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ABSTRACT
Real-time optimization for nonlinear model predictive control (NMPC) has always
been challenging, especially for fast-sampling and large-scale applications. This pa-
per presents an efficient implementation of a highly parallelizable method for NMPC,
called ParNMPC. The implementation details of ParNMPC are introduced, includ-
ing a dedicated discretization method suitable for parallelization, a framework that
unifies search direction calculation done using Newton’s method and the parallel
method, line search methods for guaranteeing convergence, and a warm start strat-
egy for the interior-point method. To assess the performance of ParNMPC under
different configurations, three experiments including a closed-loop simulation of a
quadrotor, a real-world control example of a laboratory helicopter, and a closed-loop
simulation of a robot manipulator are shown. These experiments show the effective-
ness and efficiency of ParNMPC both in serial and parallel.
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1. Introduction

Nonlinear model predictive control (NMPC), which is formulated as a finite-horizon
optimal control problem (FHOCP), is a powerful and flexible control method due to its
ability to handle multi-input multi-output systems, deal explicitly with nonlinearities
and constraints, and directly minimize economic costs (Rawlings, Angeli, & Bates,
2012). Compared with its linear counterpart, where the underlying FHOCP is exactly
a quadratic program (QP), NMPC requires heavier computation in general. This heavy
computation comes from the predictive feature of NMPC, in which a future trajectory
is maintained and the number of optimized input and state variables grows with the
discrete prediction horizon. Along the prediction horizon, the state trajectory has
to be simulated as an initial value problem considering both numerical stability and
accuracy. Moreover, first- and second-order derivatives of the cost function, dynamics,
and constraints have to be evaluated or estimated online. It is generally needed to solve
equations or to perform matrix inversion to make steps toward the optimal trajectory.
Furthermore, extra care has to be taken to guarantee convergence of the nonlinear
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program (NLP).
Considerable effort has been devoted in recent years to real-time optimization meth-

ods and implementations for NMPC. The so-called continuation/generalized minimal
residual (C/GMRES) method was proposed by Ohtsuka (2004), where the solution to
the Karush-Kuhn-Tucker (KKT) conditions is traced without any line search or New-
ton iteration. The linear system is solved by the GMRES method (Saad & Schultz,
1986), enabling Hessian-free operations and fast computation if a limited number of
GMRES iterations are performed. The C/GMRES method has been implemented in
the AutoGenU toolkit (Ohtsuka, 2004). Another approximate method is the real-time
iteration (RTI) scheme (Diehl, Bock, & Schlöder, 2005), which can be seen as the se-
quential QP (SQP) method with only one QP iteration performed each sampling time.
The RTI scheme has been implemented in many toolkits, such as ACADO (Houska,
Ferreau, & Diehl, 2011), acados (Verschueren et al., 2018), and MATMPC (Chen,
Bruschetta, Picotti, & Beghi, 2019), and efficient QP solvers optimized for MPC,
such as qpOASES (Ferreau, Kirches, Potschka, Bock, & Diehl, 2014), HPIPM (Fri-
son, Sørensen, Dammann, & Jørgensen, 2014) and qpDUNES (Frasch, Sager, & Diehl,
2015), can be integrated. An efficient implementation of the interior-point method
for NMPC is reported in the FORCES NLP (Zanelli, Domahidi, Jerez, & Morari,
2017) software, which benefits from a structure-exploiting linear system solver. Effi-
cient implementations of first-order methods tailored to NMPC have been reported
in, such as, GRAMPC (Englert, Völz, Mesmer, Rhein, & Graichen, 2019), VIATOC
(Kalmari, Backman, & Visala, 2015), and FalcOpt (Torrisi, Grammatico, Smith, &
Morari, 2018). Generally, the iteration of first-order methods is cheap to perform.
For example, GRAMPC conducts a forward state simulation and a backward costate
(Lagrange multiplier corresponding to the state equation) simulation. The search direc-
tion is calculated by using simple derivatives, and a tailored line search is performed to
minimize the cost function. These methods are very efficient, and various applications
have been reported. However, applying NMPC in real time for emerging complicated
systems, such as robotic systems and power networks, is still challenging. Considering
the stagnating single-core performance of the processors, it is no surprise that the
computational demand is being shifted to fast-growing parallel computing platforms.
However, current state-of-the-art methods and implementations are not tailored to
parallel computing, that is, they can only be parallelized to a certain degree. There-
fore, according to Amdahl’s law (Amdahl, 1967), only a limited performance improve-
ment can be achieved on parallel platforms and there is an increasing demand for high
degree-of-parallelism (DOP) methods and efficient implementations thereof.

Parallel computing can be performed on various platforms, such as field pro-
grammable gate arrays (FPGAs), graphics processing units (GPUs), and multi-core
processors. Efficient FPGA implementations for linear MPC exploiting parallelizable
matrix-vector operations have been reported for the interior-point method (Jerez,
Constantinides, & Kerrigan, 2011) with a minimum residual linear system solver and
first-order methods (Jerez et al., 2014), e.g., Nesterov’s fast gradient method (Nesterov,
1983). Due to the inherent complexity of NMPC, processors are advantageous in per-
forming complicated operations, such as nonlinear function evaluations and matrix in-
versions. Instruction-level parallelism depends on, e.g., single-instruction multiple-data
(SIMD) instructions, which are common in many modern multi-core processors and
capable of executing vector operations simultaneously. Frison, Kufoalor, Imsland, and
Jørgensen (2014) used SIMD instructions to speed up matrix-matrix operations in the
interior-point method. Task-level parallelism involves decomposing the optimization
problem into pieces and distributing them into different cores of a processor. Methods
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with task-level parallelism typically exploit the particular structure of NMPC. Mul-
tiple shooting (Bock & Plitt, 1984) based NMPC can have functions, e.g., dynamics
and its derivatives, evaluated in parallel intrinsically. Moreover, the banded structure
of the KKT matrix can be exploited to reduce the computational complexity from
O(N) to O(log(N)) with the so-called parallel cyclic reduction method (Soudbakhsh
& Annaswamy, 2013), where N is the number of the discretization grid points in the
prediction horizon. Another O(log(N)) method by Nielsen and Axehill (2018) splits
the original FHOCP into independent subproblems and constructs a master problem
with a smaller size. A similar idea can be found in the work by Kouzoupis, Quirynen,
Houska, and Diehl (2016), where the original FHOCP is decoupled into subproblems
and a consensus QP is solved to update the coupling dual variables. Instead of de-
composition, the so-called advanced-multi-step NMPC proposed by Yang and Biegler
(2013) and the parallel precomputation method (Kawakami, Ono, Ohtsuka, & Inoue,
2018) solve in advance future FHOCPs in parallel on the basis of predicted states,
which can be seen as a higher level of parallelism. It should be noted that these dif-
ferent levels of parallelism can be combined easily to achieve an additive speed-up.

Unfortunately, there is still a lack of efficient implementations for the parallel
optimization of NMPC to the authors’ knowledge. Current existing parallel algo-
rithms either require a large problem size, e.g., long prediction horizon, to surpass
serial algorithms or depend on careful designs for parallelization, which are not user-
friendly for implementation and have difficulty incorporating existing nonlinear op-
timization techniques to achieve robust numerical performance. In this paper, ParN-
MPC, which is an effective and efficient parallel implementation for the optimization of
NMPC, is presented. ParNMPC is a MATLAB open-source (https://github.com/deng-
haoyang/ParNMPC) software, and the parallelization part is implemented by using
OpenMP (Dagum & Menon, 1998), which is designed for shared-memory multi-core
processors and supported by most of the operating systems. ParNMPC comes with
the following features.

- The NMPC problem can be formulated symbolically as easily as other toolkits.
- The DOP is made configurable so that it can be adapted to the rate of con-

vergence and the number of cores, enabling deployment to both single- and
multi-core processors.

- Parallel code can be automatically generated.

The parallel search direction calculation is based on our previous work (Deng & Oht-
suka, 2018, 2019), in which a highly parallelizable algorithm with a fast rate of con-
vergence was proposed. The main contributions of this paper are:

- The parallel code generation toolkit ParNMPC is introduced. The primal-dual
interior-point method is inherently integrated in ParNMPC to deal with the
inequality constraints, and its warm start strategy in the context of NMPC is
introduced.

- The search direction calculation procedure is generalized from algebraic opera-
tions (Deng & Ohtsuka, 2019) to NLPs so that the existing nonlinear optimiza-
tion techniques, such as Hessian approximation, regularization, and condensing,
can be applied. As a consequence, the method can be applied to a wider class of
problems, and a speed up of more than 2× was observed in Section 6.

The performance of ParNMPC is assessed with several challenging applications.
This paper is organized as follows. The NMPC problem is formulated, and a ded-

icated discretization method suitable for parallelization is introduced in Section 2.

3



Search direction calculation done using Newton’s method and the parallel method are
given in a unified framework in Section 3. Section 4 introduces two commonly used
line search methods for guaranteeing convergence. Warm start and the barrier strategy
are discussed in Section 5. The performance evaluation of ParNMPC is introduced in
Section 6. Finally, this paper is summarized in Section 7.

1.1. Notations

Let v(i) be the i-th component of a vector v ∈ Rn. For a matrix P ∈ Rn×n, we denote
P > 0 and P ≥ 0 as P being positive-definite and positive-semidefinite, respectively.
The weighted norm is defined as ‖v‖P :=

√
vTPv. The `1 norm is defined as ‖v‖1 :=∑n

i=1 |v(i)|. For an optimization variable v, we denote vk as the value of v at the k-th
iteration and v∗ as the optimal solution. Let � and � be the element-wise product
and division, respectively. We denote |v| as the element-wise absolute value of v. For
a differentiable function f(v) : Rn → Rm, we denote ∇vf ∈ Rm×n as the Jacobian
matrix of f .

2. Problem formulation

Consider a continuous-time nonlinear system governed by the following differential
equation:

ẋ(t) = f (u(t), x(t), p(t)) , (1)

where x ∈ Rnx , u ∈ Rnu , and p ∈ Rnp are the system state, control input, and given
time-dependent parameter, respectively. In this section, a discretized NMPC problem
for system (1) is formulated, and its relaxed problem under the framework of the
interior-point method is given.

2.1. Discretization

NMPC based on the direct approach (Stryk & Bulirsch, 1992) requires continuous-
time system (1) to be discretized. Generally, different discretization methods lead to
different discretization accuracies, computational costs, and problem structures. It
was shown by Deng and Ohtsuka (2019) that the so-called reverse-time discretization
method can yield an NMPC problem with a particular structure, which can be ex-
ploited to design a highly parallelizable algorithm. The reverse-time discretization of
(1) is given by

x− + F (u, x, p) = 0, (2)

where x− is the predecessor state. The reverse-time discretization method comes from
the fact that the predecessor state x− can be directly obtained from x. The simplest
reverse-time discretization method is the backward Euler method with F (u, x, p) =
hf(u, x, p)− x (h is the step size).

For a given explicit discretization method, its reverse-time variation involves simply
applying the discretization backward in time, i.e., with a negative step size. Therefore,
the evaluation of the left-hand side of (2) has exactly the same computational cost as
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its explicit version. It should be noted that in solving the NMPC problem, the state
integration is still propagated forward in time; thus, stable dynamics stay stable when
the discretization accuracy is high. However, extra computation is needed to solve (2)
for a given value of x−.

Regarding the discretization accuracy, we show in Proposition A.1 in Appendix
A that the discretization accuracy of an explicit method is preserved in its reverse-
time variation. Several commonly used Runge-Kutta methods with different orders are
available in ParNMPC.

2.2. NMPC

For a prediction horizon T > 0, we consider the following N -stage NMPC problem
based on discretized system (2) with a discretization step size of ∆τ := T/N :

min
X,U

N∑
i=1

L(ui, xi, pi)

s.t. x0 = x̄0,

xi−1 + F (ui, xi, pi) = 0, i ∈ {1, · · · , N},
C(ui, xi, pi) = 0, i ∈ {1, · · · , N},
G(ui, xi, pi) ≥ 0, i ∈ {1, · · · , N},

(3)

where x̄0 is the initial state, X := (x0, x1, x2, · · · , xN ) and U := (u1, u2, · · · , uN ) are
the state and input sequences along the horizon, respectively, L(u, x, p) : Rnu ×Rnx ×
Rnp → R is the stage cost function, C(u, x, p) : Rnu × Rnx × Rnp → Rnµ is the stage
equality constraint function, and G(u, x, p) : Rnu × Rnx × Rnp → Rnz is the stage
polytopic constraint function on u and x, that is, G can be expressed as G(u, x, p) =
A(p)u + B(p)x + c(p), where A and B are parameter-depend matrices and c is a
parameter-depend vector. For the following reasons, we formulate the NMPC problem
with a polytopic inequality constraint. First, the polytopic constraint can be easily
satisfied with a backtrack line search. Second, problems with polytopic constraints
can benefit from the primal-dual interior-point method (e.g., Nocedal & Wright, 2006).
Third, polytopic constraints, such as box or softened box constraints, are common in
the context of NMPC. NMPC problems with nonlinear inequality constraints can
be reformulated into the above form by introducing slack input variables. Since xN
is the terminal state, the commonly used terminal cost and terminal constraint for
guaranteeing stability are encoded in NMPC formulation (3).

We adopt the interior-point method to relax NMPC problem (3) by transferring the
inequality constraint G(u, x, p) ≥ 0 into a logarithmic barrier function added to the
cost. Notice that the inequality constraint G(u, x, p) ≥ 0 is a single-side constraint,
which may lead to an unbounded solution since the corresponding barrier function
tends to be −∞ as its argument goes to ∞. To prevent this, a linear damping term
(Wächter & Biegler, 2006b) is added to the barrier function, and we obtain the fol-
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lowing relaxed NMPC problem:

min
X,U

N∑
i=1

L(ui, xi, pi) + ρΦ(ui, xi, pi)

s.t. x0 = x̄0,

xi−1 + F (ui, xi, pi) = 0, i ∈ {1, · · · , N},
C(ui, xi, pi) = 0, i ∈ {1, · · · , N},

(4)

where ρ > 0 is the barrier parameter and

Φ(u, x, p) :=

nz∑
j=1

(
− ln(G(j)(u, x, p)) + σG(j)(u, x, p)

)
with a fixed small damping constant σ > 0 (e.g., 10−4).

2.3. KKT conditions

For the sake of brevity, we define

s := (λ, µ, u, x).

Let H(s, p) be the Hamiltonian defined by

H(s, p) := L(u, x, p) + λTF (u, x, p) + µTC(u, x, p),

where λ (costate) ∈ Rnx and µ ∈ Rnµ are the Lagrange multipliers corresponding
to the state equation and the equality constraint C(u, x, p) = 0, respectively. Let
K (xi−1, si, λi+1, pi) be defined by

K (xi−1, si, λi+1, pi)

:=


xi−1 + F (ui, xi, pi)
C(ui, xi, pi)
∇uH(si, pi)

T + ρ∇uΦ(ui, xi, pi)
T

λi+1 +∇xH(si, pi)
T + ρ∇xΦ(ui, xi, pi)

T

 . (5)

The KKT conditions for relaxed NMPC problem (4) are

K (x∗i−1, s
∗
i , λ
∗
i+1, pi) = 0, ∀i ∈ {1, · · · , N},

with x∗0 = x̄0 and λ∗N+1 = 0.

3. Search direction calculation

Search direction calculation is the most computationally expensive part of real-time
optimization. In some particular algorithms dedicated for NMPC, such as the C/GM-
RES method and the RTI scheme, a full-step iteration is performed each sampling
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time, requiring only the computation of the search direction. In this section, search
direction calculation performed using Newton’s method and the parallel method is
given in a unified framework.

We introduce the following shorthand at the k-th iteration:

K k
i := K (xki−1, s

k
i , λ

k
i+1, pi),

∇uF k
i := ∇uF (uki , x

k
i , pi), etc.

3.1. Newton’s method

For Newton’s method, the search direction (∆s1, · · · ,∆sN ) is obtained by solving the
following regularized primal-dual (Nocedal & Wright, 2006) system:

. . . I
I 0 0

Jki0 −δCI

(Jki )T Mk
i I

I
. . .




...
∆si

...

 =


...

K k
i
...

 , (6)

where

Jki :=

[
∇uF k

i ∇xF k
i

∇uCki ∇xCki

]
and

Mk
i :=

[
∇2
uuHki ∇2

uxHki
∇2
xuHki ∇2

xxHki

]
︸ ︷︷ ︸

1

+δHI

+
[
∇uGki ∇xGki

]T
diag(zki �Gki )

[
∇uGki ∇xGki

]︸ ︷︷ ︸
2

.

(7)

Here, zi ∈ Rnz denotes the Lagrange multiplier corresponding to the inequality con-
straint G(ui, xi, pi) ≥ 0 and δC , δH ≥ 0. Apart from the regularization terms −δCI
and δHI, solving system (6) is equivalent to applying Newton’s method to KKT con-
ditions (5) for relaxed problem (4), however, with the Hessian of the barrier function
ρΦ estimated by 2 in (7), which is in contrast with the primal system where the exact
Hessian is used. The primal-dual system is preferred against the primal system since
the primal system tends to perform poorly when a small barrier parameter ρ is chosen
(Nocedal & Wright, 2006). After obtaining the search direction (∆s1, · · · ,∆sN ), the
search direction of z is obtained from

∆zi = (zki �Gk+1
i − ρe)�Gki , (8)

where Gk+1
i := G(uki −∆ui, x

k
i −∆xi, pi) and e := [1, · · · , 1]T .
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It is generally easy to guarantee the full rank property of the Jacobian of F , e.g.,
when the discretization step size ∆τ is small. We add a regularization term δCI ≥ 0 to
avoid singularity (see Nocedal & Wright, 2006) of the primal-dual matrix in (6) caused
by the rank deficiency of [∇uCki ∇xCki ]. In ParNMPC, δC is chosen to be sufficiently
small (10−9).

To guarantee that the obtained search direction is a descent direction for certain
merit functions, a regularization term δHI ≥ 0 is added to the Hessian so that the
primal-dual matrix has a desired inertia. The descent property is required to guarantee
convergence when the current iterate is distant from the optimal solution. However,
choosing a proper δH on-the-fly requires successive factorizations of the primal-dual
matrix, which is computationally heavy for real-time optimization. In the context of
NMPC, δH can be decided offline with prior knowledge of the NMPC problem. We show
in Section 3.3 that the descent property is ensured inherently if the Hessian matrix is
approximated properly, thus requiring no regularization procedure, i.e., δH = 0.

We show next that solving (6) can be interpreted as solving a series of subproblems.
We first define the following single-stage subproblem:

min
xi,ui

L(ui, xi, pi) + ρΦ(ui, xi, pi)

+ (xi − xki )Tλi+1 +
1

2
‖xi − xki ‖2Wi+1︸ ︷︷ ︸

1

s.t. xi−1 + F (ui, xi, pi) = 0,

C(ui, xi, pi) = 0,

(9)

where its regularized primal-dual matrix at the k-th iteration is given by
0 0

Jki0 −δCI

(Jki )T Mk
i +

[
0 0
0 Wi+1

]
 . (10)

Given a barrier parameter ρ, we denote

(si,Wi)← Pki (xi−1, λi+1,Wi+1) (11)

as the operation of performing a full-step primal-dual iteration of (9) at the k-th
iteration for given parameters of xi−1, λi+1, and Wi+1. Here, Wi ∈ Rnx×nx denotes
the sensitivity matrix of λi with respect to the initial state xi−1 of subproblem (9).
Specifically, Wi is the negation of the nx-th leading principal submatrix of the inversion
of (10), which is a by-product of iteration (11).

For the sake of brevity, we introduce notations as follows.

S := (s1, · · · , sN )

Z := (z1, · · · , zN )

P := (p1, · · · , pN )

Ω := (W1, · · · ,WN )

Notice that the primal-dual matrix in (6) is a block-tridiagonal matrix. It has been
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shown by Deng and Ohtsuka (2018) that the so-called backward correction method
(Deng & Ohtsuka, 2018) is equivalent to solving (6) by using the block Gaussian
elimination method, which is also equivalent to performing the Riccati recursion for the
linear quadratic problem having regularized KKT conditions (6). After the backward
recursion of the block Gaussian elimination method, we can obtain a linear system with
a block lower-triangular coefficient matrix, where its block diagonal entries are given by
(10). The forward recursion of the block Gaussian elimination method solves systems
with coefficient matrices (10). Together with the fact that (10) is the regularized
primal-dual matrix of (9), it can be interpreted that the block Gaussian elimination
method, or equivalently, the backward correction method, is equivalent to solving
single-stage subproblems (9) recursively as shown in Algorithm 1.

Algorithm 1 Search direction calculation using Newton’s method

Input: x̄0, P , Sk, Zk, ρ
Output: ∆S, ∆Z

1: Initialization: xk0 = xk+1
0 = x̄0, λk+1

N+1 = 0, W k
N+1 = 0

2: for i = N to 1 do
3: (sk+1

i ,W k
i )← Pki (xki−1, λ

k+1
i+1 ,W

k
i+1)

4: end for
5: for i = 1 to N do
6: (sk+1

i ,−)← Pki (xk+1
i−1 , λ

k+1
i+1 ,W

k
i+1)

7: ∆si = ski − s
k+1
i

8: ∆zi ← (8)
9: end for

3.2. Parallel method

The search direction calculation done using Newton’s method in Algorithm 1 involves
a recursion of computing the sensitivity matrix Wi from i = N to 1. The parallel
method proposed by Deng and Ohtsuka (2018) iterates on the basis of the information
stored at the previous iteration so that the recursion is broken, and the sensitivity
matrices are then updated, which can be referred to as “first iterate, then update,”
while in Newton’s method, it is “first update, then iterate.” In the parallel method, the
regularized primal-dual matrices are independent of each other and can be factorized
in parallel. The parallel method is summarized in Algorithm 2, in which the paral-
lelizable part is explicitly given. As shown in Algorithm 2, not only are the function
evaluations performed in parallel, matrix factorizations, which are the most compu-
tationally expensive part of (11), are also done in parallel. The parallelization is not
fully shown in this paper, and details can be found in the work by Deng and Ohtsuka
(2018, 2019), in which the non-parallelizable part consists only of 2N matrix-vector
multiplications with a complexity of O(Nn2

x).

Remark 1. Newton’s method and the parallel method have DOPs of one and N , re-
spectively. It should be noted that, for each iteration, the parallel method has exactly
the same computational cost as Newton’s method, and parallelization is achieved with
no extra computational cost. Compared with the quadratic rate of convergence for
Newton’s method, a superlinear rate of convergence is shown by Deng and Ohtsuka
(2019) for the parallel method. It is therefore expected to have a faster rate of con-
vergence when fewer sensitivity matrices Wi are approximated by shifting between or
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Algorithm 2 Search direction calculation using parallel method

Input: x̄0, P , Sk, Zk, Ωk−1, ρ
Output: ∆S, ∆Z, Ωk

1: Initialization: xk0 = xk+1
0 = x̄0, λk+1

N+1 = 0, W k−1
N+1 = 0

2: for i = 1 to N do in parallel
3: Evaluate K k

i (KKT function)
4: Evaluate Jki (Jacobian)
5: Evaluate Mk

i (Hessian)
6: Factorize (10) (KKT matrix)
7: end for
8: for i = N to 1 do
9: (sk+1

i ,W k
i )← Pki (xki−1, λ

k+1
i+1 ,W

k−1
i+1 )

10: end for
11: for i = 1 to N do
12: (sk+1

i ,−)← Pki (xk+1
i−1 , λ

k+1
i+1 ,W

k−1
i+1 )

13: ∆si = ski − s
k+1
i

14: ∆zi ← (8)
15: end for

combining these two methods. In practice, depending on the number of cores, the DOP
is made configurable to speed convergence up without sacrificing the computational
performance. When the DOP is set to one, ParNMPC decays to Newton’s method
in Algorithm 1 and behaves exactly the same as the structure-exploiting primal-dual
interior-point method. When the DOP is set to N , a fully parallelized method that
can use N cores is obtained as shown in Algorithm 2.

The convergence of the parallel method is expected to behave like Newton’s method
when the system is fast-sampled, less parallelized (i.e., DOP is small), and the dynam-
ics and parameters are slowly varying. That is, the sensitivity matrices Wi can be
updated in real time. In practice, the parallel method was observed to also converge
fast even when it was fully parallelized (DOP = N) and for highly nonlinear systems,
such as the robot manipulator in Section 6 and the double inverted pendulum on a
cart, which can be found on ParNMPC’s homepage.

Remark 2. Compared with the parallelization given by algebraic operations (Deng
& Ohtsuka, 2018, 2019), the parallel method is generalized in this paper from alge-
braic operations to NLPs (9) so that existing nonlinear optimization techniques, such
as regularization, condensing, Hessian approximation, and line search, can be applied.
These techniques broaden the range of application of ParNMPC and make the al-
gorithm numerically more efficient and robust. For example, the Hessian matrices in
robot applications have to be approximated to avoid time-consuming evaluations of
their exact values, and a large speed up was observed in Section 6 due to condensing.

In Newton’s method, the nonsingular and descent regularization procedures are
performed on the overall primal-dual matrix in (6), while, in the parallel method,
it is generally difficult to have an explicit form of the overall primal-dual matrix. An
interpretation of 1 in (9) is that 1 approximates the optimal cost-to-go in a quadratic
form (the constant term is ignored). Consequently, each subproblem (9) approximates
an NMPC problem consisting of stages i to N with an initial state of xi−1. When
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i = 1, (9) approximates the original relaxed problem (4) locally. We require that, after
regularizing each subproblem, its primal-dual matrix (10) is nonsingular and has a
desired inertia, that is, the lower-right submatrix is positive-definite on the null space
of Jki .

Instead of inverting (10) directly (Deng & Ohtsuka, 2018, 2019) by using LU factor-
ization, a more efficient way of solving each subproblem is to condense the primal-dual
system by eliminating ∆xi and ∆λi. Compared with O((2nx+nµ+nu)3) for inverting
(10) directly, condensing can lead to significant computational improvement and is
used by default in ParNMPC. It should be noted that the inherent implicit property
of the state and costate equations due to the use of the reverse-time discretization
method incurs an extra cost on equation solving, i.e., requiring ∇xF k

i to be inverted,
which is usually not needed for the sequential methods (Diehl, Ferreau, & Haverbeke,
2009) where a forward and backward simulation is performed so that the state and
costate equations are eliminated. We show that this extra cost for inverting ∇xF k

i
can be avoided by using approximation. Consider, for example, the reverse-time Euler
method with F (u, x, p) = f(u, x, p)∆τ − x. We can have the following approximation
based on truncated Neumann series when the condition ‖∇xfki ∆τ‖ ≤ 1 is satisfied:

(∇xF k
i )−1 ≈ −I −∇xfki ∆τ,

where the truncation error is O(∆τ2). It is not difficult to show that, for the family
of reverse-time Runge-Kutta methods, the approximation is obtained by

(∇xF k
i )−1 ≈ −2I −∇xF k

i . (12)

A good approximation can be obtained if (1) is not stiff and ∆τ is small. Approxima-
tion (12) stays an option in ParNMPC.

3.3. Hessian approximation

Although 1 in (7) is evaluated in parallel as shown in Algorithm 2, it sometimes
still dominates the entire computation, e.g., when complicated dynamics and high-
order discretization schemes are involved. Moreover, even when the exact Hessian
is obtained, the descent property of the search direction is not guaranteed; thus, a
regularization procedure is potentially required. Hessian approximation plays an im-
portant role in both numerical efficiency and robustness. For example, the Hessian of a
high-order discretized problem can be approximated by that of a low-order discretized
problem with a cheaper cost. We discuss in this subsection a commonly used Hessian
approximation method in NMPC.

When the cost function is in the least-squares form:

L(u, x, p) :=
1

2
‖l(u, x, p)‖22,

where l is a vector-valued function, the generalized Gauss-Newton method (Bock,
1983) approximates the Hessian matrix 1 in (7) by[

∇ulki ∇xlki
]T [ ∇ulki ∇xlki

]
. (13)

The Gauss-Newton method performs well if the least-square residual is small and func-
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tions F (u, x, p) and C(u, x, p) are less nonlinear such that their second-order deriva-
tives are negligible. The Gauss-Newton Hessian approximation method is favoured in
the context of NMPC, where a quadratic cost function is commonly chosen, e.g., in
regulation and tracking control problems. Meanwhile, the positive definiteness of the
lower-right block of (10) can be guaranteed for any DOP settings, which is shown in
the following proposition.

Proposition 3.1. Assume δH = 0, δC > 0 is chosen such that (10) is nonsingular,
and the Jacobian of l is of full column rank. If Wi is initialized to satisfy Wi ≥ 0
for i ∈ {1, · · · , N}, then the lower-right block of (10) generated by the Gauss-Newton
method is always positive-definite.

Proof. See Appendix B.

Another type of Hessian approximation method is the quasi-Newton method,
e.g., the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (e.g. Nocedal & Wright,
2006), which requires only the first-order derivatives of the Hamiltonian to approxi-
mate the Hessian matrix and can estimate the curvature in the Hamiltonian. However,
it is not easy to guarantee the positive definiteness of the Hessian update, especially
for constrained problems. Although there are methods, such as the damped BFGS
method (Nocedal & Wright, 2006), for guaranteeing the positive definiteness, quasi-
Newton Hessian approximation methods are less favoured in the context of real-time
optimization due to their fluctuating performance as reported by Quirynen (2017).

4. Line search

After obtaining the search directions ∆S and ∆Z, we first determine the maximum
step size of an iteration so that the primal and dual feasibility conditions G(u, x, p) ≥ 0
and z > 0 are satisfied. It is recommended by Nocedal and Wright (2006) to have
different step sizes for s and z (say, αmax

s and αmax
z ) to improve performance. αmax

s

and αmax
z are obtained by using the fraction-to-the-boundary rule (Nocedal & Wright,

2006):

αmax
z = max{α ∈ (0, 1] : zki − α∆zi ≥ (1− τ)zki , ∀i ∈ {1, · · · , N}}

αmax
s = max{α ∈ (0, 1] : Gki − α∆Gi ≥ (1− τ)Gki , ∀i ∈ {1, · · · , N}}

where

∆Gi = Gki −G(uki −∆ui, x
k
i −∆xi, pi)

and the fraction-to-the-boundary parameter τ is chosen to be τ = min{τmin, ρ} with
τmin = 0.005 (typical value). The update of z is performed by

Zk+1 = Zk − αmax
z ∆Z.

Although ∆S is a descent direction, the convergence of a full feasible step iteration
cannot be guaranteed, especially when the current iterate is far from the optimal
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solution, e.g., a far reference. To ensure convergence, we perform the iterate

Sk+1 = Sk − αs∆S, αs ∈ (0, αmax
s ],

only when a specified merit function Q(U,X, P ) has been decreased by trying a se-
quence of values of αs with a constant decay rate or αs has reached its specified
minimum value, e.g., 10−3. The step size αs is accepted if

Q(Uk − αs∆U,Xk − αs∆X,P )

≤ Q(Uk, Xk, P ) + ναsDQ(Uk, Xk, P ; ∆U,∆X),

where ν ∈ (0, 1) and DQ(Uk, Xk, P ; ∆U,∆X) denotes the directional derivative of Q
in the direction (∆U,∆X). At the k-th iteration, we choose the merit function to be

Q(U,X, P ) =

N∑
i=1

{L(ui, xi, pi) + ρΦ(ui, xi, pi)

+ (λmax)T |xi−1 + F (ui, xi, pi)|
+ (µmax)T |C(ui, xi, pi)|},

(14)

where x0 = x̄0, λmax ∈ Rnx , and µmax ∈ Rnz . We here choose the following heuristic
penalty coefficients for better practical performance:

λmax
(j) = max

i∈{1,··· ,N}
|λki(j) − α

max
s ∆λi(j)|

and

µmax
(j) = max

i∈{1,··· ,N}
|µki(j) − α

max
s ∆µi(j)|,

where λmax
(j) and µmax

(j) are the j-th component of λmax and µmax, respectively.

An alternative to ensure convergence (Wächter & Biegler, 2006a) is the filter line
search method (Fletcher & Leyffer, 2002), in which a trial step is accepted if it decreases
the cost function or improves the constraint violation instead of a combination of those
two in (14). This method is favoured against the merit-function-based line search
method because it has a smaller computational cost per step and does not need to
maintain a merit function, which depends on the choices of the penalty terms λmax

and µmax. Both methods can be easily parallelized and are available in ParNMPC.
It should be noted that line search introduces an extra computational cost, which

is not favoured in the context of real-time optimization. Moreover, special care should
be taken with expensive computational costs, such as a feasibility restoration phase
(Nocedal & Wright, 2006) and second-order corrections (Nocedal & Wright, 2006),
when the step size becomes too small or the trial step has been rejected. Under what
circumstances should we enable line search? Of course, line search is recommended
offline in the case where the very first FHOCP is deterministic and can be solved
offline to provide an accurate initial guess. We discuss the online case in Remark 3.

Remark 3. For NMPC, where successive optimization problems are solved, line
search can be avoided, i.e., by setting αs = αmax

s , if the initial state x̄0 and given
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Figure 1. Barrier parameter ρ under two-phase strategy

parameter p, e.g., reference signal, vary smoothly with respect to time. This strategy
has been applied in many of the real-time optimization methods for NMPC. For ex-
ample, under certain conditions, the C/GMRES method can trace a KKT solution
without line search. For the case of a distant solution caused by, e.g., far reference,
line search should be enabled so that the convergence to a local optimum can be
guaranteed (Yamashita, 1998) under certain assumptions.

5. Warm start and barrier strategy

In many optimization methods for MPC, such as the active-set method, warm start
can significantly reduce the number of iterations (NOI) since the optimal solution stays
close to that of the last sampling time. However, the warm start of the interior-point
method is less straightforward and remains challenging. In the interior-point method,
relaxed problem (4) is solved successively with a decreasing barrier parameter ρ > 0,
and an accurate solution is obtained when the barrier parameter ρ is decreased to be
sufficiently small. The difficulty of warm start for the interior-point method is that
the barrier parameter has to return back to its initial value at the next sampling time,
which makes the optimization problem no longer close to its previous one.

One solution is to choose a fixed value (Wang & Boyd, 2010) of ρ, i.e., to obtain an
approximate solution. This method is pretty acceptable in the context of MPC, where
we care more about the closed-loop performance or cost. However, when a small value
of ρ is chosen, it always leads to poor performance since the optimization problem is
highly nonlinear at the boundary of the constraints. The iterates can hardly escape
from the boundary due to the large entries of 2 in (7).

To resolve the problem of warm start when pursuing a highly accurate solution, we
adopt the two-phase strategy proposed by Zanelli, Quirynen, Jerez, and Diehl (2017).
In the first phase, the relaxed problem is solved with a fixed barrier parameter ρ0.
Then, the barrier parameter is decreased with a constant rate at every iteration in
the second phase. The strategy is illustrated in Fig. 1 showing the variation of ρ. At
sampling time t, the relaxed problem with an initial barrier parameter ρ0 is solved
and the solution is stored to warm start the first iteration of the next sampling time
t+ 1, that is, the solution at t(m) is used to warm start t+ 1(1).

The overall parallel optimization algorithm, together with the two-phase strategy,
is summarized in Algorithm 3. The termination criterion is met when the optimality
error for the relaxed problem is smaller than a predefined tolerance or the maximum
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NOI has been reached. We denote exi , eµi , eui , eλi as the `∞ norms of the four expressions
in (5), respectively. The optimality error eo is defined as

eo := max
i∈{1,··· ,N}

{
exi , e

µ
i ,

eui
σu
,
eλi
σλ

}
,

where σu, σλ ≥ 1 are the scaling parameters. We adopt Wächter and Biegler’s scaling
strategy (Wächter & Biegler, 2006b) to choose σu and σλ as

σu = max

{∑N
i=1(‖λi‖1 + ‖µi‖1)

N(nx + nµ)
, σmax

}
/σmax

and

σλ = max

{∑N
i=1 ‖λi‖1
Nnx

, σmax

}
/σmax.

Here, σmax ≥ 1 is a fixed number, e.g., σmax = 100.

Algorithm 3 Parallel optimization with two-phase strategy

Input: x̄0, P , Sinit, Z init, Ωinit

Output: Sinit, Z init, Ωinit, S∗, Z∗

1: Initialization: k = 0; initial guesses: S0 = Sinit, Z0 = Z init, Ω−1 = Ωinit; barrier
parameters: ρ0 > 0, η ∈ (0, 1], ρmin ∈ (0, ρ0], ρ = ρ0

2: repeat
3: (Sk+1, Zk+1,Ωk)← Iter(x̄0, P, S

k, Zk,Ωk−1, ρ)
4: k ← k + 1
5: until termination criterion is met
6: (Sinit, Z init,Ωinit)← (Sk, Zk,Ωk−1)
7: repeat
8: ρ = max{ρmin, ηρ}
9: (Sk+1, Zk+1,Ωk)← Iter(x̄0, P, S

k, Zk,Ωk−1, ρ)
10: k ← k + 1
11: until termination criterion is met
12: (S∗, Z∗)← (Sk, Zk)

Procedure Iter
Input: x̄0, P , Sk, Zk, Ωk−1, ρ
Output: Sk+1, Zk+1, Ωk

Calculate search directions (Algorithm 2)
Perform line search (Section 4)

End

Regarding the initialization of the very first optimization problem, for those which
can be solved offline, an accurate initial guess can be provided with the offline solution.
For those which cannot be solved offline, e.g., with an unknown initial state beforehand,
the basic requirements for Sinit, Z init, and Ωinit are that the inequality G(u, x, p) > ε
(ε > 0 is a small number) should be satisfied, its corresponding Lagrange multiplier z
should be positive, and the sensitivity matrices should be positive-semidefinite. Con-
ventional initialization techniques used in other methods can be applied to Sinit and
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Z init. For example, a state trajectory can be obtained by interpolating from the ini-
tial state to the set-point. The initialization of the sensitivity matrices Ωinit is less
straightforward. We show a possible initialization for the input-constrained problem
with a quadratic cost function, that is, the stage cost function of relaxed problem (4)
is in the form of

L(ui, xi, pi) + ρΦ(ui, pi) =
1

2
‖xi − xref‖2Qi + φ(ui, pi, ρ),

where xref is the given state reference, Qi > 0 is the weighting matrix, and φ(ui, pi, ρ)
is a function encoding the input-related cost. The following equality can be shown:

lim
∆τ→0

Wi =

N∑
j=i

Qi, i ∈ {1, · · · , N},

and the right-hand side can be used as W init
i .

6. Performance evaluation

In this section, the performance of ParNMPC is evaluated by using three examples. In
the first, an example of quadrotor control, we demonstrate the problem formulation
and parallel code generation procedures of ParNMPC. The computation time (CT) of
ParNMPC is compared in detail against several state-of-the-art NMPC toolkits, and
the performance of the two-phase and inversion approximation strategies is assessed
as well. We show in the second example, in which a real-world laboratory helicopter is
controlled, that ParNMPC converges fast when tracking a dramatically changed ref-
erence signal. The third experiment is a closed-loop simulation of a robot manipulator
that demonstrates the Gauss-Newton Hessian approximation method and the parallel
performance for systems with complicated dynamics.

All experiments were performed on a hexa-core 2.9-GHz (Turbo Boost and Hyper-
Threading were disabled) Intel Core i9-8950HK laptop. The helicopter experiment was
run in Simulink on Windows 10, and the others were run on Ubuntu 18.04. All code was
automatically generated by using ParNMPC. To reduce the effect of the computing
environment, the CT at each time step was measured by taking the minimum one of
ten runs of the closed-loop simulation.

It should be noted that all three experiments were started from deterministic states,
which made it possible to solve the very first optimization problem offline to provide
an accurate initial guess, and line search in ParNMPC was only enabled then.

6.1. Quadrotor

6.1.1. Problem formulation

Consider a quadrotor with four inputs and nine states. The state vector of the quadro-
tor is x = [X, Ẋ, Y, Ẏ , Z, Ż, γ, β, α]T ∈ R9, where (X,Y, Z) and (γ, β, α) are the posi-
tion and angles of the quadrotor, respectively. The input vector is u = [a, ωX , ωY , ωZ ]T ,
where a represents the thrust and (ωX , ωY , ωZ) the rotational rates. The dynamics of
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the quadrotor are given by the following equations (Hehn & D’Andrea, 2011):

Ẍ = a(cos γ sinβ cosα+ sin γ sinα)

Ÿ = a(cos γ sinβ sinα− sin γ cosα)

Z̈ = a cos γ cosβ − g
γ̇ = (ωX cos γ + ωY sin γ)/ cosβ

β̇ = −ωX sin γ + ωY cos γ

α̇ = ωX cos γ tanβ + ωY sin γ tanβ + ωZ ,

where g = 9.81 m/s2. The goal was to control the quadrotor to position (1, 1, 1) under
the constraints of the inputs: [0,−1,−1,−1]T ≤ u ≤ [11, 1, 1, 1]T . We chose the cost
function to be quadratic as

L(u, x, p) =
1

2
(‖x− xref‖2Q + ‖u− uref‖2R),

where xref encodes the position reference, uref = [g, 0, 0, 0]T , and the weighting ma-
trices were Q = diag(10, 1, 10, 1, 10, 1, 1, 1, 1) and R = 0.01×I. The prediction horizon
was T = 0.5 s, which was discretized into N = 24 grids by using the reverse-time
Heun’s method.

The above NMPC problem is formulated in ParNMPC as shown in Listing 1.

% Create an OCP( n u , n x , n p ,N)
OCP = OptimalControlProblem (4 , 9 , 0 , 24 ) ;

X = OCP. x (1 ) ; dX = OCP. x (2 ) ; . . .

a = OCP. u (1 ) ; omegaX = OCP. u (2 ) ; . . .
OCP. setT ( 0 . 5 ) ;

OCP. s e tD i s c r e t i za t i onMethod ( ’RK2 ’ ) ;

f = [dX; a ∗( cos (gamma) ∗ s i n ( beta ) ∗ cos ( alpha )+s i n (gamma) ∗ s i n ( alpha ) ) ; . . . ] ;
Q = diag ( [ 1 0 , 1 , 10 , 1 , 10 , 1 , 1 , 1 , 1 ] ) ; R = 0.01∗ eye (4 ) ;

xRef = [ 1 ; 0 ; 1 ; 0 ; 1 ; 0 ; 0 ; 0 ; 0 ] ; uRef = [ g ; 0 ; 0 ; 0 ] ;

L = 0 . 5∗ (OCP. x−xRef ) . ’∗Q∗(OCP. x−xRef ) +0.5∗(OCP. u−uRef ) . ’∗R∗(OCP. u−uRef ) ;
G =[ [ 11 ; 1 ; 1 ; 1 ] −OCP. u ; [ 0 ; 1 ; 1 ; 1 ] +OCP. u ] ;

OCP. s e t f ( f ) ; OCP. setL (L) ; OCP. setG (G) ;

OCP. codeGen ( ) ;

Listing 1 Problem formulation in ParNMPC (some repeated code was omitted)

After formulating the NMPC problem, the NMPC solver is configured as shown in
Listing 2. The exact Hessian is calculated, and the regularization parameters are made
default in this example, i.e., δC = 10−9 and δH = 0. The exact value of (∇xF )−1 is
used by default.

% Conf igurate the NMPC s o l v e r
s o l = NMPCSolver (OCP) ;
s o l . setHess ianApproximation ( ’ Newton ’ ) ;
% s o l . s e tNons ingu l a rRegu l a r i z a t i on (1 e−9) ; % \ de l ta C

% s o l . s e tDes c en tRegu la r i z a t i on (0 ) ; % \delta H
% s o l . setInvFxMethod ( ’ exact ’ ) ;

s o l . codeGen ( ) ;

Listing 2 NMPC solver configuration in ParNMPC
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6.1.2. Code generation

The parallel code for DOP = 6 of the NMPC controller can be automatically generated
as shown in Listing 3. We fix the barrier parameter to be ρ0 = ρmin = 10−3. The
two-phase strategy in Section 5 can be adopted by adjusting parameters ρ0, ρmin,
and η. Regarding the termination criterion, the optimality tolerance is 10−3, and the
maximum NOI is 10. The generated code is self-contained, easy-to-use, and can be
easily deployed, e.g., using Visual Studio with OpenMP Support enabled or GCC with
an extra -fopenmp flag. Given an initial state, the corresponding optimal control input
can be obtained by simply calling function NMPC Solve from the generated code.

opt ions = createOpt ions ( ) ;

opt i ons .DoP = 6 ;

opt ions . i sL ineSea r ch = f a l s e ;
opt i ons . r h o I n i t = 1e−3; % \ rho ˆ0

opt ions . rhoEnd = 1e−3; % \ rho ˆmin

% opt ions . rhoDecayRate = 0 . 1 ; % \ eta
opt ions . tolEnd = opt ions . rhoEnd ; % t o l e r a n c e

opt ions . maxIterTotal = 10 ;

% Generate p a r a l l e l C code
NMPC Solve CodeGen ( ’ l i b ’ , ’C ’ , opt i ons ) ;

Listing 3 Parallel code generation in ParNMPC

6.1.3. Evaluation of computation time

The CT of ParNMPC was evaluated by performing a three-second closed-loop simula-
tion starting from x̄0 = 0 with a sampling period of 10 ms. We compared the following
toolkits (the last three toolkits are based on the first-order methods):

- ParNMPC (version 1903-1): the toolkit introduced in this paper.
- ParNMPC-primitive: the primitive version of ParNMPC, of which the algorithm

is introduced in (Deng & Ohtsuka, 2019). The mechanism for handling inequal-
ities was modified in this paper to be the primal interior-point method.

- ACADO Code Generation Tool with qpOASES and qpDUNES: the SQP method
based on a dense QP solver, qpOASES, and a sparse QP solver, qpDUNES.

- GRAMPC: a gradient-based augmented Lagrangian method.
- VIATOC: a gradient projection method for NMPC problems with input and

state box constraints.
- FalcOpt: a projected gradient descent method.

Apart from the default parameters, some key tuning parameters for the different toolk-
its are shown in Table 1.

Table 1. Tuning parameters for different toolkits in quadrotor example (e.g., RT-Heun stands for

reverse-time Heun’s method)
Toolkit Discretization Tuning parameters
ParNMPC RT-Heun As shown in Listings 1, 2, and 3
ParNMPC-primitive RT-Euler Barrier parameter: 0.001

ACADO (qpOASES) Heun
GAUSS NEWTON, MULTIPLE SHOOTING,
FULL CONDENSING N2, HOTSTART QP,
tolerence: 0.001

ACADO (qpDUNES) Heun
GAUSS NEWTON, MULTIPLE SHOOTING,
tolerence: 0.001

ACADO-RTI (qpDUNES) Heun Same as above but performing RTI scheme
GRAMPC Heun MaxMultIter: 1, MaxGradIter: 10
VIATOC Heun Number of iterations: 10
FalcOpt Euler Tolerance: 0.01
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The closed-loop trajectories of the inputs and position when using ParNMPC are
shown in Figs. 2 and 3, respectively. The CTs during the closed-loop simulation for
the different toolkits are shown in Fig. 4. In addition, the optimality for each toolkit

Figure 2. Time histories of inputs for quadrotor example

Figure 3. Time histories of position for quadrotor example

is defined as the normalized distance to its corresponding optimal trajectory, i.e.,∑300
t/0.01=0 {L(ũ(t), x̃(t), p(t))− L(u∗(t), x∗(t), p(t))}∑300

t/0.01=0 L(u∗(t), x∗(t), p(t))
× 100%, (15)

where ũ(t) is the control input obtained by each toolkit, u∗(t) is the optimal control
input obtained by solving the corresponding OCP exactly, and x̃(t) and x∗(t) are the
corresponding closed-loop responses, respectively. The closed-loop optimalities of the
different toolkits are shown in Table 2.

Table 2. Closed-loop optimalities [%] of different toolkits for

quadrotor example
ParNMPC 0.1177 GRAMPC 1.5233
ParNMPC-primitive 0.0819 VIATOC 1.2743
ACADO (qpDUNES) 0.0002 FalcOpt 0.9719
ACADO-RTI (qpDUNES) 0.0108 - -
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Figure 4. CTs per time step of closed-loop simulation

Note that even though the first-order methods (GRAMPC, VIATOC, and FalcOpt)
have relatively low optimalities, they can still drive the quadrotor to the reference
position. In some circumstances, a sub-optimal solution obtained by performing only
several iterations is acceptable. That is, we are also interested in the CT per iteration,
which is compared for different N for these toolkits in Table 3.

We conclude from the comparison results as shown in Fig. 4 and Tables 2 and 3
that

- For ParNMPC, after parallelization, a speed-up of more than 4× was achieved
for N = 96 and even 2.5× for a small number of discretion grid points of N = 6.

- Compared with ParNMPC-primitive, ParNMPC was a factor of 2-3 faster in
terms of CT per iteration as shown in Table 3 both in serial and parallel, which
was caused by condensing.

- Compared with ACADO, where a QP has to be solved at each iteration, the
CT per iteration of ParNMPC in Table 3 was shorter than that of ACADO
(qpDUNES) even in serial and did not vary too much during the closed-loop
simulation due to the usage of the interior-point method. That is, the CT per
time step can be roughly estimated from the NOI. However, ACADO was more
effective than ParNMPC in terms of the closed-loop optimality as shown in Table
2.

- The first-order methods had short CTs per iteration, and ParNMPC with par-
allelization was only several times slower than first-order methods as shown in
Table 3. However, the first-order methods converged slowly as indicated by their
closed-loop optimalities in Table 2.

In summary, ParNMPC has a good trade-off between optimality and CT, resulting in
an overall advantageous CT for the closed-loop control in Fig. 4, while maintaining a
good closed-loop optimality as shown in Table 2.
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Table 3. CTs [µs] per iteration for different N for quadrotor example
N 6 12 24 48 96

ParNMPC (DOP = 1)
min 27 54 108 218 437
median 28 55 110 222 444
max 29 57 114 241 456

ParNMPC (DOP = 6)
min 11 18 31 55 101
median 11 19 32 56 103
max 12 20 33 63 111

ParNMPC-primitive (DOP = 1)
min 78 152 301 627 1251
median 79 154 302 631 1261
max 82 166 322 640 1287

ParNMPC-primitive (DOP = 6)
min 20 37 69 135 263
median 21 38 70 137 267
max 24 42 76 141 284

ACADO (qpOASES)
min 30 81 269 1015 4571
median 32 99 417 2463 20377
max 34 102 427 2496 20573

ACADO (qpDUNES)
min 41 83 120 248 520
median 43 86 171 355 751
max 60 112 245 492 1226

ACADO-RTI (qpDUNES)
min 42 83 166 345 719
median 44 87 176 368 774
max 79 161 363 819 1855

GRAMPC
min 3 6 13 26 53
median 4 8 16 31 62
max 5 9 18 35 71

VIATOC
min 6 8 15 29 57
median 7 12 23 46 94
max 8 13 31 100 469

FalcOpt
min 3 6 12 24 49
median 3 6 12 25 51
max 4 8 17 35 73

6.1.4. Evaluation of the two-phase and inversion approximation strategies

In the above quadrotor example, the performance of the two-phase and inversion
approximation (12) strategies is not evaluated. In this part, we extended the simulation
time to six seconds and set the position reference xref to zero for the last three seconds.
We ran the experiment with different DOPs, barrier strategies (with different ρ0 and
ρmin), and (∇xF )−1 calculation methods as shown in Table 4. It should be noted
that all of these patterns converged to the same optimality tolerance with the same
terminal barrier parameter, and therefore, the same level of optimality.

Due to the choice of the small terminal barrier parameter ρmin, input signals ap-
proached the constraints very closely, and the closed-loop optimality (15) was de-
creased to 0.002. The NOIs and CTs for different patterns are shown in Table 5. By
comparing patterns (b)(d)(e)(f) with (a)(c), it can be seen that the two-phase strat-
egy illustrated in Fig. 1 significantly reduced the maximum NOIs for both DOPs. The
approximation of (∇xF )−1 using (12) for patterns (e)(f) reduced the CT by 14% and
6% per iteration compared with patterns (b)(d), respectively, however, with a slight
increase in the NOIs.

Table 4. Configurations

Pattern DOP
Two-phase strategy (η = 0.1)

(∇xF )−1

ρ0 ρmin

(a) 1 10−5 10−5 Exact
(b) 1 1 10−5 Exact
(c) 6 10−5 10−5 Exact
(d) 6 1 10−5 Exact
(e) 1 1 10−5 Approx.
(f) 6 1 10−5 Approx.
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Table 5. NOIs and CTs under different configurations
Pattern Max. NOI Avg. NOI Median CT/Iter. [µs]

(a) 37 6.0 111
(b) 19 13.0 111
(c) 38 6.5 32
(d) 21 13.4 32
(e) 20 13.2 95
(f) 21 13.4 30

6.2. Helicopter

In this experiment, we controlled Quanser’s 3 degree-of-freedom (DOF) helicopter as
shown in Fig. 5. The data acquisition and communication were done by using Quanser
Q8-USB, which is able to provide a maximum closed-loop control rate of 2 kHz. The
hardware blocks in Simulink were provided by Quanser’s real-time control software,
QUARC.

Figure 5. Quanser’s 3 DOF helicopter (https://www.quanser.com/products/3-dof-helicopter/)

The helicopter has two inputs u = [Vf , Vb]
T : the voltage on the front motor Vf and

the voltage on the back motor Vb. It has six states including three angles q = [qε, qρ, qλ]T

(the elevation angle qε, pitch angle qρ, and yaw angle qλ) and their time derivatives.
We use the benchmark model by Brentari, Bosetti, Queinnec, and Zaccarian (2018) in
the following form:

q̈ =−

 sin qε(aε1 + aε2 cos qρ) + Cεq̇ε
−aρ cos qε sin qρ + Cρq̇ε

Cλq̇ε


+Kf

 bε cos qρ 0
0 bρ

bλ cos qε sin qρ 0

[ Vf + Vb
Vf − Vb

]
,

where the parameters are given as: aε1 = 2.356, aε2 = 0.799, aρ = 0.858, Cε = 0.053,
Cρ = 0.048, Cλ = 0.274, bε = 0.719, bρ = 9.336, bλ = 0.327, and Kf = 0.1188. The
goal was to control the helicopter to track a given reference qref under the constraints
of the input voltages: Vf , Vb ∈ [5, 10]. We choose the cost function to be quadratic as
follows.

L(u, x, p) =
1

2
(‖q − qref‖2Qq + ‖q̇‖2Qq̇ + ‖u− ū‖2R)

Here, ū = [7.5, 7.5]T denotes the approximate voltage needed to eliminate the effect
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of gravity, p = qref , and the weighting matrices are Qq = 10 × I, Qq̇ = 0.1 × I, and
R = 0.1× I. The prediction horizon was T = 4 s, which was discretized into N = 24
grids by using the reverse-time Runge-Kutta method method. The barrier parameter
and the optimality tolerance were fixed to 0.001, and DOP = 1. The exact Hessian
and (∇xF )−1 were used.

The experiment was performed for 90 s with a sampling period of 5 ms. We first
controlled the helicopter to track several step yaw angle references and then a sine
signal with a skew rate of π/2 rad/s. The closed-loop responses of the angles are shown
in Figs. 6 and 7, and the corresponding input signals are shown in Fig. 8. Despite the
offset when tracking the piecewise constant reference, the NMPC controller could track
the given reference well while satisfying the input constraints. As shown in Fig. 9, the
proposed method converged to the specified tolerance with only five iterations at most,
even though the reference signal was changed dramatically, resulting in sudden changes
in the input signals flipping from one side to another. The time histories of the CT
are shown in Fig. 10.

Figure 6. Time histories of yaw angle

Figure 7. Time histories of elevation and pitch angles
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Figure 8. Time histories of input signals

Figure 9. Time histories of NOIs

Figure 10. Time histories of CT

6.3. Robot manipulator

The manipulator is a 7-DOF lightweight robot manipulator KUKA LBR iiwa 14, which
has seven joint torque inputs u = τ ∈ R7 and 14 states including seven joint angles
q ∈ R7 and their corresponding angular velocities q̇ ∈ R7. The goal was to control the
manipulator to track given joint angles’ references qref under the constraints of the
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torques and angular velocities; each joint had a maximum torque output of 10 Nm,
and the angular velocity for each joint was limited to have a maximum value of π/2
rad/s in order to achieve smooth movement. For the NMPC problem formulation, the
angular velocity constraints were softened by introducing a slack variable v ≥ 0, which
denotes the violation of the constraints. The inequality constraint is

G(u, x, p) =


τ + 10e
−τ + 10e

v
q̇ + π

2 e+ ve
−q̇ + π

2 e+ ve

 ≥ 0,

where e = [1, · · · , 1]T . We choose the cost function to be quadratic as follows.

L(u, x, p) =
1

2
(‖q − qref‖2Qq + ‖q̇‖2Qq̇ + ‖τ‖2R + 1000v2)

Here, p = qref and the weighting matrices wereQq = I,Qq̇ = 0.1×I, and R = 0.001×I.
The weighting imposed on v was 1000, which was at least three orders of magnitude
larger than the other weightings. The prediction horizon was T = 1 s, which was
discretized into N = 18 grids by using the reverse-time Euler’s method method. The
Gauss-Newton Hessian approximation method was chosen. The barrier parameter and
the optimality tolerance were fixed to 5 × 10−4, and the exact (∇xF )−1 was used.
The gravity was set to zero. The system function f(u, x, p) and its derivatives were
implemented using Pinocchio (Carpentier et al., 2019), which is a C++ library for
efficient rigid multi-body dynamics computations.

For the closed-loop simulation, the system was started from an initial state of x̄0 = 0
and qref = 0. The simulation was performed for 8 s with a sampling period of 1 ms. The
joints’ reference was set to qref = [0, π/2, 0, π/2, 0, π/2, 0]T for the first four seconds
and qref = [π/2, 0, π/2, 0, π/2, 0, π/2]T for the last four seconds. The reference was fed
to the controller with a rate limitation of 4π rad/s.

In this experiment, we compared the CTs under different DOP settings (in serial
and parallel). We note again that when DOP is set to one, ParNMPC behaves exactly
the same as the structure-exploiting primal-dual interior-point method. For the mea-
surement of the CT, we ran the simulation 10 times and chose the minimal one to
eliminate the effect of performance fluctuation. Five sampled plots for the simulated
manipulator are shown in Fig. 11, and the time histories of the joint torque inputs,
joint angles, and the angular velocities are shown in Figs. 12, 13, and 14, respectively.
Here, the last three torques are omitted in Fig. 12 because their magnitudes are in
the range of [−1, 1]. We can see from the simulation results that the NMPC controller
could control the robot manipulator to its desired reference position smoothly while
satisfying the specified constraints. The NOIs for DOP = 1 and 6 are compared in Fig.
15, which shows that both converged to the specified tolerance with nearly the same
rates, even though approximate information was used in the parallel mode. However,
the parallel one was much faster than the serial one in terms of the CT shown in Fig.
16. A speed-up of more than 4× could be achieved on the hexa-core processor. We
noticed that, for both DOPs, the NMPC controller could still drive the manipulator
to its reference position by using even only one iteration each sampling time. Consid-
ering that the CT per iteration for the parallel method was less than 170 µs, a higher
sampling rate can be achieved with either more cores or fewer iterations.
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Figure 11. Plots of manipulator at 0, 1, 4, 5, and 8 s

Figure 12. Time histories of first four joint torque inputs

Figure 13. Time histories of joint angles q

6.4. Discussion

Since ParNMPC is exactly the primal-dual interior-point method applied to NMPC
when DOP = 1, it inherits the good convergence and robustness of the interior-point
method. Moreover, the increase in speed for ParNMPC with parallelization (DOP > 1)
can be large on a hexa-core processor, so ParNMPC with parallelization is expected to
behave better with more cores. Parallel performance can be achieved even for highly
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Figure 14. Time histories of joint angular velocities q̇

Figure 15. Time histories of NOIs for parallel method (DOP = 6) and Newton’s method (DOP = 1)

Figure 16. Time histories of CTs for parallel method (DOP = 6) and Newton’s method (DOP = 1).

nonlinear systems (e.g., a robot manipulator) and a small N , with almost the same
number of iterations. However, parallelization with OpenMP introduces an overhead
time, which is usually proportional to DOP and is not negligible when either the overall
CT is small or the DOP is large.
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7. Conclusion

This paper presented an efficient implementation for the parallel optimization of
NMPC. The reverse-time discretization method dedicated for parallelization is intro-
duced and its accuracy was shown. Since the parallel method is in the same framework
as the conventional primal-dual interior-point method, nonlinear optimization tech-
niques, such as regularization, Hessian approximation, and line search, are applied and
optimized for the parallel optimization of NMPC, making the implementation both
fast and numerically robust. Three experiments showed that ParNMPC was effective
and efficient both in serial and parallel.

Future directions include integrating algorithmic differentiation to calculate the
required derivatives for large-scale systems and replacing OpenMP with lower level
parallel computing interfaces to reduce the overhead time.
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Appendix A. Proposition A.1

Proposition A.1. Let y(t) ∈ Rm and consider the ordinary differential equation

ẏ(t) = f(y(t), t).

Let h be the discretization step size and the differential equation be discretized by using
an explicit discretization method with a local truncation error of O(|h|n):

Y (t+ h) = F (y(t), h, t),

that is, Y (t+ h) is the approximation to y(t+ h) satisfying

‖Y (t+ h)− y(t+ h)‖ = O(|h|n).

Let Ỹ (t) be obtained by using the corresponding reverse-time discretization method,
i.e.,

y(t− h) = F (Ỹ (t),−h, t).

Then, the local truncation error of the reverse-time discretization method is also
O(|h|n), that is,

‖Ỹ (t)− y(t)‖ = O(|h|n). (A1)

Proof. Without loss of generality, we assume h > 0. It can also be obtained that

‖y(t− h)− Y (t− h)‖ = O(hn), (A2)
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where

Y (t− h) = F (y(t),−h, t).

According to the mean value theorem for vector-valued functions (McLeod, 1965), the
following equation holds:

F (Ỹ (t),− h, t)− F (y(t),−h, t)

=

n∑
i=1

λi∇yF (ξi,−h, t)
(
Ỹ (t)− y(t)

)
,

(A3)

where ξi ∈ [y(t), Y (t)], λi ≥ 0, and
∑n

i=1 λi = 1. Since y(t − h) = F (Ỹ (t),−h, t) and
Y (t− h) = F (y(t),−h, t), by taking norms of both sides, we obtain

‖Ỹ (t)− y(t)‖

≤

∥∥∥∥∥∥
(

n∑
i=1

λi∇yF (ξi,−h, t)

)−1
∥∥∥∥∥∥ ‖(y(t− h)− Y (t− h))‖ .

The result (A1) then follows from (A2) and the fact that ∇yF (ξi,−h, t) → I when
h→ 0.

Appendix B. Proof of Proposition 3.1

Proof. From the full rank property of the Jacobian of l, we know that (13), i.e., 1
in (7), is positive-definite. Since zki > 0 and Gki > 0, 2 in (7) always satisfies 2 ≥ 0.
Consequently, we know that Mk

i > 0 always holds. In addition, due to the fact that
the initial value of Wi+1 satisfies Wi+1 ≥ 0, the lower-right block of (10) is positive-
definite for the initial value of Wi+1. We show next the definiteness of the updated Wi

for i ∈ {1, · · · , N}.
For each i ∈ {1, · · · , N}, the Schur complement of the lower-right block of matrix

(10) is nonsingular since we have shown that the lower-right block is positive-definite
and (10) is nonsingular from the choice of δC . Specifically, the upper-left block of the
inversion of (10) can be expressed as([

0 0
0 −δCI

]
− Jki

(
Mk
i +

[
0 0
0 Wi+1

])−1

(Jki )T

)−1

. (B1)

For an arbitrary vector v ∈ Rnx+nµ , the inequality

vTJki

(
Mk
i +

[
0 0
0 Wi+1

])−1

(Jki )T v ≥ 0 (B2)

holds. Considering that δC > 0, (B2) holds, and (B1) is nonsingular, we know that
(B1) < 0. Since the updatedWi is the negation of the nx-th leading principal submatrix
of (B1), Wi > 0 always holds for i ∈ {1, · · · , N}. In turn, the result then follows.
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