
1. Introduction
Slow slip events (SSEs) are aseismic transient slips that are geodetically observed in worldwide fault zones (e.g., 
Dragert et al., 2001; Hirose et al., 1999; Ohzono et al., 2015; Rousset, Bürgmann, & Campillo, 2019). Previous 
studies (e.g., Fu et al., 2015; Obara et al., 2004; Wallace, 2020) suggest a wide variety of SSE characteristics 
including magnitude, duration, source depth, tectonic setting of source regions, and so on. The duration of SSEs 
is sometimes used to categorize these events into long-term SSEs (L-SSEs) that last several months to years and 
short-term SSEs (S-SSEs) that continue from several days to weeks (Dragert et al., 2001; Hirose et al., 1999). 
S-SSEs in subduction zones, including the Cascadia, Nankai, and Mexican subduction zones (Frank et al., 2015; 
Obara et al., 2004; Rogers & Dragert, 2003), often synchronize with seismological “slow” earthquakes (Beroza 
& Ide, 2011) including tectonic tremors (Obara, 2002), and referred Episodic Tremor and Slip (ETS). However, 
SSEs without apparent slow earthquakes have also been reported in the regions including the Boso Peninsula 
and the Ryukyu Islands in Japan and La Plata Island in Ecuador (Nishimura, 2014; Ozawa et al., 2003; Vallée 
et al., 2013). It is also known that a tremor-less slow slip was observed during an S-SSE episode in the regions of 
ETS events (Obara & Sekine, 2009; Wech & Bartlow, 2014). These variations highlight the importance of further 
SSE detections in different tectonic regions to understand the regional and universal characteristics of SSEs and 
slow earthquakes. Studying SSEs also helps us understand the slip budget in the SSE source areas, which are 
often located around the rupture area of large earthquakes.

The Pacific plate and Yakutat microplate subduct beneath the North America plate in southcentral Alaska. The M 
9.2 Alaska earthquake occurred in 1964 (e.g., Christensen & Beck, 1994) and its postseismic deformation is still 
ongoing (e.g., Suito & Freymueller, 2009). Two L-SSEs occurred in Upper Cook Inlet (UCI): the first in 1998–
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2001 and the second in 2009–2013 (Fu et al., 2015; Ohta et al., 2006), while 
three were observed in Lower Cook Inlet (LCI): 1992–2004, 2010–2012, 
and 2016–2017 (H. Li et  al.,  2018; S. Li et  al.,  2016; Wei et  al.,  2012) 
(Figure 1). L-SSEs occurred at the down-dip extension of the rupture area 
of the 1964 Alaska earthquake (e.g., Christensen & Beck,  1994; Ohta 
et al., 2006) and correspond to the source area of the afterslip of the 1964 
earthquake (Figure 1) (e.g., Suito & Freymueller, 2009). Tectonic tremors 
in southcentral Alaska have been reported since the late 2000s (Schwartz 
& Rokosky, 2007). Their source area corresponds to the subducting Yaku-
tat microplate and overlaps with that of UCI L-SSEs (e.g., Wech,  2016) 
(Figure 1).

Rousset, Fu et  al.  (2019) discovered an Mw 6.9 S-SSE lasting 27  days in 
southcentral Alaska for the first time. This S-SSE began in early September 
2010, after the onset of the 2009–2013 UCI L-SSE, and the slip propagated 
from east to west, corresponding to the migration of tremors. Those authors 
also found that the cumulative displacements during tremor bursts showed 
a strain release signal and indicated that many S-SSEs synchronizing with 
tremor actually occur in UCI. Weerasinghe and Fu (2021) detected additional 
S-SSEs that corresponded to tremors. However, spatiotemporal variations in 
S-SSE recurrence and the general features of the source parameters are still 
unclear.

Here, we attempted to systematically detect S-SSEs in southcentral Alaska 
using Global Navigation Satellite System (GNSS) data and investigate their 
activity. Systematic detection enables us to find small S-SSE signals hidden 
by noise without a tremor catalog, even if the GNSS network is relatively 
sparse. We also attempted to determine the relationship between the detected 
S-SSEs and tremors, L-SSEs, and the 1964 Alaska earthquake.

2. Data and Detection Method
2.1. Data and Preprocesses

We used the daily coordinates of 86 GNSS stations provided by the Nevada Geodetic Laboratory (Blewitt 
et al., 2018; http://geodesy.unr.edu/, accessed in July 2021) (Figure 1). We used coordinates for the period from 
April 2007 to March 2021, in which the number of available GNSS stations is large enough for our detection 
analysis. As preprocessing step, we removed signals relating to large earthquakes, seasonal oscillations, and 
common-mode errors (Text S1 and Figure S1 in Supporting Information S1).

2.2. Detection Method

We modified the S-SSE systematic detection method (Okada et  al., 2022) and applied it to the preprocessed 
GNSS timeseries. First, we computed the correlation coefficients between a synthetic template and the horizontal 
components of the GNSS data that was detrended using the 365-day moving average while shifting the 181-day 
time window. The synthetic template is the summation of a ramp with a 3-day duration, representing an SSE 
signal, and a linear function to fix no displacement at either end of the template.

Second, we calculated the weighted averages of the correlation coefficients (e.g., Rousset et  al.,  2017), 
expressed  as:
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Figure 1. Tectonic setting and station distribution. Black dashed lines, 
red solid lines, pink ellipses, green dots, the red polygon, and the yellow 
polygon represent iso-depth contours of the subducting plate interface (Hayes 
et al., 2018), active faults (U.S. Geological Survey & Alaska Department of 
Natural Resources, accessed December 2021), L-SSEs (e.g., Fu et al., 2015; 
Ohta et al., 2006; Wei et al., 2012), tectonic tremors (Wech, 2016), the 1964 
Alaska earthquake rupture area (Christensen & Beck, 1994), and the Yakutat 
microplate (Eberhart-Phillips et al., 2006), respectively. The black and green 
arrows show the plate motion of the Pacific plate (Plattner et al., 2007) and the 
Yakutat microplate (Elliott et al., 2010) relative to the North America plate, 
respectively. White squares represent the Global Navigation Satellite System 
stations used in this study.
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where Cs,i(t) is the correlation coefficient of the i th component at station s calculated at time t. The weighted 
average C f(t) and weight 𝐴𝐴 𝐴𝐴

𝑓𝑓

𝑠𝑠𝑠𝑠𝑠
 is calculated for each sub-fault f on the plate interface (Hayes et al., 2018). The 

weight is defined as:
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where 𝐴𝐴 𝐴𝐴
𝑓𝑓

𝑠𝑠𝑠𝑠𝑠
 is the displacement of the i th component at station s caused by a unit slip, which is parallel to the 

relative plate motion (N160°E) (DeMets et al., 2010), at sub-fault f. We assumed sub-faults at depths from 10 to 
80 km (Figure S2 in Supporting Information S1) and computed displacements using a dislocation model for an 
elastic half-space (Okada, 1992). The weighted average of correlation coefficients changes with space and time 
and sometimes exhibits their peak value near tremor epicenters (Wech, 2016). It demonstrates that the weighted 
average of correlation coefficients can be a good index representing small SSE signals associated with tectonic 
tremors (Figure S3a in Supporting Information S1). Third, we extracted the spatiotemporal peaks of the weighted 
averages. We extracted peaks larger than the sum of the average and one sigma from the weighted averages for 
each sub-fault. We then chose the maximum peaks within 150 km (Figure S3a in Supporting Information S1) and 
41 days (Figure S3b in Supporting Information S1) and regarded the sub-fault and date recording the maximum 
peak as the initial location of the fault model and the middle date of the candidate event of the S-SSEs. The S-SSE 
activity in this region has not been evident yet, and tremor catalogs have been limited to a specific region (e.g., 
northeast of Cook Inlet) and period. Thus, we picked up as many candidates of potential SSEs as possible using 
the relatively loose thresholds. Because of the loose selection, the candidates include many non-SSE events as 
well as some actual SSEs, and we need further categorization for accurate SSE detection.

Fourthly, we estimated the preliminary duration of candidate events to reduce computational cost. We stacked 
181-day horizontal GNSS coordinates weighted by the predicted displacement 𝐴𝐴 𝐴𝐴

𝑓𝑓

𝑠𝑠𝑠𝑠𝑠
 and the noise level of the 

coordinates. We then fitted a linear function with and without a ramp and calculated the difference in the Akaike 
Information Criterion (Akaike,  1974) between the two functions (ΔAIC). We performed this process while 
changing the duration of the ramp from 1 to 121  days and adopted the duration for the minimum ΔAIC as 
the  preliminary duration of the candidate events (Rousset, Bürgmann, & Campillo, 2019). The following fault 
model and duration estimation process were applied between ±20 days of the preliminary duration. Details of this 
stacking procedure are provided in Text S2 in Supporting Information S1. Fifthly, we estimated the rectangular 
fault model (Okada, 1992) of the candidate events for each duration (Text S3 in Supporting Information S1). We 
assessed the estimation result of the fault model using the reduction of chi-square (Δχ 2), which is an index that 
evaluates the fit of the fault model (Text S3 in Supporting Information S1) (e.g., Okada et al., 2022). Sixthly, we 
estimated the duration of candidate events using the same method as the estimation of the preliminary duration. In 
the duration estimation process, we weighted the coordinates by the displacements calculated from the estimated 
fault model for each duration instead of the displacements 𝐴𝐴 𝐴𝐴

𝑓𝑓

𝑠𝑠𝑠𝑠𝑠
 predicted from the assumed sub-fault. We adopted 

the duration with minimum ΔAIC and the fault model corresponding to the duration as those of the candidate.

Finally, we categorized the candidate events into S-SSEs based on the estimation results of the fault models and 
duration. The criteria are as follows: (a) the slip azimuth of the fault model (strike minus rake) is within ±40° 
of the relative plate motion (N160°E) (DeMets et al., 2010); (b) the minimum ΔAIC calculated for the duration 
estimation process is −60 or less; and (c) Δχ 2 calculated in the fault model estimation process is 200 or more. In 
addition, we also categorized the candidate events which satisfy criteria (a) and (b) but Δχ 2 is between 100 and 
200 into potential transient events (PTEs). This category includes both possible small SSEs and false detected 
events. The criterion for ΔAIC and Δχ 2 was decided by trial-and-error while checking the signal-to-noise ratio 
of the stacked timeseries, the fitting between observed and calculated displacement field, and coinciding tremors 
(Wech, 2016). We verified that the spatial pattern of the detected events does not significantly change depending 
on the different Δχ 2 values (Text S3 and Figure S4 in Supporting Information S1).

3. Result and Discussion
3.1. General Characteristics of the Detected S-SSEs

We successfully detected 31 S-SSEs and 20 PTEs during the 14-year analysis period. Most of the detected S-SSEs 
are zonally distributed at a depth from 35 to 45 km, which is the down-dip extension of the megathrust rupture 
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zone (Christensen & Beck, 1994) (Figure 2, Figures S4, and S5 and Table 
S5 in Supporting Information S1). The depth of S-SSE occurrence and zonal 
distribution along a direction parallel to the trench are similar to those in the 
Cascadia and Nankai subduction zones (e.g., Michel et al., 2019a; Nishimura 
et al., 2013). One S-SSE was detected in near the Trench (Figure 2a), but 
this event is less reliable because only one station recorded the displacement 
indicating reverse faulting.

Most of the detected S-SSEs were located northeast of Cook Inlet, though 
several S-SSEs were detected on the Kenai Peninsula and Kodiak Island 
(Figure  2). The region of many S-SSEs corresponds to the region where 
the Yakutat microplate subducts (Eberhart-Phillips et  al.,  2006), similar 
to the source region of tectonic tremors (Wech, 2016) (Figures 1 and 2a). 
Wech  (2016) indicated that the fluid-rich layer at the Yakutat microplate 
interface (Kim et al., 2014) facilitates tremors, and a recent numerical simula-
tion of the thermal structure in this region supports this hypothesis (Iwamoto 
et al., 2022). Our detection shows a clear spatial correlation between S-SSEs 
and the Yakutat microplate, and we speculate that the fluid-rich layer also 
enhances an S-SSE activity in southcentral Alaska.

Cumulative slip for S-SSEs shows two spots with high cumulative slip north-
east of Cook Inlet (Figure 2b). We hereafter call these spots clusters. A peak of 
cumulative slip in the western and eastern clusters is up to 0.27 m (∼19 mm/
yr) and 0.43 m (∼31 mm/yr) over the 14 years (Figure 2b), respectively. They 
are equivalent to approximately 37% and 60% of the relative plate motion rate 

of the Yakutat microplate (52 mm/yr) (Elliott et al., 2010). Active S-SSEs are located in the transition zone between 
the fully coupling and fully creeping zones (S. Li et al., 2016) and they may regularly transfer stress into the up-dip 
coupled region. We also calculated the average slip rate of S-SSEs (Figure S6b in Supporting Information S1), which 
is the division of the cumulative slip (Figure 2b) by the cumulative duration (Figure S6a in Supporting Informa-
tion S1). It is about 1 mm/day, similar to that in the Nankai subduction zone (Okada et al., 2022).

The moment magnitude assuming a rigidity of 50 GPa and the duration of S-SSEs and PTEs mainly range from Mw 
6.2 to 6.7 and from 1 to 50 days, respectively (Figures S7a and S7b in Supporting Information S1). We suggest that 
the lowest limit detectability in this region is Mw 6.3, because the mode value of the frequency distribution of S-SSEs’ 
magnitude (Figure S7 in Supporting Information S1) corresponds to the completeness magnitude of an earthquake 
catalog. Although the number of detected S-SSEs and the range of magnitude is limited, the seismic moment of the 
S-SSEs appears to be proportional to their duration (Ide et al., 2007) (Figure S7c in Supporting Information S1), unlike 
the result by Michel et al. (2019b) which suggested that the seismic moment of S-SSEs in Cascadia is proportional to 
the cube of their duration. We infer that the relationship between seismic moment and duration of S-SSE has regional-
ity, although we require further validation to determine which relationship better fits the S-SSEs in southcentral Alaska.

3.2. Individual Events

We show fault models with observed and calculated displacements for all detected events (Figures S9–S59 in 
Supporting Information S1) and picked up notable events in Figure 3. The 2010 September S-SSE was detected 
by both Rousset, Fu et al. (2019) and our study (Figure 3a). The fault location is not significantly different between 
the two studies, whereas the estimated magnitude and duration is less in our study than in those of Rousset, Fu 
et al.  (2019). Although the differences between the assumed plate interface model and slip inversion strategy 
possibly affected the estimation, a wider station distribution compared with that of Rousset, Fu et al. (2019) is the 
main reason for the smaller moment than the previous one. In late September 2010, coherent southward displace-
ments widely appeared around southcentral Alaska (Figure S8 in Supporting Information S1). We regarded these 
translational displacements as noise and removed them by applying the spatial filter (Wdowinski et al., 1997) in 
the preprocessing (Text S1 in Supporting Information S1).

We detected the S-SSE in June 2014 (Figure 3b), which synchronized with tectonic tremors (Wech, 2016) as 
similar to the September 2010 S-SSE, after the end of the 2009–2013 L-SSE. Our results show that S-SSEs 

Figure 2. Spatial distribution of the detected S-SSEs. Black and gray dashed 
lines represent iso-depth contours of the subducting plate interface (Hayes 
et al., 2018). (a) Spatial distribution of rectangular fault models of the detected 
S-SSEs. Pink and green rectangles show the fault models of SSEs and PTEs, 
respectively. The red solid line and broken yellow line represent the rupture 
area of the 1964 Alaska earthquake (Christensen & Beck, 1994) and the 
Yakutat microplate (Eberhart-Phillips et al., 2006), respectively. The blue 
length scale is the projection line used in Figure 4. (b) Spatial distribution 
of the cumulative slip for S-SSEs. A solid line and green circles represent a 
plate boundary (Bird, 2003) and Global Navigation Satellite System stations. 
Pink and black ellipses show the approximate location of the L-SSEs (e.g., Fu 
et al., 2015; Ohta et al., 2006; Wei et al., 2012) and western (W) and eastern 
(E) SSE clusters, respectively.
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recurred in southcentral Alaska, regardless of the occurrence of the L-SSEs, as suggested by previous studies 
(e.g., Rousset, Fu et al., 2019).

Although station density does not significantly differ from that northeast of Cook Inlet, our systematic detection 
procedure identified only three S-SSEs in the Kenai Peninsula (Figure 2a). Because two S-SSEs (Figure 3c and 
S42 in Supporting Information S1) were detected during the period of the 2016–2017 LCI L-SSE (e.g., H. Li 
et al., 2018), we believe that we recognized the slip acceleration period of the L-SSE as an S-SSE. We speculate 
that the contrast of S-SSE activity in the Kenai Peninsula and northeast of Cook Inlet is attributed to different 
subducting plates, as discussed in Section 3.1.

We detected two PTEs on Kodiak Island and the Alaska Peninsula (Figure 2a). We interpret the April 2020 PTE 
as an SSE based on coherent displacement at multiple stations (Figure 3d). Future expansion of onshore and 
offshore geodetic measurements will help us detect further smaller events.

3.3. Spatiotemporal Activity of S-SSEs

We investigated the spatiotemporal activity of the detected S-SSEs and PTEs. Here, we focused on the region 
northeast of Cook Inlet and at a depth greater than 20 km because of the high activity of S-SSEs and tremors 
observed in that area (Wech, 2016) (Figures 2a and 4). We found that many S-SSEs and three PTEs spatiotem-
porally synchronized with tremors, especially after the upgrade of a seismic network (Wech, 2016). Our results 
showed that the S-SSEs northeast of Cook Inlet are ETS-type events, similar to the SSEs in Cascadia, Nankai, 
and Mexico (Obara et al., 2004; Rogers & Dragert, 2003; Rousset et al., 2017). However, the S-SSE activity at a 
distance of ≥100 km, where tremors continuously occur (Wech, 2016), is less frequent than that in a more western 
area (Figure 4). We infer that the current geodetic observation cannot detect small and frequent S-SSEs with short 
recurrence intervals in this region.

Figure 3. Examples of the detected events. Colored rectangles, green dots, black solid arrows, and blue open arrows 
represent the estimated fault model, tectonic tremors (Wech, 2016), observed displacements, and calculated displacements, 
respectively. Black dashed and solid lines show iso-depth contours of the subducting plate interface with an interval of 20 km 
(Hayes et al., 2018) and the plate boundary (Bird, 2003), respectively. (a) September 2010 S-SSE. (b) June 2014 S-SSE. (c) 
July 2016 S-SSE. (d) April 2020 PTE.
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3.4. Comparison of S-SSEs to Other Aseismic Slips on the Plate Interface

At the down-dip extension of the 1964 earthquake rupture zone, the afterslip was estimated using geodetic data 
from leveling, tide gauge, and GNSS observations (e.g., Suito & Freymueller, 2009). We found that the location 
of the western S-SSE cluster (indicated as “W” in Figure 2b) corresponded to that of the maximum peak of the 
afterslip (Suito & Freymueller, 2009). The occurrence of SSEs in the afterslip region of the 1964 earthquake 
has been reported by previous studies (e.g., Suito & Freymueller, 2009), and the co-location between SSEs and 
afterslip has also been observed in the Nankai subduction zone (Sherrill & Johnson, 2021; Yarai & Ozawa, 2013). 
However, no studies, including our present study, have detected significant SSEs near Kodiak Island, where the 
large coseismic slip and afterslip were estimated (e.g., Christensen & Beck, 1994; Suito & Freymueller, 2009). 
We consider that the difference in whether SSEs spatially coincide with the afterslip relates to the along-trench 
variation of a physical condition related to the Yakutat microplate, as discussed previously. We also suspect that 
the western S-SSE cluster was activated by coseismic slip and afterslip of the 1964 Alaska earthquake.

The source area of the S-SSEs was close to that of the L-SSEs in southcentral Alaska. The detected S-SSEs can 
be interpreted as slip acceleration of the LCI L-SSEs, as discussed in Section 3.2. In the case of the UCI L-SSEs, 
the two major S-SSE clusters were located on both along-strike sides of the L-SSEs source area (Figure 2b) (e.g., 
Fu et al., 2015). The L-SSEs source area overlapped that of S-SSEs in a deep part but extended beyond that of 
S-SSEs in a shallow portion (Figure 2b). Major S-SSE activity is often observed at the down-dip portion of large 
L-SSEs in the Nankai (e.g., Hirose & Obara, 2005) and Mexican subduction zones (e.g., Frank et al., 2015). In 

Figure 4. Space-time diagram of S-SSEs, PTEs, and tectonic tremors. The x- and y-axes are time and distance along the A-B 
line (Figure 2a), respectively. The warm- and cold-colored rectangles and green dots represent S-SSEs, PTEs, and tremors 
(Wech, 2016), respectively. The purple rectangle represents the approximate location of the 2009–2013 Upper Cook Inlet 
L-SSE (Rousset, Fu et al., 2019). The contrast of rectangles shows the moment magnitude of each S-SSE. The length and 
width of the rectangles show the projected distance and duration of the detected events, although the minimum plotted width 
is 25 days even for the event with a duration of less than 25 days for visualization. The dashed and solid green lines represent 
the period of the tremor catalog before and after the upgrade of a seismic network, respectively.
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the Nankai subduction zone, the activation of S-SSEs during up-dip L-SSEs has been reported (e.g., Hirose & 
Obara, 2005). Frank et al. (2018) indicated that the 2006 Guerrero L-SSE in Mexico could be interpreted as a 
cluster of small S-SSEs. However, we did not find a significant increase in both S-SSEs and tremors (Wech, 2016) 
during the 2009–2013 UCI L-SSE (Figure 4). This indicates that the temporal relationship between S-SSEs and 
L-SSEs in southcentral Alaska differs from those in Nankai and Mexico. Rousset, Fu et al. (2019) proposed two 
end-member models for the relationship between S-SSEs and UCI L-SSEs: (a) the UCI L-SSE is composed of a 
cluster of S-SSEs, and (b) the L-SSE and S-SSEs are distinctive phenomena and the L-SSE occurs in the up-dip 
of S-SSEs. Those authors also expected that more frequent and/or energetic S-SSEs would be observed during 
the L-SSE period in both models. Our findings of the S-SSE and UCI L-SSE relationship prefer the latter model 
because of their spatial relationship mentioned above. However, no significant change in S-SSE activity was 
found (Figures 2b and 4). An improvement in the analysis method for SSEs with a wide range of duration can 
provide clues to quantitatively clarify the interplay between S-SSEs and L-SSEs.

4. Conclusions
We applied an S-SSE systematic detection method to 14  years of GNSS data from southcentral Alaska and 
successfully detected 31 S-SSEs and 20 potential transient events. The detected S-SSEs were located at a depth 
from 35 to 45 km, which corresponds to the down-dip extension of the 1964 Alaska earthquake rupture zone. 
Most S-SSEs were detected northeast of Cook Inlet where the Yakutat microplate subducts, and they were clus-
tered in two areas. We suggest that the S-SSE genesis correlates with the subducting microplate, similar to that of 
tectonic tremors in southcentral Alaska. Active S-SSEs significantly reduce stress in the source area and transfer 
it to the up-dip area. The source area of S-SSEs partly overlapped that of L-SSEs and the afterslip caused by the 
1964 earthquake, with several S-SSEs occurring during duration of the 2009–2013 L-SSE. The spatial corre-
spondence among different aseismic slips may indicate complex physical conditions at the plate boundary. Future 
detailed and quantitative analyses will improve our understanding of aseismic slip activity, including S-SSEs in 
southcentral Alaska.

Data Availability Statement
The source parameter list of all detected events in this study (Table S5 in Supporting Information S1) is availa-
ble online (https://doi.org/10.5281/zenodo.8259965). The daily coordinates used in our study were provided by 
the Nevada Geodetic Laboratory (http://geodesy.unr.edu/NGLStationPages/GlobalStationList). The RINEX files 
are available on the web pages of UNAVCO (https://data.unavco.org/archive/gnss/rinex/obs/) and the National 
Geodetic Survey (https://geodesy.noaa.gov/corsdata/rinex/) (Table S6 in Supporting Information  S1). Both 
pages consist of yearly subdirectories and daily sub-subdirectories, and daily RINEX files are stored in the daily 
sub-subdirectory. Note that the UNAVCO web page requires a user account to access the data set. You will need 
to create an account by registering your name, mail address, country, work sector, and institution on the web regis-
tration form. The ANSS Comprehensive Earthquake Catalog is available on the U.S. Geological Survey (USGS) 
webpage (https://earthquake.usgs.gov/earthquakes/search/). The slab2 model (Hayes et al., 2018) is also available 
on the USGS website (Hayes, 2018, https://www.sciencebase.gov/catalog/item/5aa1b00ee4b0b1c392e86467/). 
All figures were created using Generic Mapping Tools version 5.4 (Wessel et al., 2013).
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