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Abstract—In systems designed based on microservice architec-
ture, many production-like environments should be deployed for
testing, staging, debugging, and previewing. One way to reduce
resource consumption while deploying many environments is to
allow sharing of common microservices in multiple environments,
and current mechanisms extend application layer protocols like
HTTP and gRPC to propagate contexts including environment
identifiers and to route requests. However, microservices also
use other protocols such as MySQL, Redis, Memcached, and
AMQP, and extending each protocol requires lots of effort to
implement the extensions. This paper proposes PiCoP, a frame-
work to propagate contexts and route requests independently
of application layer protocols. PiCoP consists of a protocol
that propagates contexts without interpreting application layer
protocols by adding contexts to the front of each TCP byte stream
and a proxy that uses the protocol to route requests. We design
the protocol to make instrumentation into a system as easy as
possible. We showed that PiCoP could reduce resource usage,
that the proxy’s communication delay is within a practical range,
and that it makes sharing microservices in multiple environments
with any application layer protocols possible.

Index Terms—Microservices, Context Propagation, Test Envi-
ronment, Service Mesh

I. INTRODUCTION

Continuous integration and continuous delivery are becom-
ing increasingly important practices for software development
[1]. These practices require multiple production-like environ-
ments for testing, staging, debugging, and previewing [2],
[3], and some software assists in deploying them [4]–[6].
However, access to these environments is far less frequent
than the production environment, and resources consumed by
these environments are wasted. In particular, in a microservice
architecture [7], where a single application consists of several
microservices, a large number of microservices can easily lead
to a high waste of resources.

Therefore, mechanisms to share instances of services com-
monly used by multiple environments have been proposed in
an application that adopted the microservice architecture [8]–
[11]. When arranging production-like environments in the mi-
croservice architecture, only a few services are usually updated
from the production environment to add new features or fix
bugs. While instances of stateful or updated services need to
be deployed for each environment, instances of other services
can be shared in all environments. Sharing of some services
can be realized by giving requests contexts that identify the

environment to be accessed, propagating the contexts, and
routing the requests to each environment based on the contexts.

Previous methods by Wantedly [8], Mercari [9], Lyft [10],
and Ambassador Labs [11] add contexts to HTTP headers or
gRPC metadata and propagate them between services. Then,
they route requests based on the contexts using Envoy [12] and
Istio [13] in Kubernetes [14]. In the Lyft and Ambassador Labs
proposals, the contexts are propagated within services using
libraries for instrumentation [15] by OpenTelemetry [16].

Microservice communication uses various application layer
protocols besides HTTP and gRPC. For example, there are
protocols used for communication with database servers such
as MySQL [17], PostgreSQL [18], Redis [19], and Memcached
[20], and protocols such as AMQP [21] and MQTT [22] used
for communication with message queues. Requests using each
protocol must be given contexts in some form for routing them.

The previous methods cannot be applied for other commu-
nications, such as MySQL, PostgreSQL, Redis, Memcached,
AMQP, and MQTT. To extend them to these protocols, we
must provide mechanisms for each protocol to propagate
contexts and route requests. It takes a lot of time and effort in
implementation and instrumentation.

For this problem, this paper proposes PiCoP, a framework to
share microservices in multiple environments by propagating
contexts and routing requests independently of application
layer protocols. PiCoP consists of a protocol that propagates
contexts without interpreting application layer protocols and a
proxy that uses the protocol to route requests.

PiCoP protocol is based on PROXY Protocol [23] and adds
a context to the front of the TCP byte stream. It does not
conflict with many application layer protocols by extending
the signature of PROXY Protocol version 2. It is also designed
to make instrumentation into an application as easy as possible
by meeting OpenTelemetry standards.

PiCoP proxy interprets the context given to a request by
the protocol and routes the request to the instance of the
appropriate environment. The proxy is deployed for each
service. First, the proxy receives correspondence between an
identifier of an environment and a destination address of an
instance to which requests are to be routed in advance from
an administrator. Then, the proxy receives requests on behalf
of the service, interprets the context, and routes the request to
the appropriate instance based on the correspondence.



We implemented a prototype and showed that it is possible
to share services in a system communicating with some ap-
plication layer protocols. Furthermore, we showed that PiCoP
could reduce resource usage when the number of environments
exceeds a specific value. The more environments there are,
the more significant the reduction is. We also showed that a
delay due to communication through PiCoP proxy is within
a practical and realistic range compared to Istio, which is
widely used in previous methods. Furthermore, we showed
that PiCoP gives a context to data with any application layer
protocols, making it possible to share microservices protocol-
independently in multiple environments.

The main contributions of this paper are as follows:
• We proposed a framework that enables sharing microser-

vices in multiple environments without relying on appli-
cation layer protocols. We showed that the framework
could reduce resource usage and that its communication
delay is within a realistic range for practical use.

• We proposed a protocol that enables protocol-independent
context propagation in a form that can be instrumented
into the systems as easily as possible.

This paper is organized as follows. First, Section II describes
related works. Next, Section III describes the design of PiCoP,
and Section IV the prototype implementation. Next, Section
V evaluates PiCoP, and Section VI discusses the results and
protocol independence. Finally, Section VII concludes the
paper.

II. RELATED WORKS

A. Sharing Microservices in Multiple Environments

Wantedly [8], Mercari [9], Lyft [10], and Ambassador Labs
[11] have each proposed systems that share microservices
across multiple environments. These proposals add contexts
that identify environments to HTTP headers or gRPC meta-
data. Then, they propagate the contexts between services and
route requests based on the contexts. For request routing, they
use Envoy [12], which is deployed as a sidecar and acts as
a proxy, and Istio [13], which builds a service mesh [24]
that uses Envoy in Kubernetes [14]. The Lyft and Ambassador
Labs proposals use libraries provided by OpenTelemetry [16]
to instrument context propagation within services. However,
these propose context propagation mechanisms for each pro-
tocol, such as HTTP and gRPC. They do not describe context
propagation for other protocols, and systems that use protocols
other than HTTP or gRPC for communication cannot share
microservices in multiple environments.

Parker et al. [25] and Sridharan [26] discuss testing in a
production environment as chaos engineering. They describe
integration testing mechanisms for using services in the pro-
duction environment by sending replicas of requests from
the production environment to services being tested or by
sending requests from services being tested to services in the
production environment. In this case, they explain that giving
contexts to the requests and propagating them is necessary.
However, they do not discuss how to propagate contexts.

In parallel testing, Rahman et al. have proposed a framework
for locally executing parallel tests for microservices [27]. The
framework is similar in that it requires deploying multiple
environments. However, they do not describe reducing total
resource usage by sharing microservices across multiple envi-
ronments.

B. Context Propagation

Context propagation, necessary for sharing microservices in
multiple environments, is the basis for monitoring, debugging,
and diagnostics of distributed systems [15]. Much research
about it has been done in this area.

Dapper [28], Pinpoint [29], X-Trace [30], Pip [31], and
Canopy [32] all enable tracing distributed systems by prop-
agating contexts. Their context propagation can be applied
for sharing microservices in multiple environments. However,
these proposals depend on specific communication protocols
and platforms.

There are some proposals for methods and frameworks
to reduce the effort in instrumenting by sharing a context
propagation mechanism [15], [32]–[34]. In this study, it is also
significant to use these existing context propagation mecha-
nisms as much as possible to reduce instrumentation effort.
However, these require a context propagation mechanism for
each protocol. OpenTelemetry [16] provides specifications and
libraries to standardize context propagation mechanisms and
instrumentation. Propagators API [35], a standard for context
propagation, takes HTTP headers as an example of a medium
for propagating contexts and requires other mediums to be
compatible with HTTP headers.

There are studies by Chanda et al. [36] and PROXY protocol
[23] regarding protocol-independent context propagation.

Chanda et al. pointed out the problem that context prop-
agation depends on application layer protocols and proposed
a mechanism to propagate a context across socket and pipe
channels without changing applications [36]. For INTERNET
sockets, the context is encapsulated in IP packets as an
IP option. However, when sharing microservices in multiple
environments, the context is needed per requests of application
layer protocol. Therefore, sending it per IP packets is wasteful.

PROXY protocol [23] allows protocol-independently prop-
agating source client information through a reverse proxy
server. PROXY Protocol adds the information at the front of
the TCP byte stream. Its version 2 signatures are designed
not to conflict with many application layer protocols. PROXY
protocol makes information propagation protocol-independent,
and PiCoP follows suit, as described in Section III-B.

III. DESIGN

A. Overview

This section describes PiCoP that enables sharing microser-
vices in multiple environments with protocol-independent con-
text propagation and request routing. PiCoP consists of a
protocol that propagates contexts without interpreting appli-
cation layer protocols and a proxy that routes requests to the
appropriate environment based on the propagated context.



Fig. 1. The cluster deploying the application consisting of
services A, B, and C

Fig. 2. The cluster installed PiCoP

PiCoP distinguishes between multiple environments using
an ID that uniquely identifies the environment (environment
ID). The protocol adds a context in the form of key-value
pairs to a request, and the context of a request to be routed
has a field with the field name “Env-Id” and the field value as
the environment ID of the environment to be sent. The proxy
receives the correspondence between the environment ID and
a destination address from an administrator in advance. When
receiving a request, the proxy recognizes the environment ID
added to the request using the protocol and routes the request
to the corresponding destination address.

For example, we consider a cluster deploying an application
with three services: stateless services A and B and stateful
service C (Fig. 1). Services A and B are web servers. Service
C is a MySQL server. First, service A receives HTTP requests
from clients. Next, service A sends HTTP requests to service
B, service B sends MySQL commands to service C, and each
processes the requests or commands. Finally, service A sends
responses back to the clients.

We assume the cluster has three environments. A base
environment, “main”, has services A, B, and C with the same
code as the production environment. In addition to “main”,
there are two environments: “feature-1”, where only service A
is modified from “main”, and “feature-2”, where only service
B is modified.

We consider the case where PiCoP is installed in the
cluster (Fig. 2). We deploy PiCoP proxy for each service. For
“main”, we provide instances A[main], B[main], and C[main],
which is the base of services A, B, and C. For “feature-
1”, we deploy instance A[feature-1] with service A modified
and share instance B[main] with “main”. For “feature-2”, we
deploy instance B[feature-2] with service B modified and share
instance A[main] with “main”. Finally, we provide instances
C[main], C[feature-1], and C[feature-2] for each environment
to separate data.

First, proxy A receives a client request addressed to service
A. Proxy A has route information in advance, as shown in

TABLE I
ROUTE INFORMATION

Proxy Name Environment ID Destination of Requests

Proxy A * Instance A[main]
feature-1 Instance A[feature-1]

Proxy B * Instance B[main]
feature-2 Instance B[feature-2]

Proxy C
* Instance C[main]

feature-1 Instance C[feature-1]
feature-2 Instance C[feature-2]

Table. I. Proxy A forwards the request to instance A[feature-
1] if the environment ID of the request is “feature-1” and
otherwise to instance A[main]. Next, each instance A sends a
request addressed to service B to proxy B. Proxy B forwards
the request to instance B[feature-2] if the environment ID
is “feature-2” and otherwise to instance B[main], based on
Table. I. Each instance B sends a request addressed to service
C to proxy C. Proxy C forwards the request to instance
C[feature-1] if the environment ID is “feature-1” and to
instance C[feature-2] if the environment ID is “feature-2” and
otherwise to instance C[main], based on Table. I.

In other words, if the environment ID added to a request is
“feature-1”, the request is processed by instances A[feature-1],
B[main], and C[feature-1]. If the environment ID is “feature-
2”, it is processed by instances A[main], B[feature-2], and
C[feature-2]. If any other one, it is processed by instance
A[main], B[main], and C[main].

This way, the proxy routes requests according to the envi-
ronment ID added to the requests using the protocol, allowing
multiple environments to be separated while sharing some
stateless services.

B. Protocol

1) Requirements and Approach: The protocol satisfies the
following three requirements.

1) It can be used regardless of the type of application layer
protocol.



TABLE II
THE SPECIFICATION OF PICOP PROTOCOL PER BYTES

Byte Description
1-12 The same signature as PROXY protocol version 2

13 The upper 4 bits: the signature
The lower 4 bits: the version

14,15 The byte length of the context
16- The context in the form of key-value pairs

2) It does not conflict with any application layer protocols.

3) It is as easy as possible to instrument into systems.

Requirement 1 is necessary to propagate contexts in a
protocol-independent manner. For this reason, as with PROXY
protocol, data in PiCoP protocol are given at the front of the
TCP byte stream.

Requirement 2 is necessary because it adds the data to the
position where application layer protocol data originally exists,
similar to PROXY Protocol. For this reason, the first part of
the data shall be the signature of PROXY protocol version 2.
Then, a version number rejected by PROXY protocol version
2 is added after the signature. PiCoP protocol is not version
3 of PROXY Protocol because PiCoP protocol is used in
situations different from PROXY Protocol. PROXY Protocol is
utilized for communications from a client to a server through
a reverse proxy server. PiCoP protocol is mainly used for
communications between services in a cluster.

Requirement 3 is necessary because the instrumentation
is a barrier to installing a new context propagation mecha-
nism. To this end, PiCoP protocol satisfies the specifications
for context propagation media defined in the OpenTelemetry
Propagators API [35], allowing the use of other standards and
libraries for context propagation. Following the specifications
also facilitates the utilization of PiCoP protocol for context
propagation in various usages, such as monitoring, debugging,
and diagnostics of distributed systems. We do not use Type-
Length-Value (TLV vectors) of PROXY Protocol version 2,
which propagates optional information, because it does not
satisfy the Propagators API’s specifications.

2) Specification: The service requesting a connection trans-
mits data in PiCoP protocol. The service accepting the con-
nection request must not insert any data until the service
requesting the connection has finished sending the data.

Data in PiCoP protocol are in binary format. The specifica-
tion per bytes is shown in Table. II.

The first to twelfth bytes and the upper four bits of
the thirteenth byte are the signature; the first to twelfth
bytes are the same as the signature of PROXY protocol
version2, which is \x0D \x0A \x0D \x0A \x00 \x0D
\x0A \x51 \x55 \x49 \x54 \x0A in the byte se-
quence. The upper four bits of the thirteenth byte are \x0.
PROXY protocol version 2 will reject this part unless it is
\x2, so it does not conflict with PiCoP protocol.

The lower four bits of the thirteenth byte are the version of
PiCoP protocol, \x1. Other versions are rejected.

The fourteenth and fifteenth bytes are the length of the
context, the number of bytes in the data after the sixteenth
byte.

The sixteenth and succeeding bytes are the context. The
context is a string of US-ASCII characters, which is converted
to a single byte per character. The context is the format
of key-value pairs that comprises US-ASCII characters that
make up a valid HTTP header field. By this, the context
satisfies the Carrier specification required by the TextMap
Propagator as defined by OpenTelemetry Propagators API
[35]. The syntax rules for the context are based on the HTTP
header rules defined in RFC 9110 [37] and RFC 9112 [38]. For
simplification and data length reduction, we exclude obsolete
rules and regulations to improve readability, such as comments
and whitespace. It is expressed as follows in ABNF [39].

context = field *( CRLF field )
field = field-name ":" field-value
field-name = token
field-value = *( VCHAR / SP / HTAB )
token = 1*tchar
tchar = "!" / "#" / "$" / "%" / "&"

/ "’" / "*" / "+" / "-" / "."
/ "ˆ" / "_" / "‘" / "|" / "˜"
/ DIGIT / ALPHA

Each field is arranged in order from the front: the field
name, colon (“:”), and the field value. The context is a string
of multiple fields concatenated by CRLF.

The field name is a string of US-ASCII characters with
symbols, digits, and alphabetic characters, excluding delim-
iters (“"(),/:;<=>?@[\]{}|”). The field name is not case-
sensitive. All field names must be different. The field value
is a string of US-ASCII characters with printable characters,
spaces, and horizontal tabs.

C. Proxy

One or more proxies are provided for each service and act
as sidecars, like Envoy. When the proxy receives a request
from a client on behalf of the service, it interprets the data
in PiCoP protocol and gets an environment ID. It then routes
the request to the appropriate instance based on the registered
route information and returns the received response to the
client.

The proxy has the following information.
• Service ID
• Default route
• Whether to propagate data in PiCoP protocol or not
• Route information
The service ID indicates for which service the proxy is

responsible. Multiple proxies can have the same service ID
because of the scale out of proxies. Proxies with the same
service ID should have the same route information.

The default route is the destination address to which re-
quests are routed when the environment ID does not match
any of the registered route information. It is the address of the
instance of the base environment. In the example, the address



corresponds to the destination of requests in the environment
ID “*” in the Table. I.

The proxy has information about whether or not to propa-
gate data in PiCoP protocol. When propagation at the proxy
is true, the proxy adds the data in PiCoP protocol to requests
from the proxy to a service. In the example, proxies A and
B propagate it, and proxy C does not. This choice is made
per service and does not need to be made dynamically per
request. This choice is necessary because some services do
not receive data in PiCoP protocol. Services in the middle of
request processing in an application, such as services A and B,
must propagate the environment ID to the following services.
Such services send and receive requests with data in PiCoP
protocol. On the other hand, a service like C, which exists at
the end of request processing in an application, does not need
to know the environment ID and does not need instrumentation
to process PiCoP protocol. Such services will receive requests
without data in PiCoP protocol.

The route information is the correspondence between the
environment ID and the destination address.

There is a restriction on connection reuse for requests made
through proxies, such as persistent connections in HTTP/1.1
[38]. Requests with different environment IDs must be trans-
mitted over different connections because data in PiCoP pro-
tocol are sent per connection. Simply not reusing connections
at all avoids this restriction.

IV. IMPLEMENTATION

We implemented a prototype based on the example in
Section III (Fig. 3).

We provide a proxy controller to manage proxies and route
information dynamically. The proxy controller is implemented
in Go and operates as a web server that accepts HTTP requests
for registering proxy information and route information from
administrators. The proxy information consists of an ID that
uniquely identifies the proxy in the cluster, a service ID,
and a destination address of the proxy used to send route
information. The route information comprises a service ID,
an environment ID, and a destination address. When the proxy
controller receives a request to register a new proxy, it pushes
all the route information corresponding to the proxy’s service
ID to the proxy. When it receives a request to register route
information, it pushes the route information to all proxies
corresponding to the service ID of the route information.
The proxy controller updates route information in each proxy
periodically to reduce the load rather than in real-time. In
addition, the proxy information and route information persists
by storing them in the MySQL server.

The proxy is implemented in Go and routes TCP connec-
tions. It accepts connections from the specified port and routes
them according to the environment ID. It also works as a
web server that accepts HTTP requests for registering route
information from the proxy controller. The route information
received from the proxy controller is stored in memory for
high-speed lookup.

Fig. 3. Prototype implementation architecture

The instances of services A and B, web servers, are im-
plemented in Go, using instrumentation libraries provided by
OpenTelemetry to propagate the contexts of incoming requests
and add them to outgoing requests.

The proxies, proxy controller, and instances of all services
run as containers. All containers except service C are located
on a single Kubernetes cluster. The instances of service C,
MySQL servers, are located on separate virtual machines,
assuming it is outside the cluster. The other virtual machine
is a MySQL server for storing data managed by the proxy
controller.

Through the prototype implementation, we confirmed that
it is possible to share microservices in multiple environments
in a protocol-independent manner. We also confirmed that
the same proxy implementation could route data from two
different protocols: HTTP requests and MySQL commands.

V. EVALUATION

This section evaluates PiCoP’s performance regarding com-
munication delays due to the proxy and resource reduction by
sharing.

A. Environment

The evaluation environment consists of four virtual ma-
chines (Table. IV) with the same specification on one physical
machine (Table. III). One virtual machine sends benchmark
requests. Assuming a system will run on Kubernetes, we
construct a Kubernetes cluster (Table. V) on three virtual
machines. One virtual machine is a control plane, and the
others are worker nodes.



TABLE III
PHYSICAL MACHINE SPECIFICATION

CPU AMD EPYC 7452 (32 cores, 64 threads)
Memory 377GiB

OS Ubuntu 22.04.1 (kernel 5.15.0-47-generic)

TABLE IV
VIRTUAL MACHINE SPECIFICATION

The Number of vCPUsa 8
Memory 16GiB

OS Ubuntu 22.04.1 (kernel 5.15.0-58-generic)
aOne vCPU corresponds to 1 thread on a physical machine.

B. Proxy Communication Delay

We clarify the communication delay introduced by the
PiCoP and existing (Istio) proxy.

1) Methods: We measure the response time by sending
HTTP/1.1 requests under four conditions (Fig. 4) to a server
that accepts HTTP/1.1 requests, an nginx server (version
1.23.3).

In the conditions “base” and “base+gw+istio”, we send
HTTP requests with “Env-Id:main” in the HTTP header. In
the condition “base+picop” and “base+gw+picop”, we send
HTTP requests with data in PiCoP protocol whose context is
“Env-Id:main”.

We configure PiCoP proxy to route requests with an en-
vironment ID of “main” to the nginx server. The proxy does
not propagate data in PiCoP protocol because the nginx server
cannot accept the data.

The version of Istio is 1.16.1. We configure it to route
requests with the value “main” in the HTTP header field “Env-
Id” to the nginx server. We also configure it not to scale out its
component automatically to measure in the same conditions.
Other settings are defaults.

TABLE V
KUBERNETES CLUSTER SPECIFICATION

Version 1.26.0
Container Runtime containerd (version 1.6.14)

CNI plugin cilium (version 1.12.2)

Fig. 4. Conditions for measuring proxy communication delay

The conditions for the requests are the same as Istio perfor-
mance evaluation [40], with 1kB as HTTP request payload and
1000 requests per second. We send a total of 10000 requests
for 10 seconds and measure their response time with various
numbers of simultaneous client connections.

Each proxy and nginx server runs as a single container on
Kubernetes. We place these containers on one virtual machine.
Their resource usage is limited to 2vCPUs and 1GiB memory,
similar to the default value for Istio proxies1.

2) Results: We show the 90th and 99th percentile of
response time measured for each condition and the number
of simultaneous client connections in Fig. 5 and 6.

By comparing “base” and “base+picop”, we clarify the
communication delay introduced by PiCoP proxy. Regardless
of the number of simultaneous client connections, the response
time with PiCoP proxy increased in comparison to without
them. In the 90th percentile, the delay by PiCoP proxy was
between 3.2 ms and 12.3 ms. In the 99th percentile, the delay
by PiCoP proxy was between 6.7 ms and 13.3 ms.

By contrasting “base+gw+istio” and “base+gw+picop”, we
illustrate the difference in communication delay between Pi-
CoP and Istio proxy. In the 90th percentile, the delay by PiCoP
proxy was almost equal to the delay by Istio proxy. In the 99th
percentile, PiCoP proxy was 0.3 ms to 2.7 ms slower than Istio
proxy.

C. Resource Reduction

We clarify the amount of resource reduction by sharing
microservices using PiCoP.

1) Methods: We place a load on microservices (nginx
servers (version 1.23.3)) by continuously sending requests
under two conditions: In the “share: yes” condition, microser-
vices are shared by using PiCoP. In the “share: no” condition,
microservices are not shared. We scale out microservices
and proxies according to CPU utilization and count the total
number of containers of them.

In the “share: yes” condition, we send requests to a single
microservice via PiCoP proxy (Fig. 7). The proxy does not
propagate data in PiCoP protocol because the nginx server
cannot accept the data. On the other hand, in the “share: no”
condition, we send requests evenly to microservices equal to
the number of environments (Fig. 8).

Assuming deploying one environment per developer or
feature development, we change the number of environments
between 1 and 100.

We assume that a few developers and automated test exe-
cution programs access each environment for staging, testing,
debugging, and previewing. In other words, unlike production
environments, we do not assume that many and unspecified
people access their environments. Therefore, we send 100 or
1000 requests per second in total for all environments from
clients equal to the number of environments. In other words,
in the “share: yes” condition, the proxy is connected to clients

1https://github.com/istio/istio/blob/1258e3fdad4421078dbd0962c3df09b8
e9bc752b/manifests/charts/istio-control/istio-discovery/values.yaml#L359-
L365 (Accessed: 2023-01-31)



Fig. 5. The 90th percentile of response time Fig. 6. The 99th percentile of response time

Fig. 7. The condition of sharing mi-
croservices

Fig. 8. The condition of
not sharing microservices

equal to the number of environments, and in the “share: no”
condition, each client connects to one nginx server.

In the“ share: yes”condition, we send HTTP/1.1 requests
with PiCoP protocol data whose context is “Env-Id:main”.
In the“ share: no” condition, we send HTTP/1.1 requests
with “Env-Id:main” in the HTTP header. In addition, as with
Istio performance evaluation [40], the number of bytes in the
payload of the HTTP request is set to 1kB.

Each proxy and nginx server runs as multiple containers on
Kubernetes. Each container’s resource is limited to 0.1 vCPUs
and 128MiB memory. For scaling out, we use Kubernetes Hor-
izontal Pod Autoscaler. Containers are scaled out so that the
CPU utilization of all containers meets the default threshold2

of 80% or less and that the number of containers is minimized.
We measure the total number of containers in the state

where the number of containers is constant and where 99% of
the requests sent are returned within one second in the last 60
seconds.

2https://github.com/kubernetes/kubernetes/blob/
c090810c4c96e0c5acc05ab2094a5d46669cae86/pkg/apis/autoscaling/
annotations.go#L34 (Accessed: 2023-01-31)

2) Results: We show the results for 100 and 1000 requests
per second in Fig. 9 and 10.

In the “share: yes” condition, the number of containers
remained approximately constant regardless of the number
of environments, ranging from 3 to 6 for 100 requests per
second and from 27 to 37 for 1000 requests per second. In
the “share: no” condition, the number of containers increased
proportionately to the number of environments. The proxies
and nginx servers were not scaled out, and the number of
environments matched the number of containers, except for
the case of 1000 requests per second and one environment.

Regarding 100 requests per second, resource usage in the
“share: yes” condition was lower than in the “share: no”
condition when the number of environments was 20 or more.
In the case of 1000 requests per second, resource usage in
the “share: yes” condition was lower than in the “share: no”
condition when the number of environments was 40 or more.

VI. DISCUSSION

Based on the results of Section V, we discuss PiCoP’s
performance in terms of proxy communication delay and
resource reduction by sharing microservices. We also discuss
the degree and constraints of protocol independence of PiCoP.

A. Proxy Communication Delay

Communication through PiCoP proxy is slower than without
the proxy.

Compared to Istio, which is widely used in the existing
method, the delay of PiCoP proxy is almost the same as
Istio proxy. It should be noted that while Istio proxy has
various features other than request routing, it is an extension of
Envoy, a high-performance proxy implemented in C++ [12].
The delay of PiCoP proxy, which is comparable to that of Istio
proxy, is within a practical and realistic range.

B. Resource Reduction

We consider the total resource usage by regarding the total
number of containers.



Fig. 9. Relationship between the number of environments and the number
of containers at 100 requests per second

Fig. 10. Relationship between the number of environments and the number
of containers at 1000 requests per second

Environments for testing, staging, debugging, and preview-
ing have low access by only a few clients. Therefore, if mi-
croservices are not shared, resources are required in proportion
to the number of environments, resulting in a large amount of
waste. On the other hand, if shared, access to all environments
can be put together, but proxies are required. If the number
of environments is small, the increase in resources due to
proxies is more significant than the reduction in resources due
to sharing, so sharing cannot reduce overall resources. On the
other hand, if the number of environments is large, the resource
reduction due to sharing is more significant than the increase
due to proxies, so sharing can reduce overall resources.

When not shared, resource consumption increases propor-
tionately to the number of environments. On the other hand,
when shared, resource usage remains constant regardless of the
number of environments. Therefore, resource reduction due to
sharing increases as the number of environments increases.

Also, the higher the number of requests per second, the
more increased lower limit on the number of environments
where sharing can reduce resources.

C. Protocol Independence

We discuss, separately for inter-service and intra-service
propagation, how protocol-independent PiCoP is and its con-
straints.

1) Inter-Service Propagation: PiCoP is independent of ap-
plication layer protocols because it does not interpret them.
Therefore, it can propagate contexts between services in the
same way for all protocols, including protocols that cannot
have optional data (Table. VI). Furthermore, PiCoP allows
common proxies to route requests for any application layer
protocol.

For all protocols, there is a restriction on connection reuse,
as described in Section III-C. For example, HTTP/1.1 persis-
tent connections [38] must only be allowed for requests with
the same context. Otherwise, if an application layer protocol
library is implemented to pool and reuse connections, reuse
must be allowed only for requests with the same context.

We compare the performance degradation due to this re-
striction with existing methods. First, we consider the case that
does not share microservices in multiple environments and de-
ploy them for each environment. In that case, connections are
not also reused between environments like PiCoP. Therefore,
the performance of PiCoP is similar to the case. Next, we
consider the case of existing systems that propagate context
through HTTP headers, as described in Section II-A. In that
case, we can use the persistent connections of HTTP without
any restrictions. Therefore, compared to this case, PiCoP has
the overhead for establishing TCP connections each time.

PiCoP depends on transport layer protocols, and PiCoP
proxy must be implemented for each transport layer protocol.
PiCoP protocol and proxy assume to be used with TCP.
For TCP, by adding data in PiCoP protocol to the front of
the byte stream, PiCoP works as shown in the prototype
implementation in Section IV. For UDP, context propagation
is also possible by adding data in PiCoP protocol to the front
of the datagram. In unidirectional communication, a proxy
must be deployed for the service receiving requests, and in
bidirectional communication, a proxy must be deployed for
both services communicating with each other. For protocols
that provide bidirectional streams over UDP, such as QUIC
[45], we also can add data in PiCoP protocol at the front of
the stream. This way, total data can be reduced compared to
sending it per UDP datagram.

2) Intra-Service Propagation: In services in the middle of
request processing in an application, such as a web server, it
is necessary to extract contexts from incoming requests, prop-
agate the contexts within the services, and add the contexts
to outgoing requests. As with the existing methods, we must
instrument the process to extract, propagate, and add contexts
into each service. We can instrument context propagation
within services using libraries maintained by OpenTelemetry.
On the other hand, for instrumenting the process to extract
and add contexts, we need to implement libraries for PiCoP
protocol per each language and application layer protocol, as



TABLE VI
WHICH APPLICATION PROTOCOLS CAN HAVE OPTIONAL DATA

Protocols that cannot have optional data Protocols that can have optional data
MySQL, PostgreSQL, Memcached, HTTP, gRPC, AMQP,

Redis, MongoDB Wire Protocol [41], Cassandra Native Protocol [42]
MQTT, Kafka Wire Protocol [43],
TDS (Microsoft SQL Server) [44]

Fig. 11. Cluster for an application that processes asynchronously using a
message queue

with OpenTelemetry.
In services at the end of request processing in an application,

such as a database, it is not necessary to propagate contexts
within services.

In asynchronous processing, there can be situations where
a service sending requests has no context. Therefore, it is
necessary to extend PiCoP proxy and isolate environments
according to the characteristics of the processing. For example,
we consider separating environments in a cluster shown in
Fig. 11. Service A and C are web servers, and service B is a
message queue. Service A receives requests from a client and
publishes messages to service B. Service C pulls the messages
from service B. In this case, contexts are propagated from a
client to service A, but not to service C. Therefore, requests
from service C to service B have no context. For this reason,
proxy B-2 for service B, which accepts requests from service
C, must route a request according to from which instance C
the proxy received the request. If instance C[feature-2] sends
a request to service B, proxy B-2 sends the request to instance
B[feature-2]. On the other hand, if instance C[main] sends a
request to service B, proxy B-2 needs to distribute the request
equally to instance B[main] and instance B[feature-1].

VII. CONCLUSION

In this paper, we proposed PiCoP, a framework to achieve
shared microservices in multiple environments by propagating
contexts and routing requests independently of application
layer protocols. PiCoP consists of a protocol that propagates
contexts without interpreting application layer protocols and
a proxy that uses the protocol to route requests. The protocol
adds context to the front of the TCP byte stream. It can be
used without conflict with many application layer protocols. It
is also designed to be as easy to instrument into a system and
can be applied to context propagation for other purposes. The

proxy interprets a context given to a request by the protocol
and routes the requests to the instance of the appropriate
environment based on the route information.

We have implemented a prototype of PiCoP and confirmed
that sharing microservices in multiple environments in a
system communicating with some application layer protocols
is possible. We showed that sharing microservices with Pi-
CoP can reduce resource consumption and that the reduction
increases with the number of environments. We also showed
by performance evaluation that the prototype proxy could be
used within a practically realistic delay compared to Istio.
Furthermore, we showed that PiCoP enables context prop-
agation between services in any application layer protocol,
including protocols that cannot have optional data. PiCoP
allows common proxies to route requests for any application
layer protocol. On the other hand, we showed that implemen-
tation for context propagation within services is still required
per language and application layer protocol. We also showed
restrictions on connection reuse and asynchronous processing.

Resolving these restrictions is a future challenge. It is also
future work to evaluate the applicability of PiCoP protocol to
context propagation for other purposes in practice.

The implementation of PiCoP is available at https://github.
com/picop-rd.
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