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Abstract

In this note, we consider the problem of estimating the smaller of two ordered means. Such
problems frequently arise in applications where, for example, aggregated data are observed.
In order to combine information from direct and indirect observations, we use the Stein-type
truncated estimator. We show that it dominates the direct estimator for distributions with
log-concave or log-convex densities.

Key words and phrases: conditional expectation, dominance, log-concave densities, order
restriction.

1 Introduction

Suppose that observations X and Y are independently distributed with means µ1 and µ2 and
suppose that it is known that µ1 ≤ µ2. We consider the problem of estimating µ1 using not
only X but also Y together with the information that µ1 ≤ µ2. Thus, µ1 is the parameter of
interest and µ2 is a nuisance parameter, and X is the direct estimator of µ1 and Y contains
additional indirect information about µ1. Such situations frequently arise in applications where
we observe aggregated data. For example, suppose that X and Y1, . . . , Yn are independent
Poisson variables with unknown means µ1 and µ1, . . . , µn, respectively, and that we observe X
and Y =

∑
i=1,...,n Yi. Then we know that E[X] ≤ E[Y ] and we want to use Y as well as X

when we are interested in µ1.
In order to combine information from X and Y to estimate µ1, we consider using µ̂1(X,Y ) =

min{X, (X + Y )/2}, because it is expected that µ1 ≤ (X + Y )/2 since E[(X + Y )/2] = (µ1 +
µ2)/2 ≥ µ1. Stein (1964) first considered a shrinkage estimator of this form for the estimation
of a normal variance in the presence of an unknown mean. Such estimators have been proved
to be useful in the context of estimation under order restriction. For example, Lee (1981), Lee
(1988), and Kelly (1989) considered the normal case. Hwang and Peddada (1994) considered
elliptically contoured distributions. The Poisson case was considered by Kushary and Cohen
(1991) and Chang and Shinozaki (2006). See also van Eeden (2006).
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In this paper, we show that the estimator µ̂1(X,Y ) dominates X under the squared error loss
function for distributions whose densities are log-concave or log-convex. We assume that Y can
be written as Y = Z + V , where Z is an independent copy of X while V is a nonnegative error
that is either random or fixed. This assumption is satisfied, for example, when the distribution
of X is Poisson or normal. Our approach is to write the risk function of µ̂1(X,Y ) as

EV
[
E(X,Z)

[(
min

{
X,

X + Z + V

2

}
− µ

)2]]
(1.1)

and show that the inner expectation, which converges to the risk of the direct estimator X as
V → ∞, is a nondecreasing function of V . We obtain results for distributions that have not been
fully considered in the literature, including the gamma and negative binomial distributions with
unknown shape parameters. Moreover, since the error V can have any distribution on [0,∞),
our results are relevant from a practical point of view.

There are available in the literature different forms of estimators of ordered parameters for
simultaneous as well as componentwise estimation problems. These include maximum likelihood
estimators (e.g., Lee, 1981; Misra, Iyer and Singh, 2004; Singh, Misra and Li, 2005; Jena and
Tripathy, 2019), mixed estimators (e.g., Katz, 1963; Kumar and Sharma, 1988; Vijayshree and
Singh, 1991; Patra and Kumar, 2017), Pitman-type estimators (e.g., Blumenthal and Cohen,
1968a, 1968b; Cohen and Sackrowitz, 1970; Kumar and Sharma, 1989; Kumar and Sharma, 1993;
Kumar, Kumar and Tripathi, 2005), Stein-type shrinkage estimators (e.g., Kumar, Tripathi and
Misra, 2005), and Brewster–Zidek-type shrinkage estimators (e.g., Vijayshree et al., 1995; Misra
et al., 2002; Patra, Kumar and Petropoulos, 2021). However, specific distributions such as
normal and exponential distributions are considered in most cases and location/scale families are
considered in other cases. In contrast, we show the robustness of µ̂1(X,Y ) = min{X, (X+Y )/2}
based on the aforementioned distributional assumptions.

In Section 2, we derive conditions for the monotonicity of (1.1). In Section 3, we briefly dis-
cuss the estimation of µ2 using a gamma model. In Section 4, simulation studies are performed.
Some concluding remarks are given in Section 5. Proofs and details of an algorithm used in
Section 4 are given in the Appendix.

2 Main results

We consider the continuous and discrete cases in Sections 2.1 and 2.2, respectively. In both the
sections, we use Lemma 2.1.

Lemma 2.1 Suppose that X and Z are independently and identically distributed with mean
µ ∈ R and with a finite second moment. Suppose that

E[X + Z + v|X > Z + v] ≥ 2µ

for all v ∈ (0,∞) \ N. Then

R(v) = E
[(

min
{
X,

X + Z + v

2

}
− µ

)2]
is a nondecreasing function of v ≥ 0, and in particular

E
[(

min
{
X,

X + Z + v

2

}
− µ

)2]
≤ E[(X − µ)2]

for all v ≥ 0.
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Proof. We have

R′(v) = E
[(X + Z + v

2
− µ

)
1(X > Z + v)

]
= P (X > Z + v)(E[X + Z + v|X > Z + v]− 2µ)/2

for all v ∈ (0,∞) \ N even when X and Z are discrete variables, and this proves the desired
result. □

2.1 The continuous case

Here, we consider the continuous case.

Proposition 2.1 Let c ∈ [−∞,∞). Suppose that X and Z are independently and identically
distributed according to a probability density function f : (c,∞) → (0,∞) with mean µ ∈ (c,∞).
Then E[X + Z + v|X > Z + v] ≥ 2µ for all v > 0 if (i) f is log-concave or (ii) f is log-convex
and limz→∞ f(z) = 0.

Proof. Let F denote the distribution function corresponding to f . Fix v > 0.
For part (i), suppose that f is log-concave. Then

E[X|X > Z + v] =

∫∞
c+v

{
xf(x)

∫ x−v
c f(z)dz

}
dx∫∞

c+v

{
f(x)

∫ x−v
c f(z)dz

}
dx

=

∫∞
c+v xf(x)F (x− v)dx∫∞
c+v f(x)F (x− v)dx

=

∫∞
c xf(x){1(x > c+ v)F (x− v)/F (x)}F (x)dx∫∞
c f(x){1(x > c+ v)F (x− v)/F (x)}F (x)dx

.

Since the log-concavity of f implies the log-concavity of F (see, for examle, Bagnoli and
Bergstrom (2005)), 1(x > c+ v)F (x− v)/F (x) is a nondecreasing function of x > c. Therefore,
by the covariance inequality,

E[X|X > Z + v] ≥
∫∞
c xf(x)F (x)dx∫∞
c f(x)F (x)dx

= E[X|X > Z].

On the other hand,

E[Z + v|X > Z + v] =

∫∞
c

{
(z + v)f(z)

∫∞
z+v f(x)dx

}
dz∫∞

c

{
f(z)

∫∞
z+v f(x)dx

}
dz

=

∫∞
c (z + v)f(z){1− F (z + v)}dz∫∞

c f(z){1− F (z + v)}dz

=

∫∞
c zf(z){1(z > c+ v)f(z − v)/f(z)}{1− F (z)}dz∫∞
c f(z){1(z > c+ v)f(z − v)/f(z)}{1− F (z)}dz

.

Since 1(z > c+ v)f(z − v)/f(z) is a nondecreasing function of z > c by the log-concavity of f ,
we have, by the covariance inequality,

E[Z + v|X > Z + v] ≥
∫∞
c zf(z){1− F (z)}dz∫∞
c f(z){1− F (z)}dz

= E[Z|X > Z].
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Thus, E[X + Z + v|X > Z + v] ≥ E[X + Z|X > Z] = 2µ.
For part (ii), suppose that f is log-convex. Then

E[X|X > Z + v] =

∫∞
c+v xf(x)F (x− v)dx∫∞
c+v f(x)F (x− v)dx

=

∫∞
c (x+ v){f(x+ v)/f(x)}f(x)F (x)dx∫∞

c {f(x+ v)/f(x)}f(x)F (x)dx

≥
∫∞
c x{f(x+ v)/f(x)}f(x)F (x)dx∫∞
c {f(x+ v)/f(x)}f(x)F (x)dx

.

Since f(x+ v)/f(x) is a nondecreasing function of x > c, by the covariance inequality,

E[X|X > Z + v] ≥
∫∞
c xf(x)F (x)dx∫∞
c f(x)F (x)dx

= E[X|X > Z].

On the other hand,

E[Z + v|X > Z + v] =

∫∞
c (z + v)f(z){1− F (z + v)}dz∫∞

c f(z){1− F (z + v)}dz

=

∫∞
c (z + v)[{1− F (z + v)}/{1− F (z)}]f(z){1− F (z)}dz∫∞

c [{1− F (z + v)}/{1− F (z)}]f(z){1− F (z)}dz

≥
∫∞
c z[{1− F (z + v)}/{1− F (z)}]f(z){1− F (z)}dz∫∞
c [{1− F (z + v)}/{1− F (z)}]f(z){1− F (z)}dz

.

By Theorem 4 of Bagnoli and Bergstrom (2005), 1 − F is log-convex on (c,∞), which implies
that {1−F (z+v)}/{1−F (z)} is a nondecreasing function of z > c. Therefore, by the covariance
inequality,

E[Z + v|X > Z + v] ≥
∫∞
c zf(z){1− F (z)}dz∫∞
c f(z){1− F (z)}dz

= E[Z|X > Z],

and thus E[X + Z + v|X > Z + v] ≥ E[X + Z|X > Z] = 2µ. This completes the proof. □

By Lemma 2.1 and Proposition 2.1, we have the following results.

Example 2.1 Let g : R → (0,∞) be a log-concave probability density function with mean 0.
Suppose that X and Z are independently and identically distributed according to the probability
density function g(x−µ), x ∈ R, where µ ∈ R is an unknown location parameter. Suppose that
we observe Y = Z + V for an independent error V ≥ 0 which is random or fixed. Then we have
E[{min{X, (X+Y )/2}−µ}2] ≤ E[(X−µ)2]. This is a known result when X and Y are normal
(see, for example, Lee (1981)).

Example 2.2 If X ∼ Ga(α1, β) and Y ∼ Ga(α2, β) are independent with α1 ≤ α2, then
min{X, (X + Y )/2} dominates X in estimating E[X] = α1/β. (Here, we use the fact that Y

can be decomposed as Z + V , where Z
d
= X and V ∼ Ga(α2 − α1, β) are independent.) This

result has not been reported in the literature, so far as we know.
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When we consider scale familes, Proposition 2.1 is not directly applicable. In fact, we modify
Lemma 2.1 for this case.

Proposition 2.2 Suppose that X and Z are independently and identically distributed positive
random variables having mean µ ∈ (0,∞) and a finite second moment. Suppose that xf ′(x)/f(x)
is a nonincreasing function of x > 0. Then

R̃(v) = E
[{

min
{
X,

X + (1 + v)Z

2

}
− µ

}2]
is a nondecreasing function of v ≥ 0, and in particular

E
[{

min
{
X,

X + (1 + v)Z

2

}
− µ

}2]
≤ E[(X − µ)2]

for all v ≥ 0.

Example 2.3 If X/γ1 ∼ Ga(α, 1) and Y/γ2 ∼ Ga(α, 1) are independent with γ1 ≤ γ2, then
min{X, (X+Y )/2} dominates X in estimating E[X] = αγ1, which is a known result (see Section
4 of Hwang and Peddada (1994)).

2.2 The discrete case

In the discrete case, the situation is more complicated since P (X = Z) > 0. Let N0 = N∪{0} =
{0, 1, 2, . . . }. Let 2N0 = {2n|n ∈ N0} and 2N0 + 1 = {2n+ 1|n ∈ N0}.

Proposition 2.3 Suppose that X and Z are independently and identically distributed on N0

with mean µ ∈ (0,∞) according to the probability mass function defined by f : [0,∞) → (0,∞).
Then E[X +Z + v|X > Z + v] ≥ 2µ for all v ∈ (0,∞) \N if one of the following two conditions
are satisfied.

(i) f is log-concave, {∂/(∂x)}{log f(x)} is a convex function of x ∈ [0,∞), and E[X+Z|X+
Z ∈ 2N0] ≤ E[X + Z|X + Z ∈ 2N0 + 1].

(ii) f is log-convex and limz→∞ f(z) = 0.

Proof. Let F denote the distribution function corresponding to f and fix v ∈ (0,∞) \N. Let
[v] denote the integer satisfying [v] ≤ v < [v] + 1. Then

E[X|X > Z + v] =

∑∞
x=0

{
xf(x)

∑
z<x−v f(z)

}∑∞
x=0

{
f(x)

∑
z<x−v f(z)

} =

∑∞
x=0 xf(x)F (x− [v]− 1)∑∞
x=0 f(x)F (x− [v]− 1)

and

E[Z + v|X > Z + v] =

∑∞
z=0

{
(z + v)f(z)

∑
x>z+v f(x)

}∑∞
z=0

{
f(z)

∑
x>z+v f(x)

} ≥
∑∞

z=0(z + [v])f(z){1− F (z + [v])}∑∞
z=0 f(z){1− F (z + [v])}

.

Similarly,

E[X|X > Z] =

∑∞
x=0

{
xf(x)

∑
z<x f(z)

}∑∞
x=0

{
f(x)

∑
z<x f(z)

} =

∑∞
x=0 xf(x)F (x− 1)∑∞
x=0 f(x)F (x− 1)
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and

E[Z|X > Z] =

∑∞
z=0

{
zf(z)

∑
x>z f(x)

}∑∞
z=0

{
f(z)

∑
x>z f(x)

} =

∑∞
z=0 zf(z){1− F (z)}∑∞
z=0 f(z){1− F (z)}

.

By an argument similar to the proof of Proposition 2.1, it follows from parts (i) and (ii) of Lemma
2.2 below that E[X|X > Z + v] ≥ E[X|X > Z] and that E[Z + v|X > Z + v] ≥ E[Z|X > Z].
Furthermore, by part (iii) of Lemma 2.2 given below, E[X + Z|X ≥ Z + 1] ≥ E[X + Z]. Thus,
E[X+Z+ v|X > Z+ v] ≥ E[X+Z|X ≥ Z+1] ≥ E[X+Z] = 2µ. This proves the proposition.
□

Lemma 2.2 Suppose that f : [0,∞) → (0,∞) defines a probability mass function on N0 =
{0, 1, 2, . . . }. Let F denote the distribution function corresponding to f . Let X and Z be inde-
pendently distributed according to F . Let k ∈ N0.

(i) If f is log-concave, then for any x1, x2 ∈ N0 satisfying x1 ≤ x2, we have F (x1)/F (x1+k) ≤
F (x2)/F (x2 + k).

(ii) If f is log-convex and limz→∞ f(z) = 0, then for any x1, x2 ∈ N0 satisfying x1 ≤ x2, we
have {1− F (x1 + k)}/{1− F (x1)} ≤ {1− F (x2 + k)}/{1− F (x2)}.

(iii) If either {∂/(∂x)}{log f(x)} is a convex function of x ∈ [0,∞) and E[X + Z|X + Z ∈
2N0] ≤ E[X+Z|X+Z ∈ 2N0+1] or f is log-convex, then E[X+Z|X ≥ Z+1] ≥ E[X+Z].

By Lemma 2.1 and Proposition 2.3, we have the following results.

Example 2.4 Note that W ∼ Po(µ) implies P (W ∈ 2N0) = (1 + e−2µ)/2 and E[W |W ∈
2N0 + 1] = µ(1 + e−2µ)/(1− e−2µ) ≥ E[W ] ≥ E[W |W ∈ 2N0]. If X ∼ Po(µ1) and Y ∼ Po(µ2)
are independent with µ1 ≤ µ2, then min{X, (X + Y )/2} dominates X, which is a known result
(see, for example, Kushary and Cohen (1991)). Meanwhile, the unbalanced case needs to be
studied further (Chang and Shinozaki (2006)). If X ∼ Po(m1µ1) and Y ∼ Po(m2µ2) with m1

andm2 known and ifm1 ≤ m2, we see that min{X/m1, (X+Y )/(2m1)} dominatesX1/m1 for the
estimation of µ1. However, it has not been determined whether min{X/m1, (X+Y )/(m1+m2)}
dominates X1/m1.

Example 2.5 Note that W |λ ∼ Po(λ) with λ ∼ Ga(r, p/(1 − p)) implies W ∼ NB(r, p) and
E[W |W ∈ 2N0 + 1] = E[E[W1(W ∈ 2N0 + 1)|λ]]/E[E[1(W ∈ 2N0 + 1)|λ]] ≥ E[λP (W ∈ 2N0 +
1|λ)]/E[P (W ∈ 2N0 + 1|λ)] ≥ E[λ] = E[W ] by Example 2.4 and by the covariance inequality.
If X ∼ NB(r1, p) and Y ∼ NB(r2, p) are independent with r1 ≤ r2, then min{X, (X + Y )/2}
dominates X in estimating E[X] = r1(1− p)/p.

Example 2.6 If X and Z are independently distributed according to the probability mass
function

∫ 1
0 Geo(x|p)dΠ(p), x ∈ N0, where Π is a probability measure on (0, 1), then since the

marginal distribution is log-convex, we have E[(min{X, (X + Z + V )/2} − µ)2] ≤ E[(X − µ)2]
for any nonnegative error V that is either random or fixed.

Remark 2.1 When the sample space is finite, Lemma 2.1 may not be useful. For instance,
if X and Z are independently distributed according to Bin(n, p), then E[X + Z|X − Z =
t] − E[X + Z] → −t as p → 1 for any t ∈ N, and therefore E[X + Z|X ≥ Z + 1] < E[X + Z]
for some p ∈ (0, 1). (If p = 1/2, the condition of Lemma 2.1 can be verified by noting that
E[1(X > Z + v)|X + Z = w] is a function of w ∈ {0, 1, . . . , 2n} which is symmetric around n).
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3 Estimation of the Larger of Two Ordered Gamma Shape Pa-
rameters

In the previous section, we showed that in many cases, min{X, (X+Y )/2} is a good estimator of
µ1 = E[X] when µ1 ≤ µ2 = E[Y ]. Then, at first glance, it may seem natural that max{Y, (X +
Y )/2} = X+Y −min{X, (X+Y )/2} should be a good estimator of µ2. However, by considering
a simple gamma model, we see that this is not always true.

Let X and Y be independent observations distributed according to Ga(α1, 1) and Ga(α2, 1),
respectively.

Proposition 3.1 Consider the estimation of α2 under the squared error loss function.

(i) max{Y, (X + Y )/2} does not dominate Y under the restriction α1 ≤ α2.

(ii) max{Y, (X + Y )/2} dominates Y under the restriction α1 + 1 < α2.

We note that the above result depends on the loss function.

Proposition 3.2

(i) Consider the estimation of α1 under Stein’s loss function. Then min{X, (X + Y )/2}
dominates X under the restriction α1 ≤ α2.

(ii) Consider the estimation of α2 under Stein’s loss function. Then max{Y, (X + Y )/2}
dominates Y under the restriction α1 ≤ α2.

4 Numerical Studies

In this section, we investigate through simulation the numerical performance of several esti-
mators of µ1 = E[X] under the squared error loss function and under the restriction that
µ1 ≤ µ2 = E[Y ], where Y is independent of X. We consider the following estimators:

U: the unbiased estimator X,

T: the truncated estimator min{X, (X + Y )/2},

B: the Bayesian estimator against the prior (µ1, µ2) ∼ πJ(µ1, µ2)1(µ1 ≤ µ2), where
πJ(µ1, µ2) is the Jeffreys prior in the unrestricted case.

The percentage relative improvement in average loss (PRIAL) of an estimator δ(X,Y ) over X
is defined by

PRIAL = 100[E[(X − µ1)
2]− E[{δ(X,Y )− µ1}2]]/E[(X − µ1)

2].

We consider the problems of estimating smaller normal location, gamma scale, Poisson rate,
gamma shape, and negative binomial shape parameters in Sections 4.1, 4.2, 4.3, 4.4, and 4.5,
respectively. We note that the Bayesian estimator is not a robust estimator since its form
depends on the model we consider. For simplicity, we assume that all nuisance parameters other
than µ2 are known.
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Figure 1: Values of PRIAL of T and B over U. The circles and triangles correspond to T and
B, respectively.

4.1 Estimation of a smaller normal location parameter

Suppose that X and Y are normal with unit variance. In this case, the Bayesian estimator (B)
is ∫∞

−∞ µ1g(µ1 −X){1−G(µ1 − Y )}dµ1∫∞
−∞ g(µ1 −X){1−G(µ1 − Y )}dµ1

,

where g and G denote the probability density and distribution functions of the standard normal
distribution, respectively. The integrals are calculated via the Monte Carlo simulation with
10, 000 replications. We obtain approximated values of the risk function by simulation with
1, 000 replications.

Results are shown in Figure 1. As expected, the truncated estimator (T) is always better
than the unbiased estimator (U). Also, T is better than B when µ2 − µ1 is small.
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4.2 Estimation of a smaller gamma scale parameter

Suppose that X/γ1 and Y/γ2 are distributed as Ga(5, 1) with µi = 5γi for i = 1, 2. In this case,
B is given by

5X

∫∞
0 (1/u1)g(u1)G((Y/X)u1)du1∫∞

0 g(u1)G((Y/X)u1)du1
,

where g and G denote the probability density and distribution functions of Ga(5, 1), respectively.
As in Section 4.1, the integrals are calculated via the Monte Carlo simulation with 10, 000
replications and we obtain approximated values of the risk function by simulation with 1, 000
replications.

Results are shown in Figure 2. It can be seen that T dominates U, while the risk values of
B are larger than those of U when γ2 − γ1 is large.

In the present case, it is well known that X is uniformly dominated by the estimator {5/(5+
1)}X, which is improved upon by min{X/(5 + 1), (X + Y )/(2× 5 + 1)} and

5X

∫∞
0 u1g(u1)G((Y/X)u1)du1∫∞
0 u12g(u1)G((Y/X)u1)du1

(see, for example, Kubokawa and Saleh (1994)). However, we numerically confirmed that T is
not necessarily dominated by these improved estimators especially when γ2 − γ1 is small.

4.3 Estimation of a smaller Poisson rate parameter

Suppose that X and Y are Poisson variables. Then B is given by∫∞
0 µ1Ga(µ1|X + 1/2, 1){1−G(µ1;Y )}dµ1∫∞
0 Ga(µ1|X + 1/2, 1){1−G(µ1;Y )}dµ1

,

where

G(µ1;Y ) =

∫ µ1

0
Ga(µ2|Y + 1/2, 1)dµ2

for µ1 ∈ (0,∞). We also consider another smooth estimator, denoted by B†, given by∫∞
0 Ga(µ1|X + 1/2, 1){1−G(µ1;Y )}dµ1∫∞

0 (1/µ1)Ga(µ1|X + 1/2, 1){1−G(µ1;Y )}dµ1
,

which is generalized Bayes under the standardized squared error loss. The integrals and expec-
tations are calculated as in Sections 4.1 and 4.2.

Results are shown in Figure 3. The robustness of T is confirmed. Although B† can be
efficient in many cases, it seems that T is not uniformly dominated by B†.

4.4 Estimation of a smaller gamma shape parameter

Suppose that X ∼ Ga(µ1, 1) and Y ∼ Ga(µ2, 1). Then B is given by∫
(0,1)2

{ω1/(1− ω1)}1(ω1 ≤ ω2)

√
ψ1(ω1/(1− ω1))

(1− ω1)2
Xω1/(1−ω1)

Γ(ω1/(1− ω1))

√
ψ1(ω2/(1− ω2))

(1− ω2)2
Y ω2/(1−ω2)

Γ(ω2/(1− ω2))
d(ω1, ω2)

/

∫
(0,1)2

1(ω1 ≤ ω2)

√
ψ1(ω1/(1− ω1))

(1− ω1)2
Xω1/(1−ω1)

Γ(ω1/(1− ω1))

√
ψ1(ω2/(1− ω2))

(1− ω2)2
Y ω2/(1−ω2)

Γ(ω2/(1− ω2))
d(ω1, ω2),
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Figure 2: Values of PRIAL of T and B over U. The circles and triangles correspond to T and
B, respectively.
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Figure 3: Values of PRIAL of T, B, and B† over U. The circles, triangles, and pluses correspond
to T, B, and B†, respectively.
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Figure 4: Values of PRIAL of T and B over U. The circles and triangles correspond to T and
B, respectively.

where ψ1 denotes the trigamma function. The integrals are calculated via the Monte Carlo
simulation with 10, 000 replications and we obtain approximated values of the risk function by
simulation with 1, 000 replications.

Results are shown in Figure 4 and Table 1 and it is numerically confirmed that T dominates
U. Also, from Table 1, we see that B is not always better than U.

Table 1: Values of PRIAL of T and B over U. Here, we set µ1 = µ2.

(µ1, µ2) T B

(5, 5) 39.05 39.06

(10, 10) 34.65 27.86

(15, 15) 32.98 19.12

(20, 20) 31.67 4.40

(25, 25) 33.63 −4.73

(30, 30) 32.04 −34.23
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4.5 Estimation of a smaller negative binomial shape parameter

Suppose that X ∼ NB(µ1, 1/2) and Y ∼ NB(µ2, 1/2). Then B is given by∫
(0,∞)2

µ11(µ1 ≤ µ2)π
J(µ1)

(
µ1 +X − 1

X

)(1
2

)µ1

πJ(µ2)

(
µ2 + Y + 1

Y

)(1
2

)µ2

d(µ1, µ2)

/

∫
(0,∞)2

1(µ1 ≤ µ2)π
J(µ1)

(
µ1 +X − 1

X

)(1
2

)µ1

πJ(µ2)

(
µ2 + Y + 1

Y

)(1
2

)µ2

d(µ1, µ2),

where

πJ(µ) =

√√√√ ∞∑
k=0

NB(k|µ, 1/2){ψ1(µ)− ψ1(µ+ k)}

for µ ∈ (0,∞). In order to calculate the integrals, we use the Metropolis–Hastings algorithm to
sample from the density proportional to πJ(µ)(1/2)µ, µ ∈ (0,∞); see the Appendix for details.
We generate 15, 000 samples after discarding 5, 000 samples. We obtain approximated values
of the risk function by simulation with 1, 000 replications. To reduce computation time, we
consider only cases where µ1 = µ2.

Results are shown in Table 2. T performs worse than B when the mean is small but better
when the mean is large.

Table 2: Values of PRIAL of T and B over U. Here, we set µ1 = µ2.

(µ1, µ2) T B

(2, 2) 45.46313 72.84997

(4, 4) 37.12357 54.97274

(6, 6) 37.14836 21.45862

(8, 8) 31.87264 −38.44798

5 Discussion

In this paper, we focused on the estimator min{X, (X + Y )/2} for the estimation of µ1 =
E[X] ≤ µ2 = E[Y ]. One important extension would be to obtain similar results under weaker
assumptions such as the assumption that P (X ≥ Y ) ≤ P (X ≤ Y ). In general, we would have
to consider a general class of truncated estimators to reflect distributional assumptions. For
instance, if X ∼ N(µ1, σ

2
1) and Y ∼ N(µ2, σ

2
2) are independent with µ1 ≤ µ2, where µ1 and µ2

are unknown while σ21 and σ22 are known, then min{X, (X+Y )/2} does not necessarily dominate
X since X → µ1 but min{X, (X + Y )/2} ↛ µ1 as σ21 → 0 with σ22 fixed. Lee (1981) showed
that min{X, (X/σ21 + Y/σ22)/(1/σ

2
1 + 1/σ22)} dominates X.

Although Kubokawa and Saleh (1994) and recently Garg and Misra (2021) investigated
smooth estimators under order restrictions, further study is needed in this direction. For ex-
ample, in the Poisson case, we can check that the direct estimator X is minimax for the stan-
dardized squared error loss. An important question is whether we can construct an admissible
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(generalized) Bayes estimator which dominates X. A candidate prior is the uniform prior on
(Λ, θ) = (µ1 + µ2, µ1/(µ1 + µ2)) ∈ (0,∞)× (0, 1/2). However, it remains to be proved that the
associated estimator dominates X.

6 Appendix

6.1 Proofs

Here we prove Propositions 2.2, 3.1, and 3.2 and Lemma 2.2.

Proof of Proposition 2.2. We have

2R̃′(v)

E[Z1(X > (1 + v)Z)]
= 2E

[{X + (1 + v)Z

2
− µ

}
Z1(X > (1 + v)Z)

]
/E[Z1(X > (1 + v)Z)]

=

∫∞
0 xf(x)

{ ∫ x/(1+v)
0 zf(z)dz

}
dx∫∞

0 f(x)
{ ∫ x/(1+v)

0 zf(z)dz
}
dx

+

∫∞
0 (1 + v)z2f(z)

{ ∫∞
(1+v)z f(x)dx

}
dz∫∞

0 zf(z)
{ ∫∞

(1+v)z f(x)dx
}
dz

− 2µ

=

∫∞
0 xf(x)

{ ∫ x
0 zf(z/(1 + v))dz

}
dx∫∞

0 f(x)
{ ∫ x

0 zf(z/(1 + v))dz
}
dx

+

∫∞
0 z2f(z/(1 + v))

{ ∫∞
z f(x)dx

}
dz∫∞

0 zf(z/(1 + v))
{ ∫∞

z f(x)dx
}
dz

−
∫∞
0 xf(x)

{ ∫ x
0 f(z)dz

}
dx∫∞

0 f(x)
{ ∫ x

0 f(z)dz
}
dx

−
∫∞
0 zf(z)

{ ∫∞
z f(x)dx

}
dz∫∞

0 f(z)
{ ∫∞

z f(x)dx
}
dz

. (6.1)

Now, by assumption,

z
∂

∂z
log

zf(z/(1 + v))

f(z)
= 1 +

z

1 + v

f ′(z/(1 + v))

f(z/(1 + v))
− z

f ′(z)

f(z)
≥ 0.

Therefore, zf(z/(1+v))/f(z) is a nondecreasing function of z > 0, which implies that
∫ x
0 zf(z/(1+

v))dz/
∫ x
0 f(z)dz is a nondecreasing function of x > 0. Thus, by the covariance inequality, the

right-hand side of (6.1) is nonnegative. The result follows. □

Proof of Lemma 2.2. We prove parts (i) and (ii) based on the proofs of Lemmas 3 and 4
of Bagnoli and Bergstrom (2005), which are for the continuous case. Without loss of generality,
we can assume that k = 1 and x2 = x1 + 1. Let F (−1) = f(−1) = 0.

For part (i), note that f(x − 1)/f(x) ≥ f(z − 1)/f(z) for all x, z ∈ N0 with x ≥ z by the
log-concavity of f . Then, for all x ∈ N0,

f(x)− f(x− 1)

f(x)
F (x) =

f(x)− f(x− 1)

f(x)

x∑
z=0

f(z) ≤
x∑

z=0

f(z)− f(z − 1)

f(z)
f(z) = f(x),

which implies that

f(x− 1) ≥ f(x)F (x− 1)/F (x).

Therefore,

F (x2)

F (x2 + k)
− F (x1)

F (x1 + k)
=
F (x1 + 1)

F (x1 + 2)
− F (x1)

F (x1 + 1)
=
f(x1 + 1)

F (x1 + 1)
− f(x1 + 2)

F (x1 + 2)

≥ f(x1 + 2)

F (x1 + 2)
− f(x1 + 2)

F (x1 + 2)
= 0.
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For part (ii), note that f(x)/f(x + 1) ≥ f(z)/f(z + 1) for all x, z ∈ N0 with x ≤ z by the
log-convexity of f . Then, for all x ∈ N0,

f(x+ 1)− f(x)

f(x+ 1)
{1− F (x)} =

f(x+ 1)− f(x)

f(x+ 1)

∞∑
z=x

f(z + 1) ≤
∞∑
z=x

f(z + 1)− f(z)

f(z + 1)
f(z + 1) = −f(x),

where the last equality follows from the assumption that limz→∞ f(z) = 0, and thus we have

f(x) ≥ f(x+ 1){1− F (x− 1)}/{1− F (x)}.

Hence,

1− F (x2 + k)

1− F (x2)
− 1− F (x1 + k)

1− F (x1)
=

1− F (x1 + 2)

1− F (x1 + 1)
− 1− F (x1 + 1)

1− F (x1)
=
f(x1 + 1)

1− F (x1)
− f(x1 + 2)

1− F (x1 + 1)

≥ f(x1 + 2)

1− F (x1 + 1)
− f(x1 + 2)

1− F (x1 + 1)
= 0.

For part (iii), let W = X + Z and T = X − Z. Let S = 1(W ∈ 2N0 + 1). Suppose first
that {∂/(∂x)}{log f(x)} is a convex function of x ∈ [0,∞) and that E[W |S = 0] ≤ E[W |S = 1].
Then

E[W |T ≥ 1] = E[W ||T | ≥ 1] =

∞∑
w=0

w
∑

−w≤t≤w
w−t∈2N0

|t|≥1

f
(w + t

2

)
f
(w − t

2

)

∞∑
w=0

∑
−w≤t≤w
w−t∈2N0

|t|≥1

f
(w + t

2

)
f
(w − t

2

)

and

E[W ] =

∞∑
w=0

w
∑

−w≤t≤w
w−t∈2N0

f
(w + t

2

)
f
(w − t

2

)
∞∑

w=0

∑
−w≤t≤w
w−t∈2N0

f
(w + t

2

)
f
(w − t

2

) .

Note that for w ∈ N0,∑
−w≤t≤w
w−t∈2N0

|t|≥1

f
(w + t

2

)
f
(w − t

2

)
/

∑
−w≤t≤w
w−t∈2N0

f
(w + t

2

)
f
(w − t

2

)
=

{
ρ(w), if w ∈ 2N0,

1, if w ∈ 2N0 + 1,

where

ρ(w) =
∑

−w≤t≤w
w−t∈2N0

|t|≥2

f
(w + t

2

)
f
(w − t

2

)
/

∑
−w≤t≤w
w−t∈2N0

f
(w + t

2

)
f
(w − t

2

)

= 1− 1/
∑

−w≤t≤w
w−t∈2N0

f
(w + t

2

)
f
(w − t

2

)
/
{
f
(w
2

)}2
∈ [0, 1]
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is a nondecreasing function of w ∈ 2N0 by assumption. Then it follows from Theorem 2.1 of
Bhattacharya (1984) that

E[W |T ≥ 1] =
E[W{(1− S)ρ(W ) + S}]
E[(1− S)ρ(W ) + S]

≥ E[W ],

since E[W |S] and E[(1 − S)ρ(W ) + S|S] are nondecreasing functions of S by assumption and
since W and (1− S)ρ(W ) + S are nondecreasing functions of W . Next, suppose instead that f
is log-convex. Then

E[X + Z|T ≥ 1] = E[E[X + Z|T ]|T ≥ 1]

= E
[∑∞

z=0(2z + T )f(z + T )f(z)∑∞
z=0 f(z + T )f(z)

∣∣∣T ≥ 1
]

≥ E
[∑∞

z=0(2z + T ){f(z)}2∑∞
z=0{f(z)}2

∣∣∣T ≥ 1
]

≥ E
[∑∞

z=0 2z{f(z)}2∑∞
z=0{f(z)}2

∣∣∣T ≥ 1
]
= E[X + Z|T = 0],

where the first inequality follows from the covariance inequality since f(z+ T )/f(z) is a nonde-
creasing function of z ∈ N0 by assumption. Thus,

E[W ] = P (T = 0)E[W |T = 0] + P (T ≥ 1)E[W |T ≥ 1] + P (T ≤ −1)E[W |T ≤ −1]

= P (T = 0)E[W |T = 0] + {1− P (T = 0)}E[W |T ≥ 1] ≤ E[W |T ≥ 1].

This completes the proof. □

Proof of Proposition 3.1. Let W = X + Y and R = X/W . Let ∆ = E[(max{Y, (X +
Y )/2} − α2)

2]− E[(Y − α2)
2]. Note that W ∼ Ga(α1 + α2, 1) and R ∼ Beta(α1, α2) and these

are mutually independent.
For part (i), suppose that α1 = α2. Then it can be seen that

∆ = E
[[
W 2

{(1
2

)2
− (1−R)2

}
− 2α2W

{1

2
− (1−R)

}]
1
(
1−R <

1

2

)]
= E

[[
{2α2 + (2α2)

2}
{(1

2

)2
− (1−R)2

}
− 2α2(2α2)

{1

2
− (1−R)

}]
1
(
1−R <

1

2

)]
∼ α2/4 > 0

as α2 → 0.
For part (ii), let ϕ(R) = max{Y, (X + Y )/2}/Y = max{1, 1/{2(1−R)}}. Then

∆ = E[{ϕ(R)− 1}(1−R)[{ϕ(R) + 1}(1−R)W 2 − 2α2W ]]

= E[{ϕ(R)− 1}(1−R)[{ϕ(R) + 1}(1−R)(α1 + α2 + 1)− 2α2]](α1 + α2).

Since {ϕ(R) + 1}(1−R) ≤ 1 when ϕ(R)− 1 ̸= 0 and since α1 + α2 + 1 < 2α2 by assumption, it
follows that ∆ < 0. □

Proof of Proposition 3.2. Let W = X + Y and R = X/W . For part (i), let ϕ1(R) =
min{X, (X + Y )/2}/X = min{1, 1/(2R)}. Then we have

E[Xϕ1(R)/α1 − 1− log{Xϕ1(R)/α1}]− E[X/α1 − 1− log(X/α1)]

= E[−WR{1− ϕ1(R)}/α1 − log ϕ1(R)] = E[−R{1− ϕ1(R)}(α1 + α2)/α1 − log ϕ1(R)],
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which is negative since (α1+α2)/α1 ≥ 2 by assumption and since 2R{1−ϕ1(R)}+log ϕ1(R) > 0
when ϕ1(R) ̸= 1. For part (ii), let ϕ2(R) = max{1, 1/{2(1−R)}}. Then

E[Y ϕ2(R)/α2 − 1− log{Y ϕ2(R)/α2}]− E[Y/α2 − 1− log(Y/α2)]

= E[W (1−R){ϕ2(R)− 1}/α2 − log ϕ2(R)] = E[(1−R){ϕ2(R)− 1}(α1 + α2)/α2 − log ϕ2(R)],

which is negative since (α1 + α2)/α1 ≤ 2 and since 2(1− R){ϕ2(R)− 1} − log ϕ2(R) < 0 when
ϕ2(R) ̸= 1. □

6.2 Details of the approximation algorithm used in Section 4.5

First, the density proportional to

(1
2

)µ

√√√√ ∞∑
k=0

NB(k|µ, 1/2){ψ1(µ)− ψ1(µ+ k)}, µ ∈ (0,∞),

is approximated by Ga(1/2, log 2) because for all k ∈ N0 and all µ ∈ (0,∞),{
ψ1(µ)− ψ1(µ+ k),

1

µ

k

µ+ k − 1

}
⊂

[ 1
µ

k

µ+ k
,

1

µ− 1

k

µ+ k − 1

]
,

provided that µ > 1, and because√√√√ ∞∑
k=0

NB(k|µ, 1/2) 1
µ

k

µ+ k − 1
=

√
1

µ

1

2
∝ µ1/2−1

for all µ ∈ (0,∞) (see Hudson (1978) for the inequality). Next, note that for all K ∈ N and all
µ ∈ (0,∞),√√√√ K∑

k=0

NB(k|µ, 1/2){ψ1(µ)− ψ1(µ+ k)} ≤ πJ(µ)

≤

√√√√ψ1(µ) +
K∑
k=0

NB(k|µ, 1/2){−ψ1(µ+ k)}+ P (X̃ > K){−ψ1(µ+E[X̃|X̃ > K])}

by Jensen’s inequality, where X̃ ∼ NB(µ, 1/2) and where E[X̃|X̃ > K] is expressible in closed
form (see Shonkwiler (2016)). Then, based on these inequalities, the acceptance ratio can be
bounded below and above with arbitrary accuracy in MH steps (such an approach is used, for
example, by Polson, Scott and Windle (2013)).
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