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Abstract 
The Bingham fluid simulation model was constructed and validated using a physically consistent particle 
method, i.e., the Moving Particle Hydrodynamics (MPH) method. When a discrete particle system satisfies the 
fundamental laws of physics, the method is asserted as physically consistent. Since Bingham fluids sometimes 
show solid-like behaviors, linear and angular momentum conservation is especially important. These features 
are naturally satisfied in the MPH method. To model the Bingham feature, the viscosity of the fluid was varied 
to express the stress-strain rate relation. Since the solid-like part, where the stress does not exceed the yield 
stress, was modeled with very large viscosity, the implicit velocity calculation was introduced so as to avoid the 
restriction of the time step width with respect to the diffusion number. As a result, the present model could 
express the stopping and solid-like behaviors, which are characteristics of Bingham fluids. The proposed method 
was verified and validated, and its capability was demonstrated through calculations of the two-dimensional 
Poiseuille flow of a Bingham plastic fluid and the three-dimensional dam-break flow of a Bingham pseudoplastic 
fluid by comparing those computed results to theory and experiment. 

 
1. Introduction 

 
Particle methods, which are Lagrangian mesh-free approaches suitable for handling large deformations of free-

surface flows, have attracted much interest in calculating complex flows with interfaces and multiple phases in various 
engineering fields. Representative methods are the Smoothed Particle Hydrodynamics (SPH) method developed by Lucy 
(1977), Gingold and Monaghan (1977), and the Moving Particle Semi-implicit (MPS) method developed by Koshizuka 
and Oka (1996). In the past two decades, owing to significant advancements in stability and accuracy, boundary 
treatments, physical models, acceleration techniques, and computational environment, the SPH and MPS methods have 
been applied to a variety of applications in ocean engineering, coastal engineering, naval engineering, civil engineering, 
nuclear engineering, and mechanical engineering (Violeau and Issa, 2007; Koshizuka, 2011; Gotoh and Khayyer, 2016; 
Violeau and Rogers, 2016; Shadloo et al., 2016; Wang et al., 2016; Koshizuka et al., 2018; Ye et al., 2019; Liu and Zhang, 
2019; Lind et al., 2020; Li et al., 2020; Luo et al., 2021; Xie et al., 2022). 

Bingham fluid calculation is a significant, active research topic in particle methods. Bingham fluids are encountered 
in a wide variety of applications, both environmental (e.g., mud, snow, ice, and blood) and industrial (e.g., lubricating 
grease, fresh concrete, suspensions, polymers, and paints). A Bingham fluid, such as the Bingham plastic fluid and the 
Bingham pseudoplastic fluid, is a non-Newtonian fluid with a distinctive yield stress and behaves as a solid below the 
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yield stress but flows as a highly viscous fluid above that. The non-Newtonian behavior arises because of a microscopic 
heterogeneous feature in the fluids, i.e., Bingham fluids contain dispersed phases such as thickener in lubricating greases 
(Lugt, 2013) and aggregate in fresh concrete (Xu and Li, 2021). The dispersed phases interact and have a microstructure 
that requires a certain amount of stress to break up. Once the microstructure is broken, the dispersed phase moves under 
viscous forces within the fluid (main composition). If the stress is removed, the dispersed phases reform the 
microstructure again. 

In simulating Bingham fluids, there are two modeling approaches: (1) the continuum approach and (2) the 
microstructure approach (Ye et al., 2019; Rossi et al., 2022). In the continuum approach, a Bingham fluid is regarded as 
a homogeneous fluid without microstructure, and its non-Newtonian behavior is modeled by the constitutive equation 
that describes the relationship between the shear stress and the strain rate. Thus, the solid- and fluid-like behaviors of a 
Bingham fluid can be expressed by the change in viscosity, i.e., the fluid does not deform due to higher viscosity at a 
lower strain rate (resembling a solid), while the fluid flows due to moderate viscosity at a higher strain rate. Since the 
continuum approach is easy to implement into existing solvers and its computational cost is low, the SPH and MPS 
methods have been applied with the continuum approach to a wide variety of problems: Couette flows (Zhou et al., 2010), 
Taylor-Couette flows (Xu and Li, 2021), Poiseuille flows (Ren et al., 2012; Ikari et al., 2012; Xenakis et al., 2015; Ren 
et al., 2016; Tao et al., 2017; Morikawa et al., 2019), flows around a cylinder (Rossi et al., 2022), dam-break flows 
(Xenakis et al., 2015; Morikawa et al., 2019; Shao and Lo, 2003; Xu and Jin, 2016; Xie and Jin, 2016; Negishi et al., 
2019; Abdolahzadeh et al., 2019), column-collapse flows (Xu and Jin, 2016; Minatti and Paris, 2015), L-box flows (Cao 
and Li, 2017; Xu et al., 2021), granular flow down an inclined plane (Minatti and Paris, 2015), impacting droplet (Xu et 
al., 2013), injection molding (Xu et al., 2013), jet buckling (Ren et al., 2016; Morikawa et al., 2019; Xu et al., 2013; de 
Souza Andrade et al., 2015), filling process in circular molds (Ren et al., 2012; Xenakis et al., 2015), filling process in a 
ring-shaped channel (Ren et al., 2012), two-dimensional flows in a two-dimensional cylinder and vane rheometers (Zhu 
et al., 2010), mixing process in mixers (Abdolahzadeh et al., 2019), splashing phenomena (Tao et al., 2017), landslide-
induced tsunami (Ikari et al., 2012), and snow avalanches (Saito et al., 2012). In the microstructure approach, a Bingham 
fluid is assumed to be a multi-phase fluid consisting of continuous and dispersed phases, in which interactions and 
microstructures of the dispersed phases are directly considered. The SPH and MPS methods with this approach have been 
used to simulate fresh concrete flows, such as the slump flow test (Xu and Li, 2021; Deeb et al., 2014a), the L-box test 
(Xu and Li, 2021; Deeb et al., 2014b), and pipe flows (Xu et al., 2022). However, the microstructure approach employed 
in those studies has been limited to the cases where the dispersed phase has a relatively large structure, such as coarse 
aggregates or fibers in fresh concrete, and it is still too expensive to resolve microscale materials such as thickener (large 
molecules) in lubricating greases and colloids in suspensions. Therefore, the continuum approach still prevails in 
Bingham fluid calculations. 

Particle-based simulations of highly viscous fluids, such as the solid state of Bingham fluids, are still challenging 
because of two issues: (1) numerical stability against high viscosity and (2) linear and angular momentum conservation 
(Kondo et al., 2022). When the viscosity term is calculated explicitly for high-viscous flows, where the viscous forces 
are dominant, the time step size needs to be set small enough to meet the stability condition of the viscosity term (Duan 
and Chen, 2013), which results in unfavorably high computational costs. To overcome this issue, the implicit velocity 
calculation was adopted to cope with the high viscosity in some of the previous studies with the SPH (Morikawa et al., 
2019; Takahashi et al., 2015; Zago et al., 2018; Weiler et al., 2018) and with the MPS method (Xu and Li, 2021; Negishi 
et al., 2019; Xu et al., 2021; Xu et al., 2022). In addition to the high viscosity treatment, the linear and angular momentum 
conservation is also important for calculating the solid-like behavior in Bingham fluid. However, the conventional 
difference-based Laplacian models for the viscosity term, often adopted in the SPH and MPS methods, result in 
unphysical suppression of the rotational motion due to the torque against rotation (Kondo et al., 2022). To overcome this 
problem, the SPH method incorporates several improvements, such as the gradient correction (Ren et al., 2016; 
Abdolahzadeh et al., 2019; Frissane et al., 2019; Xu and Deng, 2016) and the pairwise-damping viscosity model (Ren et 
al., 2012; Ren et al., 2016; Minatti and Paris, 2015; Weiler et al., 2018; Pan et al., 2013; Russell et al., 2018; Monaghan, 
2019).  

Currently, a very limited number of particle methods that employ implicit velocity calculation and simultaneously 
conserve the linear and angular momentum are found. One is the SPH model proposed by Weiler et al. (2018), and the 
other is the Moving Particle Hydrodynamics (MPH) method (Kondo et al., 2022). Both methods adopted the pairwise-
damping model for angular momentum conservation within the implicit calculation. The major difference between the 
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two is physical consistency. When the discretized system satisfies the fundamental laws of physics, i.e., mass 
conservation, linear and angular momentum conservation, and the second law of thermodynamics, the method is termed 
physically consistent. Since the MPH method is physically consistent, other fundamental laws of physics are also satisfied 
as well as the linear and angular momentum conservation. In the previous MPH studies (Kondo and Matsumoto, 2021; 
Kondo, 2021; Negishi et al., 2023), this feature was revealed important for the stability of the discrete particle system. 
The MPH method does not need empirical stabilizing techniques, such as the artificial repulsive force (Koshizuka et al., 
1998; Monaghan, 2000), zero-pressure limiter (Koshizuka et al., 1998), collision (Lee et al., 2011), and particle shifting 
(Xu et al., 2009; Khayyer et al., 2017), which were often introduced in the conventional particle method, i.e., the SPH 
and MPS methods. Therefore, it seems better to adopt the physically consistent particle method, i.e., the MPH method, 
in terms of robustness and soundness of the calculation. The verification and validation were conducted in the previous 
works on the MPH method with various numerical examples (Kondo et al., 2022; Kondo and Matsumoto, 2021; Kondo, 
2021; Negishi et al., 2023). 

In this study, a Bingham fluid simulation model was constructed and validated based on the physically consistent 
particle method, i.e., the MPH method. In the MPH method, there are two versions: one is the incompressible version 
termed “MPH-I” (Kondo, 2021), in which the practically incompressible condition is considered, and the other is the 
weakly compressible version termed “MPH-WC” (Kondo and Matsumoto, 2021), in which the weakly compressible 
assumption is considered. The current study employed the MPH-WC method with the implicit velocity calculation 
because of its high computational efficiency. Adopting the continuum approach, the viscosity was varied based on the 
constitutive models for the Bingham fluids. The two-dimensional Poiseuille flow of a Bingham plastic fluid and the three-
dimensional dam-break flow of a Bingham pseudoplastic fluid were calculated to verify and validate the proposed 
numerical method. This paper compares the computed results to theory and experiment. 

 
2. Numerical method 
2.1 Discretization of governing equation 

This study employs MPH for weakly compressible flows method (MPH-WC) (Kondo et al., 2022; Kondo and 
Matsumoto, 2021). The governing equations are the Navier-Stokes equation 
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where ρ0, ρ, u, t, Ψ, , g, λ, and κ are the reference density, density, velocity, time, pressure, shear viscosity, gravity, bulk 
viscosity, and bulk modulus, respectively. In the MPH method, specifying large values for bulk viscosity λ and bulk 
modulus κ can express practical incompressibility in calculations. 

The MPH method (Kondo et al., 2022; Kondo and Matsumoto, 2021; Kondo, 2021; Negishi et al., 2023) uses the 
discretized governing equations derived by particle interaction models in a similar way to the SPH (Lucy, 1977; Gingold 
and Monaghan, 1977) and MPS methods (Koshizuka and Oka, 1996) based on effective radius h and the weight function. 
The weight function is expressed as 
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where rij = rj – ri is the relative position vector from particle i to j, r is the absolute value of rij, h is the effective radius, 
d is the space dimension, and Sf is a normalized parameter, which is calculated using an equally-spaced particle 
distribution before starting the calculation. The first term on the right-hand side of Eq. (1) is the negative pressure 
gradient, which is discretized as 
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w
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the second term is the shear viscosity, which is discretized using the pairwise-damping model (Kondo et al., 2022) as 
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Here, the harmonic mean interparticle viscosity (Duan et al., 2015) is adopted to model the interaction between particles 
with different shear viscosities. The first term on the right-hand side of Eq. (2) is the bulk viscosity, which is discretized 
as 

  .ij ij iji
j i

w 


    u u e                                                        (6) 

In Eqs. (4), (5), and (6), the symbol < >i indicates the application of the particle interaction models of the MPH method 
around particle i; the vector 𝐞௜௝ ൌ 𝐫௜௝ ห𝐫௜௝ห⁄  is the unit vector from particle i to j; the vector uij = uj – ui is the relative 
velocity from particle i to j; 𝑤௜௝

ᇱ  is the space derivative of the weight function wij expressed as 
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which has a negative value. The second term on the right-hand side of Eq. (2), the bulk modulus term, is discretized using 
the continuity equation (Kondo et al., 2022) 
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where ni is the particle number density defined as 
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and n0 is a base value evaluated using an equally-spaced particle distribution before computation. As a result, the 
governing equations of Eqs. (1) and (2) are discretized as 
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and 
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respectively, where V is the volume of a single particle region, which is a constant given by the initial particle spacing 
l0 as ∆𝑉 ൌ 𝑙଴

ௗ, and M is the mass of a single particle (=0V). To avoid the tensile instability (Monaghan, 2000), the 
second term on the right-hand side of Eq. (11) is ignored when 𝑛௜ െ 𝑛଴ ൏ 0. In addition, the solid wall is modeled by 
wall particles with specific positions and velocities. 

In the MPH method, the discretized equations (10) and (11) are fitted into the analytical mechanical framework for 
systems with dissipation (Kondo et al., 2022), which ensures a monotonic decrease of the mechanical energy following 
the second law of thermodynamics. This key feature is especially useful for dynamically stable calculations without 
artificial relaxation parameters or numerical techniques for stabilization. Furthermore, linear and angular momentum 
conservation can also be satisfied by incorporating the symmetric pressure gradient model of Eq. (4) and the pairwise-
damping viscosity model of Eq. (5). 
 
2.2 Constitutive model for Bingham fluid 

This study considers Bingham fluid, in specific Bingham plastic and Bingham pseudoplastic fluids, as working fluid 
in its simulations. Bingham fluid is a non-Newtonian fluid with solid- and fluid-like behaviors, which has a certain yield 
stress and behaves like a solid below the stress but flows as highly viscous fluid above it. Here, Bingham fluid is modeled 
by the continuum approach (Ye et al., 2019; Rossi et al., 2022), in which it is regarded as a homogeneous fluid; its non-
Newtonian behaviors are expressed by the strain-rate dependence of shear viscosity based on the constitutive equation 
describing the stress-strain relation, i.e., solid-like behavior is modeled by high viscosity at a lower strain rate, and fluid-
like behavior is by moderate viscosity at a higher strain rate. 

In this study, we applied two types of Bingham models, i.e., the Bingham plastic and pseudoplastic models. 
Specifically, the shear viscosity-strain rate relation for Bingham plastic fluid is given by 

  ,Y
p
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and that for Bingham pseudoplastic fluid is given by 
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            (13) 

Here, Y is the yield stress; p is the plastic viscosity (which is the limiting viscosity at a high strain rate); 𝛾ሶ  is the 
equivalent strain rate; K is the consistency index; n is the flow index, representing the shear-thinning behavior if n < 1.0. 
Using Eqs. (12) and (13) directly is not useful in practical calculations because the viscosity of Eqs. (12) and (13) gives 
an infinite value when 𝛾ሶ → 0,  leading to a numerical divergence. To avoid this singularity, the Papanastasiou 
regularization is used in calculations (Papanastasiou, 1987). The Bingham plastic model with the Papanastasiou 
regularization based on Eq. (12), i.e., the regularized Bingham model, is expressed as 
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and the Bingham pseudoplastic model with the Papanastasiou regularization based on Eq. (13), i.e., the Herschel-Bulkley-
Papanastasiou (HBP) model (Mitsoulis, 2008), is given as 
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Here, m is the Papanastasiou regularization parameter, which controls the stress exponential growth, i.e., the transition 
between solid and fluid regimes. The larger the m is, the sharper the transition is. 

The equivalent strain rate 𝛾ሶ  is the second principal invariant of the strain rate tensor S, which is defined as 
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The velocity gradient tensor ∇⨂𝐮 in Eq. (16) for particle i is evaluated by the following expression: 
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2.3 Time integration 
The time integration algorithm of the MPH-WC method with the implicit velocity calculation (Kondo et al., 2022), 

along with the Bingham fluid modeling, is shown in Fig. 1. The upper index k in the equations of the figure indicates the 
time step. 
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the velocity is calculated implicitly as 
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Then, the position is updated as 
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Fig. 1 Time integration algorithm of the MPH-WC method with the implicit velocity calculation 

along with the Bingham fluid modeling. 
 
 

at the end of the time step. Here, t is the time step size.  
Since the matrix equation given by Eq. (20) is symmetric positive definite, the conjugated gradient (CG) solver is 

employed. For its implementation, the linear systems (Lis) library (Nishida, 2010; Lis: Library of Iterative Solvers for 
Linear Systems (online)) was utilized in this study. 

In this approach, it should be noted that the shear viscosity term, i.e., the second term on the right-hand side of Eq. 
(20), is implicitly calculated, whereas the bulk viscosity term, i.e., the first term on the right-hand side of Eq. (18), is 
explicitly calculated. This treatment is valid when a large pressure load is not expected such as in the considered test 
cases shown in Section 3 of this study. In our past study (Kondo et al., 2022), the validity of this approach was 
demonstrated in test cases of a rotating circular pipe, high-viscous Taylor-Couette flow, and offset collision of a high-
viscous object.  

When using a fully explicit time integration scheme in the particle methods including the MPH-WC method, the time 
step size t needs to be specified considering the stability conditions based on the Courant number CCFL and the diffusion 
number CDIF expressed as 
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where l0 is the initial particle spacing, umax is the maximum flow velocity, max is the maximum viscosity, and CCFL,max 
and CDIF,max are the superior thresholds of CCFL and CDIF for numerical stability. Eq. (22) is the Courant stability condition 
and Eq. (23) is the stability condition of the viscosity term. CCFL,max and CDIF,max are empirically set to values between 0.1 
and 0.5, respectively (Duan and Chen, 2013; Koshizuka et al., 2018; Zago et al., 2018). With the implicit time integration 
of the shear viscosity term, CDIF,max can be a higher value than the conventional threshold in the current method. In the 
current study, only the Courtant stability condition Eq. (22) with CCFL,max = 0.1 was considered as the stability condition.  
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3. Calculation examples 
3.1 Two-dimensional Poiseuille flow 

To verify the proposed approach for steady-state shear phenomena of a Bingham fluid, a two-dimensional Poiseuille 
flow was calculated. This test case is from Ikari et al. (2012), in which the velocity profile of the Bingham plastic fluid 
was discussed and compared with the theoretical result. The computational model is illustrated in Fig. 2, and the 
calculation conditions are shown in Table 1. The working fluid is the Bingham plastic fluid, which is modeled by Eq. 
(14). The shear stress (𝜏 ൌ 𝜇ሺ𝛾ሶሻ|𝛾ሶ |) and shear viscosity are displayed in Fig. 3. In the computational domain, the two no-
slip walls with a length of L = 5.0 m are separated by a distance of 2H = 1.0 m. The no-slip walls were modeled by five 
layers of wall particles by specifying a zero velocity. The gravitational acceleration g = (gx, gy) = (0.1 m/s2, 0.0 m/s2) and 
the periodic boundary conditions were imposed in the x direction. In calculations, the three different particle spacings of 
l0 = 50 mm, 25 mm, and 12.5 mm were applied to evaluate the influence of the particle resolution. Their diffusion number 
CDIF was 3.2, 6.4, and 12.8, respectively. Furthermore, the four effective radii of h = 2.1l0, 3.1l0, 4.1l0, and 5.1l0 were also 
investigated to check the influence of the effective radius h. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Schematic of two-dimensional Poiseuille flow. 
 
 
 

Table 1 Calculation conditions for two-dimensional Poiseuille flow. 

Parameters Coarse case Base case Fine case 

Fluid reference density 0 (kg/m3) 1000 

Plastic viscosity p (Pa-s) 10.0 
Yield stress Y (Pa) 20.0 
Regularization parameter m (-) 100.0 
Gravitational acceleration gx (m/s2) 0.1 
Initial particle spacing l0 (m) 50.0 x 10-3 25.0 x 10-3 12.5 x 10-3 
Effective radius h (m) 2.1l0, 3.1l0, 4.1l0, 5.1l0 
Bulk viscosity λ (Pa-s) 6.0 x 102 3.0 x 102 1.5 x 102 
Bulk modulus κ (Pa) 1.5 x 105 
Time step width Δt (s) 4.0 x 10-3 2.0 x 10-3 1.0 x 10-3 
Number of particles N 2958 9898 35867 
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(a) Shear stress                                  (b) Shear viscosity 
 

Fig. 3 Shear stress and viscosity of Bingham plastic fluid. 
 

Figure 4 compares the velocity profile between the theory and calculation. Here, the theoretical velocity profile of a 
Bingham plastic fluid in a two-dimensional channel is given (Ikari et al., 2012) by 
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(a) Influence of particle spacing (h=3.1l0)           (b) Influence of effective radius (l0=12.5 mm) 
 

Fig. 4 Comparison of velocity profile between theory and calculation. 
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Figure 4 (a) shows the influence of particle spacing with the effective radius of h = 3.1l0. Although l0 = 50 mm 
underpredicted the velocity profile slightly, the spacings of l0 = 25 mm and 12.5 mm showed reasonable agreement with 
the theory. The influence of the effective radius with the particle spacing of l0 = 12.5 mm is shown in Fig. 4 (b). Although 
the effective radius of h = 2.1l0 underpredicted the velocity profile, the effective radii of 3.1l0, 4.1l0, and 5.1l0 showed 
reasonable agreement with the theory. Between the three effective radii, h = 3.1l0 showed the best agreement with the 
theory, indicating the optimum effective radius. The effective radius remains as an arbitrary parameter for the particle 
interaction models, Eqs. (4), (5), and (6), even in the current method like in the MPS method (Koshizuka et al., 2018). A 
too-small effective radius reduces the space accuracy of approximations, whereas a too-large effective radius gives 
diffusive solutions of a local region. Furthermore, a large effective radius increases the number of neighboring particles, 
i.e., the computational cost, which cannot be acceptable for practical use. Therefore, an optimum effective radius should 
be selected, considering the balance between accuracy and computational cost. Ikari et al. (2012) obtained a similar result 
and conclusion. As a result, it was confirmed that the proposed approach can be applied to the shear phenomena of a 
Bingham fluid with confidence. 
 
3.2 Three-dimensional dam-break flow 

The dam-break flow of a Bingham pseudoplastic fluid was simulated in three-dimensions to validate the proposed 
approach for a dynamic problem involving solid- and fluid-like behaviors. Specifically, the dam-break experiment using 
lubricant grease conducted in the past study (Negishi et al., 2019) was calculated. 

A cross-sectional view of the three-dimensional computational model on the symmetry plane in the initial state is 
displayed in Fig. 5, and the calculation conditions are shown in Table 2. The working fluid, a Bingham pseudoplastic 
fluid, is modeled by Eq. (15). The shear stress (𝜏 ൌ 𝜇ሺ𝛾ሶሻ|𝛾ሶ |) and viscosity are displayed in Fig. 6. The internal space of 
the tank was 570 mm x 210 mm x 100 mm. Initially, the fluid was placed behind a fixed partition with a movable gate, 
creating a column measuring 100 mm x 140 mm x 100 mm in a vertical reservoir. The thickness of the fixed partition 
and movable gate is 15 mm. All the walls, which include the tank wall, the fixed partition, and the movable gate, were 
modeled by the wall particles, and five layers of the wall particles were given in the thickness direction for the tank wall. 
The no-slip condition was imposed for all the stationary walls by setting a zero velocity, and an upward velocity of 0.6 
m/s was specified for the movable gate until t = 0.15 s. The gravitational acceleration g = (gx, gy, gz) = (0.0 m/s2, −9.8 
m/s2, 0.0 m/s2) was imposed. In calculations, the four different particle spacings of l0 = 5.0 mm, 3.0 mm, 1.5 mm, and 
1.0 mm were applied to evaluate the influence of the particle resolution. Their diffusion number CDIF was 87.6, 147.9, 
297.6, and 446.7, respectively. The effective radius h was set to 3.1l0. 

Figure 7 (a) shows a set of snapshots of the dam-break flow obtained by the experiment (Negishi et al., 2019). It 
should be noted that the experimental results in Fig. 7 (a) are side views because of restricted optical access. After the  

 

 
Fig. 5 Cross-sectional view of computational model of three-dimensional dam-break flow 

(The particle resolution is l0 = 3 mm). 
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gate is removed with an upward velocity of 0.6 m/s at t = 0.0 s, the column collapses and spreads into the tank, creating 
a dam-break flow. The collapse continued as time passed t = 0.1 s, 0.2 s, and 0.3 s, and then it slowed down immediately 
after t = 0.5 s, showing a “boot-like” shape. Finally, the collapse stopped completely after t = 2.0 s. 

Figure 7 (b) shows a set of snapshots of the dam-break flow calculated by the proposed method with the finest particle 
spacing of l0 = 1.0 mm. Here, the computed results in Fig. 7 (b) are the cross-sectional views of the computational domain 
for visualization purposes. The computed results agreed with the experimental results regarding the free-surface shape. 
The velocity magnitude profile in Fig. 7(b) helps us understand the dam-break flow in detail. During the collapse, the 
flow velocity at the left bottom corner is almost zero because the fluid is subjected to the two boundary resistances from 
the side and bottom walls of the tank, whereas the fluid near the free surface and in the front of the flow moves very 
quickly. After the fluid rushed out of the reservoir, the fluid slowed down and almost stopped after t = 0.5 s. Finally, the 
maximum velocity magnitude reached less than 0.001 m/s at t = 2.0 s.  

 
 
 

Table 2 Calculation conditions for three-dimensional dam-break flow. 

Parameters Coarse case Base case Fine case Super-fine case 

Fluid reference density 0 (kg/m3) 870 
Regularization parameter m (-) 200 
Consistency index K (-) 3.93 
Flow index n (-) 0.61 

Yield stress Y (Pa) 57.0 
Regularization parameter m (-) 200.0 
Initial particle spacing l0 (m) 5.0 x 10-3 3.0 x 10-3 1.5 x 10-3 1.0 x 10-3 
Effective radius h (m) 1.55 x 10-2 9.3 x 10-3 4.65 x 10-3 3.1 x 10-3 
Bulk viscosity λ (Pa-s) 125.0 75.0 37.5 25.0 
Bulk modulus κ (Pa) 7.5 x 105 
Time step width Δt (s) 1.66 x 10-4 1.0 x 10-4 5.0 x 10-5 3.33 x 10-5 
Number of particles N 92800 267744 1284108 3462000 

 
 
 

   (a) Shear stress                                  (b) Shear viscosity 
 

Fig. 6 Shear stress and viscosity of Bingham pseudoplastic fluid. 
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(a) Exp. (Negishi et al., 2019)    (b) Calc. (velocity magnitude)  
 

Fig. 7 Comparison of dam-break flow between experiment and calculation with particle resolution of l0 = 1.0 mm. The 
velocity magnitude is also plotted in the calculated results. Please note that Fig. 7 (a) shows the side views, and Fig. 7 
(b) shows the cross-sectional views. 
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Figures 8 (a) and (b) show the distributions of the equivalent strain rate and kinematic viscosity calculated with the 
finest particle spacing of l0 = 1.0 mm, respectively. In Fig. 8 (a), a higher equivalent strain rate was observed in the region, 
in which the velocity gradient was high as shown in Fig. 7 (b), during the collapse until t = 0.3 s. After t = 0.5 s, overall, 
the equivalent strain rate significantly decreased because the collapse immediately slowed down and the velocity gradient 
in the collapse disappeared. Figure 8 (b) shows the kinematic viscosity distributions corresponding to the equivalent  
 
 
 

(a) Equivalent strain-rate         (b) Kinematic viscosity 
 

Fig. 8 Computed equivalent strain rate and kinematic viscosity distributions on the cross-section  
(The particle resolution of l0 = 1.0 mm). 

13



2
© 2023 The Japan Society of Mechanical Engineers[DOI: 10.1299/jfst.2023jfst0035]

Negishi, Kondo, Amakawa, Obara and Kurose, Journal of Fluid Science and Technology, Vol.18, No.4 (2023)

 

strain rate distributions in Fig. 8 (a). The higher the equivalent strain rate is, the lower the kinematic viscosity is. After 
the dam-break flow almost stopped at t = 0.5 s, the entire column had quite a high kinematic viscosity. This indicated 
that the proposed method could express the stopping and solid-like behaviors of the Bingham pseudoplastic fluid due to 
high viscosity. 

A quantitative comparison of the front position of the dam-break flow between the experimental and computed results 
is shown in Fig. 9. Here, the computed results showed a reasonable qualitative agreement with the experimental data 
regardless of the particle spacing, showing the fluid phase with the immediate development of the front position until t = 
0.5 s and the solid-like phase with the constant position, i.e., the stopping behavior, after t = 2.0 s. Quantitatively, a 
reasonable tendency toward convergence was observed in the computed results, showing a reasonable agreement with 
the experimental result using l0 = 1 mm in the considered cases. 

Comparing the experimental and calculated results in detail in Fig. 9, there seems to be some discrepancy around t 
= 0.5 s, corresponding to the shift of the moving phase to the stopping phase of the dam-break flow. The curves of the 
calculated results exhibit cliff edges, while the curve is smoother in the experiment. This discrepancy may be caused by 
the omission of small-scale phenomena like the slip layer or lubrication layer, which is a very thin layer in the vicinity of 
the wall and induces friction between the wall and fluid and a viscous force caused by local rotational motion of a fluid 
(Xu et al., 2021 and 2022). Xu et al. (2021) applied a macroscopic model, which is called the boundary slippage resistance 
model and locally evaluates additional wall shear stress, to a dam-break flow of fresh concrete and improved the history 
of the front position, smoothing the shift from the moving phase to the stopping phase. The improvement in this aspect 
is left to the future study.  

As a result, it was confirmed that the proposed approach could be applied to the dynamic behavior of a Bingham 
pseudoplastic fluid involving the solid- and fluid-like behaviors even with a high diffusion number CDIF on the order of 
102 in the considered conditions. 

 
 

 
Fig. 9 Comparison of front position between experiment and calculation. 

 
4. Conclusions 

 
This study applied a physically consistent particle method, the Moving Particle Hydrodynamics (MPH) method 

(Kondo, 2021; Kondo and Matsumoto, 2021; Kondo et al., 2022), to Bingham fluid simulations by incorporating their 
constitutive models. To avoid the time step size restriction due to the high viscosity of Bingham fluids, the implicit 
velocity calculation was employed based on the weakly compressible version of the MPH method, called the MPH-WC 
method. Bingham fluid calculations could robustly be conducted with satisfying linear and angular momentum 
conservation, and the characteristic behavior of stopping and solid-like motion could be simulated. 

To verify and validate the proposed method, the two-dimensional Poiseuille flow of a Bingham plastic fluid and the 
three-dimensional dam-break flow of a Bingham pseudoplastic fluid were calculated, and the computed results were 
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compared with the theoretical and experimental results. In calculating the two-dimensional Poiseuille flow of a Bingham 
plastic fluid, the computed velocity distribution agreed well with the theory using fine particle spacing. The computed 
results depended slightly on the effective radius, indicating an optimum effective radius. In calculating the three-
dimensional dam-break flow of a Bingham pseudoplastic fluid, the computed free-surface behavior and history of the 
front position showed reasonable agreement with the experimental results, showing reasonable tendency toward 
convergence from the viewpoint of particle spacing. Further, the stopping behavior in the dam-break flow toward the 
final boot-like shape was successfully represented. It was confirmed that the proposed method promises to become a 
valuable approach for predicting Bingham fluids involving high viscosity and solid- and fluid-like motions. 
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