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Abstract
This study aimed to evaluate volatile compounds in exhaled breath as a non-invasive screening
method to detect breast neoplasms. Exhaled breath samples were collected from patients with
breast cancer (BC; n= 45) and non-breast cancer (NBC; n= 51) controls. Selected ion-flow tube
mass spectrometry was used to quantify the volatile compounds. A multiple logistic regression
(MLR) model was developed by combining multiple compounds to discriminate between BC and
NBC samples. Amongst the 672 quantified peaks, 17 showed significant differences between BC
and NBC samples (P < 0.05 corrected by false discovery rate). Pathway analysis revealed a
significant difference in glycerophospholipid metabolism. The MLR model showed an area under
the receiver operating characteristic curve (AUC) of 0.719 (95% confidence interval: 0.615–0.822,
P < 0.0002). Cross-validation under various conditions resulted in a slight fluctuation in the AUC
values, indicating the high generalizability of the MLR model. The model showed a higher BC
probability for advanced-stage subjects and higher Ki67 (⩾30) for BC subjects. This study suggests
the potential of volatile compounds in exhaled breath as a noninvasive screening method for BC.

1. Introduction

Breast cancer (BC) is among the most common
malignancies in women globally with high mortal-
ity, causing millions of deaths annually [1]. Early
detection of BC allows for a broader selection of
possible treatments, which improves prognosis of
the disease. Imaging screening techniques, such as
mammography (MMG), ultrasound, and [18F]-
fluorodeoxyglucose positron emission tomography,
have demonstrated their effectiveness in detect-
ing early-stage disease and decreasing mortality
[2–4]. However, the screening systems still need
to be improved and optimized, to avoid issues,
like misdiagnosis using MMG, which are still
common [5].

The existing tumor markers such as cancer
antigen 15-3 (CA15-3) and carcinoembryonic anti-
gen (CEA) are used for monitoring treatment and

detecting relapse, and not used for screening [6].
Recently, various novel liquid biopsy procedures have
been developed using omics technologies to compre-
hensively quantify compounds of interest [7, 8]. For
instance, circulating tumor DNA and cells [9], circu-
lating cell-free DNA [10], exosomes [11], and DNA
methylation profiles [12] in biofluids are the putative
biomarkers that have attracted interest for use in BC
diagnosis.

The aberrant metabolism of BC cells, including
alterations in major energy-related metabolic path-
ways, glutaminolysis, the pentose phosphate path-
way, and fatty acid biosynthesis, induces genetic
and epigenetic processes that mediate oncogenesis
[13]. The metabolic profiles of tissues and biofluids
have shown potential for diagnosis and stratifica-
tion of BC, which can assist in planning treatment
regimens [14]. Metabolic fingerprinting or metabolic
signatures generated from blood-based tests have also
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been evaluated as an alternative diagnostic tool for
BC [15].

Non-invasive diagnostic tools, like urinary bio-
markers, are desirable which enable frequent mon-
itoring without causing undue stress or injury to
the patient [16]. Volatile organic compounds (VOCs)
in breath samples have been used as non-invasive
tools as they can be easily collected, stored, and
transported [17]. Gas chromatography–mass spec-
trometry (GC-MS) is the most commonly used tech-
nology to quantify VOCs. The Bio-VOC® breath
sampler, and GC-MS identified four possible bio-
markers for BC, including straight aldehydes [18]. A
large cohort study (n= 203) identified seven possible
biomarkers [19]. The use of machine learning and an
electronic nose also showed potential in using VOCs
to discriminate BCpatients fromhealthy controls [20,
21]. A systematic review reported 43 previous stud-
ies that used VOCs as possible biomarkers for vari-
ous types of cancer. However, there is a need for
sampling standardization, to compare the precision
levels between the previously reported biomarkers
[22].

Selected ion flow tube–mass spectrometry (SIFT-
MS) has recently been used as an alternative to GC-
MS for analyzing volatile metabolites in human bio-
fluids, including exhaled breath [23–27]. SIFT-MS
has a number of advantages such as detection of per-
manent gases in the air, at parts-per-trillion levels and
also has advantages like instantaneous, quantitative
analysis of air and headspace with very high sensit-
ivity and selectivity, direct analysis of high humidity
samples, simultaneous analysis of chemically diverse
VOCs (e.g. aldehydes, amines, and organosulfur), and
simplicity of operation, low maintenance, and long-
term stability. Unlike GC-MS, SIFT-MS is easy to
maintain and more stable as it does not require chro-
matography columns and has precise chemical ioniz-
ation. These featuresmake SIFT-MS a powerful, com-
plementary technique for GC-MS, which, though is a
promising compound identification tool, cannot ana-
lyze samples rapidly and also requires highly trained
operators.

This study evaluated VOCs in exhaled breath
to differentiate patients with and without BC using
a SIFT-MS. The non-breast cancer (NBC) group
included patients with various benign diseases. The
discrimination ability of combinations of VOCs in
identifying BC was evaluated.

2. Material andmethods

2.1. Subjects
This cross-sectional study explored BC-specific
salivary metabolite levels and the study was conduc-
ted in accordance with the principles of the Declar-
ation of Helsinki. A total of 96 participants were
recruited during the period (mention the duration

or the dates here). Diagnosis of BC was done by
histological examination. None of the patients had
received any prior treatment, including hormone
therapy, chemotherapy, molecularly targeted ther-
apy, radiotherapy, surgery, or any other alternat-
ive therapy. The non-breast cancer (NBC) controls
group included healthy subjects with and without
benign breast diseases. Written informed consent
was obtained from all participants who consented
to be enrolled in this study. This study was conduc-
ted according to the Declaration of Helsinki prin-
ciples. The study protocol was approved by the ethics
committees of Kyoto University (R0775-3). Written
informed consent was obtained from all participants
who agreed to be enrolled in this study.

2.2. Exhaled breath collection
On arrival at the hospital, patients were asked to
rest on a chair for at least 15 min, and a struc-
tured patient history was collected via a question-
naire before sample collection. First, the subjects were
asked about their present smoking status, smoking
volume, alcohol intake (days per week), comorbidit-
ies, height, weight, whether they had undergone fast-
ing for a certain period before arriving at the hospital,
whether they had used tooth brush, mouthwash,
and/or chewing gum before arriving. Subsequently,
breath samples were collected with a Smart Bag PA
(GL Science, Tokyo, Japan), a vinyl alcohol-based
polymer film bag with low gas adsorption proper-
ties and heat resistance, and which prevents the elu-
tion of impurities from the material. They were asked
to take a deep breath through the nose, followed by
a single continuous forced exhalation through the
mouth (while keeping their nostrils closed) into a
sealed 2 l Smart Bag PA through a straw attached to
it for prevention of saliva entry. Harvesting of breath
sample in this manner resulted in collection of a
mixed alveolar gas sample (mixture of alveolar air and
respiratory dead space air). The samples were collec-
ted in the same outpatient room and stored at room
temperature (room air samples were not collected).

2.3. Measurement of VOCs using SIFT-MS
Upon arrival at the laboratory, samples were stored
at room temperature and analyzed within 3 h of col-
lection using SIFT-MS (Voice200 ultra, Syft® Tech-
nologies, Christchurch, New Zealand). The SIFT-
MS instrument was calibrated using a standard gas
mix containing 1,2,3,4-tetrafluoro benzene, benzene,
ethylene, isobutane, octafluorotoluene, p-xylene,
perfluorobenzene, toluene, and nitrogen (Scotty®

specialty gases, Pennsylvania, USA). The corrected
intensities for all mass-to-charge ratios were extrac-
ted from the data generated by the instruments.

The calibration and measurement parameters of
the SIFT-MS were set as previously described [28,
29]. Before analysis, an automated check test of the
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flow, temperature, quadrupole performance, and
single-point accuracy and precision determinations
was performed using a certified standard containing
benzene, ethylbenzene, ethylene, hexafluorobenzene,
isobutene, octafluorotoluene, perfluoro-2-methyl-
2-pentene, perfluorohexane, perfluoroheptane, and
octadecafluorooctane. The SIFT-MS sampled the
headspace through a septum on the sampling bag,
and a stainless-steel needle connected to the sampling
line with a flow of 77.3 Pa l/s. The ionized compounds
were monitored using a mass spectrometer in full
scan mode in the 15–250 m/z range for 70 s (10 s
of preparation time and 60 s of sampling time). All
samples (including room air) were scanned using
the full mass scan mode (15–250 m/z) with three
reagent ions (H3O+, NO+, and O2

+) for 300 ms per
m/z measurement. Therefore, the measurement of a
sample took 564 s, and the triplicatemeasurements of
a sample took 28.2min. The three regent ions are sent
alternately, not simultaneously, and product ions are
measured individually. As a result, three quantitative
values are calculated for one compound, the low-
est concentration of values displayed. Since there are
many chemical species; the product ions are derived
from multiple species, which may cause the overlap
of multiple peaks. These phenomena would result
in a higher concentration than expected. To reduce
this problem, we used lower peaks to calculate the
concentration. It is a disadvantage of SIFT-MS.

It takes about one hour for the analysis of a breath
sample. Breath bags were stored in an air-conditioned
analysis room. Before the study started, we had con-
firmed that the room’s gas bag had not changed
within 24 h. Two breath samples were collected per
patient, one was analyzed immediately, and the other
was analyzed after 24 h. It had been confirmed earlier
that there is not much difference between the res-
ults of both samples. Since the results depend on
the type of the sampling bags, we used Smart Bag
PA, which has the least gas adsorption and emission
according to our previous experience. SIFT-MS had
been maintained every six months by the manufac-
turer to optimize the performance. The gauge needle
was placed on the breath arm and into the gas bag.
The gauge needle had been heated and kept at a
high-temperature state. In addition, the room air was
checked for any contamination before sampling. The
gauge needles were washed with alcohol once every
month.

The part number of the type gauge needlewith the
included side hole was unknown. The samples were
measured in triplicates. No sample treatment was
required; thus, the samples were directly injected into
theVoice200 ultra SIFT-MS instrument. ThisMSuses
a soft ionization method with reagent ions (H3O+,
NO+, and O2

+). The putative compound names were
assigned by matching m/z values with the corres-
ponding data in the 1500 compound database. The

data processing was conducted using LabSyft (Syft
Technologies, LTD). Similar to the GC-MS, SIFT-MS
also requires an understanding of gas analytics. The
fewer procedures of sample processing which is help-
ful for routine usage.

2.4. Statistic analysis
The VOC profiles of each sample were normalized
using quantile normalization, and each VOC con-
centration was transformed into a Z-score. The nor-
malized VOC profiles were visualized using a heat-
map and a volcano plot. TheMann–Whitney test was
used to compare the BC and NBC groups. Pathway
analysis was conducted using the Kyoto Encyclope-
dia of Genes and Genomes database. Differences in
overall profiles were evaluated using principal com-
ponent analysis (PCA). A multiple logistic regression
(MLR) model was developed to differentiate the BC
from the NBC group. Before developing the model,
stepwise feature selection was performed to identify
the minimum number of independent features. The
threshold for the removal of a molecule was P= 0.05.
Subsequently, k-fold cross-validations (k-CVs) were
conducted to evaluate themodel’s generalization abil-
ity. The datasets were randomly split into training and
validation datasets in a (k− 1):1 ratio. Themodel was
developed using training data and evaluated using
validation data. This process was repeated k times,
and the generalization ability was calculated based
on predictions using the validation data. We conduc-
ted two-, three-, four, and five-fold CVs 200 times
each using different random values. MetaboAnalyst
(v5.0) [30], JMP Pro (ver. 14.1.0; SAS Institute Inc.,
Cary, NC, USA), GraphPad Prism (ver. 7.0.3; Graph-
Pad Software, Inc., La Jolla, CA, USA), andWeka (ver.
3.6.13; University of Waikato, Hamilton, New Zeal-
and) were used for analyses.

3. Results

Table 1 summarizes the characteristics related to
the subjects enrolled in this study. Exhaled breath
samples were collected from patients with BC
(n = 47) and NBC (n = 53). BC group also included
invasive ductal carcinoma of the non-specific type
(n = 2), invasive lobular carcinoma (n = 1), apo-
crine metaplasia (n= 1), and invasive micropapillary
carcinoma (n= 1).

A heatmap (figure 1) shows the overall VOC pro-
files, including the normalized data, exhaled breath
sample (quantile normalization), andmetabolite axes
(Z-score). The original data showed that several
exhaled breath samples had high intensities of almost
all metabolites (dense overall samples; supplement-
ary figure 1). Normalized data did not include any
sample-dependent bias. Therefore, subsequent ana-
lyses were performed using normalized data.
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Table 1. Patient characteristics.

Item
NBC (n= 51) BC (n= 45)

P-valuen or ave.± SD n or ave.± SD

Menopause Pre/Post 24/26 14/31 0.093a

Age 54.1± 12.7 61.0± 14.6 0.016b

Height (cm) 156.3± 6.369 156.3± 6.912 0.84b

Weight (kg) 53.55± 9.418 53.57± 9.634 0.80b

Smoking No/Yes 27/8 39/5 0.17a

Drinking No/Yes 22/13 31/13 0.48a

Anamnesis No/Yes 20/25 20/25 1.0a

Diagnosis Fiberoadenoma 5
Cyst 3
Mastopthy 2
Sclerosing adenosis 1
Cholesterol granuloma 1
Diabetic mastopathy 1
Subareolar abscess 1
Calcification 2
Others 35

Histopathology Invasive ductal carcinoma (IDC) 40
Invasive lobular carcinoma (ILC) 1
Invasive micro papilloma 1
Metastatic breast Cancer (MBC) 1
Apocrine metaplasia 1
Accessory breast cancer 1

Grade 1/2/3 10/20/15
Stage 1/2/3/4 21/17/4/3
T 1/2/3/4 25/12/2/6
N 0/1/2/3/X 32/9/1/2/1
M 0/1 42/3
ER ± 33/12
PR ± 29/16
HER2 0/1/2/3 17/14/7/7
Ki67 <30/⩾30 34/11

a= χ2 test, b=Mann–Whitney test.

Figure 1. Heatmap showing VOC profiles of normalized data. Clustering is conducted by Euclidian distance with the Ward
method. Red and green boxes below the top dendrogram indicate the BC and NBC, respectively. The red and blue show the
relative higher and lower intensities for each VOC.
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Figure 2. Volcano plots of VOC profiles. X-axis indicates log2-transferred fold change (BC/NBC). Y-axis indicates log10(P-value)
between BC and NBC. P-values are calculated by Mann–Whitney tests. Elimination of non-significant (P > 0.1) peaks resulted in
96 peaks. Subsequently, P-values were corrected by false discovery rate, for considering multiple independent tests. Y-value >1.30
indicates corrected P < 0.05, and the dots above this line are colored in red (higher in BC).

Figure 3. Results of the pathway analysis. (a) Each circle indicates a pathway. The color and size indicate the significance level in
the enrichment analysis and pathway impact value from the topology analysis, respectively. (b) Glycerophospholipid metabolism.

The volcano plot (figure 2) shows the signific-
antly different VOCs between BC and NBC. The y-
axis shows log10(P) of the P-value (Mann–Whitney
test) between the BC and NBC groups. A y-value
>1.30 indicates P < 0.05 corrected by FDR. Among
the 646 detected components, 17 showed significant
differences (plots colored red and blue) between the
BC and NBC groups. All molecules showed higher
values in the BC group.

Pathway analysis was conducted to assess the
pathway-level differences between the BC and

NBC groups (figure 3). Only glycerophospholipid
metabolism showed significant differences at the
pathway level. In this pathway, phosphatidyl-N-
dimethylethanolamine levels were lower, whereas
ethanolamine levels were higher in BC patients. An
MLR model was developed by combining multiple
VOCs to discriminate between BC and NBC samples.
The model resulted in an area under the receiver
operating characteristic curve (AUC) of 0.719 (95%
confidence interval CI: 0.615–0.822, P < 0.0002)
(figure 4(a)). The k-CV tests were conducted to
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Figure 4.Multiple logistic regression (MLR) model. (a) ROC curve to discriminate BC from NBC. (b) AUC values using all data
and k-fold cross-validation (k= 2, 3, 4, and 5).

Table 2.MLR model.

Feature Coefficient 95% CI Odds ratio 95% CI P-value

3,7-dimethyl-2,
6-octadien-1-ol

−0.629 −1.14 −0.120 0.533 0.32 0.888 0.016

Ethanolamine 0.414 −0.0710 0.900 1.51 0.931 2.46 0.094
Ethyl
nonanoate

−0.607 −1.12 −0.0929 0.545 0.326 0.911 0.021

(Intercept) −0.167 −0.603 0.269 0.45

evaluate the generalizability (figure 4(b)). Although
several plots with low AUC values were observed for
k= 2, the median AUC values for all tests (k= 2, 3, 4,
and 5) were almost constant. Therefore, based on the
optimal cut-off point, sensitivity, specificity, positive
predictive value, and negative predictive value were
86.3%, 55.6%, 68.8%, and 78.1%, respectively.

The model selected three VOCs: 3,7-dimethyl-
2,6-octadien-1-ol, ethanolamine, and ethyl non-
anoate (table 2). The ethanolamine parameter was
negative. A lower intensity of ethanolamine increases
the probability of BC. The parameters of the other two
features with BC were positive, suggesting that higher
intensities increase the likelihood of BC.The rela-
tionships between clinical parameters, the predicted
probability fromMLR, and the threemetabolites used
in the MLR model were analyzed. Among the NBC
samples, the ethanolamine intensity and MLR mod-
els showed a significant difference between smokers
and non-smokers (P = 0.0056 and P = 0.0323,
Mann–Whitney test; supplementary material-table
1). However, BC samples did not observe this dif-
ference (supplementary material table 2). The ana-
lysis, including NBC and BC samples (Kruskal–Wallis
andDunn’smultiple post-test), showed no significant
difference in MLR predictions between smokers and
non-smokers in the BC samples.

Among BC samples, a stage-specific difference in
the prediction of MLR was observed (P = 0.0497,
Kruskal–Wallis test) (supplementary material table
2). Ethanolamine showed a grade-specific differ-
ence (P = 0.0302, Kruskal–Wallis test), whereas
there was no significant grade-specific difference
in MLR predictions (supplementary material-
table 2). In the advanced stage, high pathological
grade and proliferation (Ki67 ≥st) (supplement-
ary material table 2). Other parameters, such as
node metastasis (N), showed no significant differ-
ences. Analyses including NBC and BC samples
with stage, grade, Ki67, and N (Kruskal–Wallis
and Dunn’s multiple post-test) as variables are
depicted in figure 5. Figure 5(e) shows that the
significant difference (a) between NBC and BC
without smoking and (b) between NBC and BC
with smoking. The significant difference between
NBC without smoking and BC with smoking also
observed. However, there was no significant differ-
ence in NBC with/without smoking. The compar-
ison of BC with/without smoking also showed no
significant differences. Thus, the effect of smoking
is less than the difference between NBC and BC.
The relationships between these parameters and
the normalized VOCs are shown in figures S3
and S4.
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Figure 5. Relationship among clinical parameters and probabilities of prediction probabilities using MLR. (a) Stage, (b) Grade,
(c) Ki67, (d) N, and (e) Smoking. Loading plots. Kruskal–Wallis and Dunn’s multiple post-test is used to determined P-values.
∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, and ∗∗∗∗P < 0.0001. (e) S and non-S indicate smokers and non-smoker, respectively.

4. Discussion

This study aimed to differentiate BC fromNBC parti-
cipants using VOCprofiles in exhaled breath samples.
The combination of 3,7-dimethyl-2,6-octadien-1-ol,
ethanolamine, and ethyl nonanoate discriminated BC
from NBC. 3,7-dimethyl-2,6-octadien-1-ol is emit-
ted from the skin of healthy humans [31]. Ethan-
olamine is an essential metabolite for cancer cell
growth. Uptake and phosphorylation of ethanolam-
ine and choline are crucial in human breast cells
[32, 33]. BC adapts to metabolic stress by increas-
ing ethanolamine phospholipid biosynthesis [32].
This metabolite, along with phosphoethanolamine
in the cytosol of breast tissue, is correlated with
the prognosis of BC patients [34]. BC shows high
expression of glucose metabolism-related enzymes
related to prognosis [35]. Triple-negative BC, a high-
grade BC, mainly depends on glucose metabol-
ism. BCs also harbor various stromal cells, such as
cancer-associated fibroblasts and immune cells in the
tumor microenvironment that have metabolic inter-
actions with cancer cells. Various glycolytic metabol-
ites, such as serine and glycine, are produced, and
other metabolic pathways, such as the pentose phos-
phate pathway, are also involved. BCs are heterogen-
eous; consequently, metabolic characteristics are also
diverse and dependent on molecular subtype, pro-
gression stage, and metastatic site. The concentra-
tions of 3,7-dimethyl-2,6-octadien-1-ol, ethanolam-
ine, and ethyl nonanoate were significantly increased
in exhaled breath samples from BC. Changes in gluc-
ose metabolism in cells are likely the main reason
for the differences in VOC levels. Ethyl nonanoate
was detected in the exhaled breath of BC patients
by SIFT-MS [25] and microorganism-contaminated
foodstuff [36], but there are no reports to the best of
our knowledge linking it to cancer.

The expression of Ki67 is strongly associated
with tumor cell proliferation and growth, and it is
widely used as a proliferation marker in pathological

investigations. Nuclear protein Ki67 (pKi67) is an
established prognostic indicator for assessing biopsies
from cancer patients. Clinically, Ki67 has been shown
to correlate with metastasis and the stage of tumors.
In addition, it has been demonstrated that Ki67
expression is significantly higher in malignant tissues
with poorly differentiated tumor cells than in nor-
mal tissue [37]. The Ki67 labeling index is an inde-
pendent prognostic factor for survival rate, including
all stage and grade categories. There was a correla-
tion between the ratio of Ki67 positivemalignant cells
and patient survival. It has been shown that block-
ing Ki67 either via antibody microinjection or anti-
sense oligonucleotides leads to an arrest of cell pro-
liferation. Specifically, antisense oligonucleotides and
antibodies against pKi67 have been shown to inhibit
cell cycle progression. However, further studies are
needed, including analyses with more appropriate
in vitro and in vivo models. Ki67 expression induces
advanced stage and high-grade BC. The three VOCs
described in this study may be useful as an expiratory
marker for high proliferation (Ki67 >30) in BC. This
result may help establish new screening methods for
the increased proliferation seen in BC cells.

Various instruments for analyzing VOCs in
exhaled breath from BC patients and discrimination
methods have been reported. SIFT-MS has been used
to discriminate BC patients from healthy controls
[38]. Biomarkers were not identified in this study,
and the mass spectrometry pattern was used instead.
GC/MS is commonly used for VOC analysis in the
exhaled breath of BC patients [17, 39–41]. Partial
least squares-discriminant analysis (PLS-DA) can be
used as a discrimination model [19, 40], which util-
izes PCA as an index to discriminate BC samples from
healthy controls, using multiple peaks showing sim-
ilar changes as PCA. The support vector machine,
a machine learning method that is robust against
outliers and multi-collinearity of the input features,
was also employed to discriminate BC from healthy
controls [38]. In contrast, we utilized MLR to utilize
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only the minimum features to distinguish BC from
NBC samples, which can contribute to developing
targeted high-throughput assays.

This study did not evaluate the relationship
between the observed VOCs and BC-specific meta-
bolism. Cultured cells, including BC (MCF7), lung
cancer (A549 and Calu-3), and non-cancerous lung
cells (WI38VA13), showed different patterns of
emitted VOCs [42]. The increased oxidative stress
of MCF7 caused changes in its secreted VOCs,
indicating a link between VOCs and intracellular
metabolism [43]. Consistent changes in acetaldehyde
and acetone were observed in the exhaled breath
of tumor-bearing transgenic mice and women with
BC [44]. These studies could help eliminate markers
irrelevant to BC.

A limitation of the current research is that it only
utilized the fingerprints of the VOCs and did not
reveal the underlying biological mechanisms.

This study has several limitations. Firstly, a lar-
ger cohort is necessary to validate the developed
model. Independent data should also be used to assess
generalizability rather than a CV test. Secondly, the
sampling protocol requires to be standardized. For
example, various factors such as recent diet, sample
collection, storage, and preprocessing need to be
compared. The minimum requirement to produce
reproducible intensities should also be defined before
use in a clinical setting. Reporting standardization
is also important to allow unbiased decision-making
[45]. Thirdly, the specificity of the MLR model for
other diseases has to be evaluated. The differences
between VOCs in exhaled breath from BC, lung can-
cer, colorectal cancer, and prostate cancer patients
have been previously studied [39, 46]. VOC changes
caused by gastrointestinal diseases and colorectal can-
cer have also been reported [47, 48]. Comparisons
with other diseases should be conducted.

The high-throughput feature is one of the advant-
ages of SIFT-MS compared to GC/MS. This study
used SIFT-MS to profile hundreds of VOCs and
identify diagnostic biomarkers. However, combin-
ing only three VOCs was sufficient to discriminate
between BC and NBC samples. Therefore, develop-
ing more high-throughput and cost-effective assays
for the targeted analysis with only a few VOCs is pos-
sible and needed.

VOC profiles in exhaled breath were collected
from BC (n = 45) and NBC (n = 51) patients.
SIFT-MS successfully profiled 672 peaks, of which
65 peaks showed significant differences between
BC and NBC groups. The MLR model combining
three compounds of interest discriminated between
these two groups and showed high generalizability
in CV testing. This diagnostic tool, SIFT-MS for
advanced-stage subjects and higher Ki67 (≥30) for
BC subjects, is suitable for mass screening because
breath collection can be performed in a non-invasive
manner.

Data availability statement

The data generated and/or analyzed during the
current study are not publicly available for legal/eth-
ical reasons but are available from the correspond-
ing author on reasonable request. Glucose Metabol-
ism and Glucose Transporters in Breast Cancer.

Funding

This work was supported by JSPS KAKENHI Grant
No. JS20H0573.

ORCID iDs

Yoshie Nakayama https://orcid.org/0000-0001-
5643-4869
Masahiro Sugimoto https://orcid.org/0000-0003-
3316-2543
Masahiro Takada https://orcid.org/0000-0002-
5954-1296
Masakazu Toi https://orcid.org/0000-0003-3316-
2543

References

[1] Sung H, Ferlay J, Siegel R L, Laversanne M, Soerjomataram I,
Jemal A and Bray F 2021 Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries CA Cancer J. Clin.
71 209–49

[2] Coleman C 2017 Early detection and screening for breast
cancer Semin. Oncol. Nurs. 33 141–55

[3] Tohno E, Ueno E and Watanabe H 2009 Ultrasound
screening of breast cancer Breast Cancer 16 18–22

[4] Minamimoto R, Senda M, Jinnouchi S, Terauchi T,
Yoshida T and Inoue T 2015 Detection of breast cancer in an
FDG-PET cancer screening program: results of a nationwide
Japanese survey Clin. Breast Cancer 15 e139–46

[5] Løberg M, Lousdal M L, Bretthauer M and Kalager M 2015
Benefits and harms of mammography screening Breast
Cancer Res. 17 63

[6] Hing J X, Mok CW, Tan P T, Sudhakar S S, Seah C M,
Lee W P and Tan S M 2020 Clinical utility of tumour marker
velocity of cancer antigen 15-3 (CA 15-3) and
carcinoembryonic antigen (CEA) in breast cancer
surveillance Breast 52 95–101

[7] Tay T K Y and Tan P H 2021 Liquid biopsy in breast cancer: a
focused review Arch. Pathol. Lab. Med. 145 678–86

[8] Li J, Guan X, Fan Z, Ching L M, Li Y, Wang X, Cao WM and
Liu D X 2020 Non-invasive biomarkers for early detection of
breast cancer Cancers 12 2767

[9] Sant M, Bernat-Peguera A, Felip E and Margelí M 2022 Role
of ctDNA in breast cancer Cancers 14 310

[10] Hackshaw A, Clarke C A and Hartman A R 2022 New
genomic technologies for multi-cancer early detection:
rethinking the scope of cancer screening Cancer Cell
40 109–13

[11] Kumar D N, Chaudhuri A, Aqil F, Dehari D, Munagala R,
Singh S, Gupta R C and Agrawal A K 2022 Exosomes as
emerging drug delivery and diagnostic modality for breast
cancer: recent advances in isolation and application Cancers
14 1435

[12] Vietri M T, D’Elia G, Benincasa G, Ferraro G, Caliendo G,
Nicoletti G F and Napoli C 2021 DNA methylation and
breast cancer: a way forward (review) Int. J. Oncol. 59 98

[13] Coronel-Hernández J, Pérez-Yépez E A, Delgado-Waldo I,
Contreras-Romero C, Jacobo-Herrera N, Cantú-De León D
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