
J
H
E
P
0
8
(
2
0
2
3
)
0
6
0

Published for SISSA by Springer

Received: May 9, 2023
Accepted: July 3, 2023

Published: August 11, 2023

Borel resummation of secular divergences in
stochastic inflation

Masazumi Honda,a,b Ryusuke Jinno,c Lucas Pinold and Koki Tokeshic,e
aCenter for Gravitational Physics and Quantum Information,
Yukawa Institute for Theoretical Physics (YITP), Kyoto University,
Sakyo, Kyoto 606-8502, Japan
bRIKEN iTHEMS,
2-1 Hirosawa, Wako, Saitama 351-0198, Japan
cResearch Center for the Early Universe (RESCEU), Graduate School of Science,
The University of Tokyo,
Tokyo, 113-0033, Japan
dInstituto de Física Téorica UAM-CSIC,
Calle Nicolás Cabrera 13-15, 28049, Madrid, Spain
eGraduate School of Science, The University of Tokyo,
Bunkyo, Tokyo 113-0033, Japan
E-mail: masazumi.honda@yukawa.kyoto-u.ac.jp,
ryusuke.jinno@resceu.s.u-tokyo.ac.jp, lucas.pinol@ift.csic.es,
tokeshi@resceu.s.u-tokyo.ac.jp

Abstract: We make use of Borel resummation to extract the exact time dependence from
the divergent series found in the context of stochastic inflation. Correlation functions of self-
interacting scalar fields in de Sitter spacetime are known to develop secular IR divergences
via loops, and the first terms of the divergent series have been consistently computed
both with standard techniques for curved spacetime quantum field theory and within the
framework of stochastic inflation. We show that Borel resummation can be used to interpret
the divergent series and to correctly infer the time evolution of the correlation functions. In
practice, we adopt a method called Borel-Padé resummation where we approximate the
Borel transformation by a Padé approximant. We also discuss the singularity structures of
Borel transformations and mention possible applications to cosmology.

Keywords: Nonperturbative Effects, de Sitter space, Stochastic Processes, Non-Equilibrium
Field Theory

ArXiv ePrint: 2304.02592

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP08(2023)060

mailto:masazumi.honda@yukawa.kyoto-u.ac.jp
mailto:ryusuke.jinno@resceu.s.u-tokyo.ac.jp
mailto:lucas.pinol@ift.csic.es
mailto:tokeshi@resceu.s.u-tokyo.ac.jp
https://arxiv.org/abs/2304.02592
https://doi.org/10.1007/JHEP08(2023)060


J
H
E
P
0
8
(
2
0
2
3
)
0
6
0

Contents

1 Introduction 1

2 Stochastic spectator, its PDF, and the Fokker-Planck equation 4

3 Time evolution of the correlation function from resummation 11
3.1 Padé approximant: approximating the exact behaviour by a rational

function 12
3.2 Borel resummation: extracting the correct information from a formal series 14
3.3 Borel-Padé resummation for a stochastic spectator in the quartic

potential 17
3.4 Singularity structure in the Borel plane 18

4 Discussion and conclusions 19

A Different choices for Padé approximant and Borel-Padé summation 23

B Numerical precision in Borel-Padé transformation 26

1 Introduction

Cosmic inflation, an era of quasi de Sitter expansion of the early Universe, is now the
leading paradigm to describe the earliest cosmological history. In addition to solving
the horizon and flatness problems of the standard hot Big Bang model [1–6], inflation
provides an explanation for the origin of structures in our Universe. Vacuum fluctuations
are generated deep inside the horizon and then stretched to cosmological scales by the
accelerated expansion, thus seeding Cosmic Microwave Background (CMB) anisotropies and
the Large-Scale Structure (LSS). The simplest model of inflation, a slowly-rolling scalar
field, predicts nearly scale-invariant, adiabatic, and sufficiently small cosmological scalar
fluctuations, being consistent with the current large-scale observations [7, 8].

Although the physics of inflation is rather constrained at the largest cosmological scales
emerging from vacuum fluctuations during an epoch deep inside the inflationary era, much
remains to be understood about the remaining of the inflationary evolution through small-
scale observations. For example, if fluctuations at small cosmological scales are sufficiently
enhanced compared to those at the CMB ones, a significant amount of primordial black
holes (PBHs) could be produced when primordial perturbations re-enter the Hubble horizon
in the radiation- and matter-dominated eras [9–12]. In those scenarios, it may happen that
fluctuations at small scales are so large that standard perturbation theory breaks down and
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that one needs a non-perturbative formalism to describe them.1 Stochastic inflation [24]
precisely enables one to treat such large fluctuations in a non-perturbative way, and correctly
infer the statistical properties of primordial fluctuations in this regime. Actually, it is now
believed that the formation of primordial black holes is mostly sensitive to very large
over-densities, rather than an overall increase of the root mean square density. These rare
events, located in the tails of the distribution of fluctuations, cannot be described by the
usual perturbation theory, even without an amplification mechanism at a specific scale.
For example, the stochastic formalism has been used to prove that exponential tails can
typically develop away from the center of the distribution, potentially leading to many more
primordial black holes than a Gaussian distribution with the same power spectrum [25–30].
Other than their implication in terms of primordial black holes, small-scale amplification
mechanisms are also investigated for their potential to lead to secondary gravitational waves
at horizon re-entry (see [31] for a recent review), as well as to spectral distortions in the
CMB at intermediates scales (see, e.g. [32] for a recent update on the status and prospects
of these observables).

In the stochastic inflation framework (see the seminal works [24, 33–41]), the long-
wavelength modes of the scalar field are driven by an effectively classical, yet stochastic
dynamics. The source of the stochasticity stems from the quantum nature of the vacuum
fluctuations of this bosonic field. When these microphysical fluctuations are stretched on
super-Hubble scales, they join the infrared sector of the scalar field. One can therefore
see the coarse-grained, long-wavelength modes, as an open system subject to a constant
interaction with a bath of ultra-violet modes. This interaction is most notably described as
a noise term in a stochastic differential equation for the infrared system, called a Langevin
equation. Correspondingly, from the Langevin equation (and given a time discretisation
scheme), one can consider the associated Fokker-Planck equation for the probability density
function (PDF) of coarse-grained modes. Although the dynamics may be exactly solvable
for some classes of systems, it is in general difficult to obtain the full behaviour without
numerical calculations. However, important analytical results have been derived with the
stochastic formalism, at least in three directions.

• The first one, which is also the main focus of this work, is the series expansion of the
field’s correlation functions in terms of log a, where a is the scale factor. Excellent
agreement has been shown between the stochastic approach and various quantum
field theory techniques, mostly in the paradigmatic setup of λφ4 theory, for the first
orders of the series expansion [41–48] (see also [49–52] for the first such predictions in
the context of multifield stochastic inflation with curved field space). As these time
series are divergent, an effect known as secular divergences, the expansion is reputed

1It has recently been advocated that a dramatic enhancement of small-scale fluctuations could even lead
to the breakdown of cosmological perturbation theory at CMB scales, therefore putting into question the
viability of single-field PBH formation scenarios [13, 14]. This conclusion has been criticized in [15, 16],
see also [17–23] for recent works tackling this issue. Although the point of this work is not to address the
viability of these scenarios, we simply mention that the stochastic formalism precisely allows one to describe
situations where perturbation theory breaks down, and that a breakdown of perturbation theory does not
necessarily imply ruling out of the model.
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trustworthy at early times only; in this work we precisely revisit this question and
extend the validity of these results up to sufficiently late time.

• The second direction concerns the opposite, late-time expansion of the correlation
functions and the related PDF. These results (see, e.g. [53–69]), are impressive as
they somehow encompass the late-time resummation of the IR secular divergences
previously mentioned.

• A third direction, more directly related to cosmology and inflation, concerns the
application of the stochastic formalism to the derivation of primordial correlation
functions for the curvature perturbation. The so-called stochastic δN -formalism,
enables one to derive those statistics from the fluctuations of the duration of inflation
in uncorrelated patches of the universe [70–79], proving notably useful for predicting
the abundance of primordial black holes [25, 28, 30, 77, 80–82].

In this work, we bridge the gap between the early- and late-time expansions of the stochastic
formalism (the first and second points), by providing a way to resum the IR secular
divergences at any finite of infinite time,

Borel resummation [83] is one of the standard methods to resum formally divergent
series. It not only makes sense out of divergent series, but also gives us information
on non-perturbative effects through analytic structures in the Borel plane via resurgence
relations [84].2 While Borel resummation and resurgence have long history of applica-
tions to quantum mechanics [90–119], currently there are many applications to various
other physics such as quantum field theory (QFT), hydrodynamics [120–127] and string
theory [128–146]. In particular, QFT recently has a variety of applications of Borel resum-
mation and resurgence, including 2d QFTs [147–163], the Chern-Simons theory [164–170],
4d non-supersymmetric QFTs [171–181], and supersymmetric gauge theories in diverse
dimensions [182–196]. However, there are only few applications so far in the cosmological or
astrophysical contexts, and mainly for quasi-normal modes of a black hole [197–200]. The
aim of the present paper is to present a new cosmological application of Borel resummation;
from a truncated series at some finite order, we reconstruct the long-time evolution of the
correlation function from transient to equilibrium regimes. To make the setup as simple as
possible, we mainly restrict ourselves to a spectator field in a quartic potential. In order
to make contrast with exactly solvable systems, we also discuss a spectator in a quadratic
potential in a parallel way.

The organization of the paper is as follows. In section 2, we review the framework
of stochastic inflation, focusing on the distribution and correlation functions of a test
(spectator) scalar field in the presence of a quadratic or a quartic potential. There we
perform a perturbative expansion of the correlation functions and see how it leads to
a divergent behaviour in the λφ4 theory. In section 3 we introduce Padé approximants
and Borel resummation to recover the correct behaviour of the correlation functions in
time. In the application of the Borel resummation, we specifically use a method called
Borel-Padé resummation where we approximate Borel transformation (rather than the

2See [85–89] for some reviews.
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correlation functions themselves) by the Padé approximant. Section 4 is devoted to
discussion and conclusions. In appendix A, we discuss technicalities of the Borel-Padé
resummation technique.

2 Stochastic spectator, its PDF, and the Fokker-Planck equation

The stochastic formalism for inflation [24] aims at dealing directly with the super-Hubble
part of the quantum fields present during inflation. It is derived as an effective field theory
for the long-wavelength modes of scalar fields, after the short-wavelength modes have
been integrated out. The quantum properties of these small-scales degrees of freedom
are imprinted in the statistical properties of a stochastic noise. This noise then acts as
a driving force on the effectively classical dynamics of the so-called coarse-grained fields
on super-Hubble scales (see, e.g. refs. [201–206], about the quantum-to-classical transition
during inflation). The resulting Langevin equations can then be translated into the Fokker-
Planck equation, which describes the convection-diffusion of the probability distribution
function for the coarse-grained fields. The convection term is given by the usual background
dynamics of the fields, and is often dictated by the derivative of a scalar potential (see
also refs. [49, 51] for the incorporation of non-minimal kinetic couplings between scalar
fields in the context of stochastic inflation). The diffusion term comes from the noise in the
Langevin equation and describes the effect of the small-scale quantum modes crossing the
cut-off scale and joining the open system made of super-Hubble fields. In the following, in
order to keep the discussion simple, we adopt the simpler approach of stochastic inflation
from the point of view of the equations of motion. The stochastic formalism can also be
found from the theoretically robust path integral derivation, see refs. [51, 207–213].

Throughout this paper, we consider the dynamics of a spectator field φ during inflation.
In practice, we will work at leading order in the slow-roll parameters, which amounts to
approximating the quasi-de Sitter background as an exact de Sitter one with a constant
Hubble parameter H = ȧ/a, maintained by another scalar field playing the role of the
inflaton.3 Here, a dot means a derivative with respect to the cosmic time t, and a = a(t) is
the scale factor with exponential time-dependence. In the following, rather than the cosmic
time, we will use the convenient and deterministic (see ref. [43]) variable N = log a called
the number of e-folds, as a time variable. We decompose the scalar field φ into UV modes
(φ> for k > kσ(N)) and IR ones (φ< for k < kσ(N)), as

φ(N,x) =
∫ d3k

(2π)3 Θ(k − kσ(N))φ̃(N,k)eik·x︸ ︷︷ ︸
≡φ>(N,x)

+
∫ d3k

(2π)3 Θ(−k + kσ(N))φ̃(N,k)eik·x︸ ︷︷ ︸
≡φ<(N,x)

.

(2.1)
3One may think naively that the next-to-leading order behaviour taking into account corrections from a

time-dependent Hubble scale could be obtained in an adiabatic way by replacing H → H(N) in equilibrium
distributions and correlation functions. However, this was shown to be generally wrong in [62], where it
was explicitly proved that the time scale for spectator fields to relax to the equilibrium is typically much
larger than the time scale of evolution of H(N) (see also ref. [214]). Therefore, spectator fields are typically
out of equilibrium during inflation, which actually provides a further motivation for the current work. We
plan to address the situation of a more realistic inflationary background with non-adiabatic evolution of the
spectator field in a future publication.
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We introduced a time-dependent cut-off kσ(N) ≡ σa(N)H, with σ � 1 a bookkeeping
parameter representing the ratio between the physical size of the Hubble radius and the
cut-off length. Physically, it is chosen such that modes with wavelength larger than the
cut-off scale can be well approximated as classical random variables, rather than fully
quantum operators. The fact that the cut-off is time dependent is crucial as time derivatives
of the full field φ will also hit the window function Θ, giving rise to terms absent in the
corresponding deterministic, background theory (for which kσ(N) → 0). Here we also
defined Θ as the Heaviside step function, which amounts to a hard cut-off separating the
UV sector from the IR one. The choice of the window function is not irrelevant, as our
choice of a hard cut-off will result in a white noise, while a smooth window function would
have resulted in a colored noise with different statistical properties, see [209, 215, 216].

The dynamics of the full field φ, before the decomposition into IR and UV modes, is
described by the Klein-Gordon equation

∂2φ

∂N2 + 3 ∂φ
∂N
− ∇2φ

a2H2 + 1
H2

dV
dφ = 0 , (2.2)

where V = V (φ) is the scalar potential. Inserting the decomposition (2.1) into eq. (2.2),
and assuming that the quantum fluctuations φ> behave as in the usual linear perturbation
theory, one finds the Langevin equation for the coarse-grained fields:

∂φ

∂N
= − 1

3H2
dV
dφ + ξ . (2.3)

Here and in the following we simply write the long-wavelength field φ< as φ since the
stochastic formalism gives an effective description of φ< only. We have also assumed an
overdamped approximation for the dyamics of the IR fields, that is that the acceleration
term is negligible compared to the other ones. This approximation is well motivated in
situations where the scalar field is (at the classical, deterministic level), slowly rolling down
the slope of its potential (see [37, 217] for the first works on stochastic inflation beyond
slow roll). The first term in the right hand side of eq. (2.3) describes the effect of the
classical drift, while the second is the classical noise of quantum micro-physical origin, with
correlation properties

〈
ξ(N,x)ξ(N ′,x′)

〉
= H2

4π2 sinc(kσr) δD(N −N ′) . (2.4)

Here r ≡ |x− x′| is the comoving distance between the two points. In the following, we will
be interested only in the one-point statistics of the fields, and therefore focus effectively on
r = 0 (and therefore sinc(kσr)→ 1), although in practice our results will be more generally
valid for any two points within a patch of the early universe with comoving size r < k−1

σ .
We can interpret the presence of the Dirac δ-distribution in time, δD(N −N ′), as the fact
that the stochastic dynamics is derived from a white noise. The amplitude of the noise
corresponds in general to the power spectrum of the quantum fluctuations φ> when they
cross the cut-off scale and correspond to the transfer of energy from the UV sector to the IR
one. In eq. (2.4), we have assumed that those fluctuations were behaving as being effectively
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massless, which yields a spectrum of amplitude [H/(2π)]2. In practice our amplitude for
the noise can be thought of as the leading-order term in an expansion in m2

eff/H
2, where

meff is the effective mass of the fluctuations φ> at horizon crossing. A technical assumption
of this formalism is therefore that no non-perturbative mass will develop due to stochastic
effects (see [212] for the first-order correction taking into account the backreaction of the
stochastic dynamics on the amplitude of the noise, through the development of a mass
term due to stochasticity). It is also important to note the independence on σ of the final
Langevin equations for massless fields, at leading order and in the limit of σ � 1, see, e.g.
refs. [51, 218, 219] for discussions about a realistic choice of σ for light — but not massless
— fields.

The Langevin equation (2.3) can be translated into the Fokker-Planck equation for the
probability density function (PDF) of φ, f(φ,N), as4

∂f

∂N
= 1

3H2
∂

∂φ

(dV
dφ f

)
+ H2

8π2
∂2f

∂φ2 , f = f(φ, N) . (2.5)

The stationary solution of eq. (2.5), ∂f∞/∂N = 0, can be obtained for an arbitrary
potential [41],

f∞(φ) ≡ lim
N→∞

f(φ,N) = C exp
[
− 8π2

3H4V (φ)
]
, C−1 ≡

∫
dφ exp

[
− 8π2

3H4V (φ)
]
.

(2.6)
For the initial condition, we assume that φ is deterministically located at a local minimum
of V (φ), φ = φ0, at N = 0,

f0(φ) ≡ f(φ, N = 0) = δD(φ− φ0) . (2.7)

Starting from φ0, the spectator field evolves according to eq. (2.3) with the classical drift and
the quantum noise. As time passes by, the distribution of φ equilibrates to the stationary
distribution given by eq. (2.6). The stationary correlation functions read

〈φn〉∞ ≡ lim
N→∞

〈φn〉 (N) =
∫

dφφnf∞(φ) . (2.8)

While the equilibrium distribution and correlation functions are in general easy to obtain,
it is often challenging to calculate the time evolution of the PDF and the correlations of

4In general, going from stochastic differential equations as the Langevin equations (2.3) to the Fokker-
Planck equation, is far from trivial. Indeed, when the amplitude of the noise is a function of the stochastic
variable — here φ —, a situation called multiplicative noise, the stochastic dynamics depends on the
discretisation time scheme in the Langevin equations, or equivalently, in the path integral representation
of the theory. The choice of time discretisation has been argued to exceed the accuracy of the stochastic
formalism [76], a statement proved to be correct for single-field inflation but resulting in an ambiguity
dubbed “inflationary stochastic anomalies” and particularly relevant in multifield scenarios in [49]. Based
on a fundamental description at the level of the discretised path integral approach, it was proven that only
the so-called Stratonovich scheme, corresponding to a mid-point discretisation, was leading to field-covariant
equations in the stochastic formalism [51]. For the sake of this paper, the discretisation scheme is irrelevant
as our stochastic variable, φ, is a spectator field and the amplitude of the noise, given by [H/(2π)]2, is
independent of it.
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φ without the help of numerical calculations. In order to study the time evolution of the
correlators in an analytic way, we expand them in terms of N ,

〈φn〉 (N) ≡
∫

dφφnf(φ, N) =
∞∑
k=0

an,kN
k . (2.9)

Note that the right hand side is a formal perturbative series and is not guaranteed to
converge. Also, the coefficients an,k have a mass dimension n for any value of k. The
correlation functions 〈φn〉 can be shown to verify recurrence relations by using the integral
definition eq. (2.9) together with the Fokker-Planck equation (2.5), after integration by parts:

∂ 〈φ〉
∂N

= − 1
3H2

〈dV
dφ

〉
,

∂ 〈φn〉
∂N

= − 1
3H2n

〈dV
dφ φ

n−1
〉

+ H2

8π2n(n− 1)
〈
φn−2

〉
for n ≥ 2 . (2.10)

One can already anticipate the difficulty about recovering exact expressions for 〈φn〉:
eq. (2.10) may not represent a closed system of differential equations, depending on the
choice of the scalar potential V (φ). For the coefficients an,k, the initial and boundary
conditions are set as follows. From

〈
φ0〉 = 1, we should set a0,k = δ0k for k ∈ Z≥0 with

δij being the Kronecker delta. We also set an,0 = δn0 for n ∈ Z≥0 from the deterministic
initial condition φ = φ0 (we consider φ0 = 0 for simplicity). We will also assume here that
the system has a Z2-symmetry, φ ↔ −φ, which further sets an=2m+1,k = 0 for m ∈ Z≥0.
These assumptions are only technical and our formalism can also be applied to more diverse
potentials and initial conditions. Once the potential V (φ) is specified, and as long as it is a
polynomial of a finite order, the coefficients an,k can be recursively obtained from these
conditions and eq. (2.10), as we will see through two specific examples below. Throughout
this paper, we consider a scalar field in a quadratic or quartic potential,

V (φ) =


m2

2 φ2 (quadratic) ,

λ

4 φ4 (quartic) .
(2.11)

Figure 1 shows the time evolution of the PDFs obtained by a numerical resolution of
the Fokker-Planck equation (2.5) for each potential. The stationary PDFs are obtained
from eq. (2.6),

f∞(φ) =



m

H2

√
4π
3 exp

[
−4π2

3

(
m

H2φ

)2
]

(quadratic) ,

λ1/4

H

2
Γ(1/4)

(
2π2

3

)1/4

exp

−2π2

3

(
λ1/4

H
φ

)4
 (quartic) .

(2.12)

For V (φ) = m2φ2/2, the system conserves at late times an exactly Gaussian behaviour
(actually, the distribution can be shown analytically to be Gaussian at any time, and the
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Figure 1. Time evolution of the PDFs for V (φ) = m2φ2/2 (left) and V (φ) = λφ4/4 (right).
The black, red, and green lines represent respectively the initial, stationary, and transient dis-
tributions. The blue lines correspond to the scalar potentials. The narrow Gaussian function,
f0(φ) = e−φ

2/2σ2
/
√

2π σ, is used as the initial distribution where σ = 0.02, in order to mimick the
idealized δ-function, eq. (2.7). Here, the Crank-Nicolson scheme was used to numerically solve the
Fokker-Planck equation (2.5).

time-dependent standard deviation can be computed exactly), while for V (φ) = λφ4/4 a
negative kurtosis develops. The two-point function at equilibrium reads

〈
φ2
〉
∞
≡ lim

N→∞

〈
φ2
〉

(N) =


3

8π2

(
H2

m

)2

(quadratic) ,√
3

2π2
Γ(3/4)
Γ(1/4)

(
H

λ1/4

)2
(quartic) ,

(2.13)

and

〈
φ4
〉
∞

=


27

64π4

(
H2

m

)4

(quadratic) ,

3
8π2

(
H

λ1/4

)4
(quartic) .

(2.14)

It is also possible to compute analytically the higher-order stationary correlation functions,
e.g. in the quartic case one can compute the kurtosis,

〈
φ4〉
∞ /

〈
φ2〉2
∞− 3 ≈ −0.812, showing

that the λφ4 theory is platykurtic in the equilibrium state [41].
For the time evolution of the correlation functions, recurrence relations for an,k are

obtained by substituting the expansion eq. (2.9) into eq. (2.10). For the two potentials,
we find

(k + 1)an,k+1 = − m2

3H2nan,k + H2

8π2n(n− 1)an−2,k (quadratic) , (2.15)

(k + 1)an,k+1 = − λ

3H2nan+2,k + H2

8π2n(n− 1)an−2,k (quartic) . (2.16)

In the following, we will focus for definiteness on the two-point function, the power spectrum
(and the corresponding a2,k). We will also apply the same tools, following the same steps,
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n\k 0 1 2 3 4 5 6 · · ·
0 1 0 0 0 0 0 0 · · ·
1 0 0 0 0 0 0 0 · · ·
2 0 1/4π2 −1/12π2 1/54π2 −1/324π2 1/2430π2 −1/21870π2 · · ·
3 0 0 0 0 0 0 0 · · ·
4 0 0 3/16π4 −1/8π4 7/144π4 −1/72π4 31/9720π4 · · ·
5 0 0 0 0 0 0 0 · · ·
6 0 0 0 15/64π6 −15/64π6 25/192π6 −5/96π6 · · ·
...

...
...

...
...

...
...

... . . .

Table 1. The coefficients ān,k for V (φ) = m2φ2/2. The colored entries are immediately determined
from the initial and boundary conditions as well as the recurrence relations.

to the four-point function, the trispectrum (and the corresponding a4,k). In principle, the
time dependence of correlation functions of any order n can be studied by these means.

Quadratic case. For V (φ) = m2φ2/2, the recurrence relation can be solved analytically
to give

ā2,k =


0 (k = 0)

− 3
8π2

(−)k

k!

(2
3

)k
(k ≥ 1)

, an,k = ān,k
m2k

mn

H2n

H2k , (2.17)

where we introduced the rescaled coefficients ān,k so that the recurrence relation reduces to
(k + 1)ān,k+1 = −(1/3)nān,k + (1/8π2)n(n− 1)ān−2,k for n ≥ 2 and k ≥ 0. From eq. (2.17),
the time dependence of the two-point function reads

〈
φ2
〉

(N) =
∞∑
k=0

a2,kN
k = 3H4

8π2m2

[
1− exp

(
−2m2

3H2N

)]
, (2.18)

and
〈
φ4〉 = 3

〈
φ2〉2. The same expression can be obtained without expanding

〈
φ2〉 in terms

of N , by directly solving eq. (2.10), the last term in the right hand side being a constant for
n = 2. Our conclusion regarding the expansion of

〈
φ2〉 in terms of N , is that it results in a

convergent series as it should be, therefore giving the exact formula eq. (2.18). Any higher
order correlation function can be computed this way for the quadratic case (another option
is to compute them from the Gaussian density function f(φ,N)), see table 1 for a few other
values of the ān,k. The left panel of figure 2 shows the behaviour of the coefficients ā2,k and
their ratio ā2,k+1/ā2,k as k increases. Noting that the ratio is related to the convergence
radius rc of the series by

1
rc

= lim
k→∞

∣∣∣∣∣ ā2,k+1
ā2,k

∣∣∣∣∣ , (2.19)

the plot implies that the expansion (2.18) indeed has an infinite convergence radius. The
same holds for the equivalent expressions for

〈
φ4〉. For convenience, we introduce dimen-
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Figure 2. The coefficients ā2,k and their ratio to the previous order, for the quadratic (left) and
quartic (right) potentials. The upward and downward triangles indicate the sign of ā2,k, and
their absolute values can be read off from the left vertical axis. The circles are the ratio between
neighboring two nonzero coefficients and can be read off from the right vertical axis.

sionless variables, 〈
φ̄2
〉

=
∞∑
k=0

ā2,kN̄
k ; φ̄ ≡ m

H2φ , N̄ ≡ m2

H2N , (2.20)

then a2,k/a2,k+1 = (H2/m2) ā2,k/ā2,k+1. The top panels of figure 3 compares the series
truncation of

〈
φ̄2
〉

(N̄) and
〈
φ̄4
〉

(N̄) at different orders with their exact results. We easily
see that the series truncated at higher orders give better approximations over the whole
region, as expected from the fact that the series (2.20) has an infinite radius of convergence.5

Quartic case. For V (φ) = λφ4/4, the coefficients of Nk can be rescaled as
an,k = ān,kH

nλ(2k−n)/4, and the recurrence relation reduces to (k+1)ān,k+1 = −(n/3)ān+2,k+
(1/8π2)n(n− 1)ān−2,k. The closed form for general ā2,k is too complicated for practical use
but again can be obtained. For even indices k = 0, 2, · · · the coefficient ā2,k vanishes, while
for odd k = 1, 3, · · · it starts with ā2,k=1 = 1 and

ā2,k =
( 3

2π2

)1/2 (−)(k−1)/2

k!

( 1
24π2

)k/2 k−3
2∏
j=0

pj+1∑
pj=j+2

(2pj − 2j − 2)(2pj − 2j − 1)(2pj − 2j) ,

(2.21)
for k = 3, 5 · · · .6 In this expression, p(k−1)/2 is given by p(k−1)/2 = (k + 1)/2. This closed
form is obtained for the first time to the best of the authors’ knowledge. Table 2 shows the

5In contrast, if the series has a finite radius of convergence, the expected behavior is that higher order
truncations approximate the exact result more accurately for N̄ smaller than the convergence radius, and
then they deviate from the exact result with a blowup for larger N̄ .

6Explicitly written, the product is
k−3

2∏
j=0

pj+1∑
pj =j+2

( · · · ) =
p(k−1)/2∑

p(k−3)/2=(k+1)/2

( · · · ) · · ·
p3∑

p2=4

( · · · )
p2∑

p1=3

( · · · )
p1∑

p0=2

( · · · ) ,

where p(k−1)/2 = (k + 1)/2.
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n\k 0 1 2 3 4 5 6 · · ·
0 1 0 0 0 0 0 0 · · ·
1 0 0 0 0 0 0 0 · · ·
2 0 1/4π2 0 −1/24π4 0 1/80π6 0 · · ·
3 0 0 0 0 0 0 0 · · ·
4 0 0 3/16π4 0 −3/32π6 0 53/960π8 · · ·
5 0 0 0 0 0 0 0 · · ·
6 0 0 0 15/64π6 0 −15/64π8 0 · · ·
...

...
...

...
...

...
...

... . . .

Table 2. The coefficients ān,k for V (φ) = λφ4/4. The colored entries are immediately determined
from the initial and boundary conditions as well as the recurrence relations.

first few terms of ān,k for the quartic case. The coefficients for n = 2 can be obtained from
eq. (2.21) or iteratively from eq. (2.16), and the first terms are in precise agreement with
the result from more detailed field theoretical calculations (see [43, 220] for the recursive
calculations and [221] for field theoretical derivations). Although one may expect from
table 2 that the e-folding expansion of

〈
φ2〉 is again convergent, it is not the case. In order

to see this, we introduce dimensionless variables similar to eq. (2.20),〈
φ̄2
〉

=
∞∑
k=0

ā2,kN̄
k ; φ̄ ≡ λ1/4

H
φ , N̄ ≡ λ1/2N . (2.22)

The right panel of figure 2 shows ā2,k=2`+1 and ā2,k=2`+3/ā2,k=2`+1 for the case of the quartic
potential. We see that the ratio exhibits a power-law growth with a positive exponent,
which is typical of factorially divergent series that appear in various systems in physics.
Therefore the plot implies that the convergent radius of the expansion eq. (2.22) is zero in
contrast to the quadratic case. Behaviour consistent with this can be seen in the bottom
panels of figure 3, which compare truncated series with the numerical results. We see that
higher order truncations start to blow up for smaller N̄ . This is typical behaviour of a
series with a vanishing radius of convergence, and its naive summation to the infinite order
does not make sense; we just get infinity everywhere except N̄ = 0. This calls for some
resummation prescription in order to recover the correct time evolution.

3 Time evolution of the correlation function from resummation

The closed form of ā2,k obtained in eq. (2.21) for the quartic potential gives the information
on all orders, and thus in principle gives the exact correlation function

〈
φ̄n
〉
. As mentioned

in section 2, however, it is practically difficult to obtain all the coefficients analytically, and
so is the time evolution of the correlation function. To make matters worse, its e-folding
expansion is a formal perturbative series that deviates more and more from its original
behaviour as the order of truncation increases, as shown in the bottom panels of figure 3.
In order to tame the divergence, we consider two kinds of resummation methods in this
section, namely the Padé approximant and the Borel-Padé resummation.
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(d) Truncation for V (φ) = λφ4/4.

Figure 3. Series truncation of the correlations
〈
φ̄2〉 (N̄) (left) and

〈
φ̄4〉 (N̄) (right), for the quadratic

(top) and quartic (bottom) potentials. The truncation orders kT are set to be kT = 2, 3, . . . , 30, and
kT increases from blue to red.

3.1 Padé approximant: approximating the exact behaviour by a rational
function

The Padé approximant [222] approximates a function by a rational function, in such a way
that its power series agrees with that of the original function up to a given order. It often
gives a better approximation of the original function than the naïvely truncated series, and
it can be used even when the power series of the original function is divergent. We apply
this procedure to the correlation functions of the spectator field.

The Padé approximant is constructed as follows. With a pair of integers m, n ∈ Z≥0, a
smooth function f(z) is approximated by a rational function called the Padé approximant,

f(z) =
∞∑
k=0

akz
k −→ f

[m|n]
P (z) ≡

m∑
k=0

bkz
k

n∑
k=0

ckzk

= b0 + b1z + b2z
2 + · · ·+ bmz

m

c0 + c1z + c2z2 + · · ·+ cnzn
. (3.1)

We require that f(z) and f [m|n]
P (z) be related by f(z) = f

[m|n]
P (z) +O(zm+n+1). Thus we

need the first m+ n+ 1 coefficients of the Taylor expansion of f(z) around z = 0, and the
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coefficients bk and ck in eq. (3.1) are uniquely determined by7

d`f(z)
dz`

∣∣∣∣∣
z=0

= d`f [m|n]
P (z)
dz`

∣∣∣∣∣
z=0

, ` = 0, 1, . . . , m+ n . (3.2)

The set of conditions (3.2) can be translated into

∑̀
k=0

akc`−k − b` = 0 , ` = 0, 1, . . . , m+ n . (3.3)

It is clear that f [m|n]
P (z) reduces to the m-th order of the Taylor expansion of f(z) when

n = 0. The special case, m = n, is called the diagonal Padé approximant, and it is known
to often give a better approximation than the ones with m 6= n called non-diagonal Padé
approximants. In the following, however, we restrict ourselves to the non-diagonal choice
with m = p− 1 and n = p+ 1 for a positive integer p. This choice is made for the purpose
of using the same order for the Padé approximants consistently throughout the paper:
since the order of the Padé approximants used in Borel-Padé resummation, as we see in
section 3.2, is required to satisfy m < n from the viewpoint of convergence, we use the same
choice here. For completeness, in appendix A we also show the result of diagonal Padé for〈
φ2〉 and 〈φ4〉.

Padé approximants have several important properties essentially coming from the fact
that they are rational functions. First, Padé approximants cannot have branch cuts while
they can have poles. This implies that when we try to approximate a function with branch
cuts, Padé approximants cannot reproduce exactly the same analytic structure as the
original function has. Instead, higher-order Padé approximants typically develop a bunch of
poles and/or zeros around the location of the branch cut of the original function.8 For this
reason, Padé approximants typically give better approximations for meromorphic functions
than for functions with branch cuts. Second, the series expansion of a Padé approximant
with a finite order around the origin is always convergent. This means that, when the
original function has a divergent series around the origin, Padé approximants with a finite
order cannot share this property. Thus, if we know some of the properties of the original
function a priori, it is better to adopt an approximation scheme that correctly captures
these properties.9 If otherwise, Padé approximants are usually a good first step to probe
some of the properties.

7Here we have implicitly assumed that f(z) is Taylor-expandable around z = 0, and this holds true for
the problems studied in this paper. If this is not the case, we could not directly use the Padé approximant. A
typical case is when the asymptotic behaviour of f(z) around z = 0 is singular, e.g. f(z) =

√
z, 1/z, or e1/z.

Even in such cases, the problem can often be reduced to an equivalent one such that the Padé approximant
is applicable by an appropriate mapping. For instance, when f(z) =

√
zg(z) with g(z) Taylor-expandable

around z = 0, we can apply the Padé approximant for g(z) = f(z)/
√
z.

8See e.g. [223] for some benchmarks.
9There are various approximation schemes beyond the standard Padé approximation, see [224–233].
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From the above considerations, we construct the Padé approximants of the correlation
functions as

〈
φ2
〉

(N) =
∞∑
k=0

a2,kN
k −→

〈
φ2
〉[p−1|p+1]

P
(N) =

p−1∑
k=0

bkN
k

p+1∑
k=0

ckN
k

, (3.4)

and similarly for
〈
φ4〉. Figure 4 shows the Padé approximant for both the quadratic and

quartic potentials. Compared to figure 3, those indeed give improved behaviour compared
to the naïvely truncated cases. Not only does the Padé approximant reproduce the transient
regime around N̄ ∼ 10, but it also gives the correct stationary behaviour, especially for
the quadratic case. However, quantitatively, we see a difference in accuracy between the
quadratic and quartic cases. In the quartic case, the approximation is relatively worse despite
it uses higher order information, though it is still much better than the truncated series. In
the quadratic case, the exact results are entire functions and the Padé approximant is good
at approximating such functions. As mentioned above, the quartic case has a divergent
perturbative series and its Padé approximant with a finite order cannot have such a property.
Therefore the Padé approximant is likely worse at approximating functions having divergent
series compared to analytic functions. This motivates us to consider another resummation
scheme that efficiently takes the properties of the series into account. One may wonder
what if we use diagonal Padé, since in the diagonal case the highest orders of the numerator
and denominator in eq. (3.1) are the same, and thus the asymptotic stationary behavior of
the correlation functions is guaranteed. Interestingly, however, this improvement applies
only to some of the correlation functions (more specifically,

〈
φ4〉, 〈φ8〉, · · · ). We illustrate

this point in appendix A.

3.2 Borel resummation: extracting the correct information from a formal
series

In the last subsection we saw how the Padé approximant reproduces the original correlation
functions up to some moderate e-folding number, even when the original power series is
divergent and defined only formally. However, we also found that in the quartic case the
approximation is relatively worse presumably because this case has a divergent perturbative
series and the Padé approximant is likely worse at approximating such functions than
analytic functions. Here, we take another strategy: Borel resummation (or practically
Borel-Padé resummation, use of Padé approximation in Borel summation.) There are also
other motivations beyond the above to use it in the present context. First, correlation
functions in de Sitter spacetime are expected to reach asymptotic values for sufficiently
large N . As we see below, the Borel transformation of such functions in general converges
to zero in the Borel plane. This property makes it easier to approximate the function
with the Padé approximation, and thus we expect that the behaviour of the divergent
series is improved even more with Borel-Padé resummation. Second, Borel transformation
contains information about possible non-perturbative aspects of the system through the
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Figure 4. Direct Padé approximants
〈
φ̄2〉[p−1|p+1]

P (N̄) (left) and
〈
φ̄4〉[p−1|p+1]

P (N̄) (right), for the
quadratic (top, up to p = 15) and quartic (bottom, up to p = 30) potentials. The order p increases
from blue to red.

singularity structure in the Borel plane, and thus is physically interesting to investigate.
In the following we illustrate how this method works for the correlation functions in de
Sitter space.

Borel resummation [83, 234, 235] is defined through the Borel transformation of the
original series.10 For an infinite series with respect to z and α /∈ Z≤0,

f(z) =
∞∑
k=0

akz
k+α , (3.5)

we define the Borel transformation of f(z) by

fB(t) ≡
∞∑
k=0

ak
Γ(k + α) t

k+α−1 . (3.6)

Then the Borel resummation of f(z) is defined as

fS(z) ≡
∫ ∞

0
dt e−t/z f̃B(t) , (3.7)

10It is convenient to put α /∈ Z≤0 to the index of z, following the definition of [235].
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where f̃B(t) is a simple analytic continuation of the series (3.6). The Borel resummation (3.7)
has the following important properties. First, it has the same asymptotic behavior around
z = 0 as the original one (3.5) (up to exponentially suppressed corrections that may
appear). One can easily check this by expanding f̃B(t) around t = 0 as in eq. (3.6) and then
exchanging the order of the t-integration and the expansion. Second, the Borel resummation
can be finite for finite and non-zero z under some conditions (explained later), even if
the original perturbative series (3.5) is divergent. Because of these reasons, the Borel
resummation may correctly capture the true properties of the original function and has
turned out to be the most standard way to resum divergent perturbative series.

Let us emphasize the contexts in which Borel resummation works. The Borel resumma-
tion, eq. (3.7), reproduces the original function f(z) when f(z) is analytic as demonstrated
below in the quadratic case.11 In this case, f(z) is the same as a simple analytic continuation
of the perturbative series summed inside its convergence radius, and correspondingly the
Borel transformation, eq. (3.6), has an infinite radius of convergence allowing us to exchange
the order of the integral and series expansion in eq. (3.7). On the other hand, if f(z) gives
a divergent series but its Borel resummation is convergent, then fS(z) is a function that
has the same asymptotic behaviour as f(z) and is convergent (in some angular domain in
z-plane). In this sense, the Borel resummation endows the original formal series with an
analytical meaning. However, one or more singular points may appear along the contour
of the integral (i.e. the real t axis), and in such cases uncertainties arise as to how to
avoid them. These ambiguities are typically related to non-perturbative aspects of the
physical system. However, we will see below that the correlation functions considered in
the present paper have no such singularities and thus are free from uncertainties, allowing
for unambiguous resummation.

Before applying Borel resummation to the divergent series of the quartic potential, let
us demonstrate how it works for an exactly solvable case, the stochastic spectator in the
quadratic potential. One starts with the original series (2.18),

〈
φ̄2
〉

(N̄) =
∞∑
k=0

ā2,kN̄
k =

∞∑
k=1

ā2,kN̄
k =

∞∑
k=0

ā2,k+1N̄
k+1 , (3.8)

where we used ā2,0 = 0, then the Borel transformation of eq. (2.18) is obtained as

〈
φ̄2
〉

B
(t) =

∞∑
k=0

a2,k+1
Γ(k + 1) t

k = 1
2π2

I1(2s)
2s

∣∣∣∣
s2=−2t/3

, (3.9)

where Iν(z) is the modified Bessel function of the first kind, and we used

Iν(z) =
∞∑
k=0

1
k!Γ(ν + k + 1)

(
z

2

)ν+2k
. (3.10)

11Note that the convergence of a perturpative series is not sufficient to reproduce the original function
by Borel resummation. For example, when f(z) is an analytic function plus e−1/z, the Borel resummation
misses the latter part. This kind of behaviour sometimes appears in supersymmetric systems [108, 110, 182,
183, 185, 190, 194].
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Note that t appearing in eq. (3.9) is just an auxiliary variable and has nothing to do
with the time variable. The absence of singularity in the Borel transformation (3.9) in
t ∈ [0, ∞) implies that the system is free from non-perturbative effects and that the
succeeding Laplace integral can be performed without any ambiguity. One sees that the
Borel transformation (3.9) vanishes as t→∞, and this behaviour guarantees the relaxation
of the correlators of the stochastic field that obeys the Langevin equation. From eq. (3.9)
we obtain the Borel resummation of

〈
φ2〉 as

〈
φ̄2
〉

S
(N̄) =

∫ ∞
0

dt e−t/N̄
〈
φ̄2
〉

B
(t) = 3

8π2

[
1− exp

(
−2

3N̄
)]

. (3.11)

Here we used the identity [236],
∫ ∞

0
dz e−αz2

Iν(βz) = 1
2

√
π

α
exp

(
β2

8α

)
Iν/2

(
β2

8α

)
, Re ν > −1 , Reα > 0 . (3.12)

As we see from this example, when the original function is an entire function (more generally
analytic function), the Borel transformation is free from singularities everywhere and we
can safely perform the Laplace integral to reproduce the original function exactly.

3.3 Borel-Padé resummation for a stochastic spectator in the quartic
potential

Let us apply Borel resummation to the spectator in the quartic potential. Since the
expansion coefficients ā2,k for even k’s vanish, we may remove these coefficients,

〈
φ̄2
〉

(N̄) =
∞∑
k=0

ā2,kN̄
k =

∞∑
`=0

ā2,2`+1N̄
2`+1 . (3.13)

In order to apply eq. (3.5) with N̄2 being the expansion parameter, we regard eq. (3.13) as

N̄
〈
φ̄2
〉

(N̄) =
∞∑
`=0

ā2,2`+1(N̄2)`+1 . (3.14)

Borel transformation is applied to eq. (3.14),

[
N̄
〈
φ̄2
〉]

B(N̄2)
(t) =

∞∑
k=0

ā2,2k+1
k! tk . (3.15)

Note that the subscript B(N̄2) indicates that we perform Borel transformation with N̄2

being the expansion parameter. The Laplace integral of eq. (3.15) gives the Borel summation
of N̄

〈
φ̄2
〉
. Then, the Borel summed correlator reads

〈
φ̄2
〉

S(N̄2)
(N̄) = 1

N̄

∫ ∞
0

dt e−t/N̄2[
N̄
〈
φ̄2
〉]

B(N̄2)
(t) . (3.16)

The above procedure gives the Borel resummation for the formal series (2.22) if all the
coefficients ā2,k are available. However, in the present case, it is practically impossible to
have all of them as we saw in section 2. In this situation, one of the standard prescription
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is to approximate the Borel transformation with a Padé approximant and then perform
Laplace transformation. This method is called Borel-Padé resummation. First, the original
series is truncated at a finite order, and from it the (truncated) Borel transformation is
constructed. The Padé approximant is used here giving the Borel-Padé transformation of
N̄
〈
φ̄2
〉

(N̄), [
N̄
〈
φ̄2
〉][p−1|p+1]

BP(N̄2)
(t) =

[ ∞∑
k=0

ā2,2k+1
k! tk

][p−1|p+1]

P

, (3.17)

and we finally obtain the Borel-Padé resummation,〈
φ̄2
〉[p−1|p+1]

SP(N̄2)
(N̄) = 1

N̄

∫ ∞
0

dt e−t/N̄2[
N̄
〈
φ̄2
〉][p−1|p+1]

BP(N̄2)
(t) . (3.18)

In general, a Padé approximant has one or more poles since it is a rational function by
definition. Some of them are apparent ones that can (dis)appear depending on the choice
of the order p, while others are manifestation of the singularities that the exact Borel
transformation has. As we will see in section 3.4, the Borel-Padé transformations have no
poles on the positive real axis (except for some apparent ones, see for example the blue
curves in figure 5). Hence, whenever the Borel-Padé transformations

[
N̄
〈
φ̄2
〉][p−1|p+1]

BP(N̄2)
(t)

and
〈
φ̄4
〉[p−1|p+1]

BP(N̄2)
(t) at some order p have those apparent poles on the integration contour,

we evaluate the Laplace integral (3.18) taking the principal values at these poles.
Figure 5 shows the Borel-Padé transformation at different orders p in the Laplace

space (i.e. as a function of t). The left and right panels are
[
N̄
〈
φ̄2
〉][p−1|p+1]

BP(N̄2)
(t) and〈

φ̄4
〉[p−1|p+1]

BP(N̄2)
(t), respectively. Figure 6 shows the result of the Borel-Padé resummation,

with the left and right panel being
〈
φ̄2
〉[p−1|p+1]

SP(N̄2)
(N̄) and

〈
φ̄4
〉[p−1|p+1]

SP(N̄2)
(N̄), respectively.

For comparison, we also show the result of the direct Padé in grey. We see that both the
transient and stationary behaviour are nicely reproduced, and that the Borel-Padé improves
the approximation compared to the direct Padé in figure 4. This is the main result of
this paper.

Note that eq. (3.14) regards N̄2 as the expansion parameter rather than N̄ . When the
initial condition for the spectator field is taken arbitrary, one cannot necessarily regard the
former to be the expansion parameter since the coefficients ān,k may have non-zero entries
for both odd and even orders of k. We show in appendix A that Borel-Padé transformation
works even in such cases.

3.4 Singularity structure in the Borel plane

In this subsection we finally study the singularity structure in the Borel plane for V (φ) =
λφ4/4. The singularity structure is important for the following reasons. First, the location
of the singularities affects whether the Borel resummation is well-defined: the integral
contour of the Laplace transformation may hit the singularities and hence we should check
if it happens. Second, it is known that singularities of the Borel transformation are typically
related to non-perturbative effects and Stokes phenomena. While we do not have an exact
expression for the Borel transformation in the current problem, it is natural to expect that

– 18 –



J
H
E
P
0
8
(
2
0
2
3
)
0
6
0

0 200 400 600 800 1000 1200
-0.01

0.00

0.01

0.02

0.03

(a) Borel-Padé transf. for V (φ) = λφ4/4.
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(b) Borel-Padé transf. for V (φ) = λφ4/4.

Figure 5. Borel-Padé transformation
[
N̄
〈
φ̄2〉][p−1|p+1]

BP(N̄2) (t) (left) and
〈
φ̄4〉[p−1|p+1]

BP(N̄2) (t) (right) for
V = λφ4/4. The orders are p = 2, 3, . . . , 30, and p increases from blue to red. Some of the curves
are degenerate.

the Borel-Padé transformation reflects the original singularity structure to some extent.
Thus in the following we estimate it through the Borel-Padé transformation.

Figure 7 shows how the poles (red crosses) and zeros (blue circles) in the Borel-Padé
transformation of N̄

〈
φ̄2
〉

(N̄) and
〈
φ̄4
〉

(N̄) change as the order p increases. We observe
several clusters in which poles and zeros appear alternately: one is located along the negative
real axis, and the others form curves in the left half of the t-plane. In all the three curves
the poles and zeros appear alternately, and the three curves are relatively stable against
the change in the order of the Padé approximant. These facts suggest that these poles and
zeros inherit the branch cuts that the exact Borel transformation has [223]. One of the cuts
lies along the negative real axis, and it starts from t = t0 ' −80. The starting point t = t0
determines the convergence radius of the series expansion of the exact Borel transformation.
The others extend to the real negative axis as the order p increases. The existence of
the cuts signals that there are Stokes phenomena when we extend N̄2 to complex region.
However, practically this is not of much importance: what is important here is that we do
not have cuts extended to the real and positive axis nor isolated poles on it, and thus the
succeeding Laplace integral has no ambiguity arising from the way to circumvent the branch
cuts or poles on the integration contour. This also suggests the absence of non-perturbative
effects in the present system.

Other structures include isolated zeros that appear in all the panels in figure 7. However,
zeros do not mean any singularities and thus they do not have much importance in the
current analysis. Also, in identifying the location of the poles and zeros, care must be taken
with numerical precision since the coefficients of the perturbative series are calculated with
a finite numerical precision. Insufficient precision can lead to the emergence of ghost pairs
in a characteristic way [223], and we explain this phenomenon in appendix B.

4 Discussion and conclusions

In this paper, we discussed the application of the Padé approximation and Borel-Padé
resummation in the context of the stochastic formalism of inflation, focusing on the dynamics
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(a) Borel-Padé resummation for V (φ) = λφ4/4.
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(b) Borel-Padé resummation for V (φ) = λφ4/4.

Figure 6. The Borel-Padé resummation
〈
φ̄2〉[p−1|p+1]

SP(N̄2) (N̄) (left) and
〈
φ̄4〉[p−1|p+1]

SP(N̄2) (N̄) (right) for
V = λφ4/4. The orders are p = 16, . . . , 50, and p increases from blue to red, while the black
solid lines correspond to the numerically calculated behaviour. In the right panel, most of all the
curves are degenerate. The direct Padé approximants for p = 30, . . . , 50 are also plotted with grey
dotted-dashed curves for comparison.
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Figure 7. Distribution of the poles and zeros in the Borel-Padé transformation,
[
N̄
〈
φ̄2〉][p−1|p+1]

BP(N̄2) (t)

(top) and
〈
φ̄4〉[p−1|p+1]

BP(N̄2) (t) (bottom), for V = λφ4/4. Plots are made for p = 50 (left), p = 150
(middle), and p = 500 (right). The appearance of alternating poles (red crosses) and zeros (blue
circles) along the curves implies the existence of branch cuts in the exact Borel transformation.

of a spectator field. In the stochastic formalism, coarse-grained fields follow the Langevin
equation and their distributions correspondingly follow the Fokker-Planck equation. In
de Sitter spacetime, it is intuitively easy to understand that this is a system leading to
an equilibrium state. In fact, the equilibrium distribution (2.6) and (2.8) can be easily
calculated for an arbitrary potential, and the relaxation process is not difficult to obtain
numerically (see figure 1). However, it is hard to grasp an analytical understanding of the
out-of-equilibrium transition. One way is to perturbatively expand the correlation functions
in terms of the e-folding number N . But the series are dangerously diverging for a wide
class of potentials and can only be interpreted as formal series. They are therefore reputed
to be trustworthy at early times only.

To investigate the properties of the correlation functions in stochastic inflation and the
usefulness of the Padé approximation or the Borel-Padé resummation, we focused on the
dynamics of spectator field in the paradigmatic λφ4 setup in de Sitter spacetime. First,
we confirmed that the expansion coefficients of the correlation functions increase more or
less factorially with an alternating sign, suggesting that the radius of convergence of the
series is zero (see the right panel of figure 2 and the bottom panels of figure 3). This is in
contrast to the case of a quadratic drift, in which the system is analytically solvable and the
coefficients monotonically decrease (see the left panel of figure 2). The Padé approximants
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may be useful in taming such diverging behaviour, and we first explored this possibility.
They approximate a function by a rational function in such a way that the coefficients are
determined so that the power series of the latter successively matches that of the former,
and in many cases they reproduce the original function better than the naively truncated
series. While the naively truncated series gets worse as the truncation order increases, the
Padé approximants indeed reproduce the original functions better as the order increases,
up to a certain e-folding, and not only around the transient regime but also until the
equilibrium is reached (see figure 4).

While the Padé approximants are useful, we saw that they perform relatively worse in
the quartic case presumably because this case has a divergent perturbative series and the
Padé approximant is likely worse at approximating such functions than analytic functions
as appeared in the quadratic case. This motivates us to apply the Borel-Padé resummation,
where the Borel transformation is approximated by the Padé approximant. There are two
other reasons to use this method. One is that the present system is an equilibrating one in
which the correlation functions are expected to reach constant values, and in such a case, the
Borel transformation converges to zero in the Borel plane as its argument t goes to infinity.
Due to this property, we expect good accuracy of the Padé approximant in Borel plane and
the resulting Borel-Padé resummation. In fact, we confirmed that Borel-Padé resummation
reproduces very well the behavior of the original correlation functions from the transient
regime to the equilibrium regime (see figure 6). Another reason is the general expectation
that the singularity structure in Borel plane tells us about non-perturbative properties of
the original system. Although the singularity structure of the Borel transformation is not
strictly known until all the expansion coefficients are available, its Padé approximation
often inherits the original singularity structure. We found several clusters of the poles and
zeros in the Borel-Padé transformations: one is along the real negative axis, and it stems
from the convergence boundary. It has poles and zeros appearing in an alternate way, hence
implying the existence of a branch cut. The others are located on curves, and again have
poles and zeros appearing alternately, thus signalling other branch cuts. However, as these
singularities do not appear on the positive real axis, we do not expect any non-perturbative
effects present in the current setup. Therefore, the Laplace integral, the final step of the
Borel(–Padé) resummation, can be performed without ambiguity.

We conclude by mentioning several possible applications of the analysis presented in
this paper. First, it would be straightforward to extend the current result to higher order
n-point correlation functions within the same setup. A natural direction would then be
to investigate to which extent one may reconstruct the full PDF in the relaxation process,
from the time-dependent correlation functions. Second, in our analysis, the spectator field
was assumed to start from the global minimum of Z2-symmetric potentials, which greatly
simplified the recurrence structure. It would be interesting to study more general initial
conditions, in which case those simplifications could not occur. Third, another possibility
would be to study more nontrivial potentials such as the double well potential leading
to phase transitions in the early universe, and to investigate the relation between the
singularity structure and non-perturbative effects. Indeed, the one-loop correction to the
instanton contribution to the correlation function can be seen in the stochastic framework.
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Last but not least, the case of the stochastic field being the inflaton field and therefore
leading the expansion of the universe, would be of great importance. For this purpose one
should take the field dependence of the Hubble parameter into account, as given by the
Friedmann equation in the slow-roll approximation, 3H2M2

Pl ' V (φ). One can already
anticipate several other complications, such as the fact that the discretisation of the time
scheme of the Langevin equations could affect the final result. Then, since fluctuations of the
inflaton can be converted to those of the curvature perturbation through the stochastic δN
formalism, one can treat the latter within the stochastic framework in a non-perturbative
way. One of the interesting consequences of this approach is that the PDF of the curvature
perturbation typically develops an exponential tail, which can be expected to lead to a more
efficient PBH formation scenario than the same setup investigated with the conventional
linear perturbation theory. Understanding the exponential tail from the viewpoint of
singularities in the Borel space is definitely a thrilling future direction. We leave such
considerations for future work.
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A Different choices for Padé approximant and Borel-Padé summation

Direct Padé. In the main text we used the non-diagonal Padé [p− 1|p+ 1] for the direct
Padé approximation. However, since one knows that the correlators approach constant
values for N → ∞, one may wonder if diagonal Padé performs better. Actually this is
true for

〈
φ4〉 , 〈φ8〉 , · · · while not for

〈
φ2〉 , 〈φ6〉 , · · · . In figure 8 we show the results for the

direct diagonal Padé. The left panel is for
〈
φ2〉[p|p]

P while the right panel is for
〈
φ4〉[p|p]

P . The
former does not show significant improvement compared to the left panel of figure 4, while
the latter improves drastically from the right panel of figure 4.

The reason for the behavior of the correlators
〈
φ2〉 , 〈φ6〉 , · · · can be explained in the

following way. Consider tanh x, which approaches a constant for x→∞ and has only odd
powers of the argument when expanded around zero:

tanh x = x− 1
3x

3 + 2
15x

5 − 17
315x

7 + · · · . (A.1)
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Figure 8. Direct diagonal Padé approximation
〈
φ̄2〉[p|p]

P (N̄) (left) and
〈
φ̄4〉[p|p]

P (N̄) (right) for
V = λφ4/4. The orders are p = 2, · · · , 30 and p increases from blue to red.

Applying diagonal Padé approximation, one obtains

[tanh x][1|1]
P = x , [tanh x][2|2]

P = x

1 + x2

3

, [tanh x][3|3]
P =

x+ x3

15

1 + 2x2

5

, · · · . (A.2)

As clear from these expressions, diagonal Padé does not necessary mean that the highest
order terms for the numerator and/or denominator are nonzero. According to table 2, this
class of correlators has only terms with odd powers of N and thus cannot improved by the
diagonal choice for the Padé approximants.

Borel-Padé resummation. In section 3, we applied Borel transformation with N̄2 being
the fundamental expansion parameter, see eq. (3.14). However, we may not always do this
since the coefficients an,k may have full entries depending on the initial condition for the
spectator field. In this appendix, therefore, we show how the results change for Borel-Padé
resummation with N̄ being the expansion parameter.

We first show in figure 9 the Borel-Padé transformation with N̄ being the expansion
parameter, using the same orders for the approximants as section 3.3. This corresponds to
using the full coefficients ā2,k+1, not ā2,2k+1, and [m|n] = [p− 1|p+ 1],

〈
φ̄2
〉[p−1|p+1]

BP(N̄)
(t) =

[ ∞∑
k=0

ā2,k+1
k! tk

][p−1|p+1]

P

, (A.3)

〈
φ̄4
〉[p−1|p+1]

BP(N̄)
(t) =

[ ∞∑
k=0

ā4,k+1
k! tk

][p−1|p+1]

P

. (A.4)

The Borel-Padé transformation develops high peaks at large t values, though the exact
Borel transformation is expected to damp with oscillations (see also figure 10). These high
peaks tend to spoil the asymptotic values of the Borel-Padé summation when we go back
to the N̄ -space via Laplace integral.
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Figure 9. Borel-Padé transformation
〈
φ̄2〉[p−1|p+1]

BP(N̄) (t) (left) and
〈
φ̄4〉[p−1|p+1]

BP(N̄) (t) (right) for V =
λφ4/4 with N̄ being the expansion parameter. The orders are p = 1, . . . , 30 and p increases from
blue to red.
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Figure 10. Borel-Padé transformation
〈
φ̄2〉[p/2|p]

BP(N̄) (t) (left) and
〈
φ̄4〉[p/2|p]

BP(N̄) (t) (right) for V = λφ4/4
with N̄ being the expansion parameter. The orders are p = 16, 18, . . . , 30 and p increases from blue
to red.

To avoid this issue, one may consider increasing the hierarchy between the orders of
the numerator and denominator in the Padé approximant, as the high peaks arise from
insufficient suppression of the Borel-Padé transformation for large t. In figure 10 we show
the Borel-Padé transformation using [m|n] = [p/2|p],

〈
φ̄2
〉[p/2|p]

BP(N̄)
(t) =

[ ∞∑
k=0

ā2,k+1
k! tk

][p/2|p]

P

, (A.5)

〈
φ̄4
〉[p/2|p]

BP(N̄)
(t) =

[ ∞∑
k=0

ā4,k+1
k! tk

][p/2|p]

P

. (A.6)

The high peaks now disappear. The corresponding Borel-Padé resummation,〈
φ̄2
〉[p/2|p]

SP(N̄)
(N̄) =

∫ ∞
0

dt e−t/N̄
〈
φ̄2
〉[p/2|p]

BP(N̄)
(t) , (A.7)

〈
φ̄4
〉[p/2|p]

SP(N̄)
(N̄) =

∫ ∞
0

dt e−t/N̄
〈
φ̄4
〉[p/2|p]

BP(N̄)
(t) , (A.8)

is plotted in figure 11. We see that the lines nicely reproduce the exact result.
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Figure 11. Borel-Padé summation
〈
φ̄2〉[p/2|p]

SP(N̄) (N̄) (left) and
〈
φ̄4〉[p/2|p]

SP(N̄) (N̄) (right) for V = λφ4/4
with N̄ being the expansion parameter. The orders are p = 2, 4, . . . , 100 and p increases from blue
to red.

B Numerical precision in Borel-Padé transformation

As mentioned in section 3.4, special care is needed when identifying the location of the
poles and zeros in the Borel plane. Figure 12 shows how the location of the poles and
zeros change depending on the numerical precision. Note that the plot range is totally
different from the main text: figure 12 corresponds to a zoom-in of figure 7 around the origin,
calculated with different numerical precisions. In this figure, the order of the Borel-Padé
transformation is fixed to p = 200, and the precision is changed as 100, 200, and 300 from
left to right. For precision below some threshold, poles and zeros start to appear along the
circle of convergence |t| = |t0| ' 80. These poles and zeros appear in pairs at the same
locations, and they are called zero-pole ghost pairs [223] (see also a recent progress [233]).
This property helps to identify them as numerical artifacts, and indeed they disappear as
the precision increases.
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Figure 12. Precision dependence of the distribution of the poles and zeros in the Borel-Padé
transformation

〈
φ̄2〉[p−1|p+1]

BP(N̄2) (t) (top) and
〈
φ̄4〉[p−1|p+1]

BP(N̄2) (t) (bottom) for V = λφ4/4. In all the panels,
the order p of the Borel-Padé transformation is fixed to p = 200, and the numerical precision is
changed as 100 (left), 200 (middle), and 300 (right). The cluster along the horizontal axis implies a
branch cut (with the poles and zeros appearing alternately), while the one along the circle for lower
precisions indicates ghost pairs (with the poles and zeros appearing at the same locations).
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