) The range ofD of observational data is from 3.16×10−5

to 3.16× 10−4. (c, d) The range of D of observational data is from 3.16× 10−4 to 3.16× 10−3. (e, f) The range of D of observational data
is from 3.16× 10−3 to 3.16× 10−2.
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Figure 3. Contour maps of the maximum growth rate ωi,max of perturbations with a fixed particle Reynolds number Rep. Symbols are
observational data. (a) Rep = 5.62 without suspension. (b) Rep = 5.62 with suspension. (c) Rep = 15.9 without suspension. (d) Rep = 15.9
with suspension. (a, b) The range of Rep of observational data is from 4.46 to 7.0749. (c, d) The range of Rep of observational data is from
12.6 to 20.

In the above equations, the system is non-dimensionalized
as follows:

(u,w)= (ũ, w̃)/ũf0 (12)

(x,z,h,Z,R,D)= (x̃, z̃, h̃, Z̃, R̃, D̃)/h̃0 (13)

(p,Tij )= (p̃, T̃ij )/ρ̃h̃0 (14)

νT = ˜̃νT /(ũf0 h̃0), (15)

where D is the non-dimensional diameter of a bed particle,
ũf0 denotes the shear velocity in the basic flat-bed state, and
ρ̃ is the water density (i.e., 1000 kg m3). The shear velocity

in the basic flat-bed state ũf0 is obtained as

ũf0 =

√
g̃h̃0S. (16)

As the flow is continuous, the system can be rewritten us-
ing the stream function ψ defined as

(u,w)=
(
∂ψ

∂z
,−
∂ψ

∂x

)
. (17)
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Then, Eqs. (4) and (5) are rearranged to

∂ψ

∂z

∂2ψ

∂x∂z
−
∂ψ

∂x

∂2ψ

∂z2 =−
∂p

∂x
+ 1+

∂

∂x

(
2νT

∂2ψ

∂x∂z

)
+
∂

∂z

[
νT

(
∂2ψ

∂z2 −
∂2ψ

∂x2

)]
(18)

∂ψ

∂x

∂2ψ

∂x∂z
−
∂ψ

∂z

∂2ψ

∂x2 =−
∂p

∂z
+ S−1

−
∂

∂z

(
2νT

∂2ψ

∂x∂z

)
+
∂

∂x

[
νT

(
∂2ψ

∂z2 −
∂2ψ

∂x2

)]
. (19)

Eliminating p from Eqs. (18) and (19), we obtain

∂ψ

∂z

∂

∂x
∇

2ψ −
∂ψ

∂x

∂

∂z
∇

2ψ − 4
∂2

∂x∂z

(
νT
∂2ψ

∂x∂z

)
+

(
∂2

∂x2 −
∂2

∂z2

)[
νT

(
∂2

∂z2 −
∂2

∂x2

)
ψ

]
= 0. (20)

2.2.2 Advection–diffusion equations for suspended
sediment

We also assume a quasi-steady state for the advection–
diffusion equation for suspended sediment, which is formu-
lated as

∂Fx

∂x
+
∂Fz

∂z
= 0. (21)

Here, Fx and Fz are the normalized fluxes of suspended
sediment in the x and z directions, respectively, given by

Fx = uc− νT
∂c

∂x
(22)

Fz = (w−ws)c− νT
∂c

∂z
, (23)

where c denotes the concentration of suspended sediment,
and ws is the settling velocity of sediment. We assume that
the diffusion coefficient of suspended sediment is equal to
the eddy viscosity νT . Based on Eqs. (22) and (23), Eq. (21)
is reformulated as

u
∂c

∂x
+ (w−ws)

∂c

∂z
=
∂

∂x

(
νT
∂c

∂x

)
+
∂

∂z

(
νT
∂c

∂z

)
. (24)

The settling velocity of sediment ws is calculated using a
relationship given in Ferguson and Church (2004):

ws =
w̃s√
Rsg̃D̃

(25)

w̃s =
Rsg̃D̃

2

C1ν̃+ 0.75C2

√
Rsg̃D̃3

, (26)

where the constantsC1 andC2 are set to the values for natural
sand (C1 = 18 and C2 = 1.0).

The particle Reynolds number Rep is defined as

Rep =

√
Rsg̃D̃3

ν̃
, (27)

where Rs is the submerged specific density, and ν̃ is the kine-
matic viscosity of the fluid (i.e., 1.0×10−6 m2 s−1). The sub-
merged specific density Rs is defined as

Rs =
ρ̃s− ρ̃

ρ̃
, (28)

where ρ̃s denotes the density of the bed particles (i.e.,
2650 kg m−3).

2.2.3 Transformation of variables

We employ the following transformation of variables to ap-
ply the boundary condition at the bed and flow surfaces:

ξ = x (29)

η =
z−R(x)
h(x)

. (30)

The derivatives with respect to x and z are described as
follows:

∂

∂x
=
∂

∂ξ
−
η∂xh+ ∂xR

h

∂

∂η
(31)

∂

∂z
=

1
h

∂

∂η
, (32)

where ∂x denotes the partial derivative with respect to x.
Using the above transformation-of-variables approach, the
height of the water surface and the reference level correspond
to η = 1 and η = 0, respectively.

Additionally, the dimensionless mixing length l (Eq. 11)
is rearranged as

l = κ(hη+R−Z)

√
1− η

1+ (R−Z)/h
. (33)

Since (R−Z)/h� 1, we can obtain

l = κ(hη+R−Z)
√

1− η. (34)

2.2.4 Boundary condition

The boundary conditions include a vanishing flow compo-
nent normal to the water surface and vanishing stresses nor-
mal and tangential to the water surface as follows:

u · ens = 0
ens ·T · ens = 0
ets ·T · ens = 0

 at η = 1, (35)

where u= (u,w) is the velocity vector, e denotes the unit
vector, and T is the stress tensor. The subscripts ns and ts
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denote directions normal and tangential to the water surface,
respectively.

At the bed, the boundary conditions include the vanishing
flow components normal and tangential to the bed.

u · enb = 0
u · etb = 0

}
at η = 0, (36)

where the subscripts nb and tb denote directions normal and
tangential to the bed, respectively. The vectors ens, ets, enb,
and etb and the tensor T are defined as

ens =
1√

1+ ∂x(R+h)2
(−∂x(R+h),1) (37)

ets =
1√

1+ ∂x(R+h)2
(1,∂x(R+h)) (38)

enb =
1√

1+ ∂xR2
(−∂xR,1) (39)

etb =
1√

1+ ∂xR2
(1,∂xR) (40)

T=
(
−p+ Txx Txz
Txz −p+ Tzz

)
. (41)

The boundary conditions for the suspended-sediment flux
at the flow surface and bed are as follows:

F · ens = 0 at η = 1 (42)

F · enb =
Ẽs

ũf0

at η = 0, (43)

where F = (Fx,Fz) is the flux vector of suspended sediment,
and Ẽs is the entrainment rate of the sediment calculated as
Ẽs = w̃sEs. In this study, the dimensionless coefficient Es is
estimated using the relationship proposed in de Leeuw et al.
(2020):

Es = C3

(
uf

ws

)e1

Fre2 Rep
e3 , (44)

where C3 was set to 5.73×10−3, and coefficients e1, e2, and
e3 were set to 1.31, 1.59, and −0.86, respectively.

2.2.5 Basic state

The basic flow state for linear-stability analysis is a uniform
flow over a flat bed. Under this condition, the hydraulic pa-
rameters u, w, h, Z, R, and c are described as

(u,w,h,Z,R,c)= (u0(η),0,1,0,R0,c0(η)) , (45)

where the subscript 0 denotes a parameter in the basic state.
The governing equations of flows can be simplified as

1+
∂Txy0

∂η
= 0 (46)

Txy0 = νT 0
∂u0

∂η
(47)

νT 0 = l0
2 ∂u0

∂η
(48)

l0 = κ(η+R0)
√

1− η, (49)

with the boundary conditions

u0 = 0, Txy0 = 1 at η = 0. (50)

With Eqs. (46)–(50), we can obtain the following logarith-
mic law for the flow velocity:

u0(η)=
1
κ

ln
(
η+R0

R0

)
. (51)

Then, the friction coefficient Cz is obtained by the direct
integration of Eq. (51) from η = 0 to η = 1:

Cz =
Ũ0

ũf0

=
1
κ

[
(1+R0) ln

(
1+R0

R0

)
− 1

]
. (52)

Now, we consider the logarithmic law of the open-channel
flows as

u=
1
κ

ln
(
z

z0

)
, (53)

with z0 =D/12 (Colombini, 2004). It should be noted here
that the bed roughness can be modified by the sediment trans-
port (Dietrich and Whiting, 1989). Additionally, we set the
origin of the z axis at a distance of D/6 below the top of the
bed particles (Fig. A2). By setting the top of the bed parti-
cles as z=D/6, the reference level R0 is positioned below
the top of the bed particles. Therefore, the domain in which
the mixing-length approach cannot be applied is restricted
near the bed.

Under the above uniform-flow condition over a flat bed,
Eq. (24) can be rewritten as

−ws
∂c0

∂η
=
∂

∂η

(
νT 0

∂c0

∂η

)
, (54)

with the following boundary conditions:

wsc0+ νT 0
∂c0

∂η
= 0 at η = 1 (55)

c0 = cb at η = 0. (56)

Here, cb is the near-bed concentration of suspended sedi-
ment. Under the basic state, the entrainment and deposition
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rates of the suspended sediment are balanced. Thus, cb is de-
scribed as

cb = Es0 (57)

Es0 = C3

(
uf0

ws

)e1

Fre2 Rep
e3 , (58)

where C3 was set to 5.73×10−3, and coefficients e1, e2, and
e3 were set to 1.31, 1.59, and −0.86, respectively.

By integrating Eq. (54), we obtain the suspended-sediment
distribution in the basic state as follows:

c0(η)= cb

[
R0(1− η)
η+R0

]ws/κ(1+R0)

. (59)

2.2.6 Temporal development of bed configurations

The development of the bed configuration can be described
by the Exner equation considering the suspended load as fol-
lows:

(1− λp)
∂B̃

∂t̃
+αb

∂q̃B

∂x̃
+αsw̃s

(
Es− c[ξ,ηb]

)
= 0, (60)

where λp denotes the sediment porosity, B̃ denotes the height
of the bed-load layer, t̃ is time, and q̃B denotes the bed-
load discharge per unit width. In the case without suspen-
sion, the development of the bed configuration associated
with suspended loads is ignored by setting the coefficient αs
in Eq. (60) to 0. In the case of the stability analysis with sus-
pension, the coefficient αs take a value of 0 or 1 depending
on the sediment transport regime (Eq. 71).

Equation (60) is non-dimensionalized as

∂B

∂t
+αb

∂qB

∂ξ
+αs

ws

D

(
Es− c[ξ,ηb]

)
= 0, (61)

with

t̃ =

(
1− λp

)
h̃0

2√
Rsg̃D̃3

t. (62)

In this study, dimensionless bed-load discharge per unit
width is estimated using the Meyer-Peter and Müller formula
modified as described in Wong and Parker (2006); this equa-
tion is given as

qB =
q̃B√
RsgD̃3

= C4(θb− θc)e4 , (63)

where C4 and e4 were set to 3.97 and 1.5, respectively. Here,
θb is the Shields stress at the top of the bed-load layer, and θc
is the critical Shields stress for particle motion. These vari-
ables can be expressed as follows:

θ0 =
S

RsD
(64)

θb = θ0τb (65)

θc = θch−µ

(
S−

∂B

∂x

)
, (66)

where θ0 is the Shields stress of the base flow, τb denotes the
shear stress at the top of the bed-load layer, θch denotes the
critical Shields stress under the flat-bed conditions, and µ is
a constant set to 0.1 (Fredsøe, 1974). The shear stress τb is
described as

τb = [etb ·T · enb]η= ηb , (67)

where ηb is the dimensionless thickness of the bed-load layer
and is obtained as

ηb = B0−R0 = hb+
D

12
, (68)

where B0 and R0 denote the height of the top of the bed-
load layer and the reference level in the basic state, respec-
tively. According to Colombini (2004), the thickness of the
bed-load layer hb is estimated as follows:

hb = lbD (69)

lb = 1+ 1.3
(
τr− τc

τc

)0.55

, (70)

where lb denotes the relative saltation height, τr is the shear
stress at the reference level, and τc is the critical shear stress.

In this study, the sediment transport regimes are classified
using the threshold conditions of sediment motion in Brown-
lie (1981) as follows:

θch = 0.22Rep
−0.6
+ 0.06exp(−17.77Rep)−0.6. (71)

The coefficients αb and αs in Eq. (60) were set to 0 when
θ0 < θch and set to 1 when θch ≤ θ0.

2.2.7 Linear analysis

We impose an infinitesimal perturbation on the basic state.
Then, with the use of boundary conditions, we can solve the
differential equations to get the growth rate of the perturba-
tion. Please see the Appendix for details of the linear analy-
sis.

2.3 Compilation of published data

The stability diagrams were assessed using an observational
dataset pertaining to open-channel flows compiled from the
literature, as summarized in Tables A1–A5. We compiled
from the literature a total of 56 sets of data for Fig. 2 and
59 sets of data for Fig. 3. The flow depth, flow velocity,
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and particle diameter range from 0.0209 to 1.11 m, 0.349 to
1.66 m s−1, and 0.138 to 0.32 mm, respectively.

We used the data of plane beds in which the sedi-
ment transport mode could be identified, i.e., plane bed
with suspension. We identified whether sediment particles
were transported as suspended loads or not based on the
suspended-sediment concentration. For comparison with the
theoretical-analysis results, we used the data of dunes and
antidunes with wavenumbers in the range of 0< k ≤ 1.5 for
comparison. For Fig. 2, D of the data plotted in the diagram
ranges from D/3.16 to 3.16D. The data for which the parti-
cle Reynolds number ranges fromRep/1.26 to 1.26Rep were
chosen to plot Fig. 3.

To calculate the particle Reynolds number, the kinematic
viscosity ν was assumed as follows (van den Berg and van
Gelder, 1993):

ν =
[
1.14− 0.031(T − 15)+ 0.00068(T − 15)2

]
10−6, (72)

where T represents the water temperature in degrees Celsius.
A value of 20 ◦C was assumed for data when T was not re-
ported.

3 Results

3.1 Rep–Fr diagram

The contour maps of ωi,max on the Rep–Fr plane show that
the stable region where the plane bed develops appears more
extensive under hydraulic conditions with suspension than
without suspension. (Fig. 2). In the case of the stability analy-
sis without suspension, a stable region does not appear when
D/H = 10−4, and the growth rate decreases with increas-
ing Rep (Fig. 2a). For the phase diagram with D = 10−3 and
D = 10−2, a stable region appears at 0.8< Fr < 1.2 (with
D = 10−3) and 0.7< Fr < 0.9 (with D = 10−2) (Fig. 2c, e),
and the growth rate increases with increasing Rep.

The phase diagrams for the case of the stability analy-
sis with suspension show that a stable region appears at
0.4< Fr < 0.9–1.0 (Fig. 2b, d, and f). Also, the growth rate
at Fr > 1 of the diagram with suspension is higher than that
without suspension (Fig. 2a–d). In the case of shallow flow
(D = 10−2), the value of growth rate does not differ much
between the diagrams with and without suspension (Fig. 2e
and f).

Comparing the results of theoretical analysis and the ob-
servational data, all the plane bed data are within unstable
regions in the case without suspension (Fig. 2a and c). The
analysis with suspension shows that all the plane bed data
plot in the stable region when D = 10−3 (Fig. 2d), whereas
2 data points out of 10 points plot in the stable region when
D = 10−4 (Fig. 2b). Table 1 also shows that the error rate,
which denotes the number of plane bed data plotted in the
unstable region, is smaller in the case with suspension than
that in the case without suspension.

As expected, most dune and antidune data plot in the un-
stable region, whereas several data points of dunes and an-
tidunes plot in the stable region in both cases with and with-
out suspension (Fig. 2, Table 1).

3.2 D–Fr diagram

The contour maps of the maximum growth rate on the D–Fr
plane also show that the stable region is larger in the diagram
with suspension than in that without suspension (Fig. 3). For
fine sediment, the upper limit of the stable region is smaller
in the diagram with suspension than in that without suspen-
sion (Fig. 3a, b), whereas that does not much differ in the
medium-sand case (Fig. 3c, d). Comparing with the obser-
vational data, most plane bed data plot in the stable region
in the case of the stability analysis with suspension (Fig. 3).
Also, most dune and antidune data plot in the unstable region
in cases both with and without suspension (Fig. 3). The error
rate for plane bed data decreased from 1 to 0.6 (Rep = 5.62)
and 0.45 to 0.18 (Rep = 15.9) by adding the term of the sus-
pended load (Table 2). For dunes and antidunes, the error
rate does not differ between the cases with and without sus-
pension, except for the antidune in the case of fine sediment,
where re decreases from 0.6 to 0.2 (Table 2).

4 Discussion

The role of suspended loads in the formation of plane beds
and suppression of dune-scale instabilities is quantitatively
illustrated as the broadening of the stable regions (Figs. 2
and 3). The stability diagrams show good agreement with
the observational data of plane beds under flows with suspen-
sion. The transition from dunes to plane beds is explained by
the spatial lag δ between the bed topography and the local
sediment transport rate (Naqshband et al., 2014; van Duin
et al., 2017). If the bed topography and sediment transport
rate are entirely in phase (δ = 0), dunes migrate downstream
without growth or decay. The dune height increases and de-
creases when the maximum sediment transport rate occurs
upstream (δ < 0) and downstream (δ > 0) of the dune crest,
respectively. Kennedy (1963) introduced the spatial lag in
his flow model to account for the bedform growth and de-
cay, and subsequent research has investigated the effect of
spatial lag on the bedform development (McLean, 1990; van
Duin et al., 2017). Recently, Naqshband et al. (2017) quan-
titatively observed the positive spatial lag under suspended-
load-dominated flows in their flume experiments. Our analy-
ses confirm that suspended loads dampen the development of
bed waves, thereby facilitating the formation of plane beds,
and thus cannot be neglected in theoretical analyses for real-
istic predictions of bedforms.

We found that dunes are deformed under flows with sus-
pended loads, although further work is needed to investi-
gate the amplitudes of dunes under such conditions. Field
surveys have indicated the existence of low-angle dunes in
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Table 1. Error rates for the case of fixed D. The parameter nc denotes the number of correctly classified data points, and re is the error rate.

Plane bed Dune Antidune

nc No. of re nc No. of re nc No. of re
points points points

D = 10−4, without suspension 0 10 1 0 0 – 0 0 –
D = 10−4, with suspension 2 10 0.8 0 0 – 0 0 –
D = 10−3, without suspension 0 8 1 5 5 0 11 16 0.31
D = 10−3, with suspension 8 8 0 5 5 0 13 16 0.19
D = 10−2, without suspension 0 0 – 0 0 – 15 17 0.12
D = 10−2, with suspension 0 0 – 0 0 – 15 17 0.12

Table 2. Error rates for the case of fixed Rep. The parameter nc denotes the number of correctly classified data points, and re is the error
rate.

Plane bed Dune Antidune

nc No. of re nc No. of re nc No. of re
points points points

Rep = 5.62, without suspension 0 5 1 0 0 – 2 5 0.6
Rep = 5.62, with suspension 2 5 0.6 0 0 – 4 5 0.2
Rep = 15.9, without suspension 6 11 0.45 12 12 0 25 26 0.04
Rep = 15.9, with suspension 9 11 0.18 12 12 0 25 26 0.04

suspended-load-dominated rivers (Smith and McLean, 1977;
Kostaschuk and Villard, 1996; Hendershot et al., 2016);
moreover, flume experiments have indicated that dune height
decreases with increasing suspended-load flux (Naqshband
et al., 2017; Bradley and Venditti, 2019). Theoretical analy-
ses in Fredsøe (1981) have also predicted a decrease in dune
steepness under unsteady flows with suspension where the
flow discharges were being increased. In future works, non-
linear analyses should be done to obtain the amplitudes of
dunes under flows with suspended loads.

Ultimately, our linear analyses provide a possible explana-
tion for the absence of dunes in turbidites: suspended loads
suppress dune formation and facilitate plane bed formation.
Previous research has suggested that the formation of dunes
is suppressed due to the insufficient time for dune develop-
ment (Walker, 1965), the hysteresis effect under waning flow
conditions (Endo and Masuda, 1997), the turbulence sup-
pression by high suspended-sediment concentrations (Lowe,
1988), the lack of a sharp near-bed density gradient (Arnott,
2012), and the effect of clay-sized sediment on bed rheology
(Schindler et al., 2015). Although these interpretations could
explain the absence of dune-scale cross-lamination in tur-
bidites, we show that dune formation is suppressed without
considering the above conditions. Although the above condi-
tions may contribute to the deformation of dunes, instead, we
propose that the development of dune-scale bed waves under
turbidity currents is restricted by the presence of suspended
loads. The model can be improved by the inclusion of such
an effect in future studies.

5 Conclusions

We investigated the influence of suspended loads on the for-
mation of plane beds under open-channel flows. The stability
diagrams show that the stable region for finer sediments is
wider in the diagram with suspension than that without sus-
pension. Further, the published data of plane beds with sus-
pension coincide well with the stability diagrams where the
suspension was considered. Our theoretical analysis found
that suspended loads promote the formation of plane beds
and suppress the formation of dunes on the fine-grained bed.
These results suggest that dune-scale cross-lamination is ab-
sent in turbidites because the development of dunes in turbid-
ity currents is restricted by the presence of suspended loads.
Additional theoretical work can be improved in future stud-
ies by the inclusion of possible mechanisms for the absence
of dunes in turbidites.

Appendix A: Linear analysis

In Sect. 2.2.1–2.2.6, we formulate the hydrodynamics, the
sediment transport model, and the basic state (Figs. A1 and
A2). Here, we solve the equations obtained in the above sec-
tions.

We impose an infinitesimal perturbation on the basic state.
All the variables are modified using a small amplitude A and
a complex angular frequency of the perturbation ω as fol-
lows:
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Table A1. Summary of data used for the stability diagram with Rep = 5.62.

Reference No. of Flow Flow Particle Froude Particle Reynolds Relative Source
points depth velocity diameter number number flow depth

h̃ [m] Ũ [m s−1] D̃ [mm] Fr Rep D [10−3]

Plane bed

Culbertson et al. (1972) 5 0.646–0.957 1.06–1.42 0.17–0.2 0.421–0.524 5.38–7.07 0.209–0.279 Field

Antidunes

Tanaka (1970) 5 0.0443–0.110 0.658–1.14 0.145 0.852–1.38 7.01 1.32–3.27 Flume

Table A2. Summary of data used for the stability diagram with Rep = 15.9.

Reference No. of Flow Flow Particle Froude Particle Reynolds Relative Source
points depth velocity diameter number number flow depth

h̃ [m] Ũ [m s−1] D̃ [mm] Fr Rep D [10−3]

Plane bed

Bridge and Best (1988) 1 0.1 0.9 0.3 0.909 19.9 3 Flume
Guy et al. (1966) 6 0.158–0.226 0.948–1.23 0.27–0.32 0.708–0.921 15.5–17.2 1.20–1.77 Flume
Taylor (1971) 4 0.0788–0.114 0.692–0.878 0.228 0.778–0.838 14.8–17.6 2–2.89 Flume

Dunes

Guy et al. (1966) 10 0.140–0.326 0.558–0.799 0.27–0.32 0.404–0.553 15.3–19.8 0.859–1.93 Flume
Naqshband et al. (2014) 2 0.25 0.64–0.8 0.29 0.409–0.511 19.8 1.16 Flume

Antidunes

Foley (1975) 2 0.0305–0.0473 0.597–0.692 0.28 0.877–1.26 19.9 5.92–9.18 Flume
Guy et al. (1966) 9 0.0914–0.192 1.06–1.50 0.27–0.28 0.959–1.21 13.7–16.6 1.41–3.06 Flume
Kennedy (1961) 15 0.0448–0.106 0.637–1.05 0.233 0.798–1.49 15.3–16.9 2.20–5.20 Flume

Figure A1. Conceptual diagram of the flow. The dimensionless pa-
rameters u and w are the flow velocities in the x and z directions,
respectively; h is the flow depth; Z denotes the bed height; and R
is the height of the reference level at which the flow velocity is as-
sumed to vanish following a logarithmic law.

(ψ,p,h,Z,R,B,c)= (ψ0,p0,1,0,R0,B0,c0)

+A(ψ1,p1,H1,Z1,R1,B1,c1)exp[i (kξ −ωt)] . (A1)

Figure A2. Conceptual diagram of the sediment bed. The origin of
the z direction is denoted by O. The parameter D is the dimension-
less diameter of a bed particle, B0 is the height of the top of the
bed-load layer in the basic state, and R0 is the height of the refer-
ence level in the basic state.

The subscript 1 denotes a variable at O(A). By substituting
Eq. (A1) into the governing equations and boundary condi-
tions, we can obtain the following equations at O(A):
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Figure A3. Contour map of perturbation growth rate ωi . The dimensionless particle diameterD was set toD = 2.51×10−4. (a) Rep = 5.62
without suspension. (b) Rep = 5.62 with suspension. (c) Rep = 15.9 without suspension. (d) Rep = 15.9 with suspension.

Table A3. Summary of data used for the stability diagram with D = 10−4.

Reference No. of Flow Flow Particle Froude Particle Reynolds Relative Source
points depth velocity diameter number number flow depth

h̃ [m] Ũ [m s−1] D̃ [mm] Fr Rep D [10−3]

Plane bed

Culbertson et al. (1972) 10 0.676–1.11 1.06–1.66 0.18–0.21 0.415–0.524 6.22–10.2 0.175–0.312 Field

Lψ (η)ψ1(η)+Lh(η)H1+LR(η)R1 = 0 (A2)

ikp1(η)+Pψ (η)ψ1(η)+Ph(η)H1+PR(η)R1 = 0. (A3)

Here, Lφ and Pφ (φ = ψ,h,R) are linear operators. The
specific forms of Lφ and Pφ are skipped herein. With the
use of the boundary conditions (Eqs. 35 and 36), we get

ψ1(1)= 0 (A4)
p1(1)= 0 (A5)
ψ1(0)= 0 (A6)

∂ψ1

∂η

∣∣∣∣
η= 0
= 0. (A7)

Additionally, Eqs. (A3) and (A5) give

Pψ (1)ψ1(1)+Ph(1)H1+PR(1)R1 = 0. (A8)
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Figure A4. Contour map of perturbation growth rate ωi . The dimensionless particle diameterD was set toD = 1.99×10−3. (a) Rep = 5.62
without suspension. (b) Rep = 5.62 with suspension. (c) Rep = 15.9 without suspension. (d) Rep = 15.9 with suspension.

Table A4. Summary of data used for the stability diagram with D = 10−3.

Reference No. of Flow Flow Particle Froude Particle Reynolds Relative Source
points depth velocity diameter number number flow depth

h̃ [m] Ũ [m s−1] D̃ [mm] Fr Rep D [10−3]

Plane bed

Guy et al. (1966) 3 0.155–0.241 0.881–1.05 0.19–0.28 0.686–0.713 10.3–15.5 0.789–1.53 Flume
Taylor (1971) 4 0.078–0.114 0.585–0.866 0.138–0.228 0.667–0.819 7.61–15.3 1.76–2.83 Flume
Culbertson et al. (1972) 1 0.494 1.09 0.16 0.493 7.14 0.324 Field

Dunes

Guy et al. (1966) 5 0.140–0.311 0.552–0.820 0.19–0.28 0.436–0.529 10.1–15.6 0.611–1.93 Flume

Antidunes

Guy et al. (1966) 8 0.0914–0.204 1.06–1.50 0.19–0.28 0.892–1.18 10.2–15.1 0.930–3.06 Flume
Kennedy (1961) 4 0.0783–0.106 0.799–1.05 0.233 0.798–1.20 15.3–15.8 2.20–2.97 Flume
Tanaka (1970) 4 0.0608–0.110 0.658–1.14 0.145 0.852–1.38 7.01 1.32–2.38 Flume
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Table A5. Summary of data used for the stability diagram with D = 10−2.

Reference No. of Flow Flow Particle Froude Particle Reynolds Relative Source
points depth velocity diameter number number flow depth

h̃ [m] Ũ [m s−1] D̃ [mm] Fr Rep D [10−3]

Antidunes

Fukuoka et al. (1982) 15 0.0209–0.0569 0.349–0.93 0.19 0.760–1.45 10.5 3.34–9.09 Flume
Kennedy (1961) 1 0.0451 0.835 0.233 1.26 15.7 5.17 Flume
Tanaka (1970) 1 0.0443 0.903 0.145 1.37 7.01 3.27 Flume

We employ a spectral collocation method using Cheby-
shev polynomials to solve the above differential equations.
We expand ψ1 using the Chebyshev polynomials as follows:

ψ1 =

N∑
n=0

anTn(ζ ), (A9)

where an is the coefficient for the nth-order Chebyshev poly-
nomial Tn, and ζ is the independent variable of the Cheby-
shev polynomials defined in the domain [−1,1]. In this study,
we transform ζ using the following equation to improve the
calculation accuracy:

ζ = 2

{
ln
[
(η+R0)/R0

]
ln
[
(1+R0)/R0

]}− 1. (A10)

The above functions are substituted into Eq. (A2), and then
we evaluate the equation at the Gauss–Labatte points, which
are defined as

ζj = cos
(
jπ

N + 2

)
,j = 1,2, . . .,N + 1. (A11)

By combining the governing equations, boundary condi-
tions, and closure assumptions, we obtain the following sys-
tem of linear algebraic equations:

La=MR1, (A12)

with

L=



T0(−1) · · · TN (−1) 0
〈̌T0(−1) · · · 〈̌TN (−1) 0
T0(1) · · · TN (1) 0

P̌ψ T0(1) · · · P̌ψ TN (1) P̌h
Ľψ T0(ζ2) · · · Ľψ TN (ζ2) Ľh

...
. . .

...
...

Ľψ T0(ζN−2) · · · Ľψ TN (ζN−2) Ľh


(A13)

a= (a0,a1, . . .,aN ,D1) (A14)

M=
(

0,0,0, P̌R, Ľh, . . ., Ľh
)
, (A15)

where a check mark denotes a linear operator associated with
variable transformation from η to ζ . We obtain the following
solution from Eq. (A12):

a= L−1MR1. (A16)

Additionally, Eqs. (A9) and (A16) give

ψ1 = ψ
∗

1 (η)R1 (A17)
H1 =H

∗

1R1. (A18)

Similarly, we solve the eigenvalue problems for the sed-
iment transport equations. By substituting Eq. (A1) into
Eq. (24), we obtain the following equations of the order of
O(A):

Ccc1(η)+ Cψ (η)ψ1(η)+ CHH1+ CRR1 = 0. (A19)

Based on Eqs. (A17) and (A18), we obtain

Ccc1(η)+
(
Cψ (η)ψ∗1 (η)+ CHH ∗1 + CR

)
R1 = 0. (A20)

The boundary conditions give

Scc1(1)+
(
Sψ (1)ψ∗1 (1)+SHH ∗1 +SR

)
R1 = 0 (A21)

Bcc1(0)+
(
Bψ (0)ψ∗1 (0)+BHH ∗1 +BR

)
R1 = 0. (A22)

Here, Cφ , Sφ , and Bφ (φ = ψ,h,R,c) are the linear oper-
ators.

We expand c1 using Chebyshev polynomials as follows:

c1 =

N∑
n=0

bnTn(ζ ). (A23)

The system is evaluated at the Gauss–Labatte points, and
then we obtain

Kb= NR1, (A24)

with

K=


B̌cT0(−1) · · · B̌cTN (−1)
ŠcT0(1) · · · ŠcTN (−1)
ČcT0(ζ1) · · · ČcTN (ζ1)

...
. . .

...

ČcT0(ζN−1) · · · ČcTN (ζN−1)

 (A25)
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b= (b0,b1, . . .,bN ) (A26)

N=−


B̌ψψ∗1 (−1)+ B̌hH ∗1 + B̌R
Šψψ∗1 (1)+ ŠhH ∗1 + ŠR
Čψψ∗1 (ζ1)+ ČhH ∗1 + ČR

...

Čψψ∗1 (ζN−1)+ ČhH ∗1 + ČR

 . (A27)

The coefficient bn is derived as

b=K−1NR1. (A28)

Therefore, the following equation is obtained:

c1(η)= c∗1(η)R1. (A29)

By substituting Eqs. (A17), (A18), and (A29) into Exner’s
equation (Eq. 61), the complex angular frequency ω is ob-
tained in the following form:

ω = ω(k,F r,Cz,Rep)= ωr+ iωi, (A30)

where ωi corresponds to the growth rate of the perturbation.
Here, using Rep = Rep(D)= Rep(D̃, h̃0) (Eq. 27) and

Cz = Cz(R0)= Cz(D̃, h̃0) (Eq. 52), we can rewrite Eq. (A30)
as

ω = ω
(
k,F r,D̃, h̃0

)
. (A31)

Thus, we can obtain the growth rate ωi as a function of k
for a given combination of Fr, D̃, and h̃0.
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