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 Abstract 

Self-explanation is a widely recognized and effective pedagogical method. Previous 
research has indicated that self-explanation can be used to evaluate students’ 
comprehension and identify their areas of difficulty on mathematical quizzes. 
However, most analytical techniques necessitate pre-labeled materials, which limits 
the potential for large-scale study. Conversely, utilizing collected self-explanations 
without supervision is challenging because there is little research on this topic. 
Therefore, this study aims to investigate the feasibility of automatically generating a 
standardized self-explanation sample answer from unsupervised collected self-
explanations. The proposed model involves preprocessing and three machine 
learning steps: vectorization, clustering, and extraction. Experiments involving 1,434 
self-explanation answers from 25 quizzes indicate that 72% of the quizzes generate 
sample answers containing all the necessary knowledge components. The similarity 
between human-generated and machine-generated sentences was significant with 
moderate positive correlation, r(23) = .48, p < .05.The best-performing generative 
model also achieved a high BERTScore of 0.715. Regarding the readability of the 
generated sample answers, the average score of the human-generated sentences 
was superior to that of the machine-generated ones. These results suggest that the 
proposed model can generate sample answers that contain critical knowledge 
components and can be further improved with BERTScore. This study is expected to 
have numerous applications, including identifying students’ areas of difficulty, 
scoring self-explanations, presenting students with reference materials for learning, 
and automatically generating scaffolding templates to train self-explanation skills. 

Keywords: Self-explanation, Rubric, Knowledge components, Summarization, 
Natural language processing 
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Introduction 

Self-explanation is defined as generating explanations for oneself, explaining concepts, 

procedures, and solutions to deepen understanding of learning materials and make sense of 

relatively new information (Chi et al., 1994; Rittle-Johnson, 2006). While self-explanation 

has been found to be a potentially highly effective pedagogical method, it often relies on 

preparation by instructors which has been suggested as a limiting factor in its widespread 

implementation (Bisra et al., 2018). Several methods have been proposed, including the 

design of system interfaces that effectively monitor and support self-explanation, models 

that can assess case understanding from self-explanation behaviors, and strategies that 

effectively elicit further self-explanation to improve student case understanding (Arner et 

al., 2021; Boonthum et al., 2007; Conati & Vanlehn 2000; McNamara et al., 2004). 

However, an overview of past studies from the perspective of automating analysis with 

artificial intelligence reveals that analysis methods take a top-down approach. It is 

necessary to prepare the model answers for self-explanation in a fixed structure and capture 

these data in the form of an annotated dataset (Jackson et al., 2010; Nakamoto et al., 2021; 

Panaite et al., 2018; Panaite et al., 2019). This can limit the scalability in implementing 

these tools in practical environments. Therefore, in this study, we propose a method using 

unsupervised learning to automatically generate standard answers from collected self-

explanations. 

Generating model answers for self-explanations can be very difficult, especially when 

there is no prior information on how to solve a specific problem. To overcome this 

challenge, our study proposes a bottom-up approach that analyzes data collected from self-

explanations. One of the main advantages of this approach is its ability to be applied to 

previously unseen problems that lack labeling, so long as there is input data available. 

While research in this area of self-explanation analysis is still limited, this study aims to 

investigate the potential for automatically generating standard self-explanation examples 

that incorporate the necessary conceptual knowledge components required to solve a given 

problem. 

This paper explores the potential of self-explanations to generate standard sample 

answers in three different scenarios. In the first scenario, the study aims to identify 

knowledge components missing from students’ self-explanations by comparing them to 

model answers. It will also investigate whether the system can extract sentences from high-

quality self-explanations. In the second scenario, the standard sample answer will be 

provided as a reference for learners who struggled with a particular quiz question. Finally, 

in the third scenario, the study proposes a novel approach for automatically generating self-

explanation scaffold templates based on sample sentences. This approach utilizes a 

glossary-based support system that encourages students to practice their self-explanation 

skills by looking up concepts from a curated list and filling in blank templates (Berthold & 
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Renkl, 2009; Berthold et al., 2009; Rittle-Johnson et al., 2017). Overall, the unique 

contribution of this paper is that it offers valuable insights into the potential of unsupervised 

learning methods as a tool for generating sample self-explanation answers in different 

learning scenarios. 

The methods proposed in this study aim to promote learning of mathematical concepts 

and procedures through self-explanation. By understanding the learning process through 

self-explanation (Bisra et al., 2018), knowledge acquisition could be enhanced beyond 

what is possible with reference books alone. To achieve this goal, the paper presents a 

method for generating model responses based on the analysis of collected self-explanations. 

We conducted evaluations of our proposed approach using real data from three different 

perspectives to determine its appropriateness; (1) the ability of the model to generate self-

explanations that contain relevant key component information for each quiz (Knowledge 

Components Extraction Grading), (2) the quality of the generated self-explanations 

compared to human-generated self-explanations as measured by established metrics (The 

Quality Evaluation with Metrics), and (3) the clarity of the model’s responses for students 

(Readability Analysis). Through these evaluations, the paper aims to establish the 

fundamental methods for creating automatic model responses that can be used to analyze 

self-explanations and promote learning. 

Related work 

Effects of self-explanation in mathematics and its utilization 

Self-explanation has been shown to improve students’ conceptual and procedural 

knowledge in math by helping them focus on important details (Bisra et al., 2018; Renkl, 

2017; Rittle-Johnson, 2017). Conceptual knowledge refers to abstract ideas, while 

procedural knowledge is tied to specific problem-solving practices (Rittle-Johnson & 

Schneider, 2015; Rittle-Johnson et al., 2001; Rittle-Johnson et al., 2015; Star, 2005). 

Verschaffel et al. (1999) identified five steps for solving math problems: drawing pictures, 

making lists, simplifying numbers, making calculations, and evaluating the solution. While 

self-explanation is not directly tied to any specific step in the problem-solving process, it 

focuses on the knowledge elements involved. Although these steps provide a framework 

for problem-solving, self-explanation goes beyond the procedural aspects and emphasizes 

the explanation of necessary knowledge components. 

In our study, we examined the possibility of self-explanation by hypothesizing that 

students follow these problem-solving steps and that self-explanation occurs in relation to 

the knowledge elements, specifically tied to procedural knowledge. 

The use of self-explanation in web-based learning has been explored through various 

methods. Some include designing interfaces that monitor and support self-explanation, 
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developing models to assess understanding from self-explanation behavior, and using 

strategies to encourage further self-explanation for improved comprehension (Conati & 

Vanlehn, 2000). Crippen and Earl (2007) created a web-based learning tool that helps 

students with structured problem-solving. iSTART, an interactive tutoring system 

developed by McNamara et al. (2004), uses natural language processing techniques to 

evaluate and score self-explanation in reading. The system extracts features from learners’ 

self-explanation artifacts and compares them to the reading material, providing appropriate 

scaffolding to improve comprehension. The results indicate that iSTART can effectively 

support self-explanation in various disciplines (Jackson et al., 2010). The present paper 

focuses on self-explanation in mathematics which differs from reading comprehension in 

that the source material often contains less text information, making it difficult to compare 

to learners’ self-explanation artifacts. Therefore, we propose a method to generate 

examples for the purpose of scoring from collected self-explanations. To evaluate the 

effectiveness of this method we compared the similarity of the generated examples to 

human examples as measured by established metrics. 

Research utilizing the uniqueness of self-explanations 

Self-explanation writing is often incomplete and fragmented, with learners focusing on 

what they don’t understand rather than writing for others (Chamberland et al., 2015). As a 

result, unexpected answers are common in self-explanations (Panaite et al., 2018). Factors 

such as training in self-explanation writing and writing skills can also affect the quality of 

the writing (Hodds et al., 2014). Moreover, self-explanations do not typically provide clear 

answers or an effective and simple way to use them. 

To address these challenges, various methods have been proposed for processing self-

explanations. For example, Panaite et al. (2018) found that using the occurrence of fixed 

expressions and word counts in English reading comprehension as a filter can improve the 

quality of extracted sentences and the accuracy of subsequent automatic scoring. Panaite 

et al. (2019) used rule-based automatic and machine learning methods to score accumulated 

self-explanation data. Nakamoto et al. (2021) proposed a method for checking whether 

students can explain each step of their self-explanation by comparing the similarity 

between their writing and a human-created example solution. They determined whether the 

required information and vocabulary for the unit were included and identified knowledge 

gaps if elements were missing. The present paper incorporates the use of filtering methods 

proposed in previous research, such as: the identification of fixed expressions, and the 

appropriateness of self-explanation length to improve the quality of generated sample self-

explanations written in Japanese for mathematics questions. 
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Methods 

Goals of our models 

In this section, we introduce the proposed method and show how the system generates 

sample answers of self-explanations. An overview of the inputs and outputs of the model 

proposed in this research is shown in Figure 1 along with possible uses of the outputs. The 

input into the model of the proposed method includes the self-explanations of all students 

who explained the questions and their accompanying handwriting data that was collected 

when the student answered a question. The output is a single example response statement 

to the question. This example response is then compared to a student’s self-explanation and 

can be used as a template to prompt self-explanation, which has been identified as an 

important task for supporting self-explanation (Bisra et al., 2018). 

A rubric is a set of guidelines used to evaluate students’ work. General rubrics provide 

an overview of performance levels, while task-specific rubrics specify the mathematical 

aspects of a task that determine each level of performance. Rubrics can be used to evaluate 

various tasks, and are well-suited for tasks with multiple solutions or strategies (Thompson 

& Senk, 1998), but in this case, simplified rubrics were used to assess whether or not 

students were able to solve math problems step-by-step, with the intention of the rubric 

being system judgeable. Table 1 shows the definitions of key terms used in this paper. 

The output, the final goal of this study, is a sample answer as shown in Table 2. Ideally, 

this sample answer should demonstrate the knowledge components required to solve the 

quiz at each step. 

 

 

Fig. 1 An overview of the process of our proposed model, and the inputs and outputs 
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Table 1 Definition of words 

Name Definition 

Knowledge Components Specific conceptual knowledge or unique unit elements required to 
solve this quiz. 

Step The procedure or order in which the knowledge components appear in 
the quiz. 

Rubric Can-do descriptors that clearly describe all the knowledge components 
of the quiz by steps and are used to create labels and evaluations. 

A Sample Answer 
(of self-explanations) 

A single standard answer of self-explanations of a quiz with knowledge 
components, which are prepared according to the step rubric number. 

 

 

Table 2 Rubrics and a sample answer of self-explanation in a quiz 

Number Rubric Sample answer of self-explanations 

Step 1 Be able to find the equation of a linear 
function from two points. 

Substituting the y-coordinate of p into the 
equation of the line AC. 

Step 2 Be able to find the equation of the line 
that bisects the area of a triangle. 

Find the area of triangle ABC, then find the 
area of triangle OPC. 

Step 3 Be able to represent a point on a 
straight-line using letters (P-coordinates). 

With the line OC as the base, find the  
y-coordinate of p, which is the height. P’s 
coordinate is (t, -1/2t+4). 

Step 4 Be able to represent a point on a 
straight-line using letters (Q-coordinate). 

Since the coordinates of P are (3,5/2), the 
line OP is y=⅚, and the coordinates of Q are 
(t,5/6). 

Step 5 Be able to formulate an equation for area 
based on relationships among figures. 

Finally, the area of △QAC was found from 

△AQO and △OQC, and the coordinates of 

Q were found. 

 

Dataset details 

When constructing a data-based model, it is essential to consider the data set as the center 

of the model. This section defines what a good self-explanation is, which is crucial for 

generating the model, and provides an overview of the characteristics of a good self-

explanation. 

Dataset acquisition 

The data was collected between January 1, 2020, and December 31, 2021, using the LEAF 

platform (Flanagan & Ogata, 2018), which includes a digital reading system called 

BookRoll and a learning analytics tool called LAViEW. This platform has been used for 

several years in a Japanese secondary school. Students were asked to view the quiz and 

write their answers using a stylus and tablet computer with handwriting input in BookRoll. 

BookRoll captures the handwriting data as a series of vectors that represent the coordinates 

and velocity of pen strokes, enabling realistic playback of the handwritten answers and 

fine-grained analysis of the students’ answering process (Flanagan et al. 2021). 
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The utilization of pen stroke log data yields several advantages over character recognition. 

Firstly, pen stroke logs capture precise details such as movement and direction, providing 

a comprehensive understanding of the writing process. This granularity allows for a 

nuanced analysis of the data. Secondly, pen stroke data captures contextual information 

beyond the characters themselves. It enables the observation of stroke sequences and self-

explanation timing, reconstructing the temporal aspect of writing. This time series data 

offers valuable insights into stroke order, pauses, and handwriting patterns, facilitating 

anomaly detection. 

After completing the quiz, students were asked to use LAViEW to review their 

handwritten answers and explain how they arrived at their solutions as shown in Figure 2. 

Students would input a sentence of explanation each time they believed they had completed 

a step in their answer while the playback occurred. This ensured that their self-explanations 

were associated with the pen stroke data chronologically. The self-explanation of the 

answer in Figure 2 contained the following steps from top to bottom: “If the area of triangle 

ABO is 1, the area of triangle AOC is 4. Since the entire area is five and the line OP bisects 

the area of triangle ABC, the area of quadrilateral ABPO and triangle POC is 2/5. The area 

of triangle APO compared to triangle POC is 3:5, so the length of line AP compared to line 

PC is 3:5.” 

Self-explanation quality scoring 

To build a good model, it’s important to have good-quality input data. Therefore, the first 

step was to evaluate the quality of the self-explanations. The evaluators created an objective 

scoring index, which focused on the inclusion of essential knowledge components and 

logical explanations that are shown in Table 3. The scoring results were rated on a scale of 

1~5 and sorted into categories that are shown in Table 4. The evaluations were carried out 

by two scorers, who initially rated the self-explanations individually. After the initial round 

of evaluations, the two scorers then compared their evaluations with each other, and if they  

 

Fig. 2 Handwritten answer review playback and self-explanation input user interface 
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Table 3 Self-explanation quality score grading definition 

Graded score Description 

1 (Unacceptable) The number of steps for which self-explanations are filled in for the steps 
required for the solution is minimal, and/or there were fixed expressions in 
the students’ self-explanations (e.g., mistaken patterns, boredom.) 

2 (Poor) Self-explanations are mostly provided for the steps required for the solution. 
Although, they are more like bullet points than explanations. 

3 (Fair) Self-explanations are mostly provided for the steps required for the answer. 
The average level of self-explanations among all respondents. 

4 (Very Good) Self-explanations are provided for most of the steps required for the answer, 
but there is room for improvement as an explanation (Logic, expressions). 

5 (Excellent) Self-explanations are mostly provided for the steps required for the answer, 
and the explanation is logical and well-written. 

 

Table 4 Descriptive statistics of the collected self-explanations 

Number of 
quizzes 

Cumulative total  
of answers 

Number of 
individuals 

Sentence length 
in Japanese characters 

Quality score 

M SD M SD 

25 1,434 117 62.0 53.6 2.91 1.42 

 

Table 5 Distribution of human graded quality scores 

Quality score 1  2  3  4  5  

Number of answers 350  231  303  292  258  

Sentence length in  
Japanese characters (Mean) 

21. 2 34. 6 47. 8 76. 5 142. 6 

 

 

differed, they discussed the reasons why and together came to a final value for the 

evaluation. In using this method there were no tiebreakers as the two scorers were able to 

come to an agreement through discussion. The descriptive statistics of the self-explanations 

in the dataset and the evaluations given by the scorers are shown in Table 5 and Figure 3. 

Table 5 and Figure 3 show longer self-explanations tended to have higher scores, while 

shorter ones tended to have lower scores. Self-expressions with less than 50 characters 

tended to receive a score of 3 or lower, while those with 40 or more characters tended to 

receive a score of 4 or higher. 

Examples of evaluated self-explanations are shown in Table 6, with the first example 

demonstrating a logically structured self-explanation that achieved a score of 5 despite its 

lengthy nature. This makes it easy to extract the characteristics of the problem-solving 

process from the content. It contains a total of five Knowledge Components, and was 

awarded the highest score. Conversely, the second example achieved a score of 2 and 

consists of fragmented content presented in a relatively short passage when compared to 

other self-explanations. While it includes two Knowledge Components, it was deemed 

insufficient as a self-explanation of the process as it did not fulfill the necessary problem-

solving steps, and this resulted in it receiving a score of 2. 
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Table 6 Examples of self-explanations with High and Low quality scores 

Quality score Sentence length Self-explanation Evaluation 

5 138 The area of triangle AOC is ④ when 
triangle ABO has an area of ①, the 
sum of the areas is ⑤, line OP 
divides triangle ABC into two equal 
parts so the areas of quadrilateral 
ABPO and triangle POC are 2/5, the 
length ratio of AP to PC is 3:5 because 
the area ratio of triangle APO to POC 
is 3:5, the length ratio of OP to PQ is 
4:1 because the area ratio of triangle 
ACO to QAC is 4:1, and we obtained 
the coordinates of point P from the 
coordinates of points A and C, and 
the coordinates of point Q from the 
coordinates of points O and P. 

Clearly describing the 
relationships between 
different elements in 
the problem. Showing 
the use of specific 
mathematical concepts 
and formulas, such as 
the area of a triangle 
and the length ratio. 

2 39 To find the equation of line OP and 
the coordinates of point Q, we first 
assign Q as a variable and then 
calculate the areas of triangles AOQ 
and QOC using the coordinates of Q. 

Vague and lacks the 
necessary information 
to understand the 
process and reasoning 
behind the 
calculations. 

 

The architecture of our approach 

Generating sample self-explanations requires extracting good self-explanations from 

collected data, which forms the basis of our proposed model. An overview of the process 

that was used to filter and extract good self-explanations from the collected data and how 

it was preprocessed is shown in Figure 4. Firstly, we employed two characteristics to filter 

input data based on the quality and length distribution as shown in Figure 3 and Table 5. It 

was observed that the threshold for the sentence length of a self-explanation is around 40 

characters and can be used to filter low quality self-explanations from high quality 

examples. Next, we excluded sentences that contained fixed expressions, such as: “make”,  

 

Fig. 3 A boxplot of the self-explanation quality score distribution 
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“error”, “impossible”, “unreasonable”, “to be annoyed”, “irritated”, “worried”, “in 

difficulty”, “strange”, and “erased”. Although these expressions are idiomatic, we removed 

them as they are not appropriate as model self-expressions. Finally, we omitted questions 

with less than five self-explanation responses as we determined that they did not have 

adequate data for analysis. A histogram of the distribution of self-explanation responses is 

shown in Figure 5, where the y-axis represents the number of quizzes that have the number 

self-explanation responses represented by in the same bin. For example, the bin on the left-

hand side represents 3 quizzes have five or less self-explanation responses. 

 

 

Fig. 4 Workflow for the self-explanation processing 

 

 

Fig. 5 Histogram of the distribution of self-explanation responses over the quizzes in the dataset 
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Sample answer generation model 

Once a set of problems containing five or more responses had been collected, the proposed 

self-explanation model was constructed. In this section, we outline the underlying 

methodology used in constructing the proposed model and the output generated by this 

approach. 

Overall architecture of the proposed model 

Text summarization is a crucial area in the design of deep learning models for natural 

language processing (NLP), and automated scoring of summaries is preferred over manual 

scoring (Crossley et al., 2019; Iqbal & Qureshi, 2020). Previous studies have used NLP 

tools like LSA and machine learning approaches (León et al., 2006; Ozsoy et al., 2011). 

There are two main types of summarizations: extractive, which extracts the essence from 

the entire text, and abstractive, which generates sentences. This study focuses on a sample 

self-explanation for students, requiring textual correctness. Extractive summarization was 

chosen due to limited data, and semantic chunks were extracted using unsupervised 

techniques. 

The proposed model consists of three main components: vectorization, clustering, and 

extraction, as illustrated in Figure 6. The vectorization step involves transforming the 

textual data into numerical representations suitable for analysis. Clustering techniques are 

then applied to group the semantic chunks based on their similarities. Finally, the extraction 

component identifies the most representative sentences within each semantic cluster. In 

order to determine the most representative sentences for each semantic cluster, we 

implemented a method using the chronological order from the pen stroke data. By 

analyzing the pen stroke log, we were able to reorder the generated sentences based on 

 

Fig. 6 Overall of a proposed model architecture. The input is all the self-explanation sentences 
associated with the quiz, and the output is the summarization of knowledge components for 
the quiz 
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their position in the problem. This allowed us to identify and select the sentences that best 

captured the essence of each semantic cluster. 

Vectorizing component 

We used Sentence BERT (SBERT; Reimers and Gurevych, 2019) and the BERT Japanese 

pre-trained model (Suzuki, 2019) as the vectorizing component for the following reasons. 

Firstly, BERT is a deep learning model based on the transformer architecture (Vaswani et 

al., 2017) that outperforms existing models in natural language processing on various tasks 

(Devlin et al., 2019). SBERT fine-tunes BERT and has significantly improved sentence 

embedding methods (Reimers & Gurevych, 2019). Secondly, since students are not well-

trained in writing self-explanations, we expected a lack of uniformity in their descriptions, 

expressions, and content. BERT’s versatility allows it to be applied to various tasks without 

changing the model’s structure, which we thought was appropriate for this research given 

the lack of uniformity in the self-explanations. 

Clustering component 

As the clustering component, we employed an unsupervised learning model, K-means. The 

purpose of creating meaning-intensive clusters through unsupervised learning is to 

reproduce the mathematical steps taken to produce the solution. Math problems have a 

method that often builds on previously learnt knowledge component units and often has to 

be solved by combining several basic knowledge component units. The authors assumed 

that a junior high school math problem would probably contain at least two steps and at 

most six steps of unit knowledge components, but this varies from problem to problem and 

requires a flexible model design. For example, when solving an equation, if the problem 

can be solved by simply shifting x, it is not easy to describe it further in the self-explanation. 

However, if it is a linear function, and students need to find the area of a triangle, find the 

formula of a straight line, or find the coordinates of a vertex, the steps become much more 

complicated. These variations need to be handled in a data-driven manner. In this study, 

the sum of squared errors was used to automatically determine the number of clusters using 

the elbow method, and it was determined in the range of 2 to 6 is optimal. 

Extracting components 

To extract components for each semantic cluster, we identified the most representative 

sentences by sorting them according to their position in the problem, which was obtained 

from the chronological data of pen strokes. We used the LexRank algorithm (Erkan & 

Radev, 2004) to extract the most representative sentences from each cluster, based on the 

frequency of occurrence of each sentence. LexRank is a graph-based method that 

represents sentences in a graph structure and creates a summary by analyzing the 
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relationships between the nodes that represent each sentence or word. Table 7 provides 

examples of self-explanations that were separated by the clustering model and extracted by 

LexRank. 

 

 

Table 7 Intermediate output examples for each process in the proposed model 

Cluster Clustered sentences Extracted sentence Final order 

A [‘Find the equation of the straight line AC’, ‘Find 
the X coordinate of point P’, ‘Find the equation of 
the straight line OP’, ‘Let the X coordinate of point 
Q be t. The Y coordinate is 5/6t’, ‘Find the value of 
t’, ‘Find the value of 5/6t’, Considering the 
coordinates of points A and C, I found the 
coordinates of point P.] 

Considering the 
coordinates of points 
A and C, I found the 
coordinates of point 
P. 

2 

B [‘Find the area of triangle OPC’, ‘Find the height of 
triangle OPC when the base is OC’, ‘Find the area of 
triangle ABO (triangle QAC)’, ‘Find the area of 
triangle OAC’, ‘Add the area of triangle AOQ and 
the area of triangle QCO (quadrilateral AOQC)’, 
‘Since the area of quadrilateral AOQC is 20, create 
an equation equal to 16/3t’, If the area of triangle 
ABO is 1, then the area of triangle AOC is 4.] 

If the area of triangle 
ABO is 1, then the 
area of triangle AOC 
is 4. 

4 

C [‘The area of triangle ABC is 20’, ‘The area of 
triangle OPC is 10 since it bisects triangle ABC’, 
‘The Y coordinate of P is like this’, ‘This is the 
equation for line segment AC’, ‘Since the equation 
for line segment AC is known, the X coordinate of P 
can also be found’, ‘The equation for line segment 
OP is like this’, ‘Let the coordinates of Q be  
(t,5/6t)’, ‘First, find the area of quadrilateral 
OCQA’, ‘Quadrilateral OCQA - triangle OCA = 
triangle CQA, which is also 10’, ‘Substitute t and 
find the coordinates of Q’, Substituting the Q value 
(p,q) into the equation of OP, then q=5/6p, so 
Q(p,5/6p).] 

Substituting the Q 
value (p,q) into the 
equation of OP, then 
q=5/6p, so Q(p,5/6p). 

3 

D [‘First, find the straight line AC’, ‘Next, find the area 
of △ABC and find the area of △OPC. Also find the 

Y coordinate of point P’, ‘Then, find the X 
coordinate of point P and find the straight line OP’, 
‘Next, find △AOB and find the area of △AQO. Also 

find △AOC and find the area of □AOCQ’, ‘Let the 

coordinates of Q be (t, 5/6) and find the area of  
△AOP and △OCP and add them to find t’, 

Considering the coordinates of point O and point P, 
I found the coordinates of point Q.] 

Considering the 
coordinates of point 
O and point P, I found 
the coordinates of 
point Q. 

5 

E [‘The area of triangle ABC is 10x4x1/2 = 20’, 
‘Therefore, the area of triangle OPC is 10’, Since 
the whole is five and, the line OP bisects the area 
of triangle ABC, the area of quadrilateral ABPO and 
triangle POC is 2/5.’ The base of triangle OPC is 8, 
so the height is 5/2. The Y coordinate of P is also 
5/2’, ‘Since △ABO = △QAC, both areas are equal’] 

Since the whole is five 
and, the line OP 
bisects the area of 
triangle ABC, the area 
of quadrilateral ABPO 
and triangle POC is 
2/5. 

1 
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Experimental setup 

Our approach was evaluated using real data from three perspectives to determine its 

suitability. Firstly, we tested the model’s ability to extract relevant key information for each 

quiz (Grading Extracted Knowledge Components). Secondly, we compared the quality of 

the self-explanations generated by the model to human-generated explanations using 

established metrics (Quality Evaluation with Metrics). Finally, we assessed the readability 

of the model’s responses for students (Readability Analysis). We assessed the structure and 

readability of the sentences generated by the model and analyzed two out of the 25 

questions in detail. 

Grading extracted knowledge components 

The authors evaluated the machine-generated self-explanations using an established 

evaluation index for each quiz. Table 2 shows the criteria and results of the evaluation, 

which was based on the ability of evaluators to recall necessary knowledge components. 

To ensure consistency, two authors and one assistant evaluated the answers and any 

discrepancies were resolved through consultation, resulting in an improved Fleiss’ kappa 

coefficient of 0.870 which indicates good reliability of agreement between the raters (Fleiss, 

1971). Additionally, the authors evaluated the extracted sentences using a quality score to 

determine the appropriateness of the newly generated sentences. 

Quality evaluation with metrics 

Next, we evaluated the similarity of human-created and machine-generated sentences using 

several metrics: BERTScore, BLEU (BiLingual Evaluation Understudy), and ROUGE 

(Recall-Oriented Understudy for Gisting Evaluation). Compared to the other metrics, 

BERTScore is expected to capture the meaning of the whole sentence better and be more 

robust for paraphrasing because it uses BERT embeddings which are generated from words 

and their context (Zhang et al., 2020). BLEU is a widely used metric for evaluating models 

such as machine translation. It evaluates how many N-grams in the generated text are 

included in the correct text (Papineni et al., 2002). The same is for ROUGE, a method 

based on an N-gram-based agreement (Lin, 2004). 

In addition, we conducted a Spearman correlation analysis to investigate the relationship 

between the summary index and human evaluation. The aim of this analysis was to explore 

the possibility of using representative metrics as an alternative to the labor-intensive 

process of scoring Human Evaluation Scores as defined in the formula below. The Human 

Evaluation Score (HES) was scored according to how well machine-generated answers met 

the knowledge components against the evaluation index in the following form. Root Mean 

Squared Error (RMSE) was also calculated to check the error variance. 
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𝐻𝑢𝑚𝑎𝑛 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 ＝ 
𝑁𝑢𝑚 𝑜𝑓 𝑅𝑢𝑏𝑟𝑖𝑐𝑠 −  𝑀𝑖𝑠𝑠𝑖𝑛𝑔 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

𝑁𝑢𝑚 𝑜𝑓 𝑅𝑢𝑏𝑟𝑖𝑐𝑠
  

 

Readability analysis 

Additionally, the authors conducted a survey to assess the readability of the self-

explanation text generated by their system. Seven evaluators, including five students and 

two assistants, were asked to review the generated self-explanation and judge its readability. 

They were given written definitions and explanations as shown in Table 8 to guide their 

evaluation. The questionnaire items and analytical methods used in the survey were based 

on a previous study by Drori et al. (2021) on automatic question generation for mathematics. 

Results 

Knowledge components extraction grading 

The human evaluation results of the generated self-explanation examples are shown in 

Table 9 and Table 10. In 72% of the quizzes, all five rubrics (knowledge components) were 

successfully generated, while 16% were missing one and 8% were missing two rubrics. 

Meanwhile, Table 10 shows that the quality score of the extracted sentences had an average 

of 4.49, with the bottom 25% scoring 4.15, indicating that the proposed method can 

effectively extract sentences. Most sentences were extracted from sentences with a score 

of 4 or 5, demonstrating the high quality of the extracted sentences. 

 

Table 8 Explanatory notes to evaluators assessing the readability of human and generated examples 

Items Description 

Explanations Below are the model answers for each question self-explanation generated by a 
human or AI. The model answers essentially describe the required solution 
process and are based on the assumption that the answers can be understood by 
reading them. Please read the model answers to the following self-explanation 
sentences, answer whether the Japanese are easy or difficult to read, and answer 
whether AI or a human created it. There are 50 questions in total. 

Definition of 
readability 

Can the student define the steps necessary to answer the questions and explain 
them logically? Is it suitable for students to read as an example of self-explanation 
answers in class? 

 

Table 9 Missing knowledge components of each quiz by human evaluation 

Missing knowledge components 0 1 ≥ 2 

Number of quizzes 18 4 3 
Probability density 0.72 0.16 0.12 

 

Table 10 Descriptive statistics of extracted self-explanations’ quality score 

Number of quizzes Mean of quality score SD Min 25% 50% 75% Max 

25 4.49 0.558 2.60 4.15 4.60 5.00 5.00 
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Quality evaluation with metrics 

Table 11 and Table 12 demonstrated the degree of similarity between human-generated 

and machine-generated sentences. The overall similarity was 0.715, with the best-

performing generative model in BERTScore exhibiting a significant correlation of R=0.48. 

Table 11 provides F1 Metrics scores for various metrics, with BERTScore achieving the 

highest similarity metric of 0.719 and ROUGE-1 following closely with an average of 

0.443. Correlations and RMSE were evaluated between HES and the different metrics, with 

tests of no correlation conducted. The results revealed a moderate correlation between HES 

and BERTScore r(23) = .48, p < .05, and between HES and BLEU r(23) = .46, p < .05. 

RMSE analysis showed a minor error of 0.273 for BERTScore, while the other metrics 

exhibited errors exceeding 0.5, indicating a significant difference. 

Readability analysis 

Table 13 and Figures 7 and 8 illustrate the average difficulty ratings on a scale of 1 (most 

difficult) to 5 (easiest). The survey participants rated human-generated sentences as easier 

to read and slightly more appropriate than machine-generated sentences. The survey also 

asked the examinees to identify whether a sentence was created by a human or a machine, 

and the results showed that the opinions on the sentences created by machines were divided, 

while the human-created sentences were judged to be human in many cases. However, 

there were many cases where human-created sentences were misidentified as machine-

created sentences, indicating that determining the creator of the self-explanation remains 

difficult. Moreover, 65% of the machine-generated questions were rated as human-

generated, and 75% of the human-written questions were rated as human-generated in 

Table 14. However, in both cases, the human-generated model answers scored higher than 

the machine-generated ones. 

Table 15 provides examples of instances where the machine was able to successfully 

extract all the knowledge components, as well as cases where it could not. For linear 

function questions, the scoring was based on the rubric presented in Table 2. For the 

equation, four rubrics were established: “matching all denominators”, “making appropriate 

transitions”, “calculating a binary equation as a linear equation”, and “deriving the answer 

by approximating”. The table compares the answers created by humans and those generated 

by the machine. 

For the question involving a linear function, the human-created answer provided a step-

by-step explanation and solution, including finding the area of triangle ABC, the coordinate 

of point P, and the coordinates of point Q. The machine-generated answer, on the other 

hand, made an incorrect assumption and provided an incomplete explanation. 
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Table 11 The similarity evaluation between human-generated and machine-generated sentences: F1 

metrics of BERTScore, BLEU, Rouge-1, Rouge-2, Rouge-L 

BERTScore BLEU ROUGE-1 ROUGE-2 ROUGE-L 

M SD M SD M SD M SD M SD 

0.719 0.032 0.300 0.093 0.443 0.232 0.235 0.194 0.384 0.198 

 

 

Table 12 RMSE and correlations between human evaluation score and the similarity evaluation score 

of each metric 

 BERTScore BLEU ROUGE-1 ROUGE-2 ROUGE-L 

Correlations 0.48** 0.46** 0.11 0.34* 0.23 
RMSE 0.273 0.582 0.510 0.655 0.533 

Note. **p < 0.05, *p < 0.1 

 

 

Table 13 Readability of self-explanations 

Label Means of readability SD 

Machine-generated 3.006 0.276 
Human-generated 3.823 0.200 
Overall 3.415 0.404 

 

 

Table 14 The average of ratings of human-generated or machine-generated 

Label Rated as human Rated as machine-generated 

Machine-generated 0.65 0.35 
Human-generated 0.75 0.25 

 

 

 

Fig. 7 Student survey question: For each of 50 questions students are asked to rate if the 
question is (i) Human or machine-generated and (ii) the Difficulty level of each self-explanation 
on a scale between 5(easiest) and 1 (hardest) 
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For the equation question, the human-created answer showed a clear understanding of 

the problem and applied the correct mathematical concepts to derive the solution. In 

contrast, the machine-generated answer made a calculation error and provided an 

incomplete explanation. 

In summary, the machine’s performance varied depending on the complexity of the 

question and the level of knowledge components required for the solution. While the 

machine was able to successfully extract all the knowledge components for some questions, 

it struggled with others. Further improvements are needed to enhance the machine’s 

performance in solving complex math problems. 

 

 

 

 

 

 

Fig. 8 The evaluations of machine generated self-explanations and human generated self-
explanations 
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Table 15 Comparison of human-created answers and machine-generated answers 

Type Linear function Equation 

Question Find the coordinates of the point Q 
when the line OP bisects the 
triangle ABC. 

If (-a+b)/3 - (a+2b)/4 + (2a+b)/5 = 0, 
find the value of (4a-3b)/(a-b). 

Result in Missing knowledge components: 0 
BERTScore: 0.74 

Missing knowledge components: 2 
BERTScore: 0.706 

Human-created Line OP bisects triangle ABC, so the 
area of triangle OPC is 20/2, which 
is 10. Find the area of triangle ABC 
to get the area of triangle OPC. Let 
the coordinate of point P be  
(a, -1/2a+4). To express the area of 
△QAC using t, subtract the area of 

△OAC from the sum of the areas 

of △AQO and △OQC. If the  

x-coordinate of Q is t, the  
y-coordinate can be put as 5/6t 

To get rid of the denominator, I 
multiplied both terms by 60, the least 
common multiple of the denominator. 
Since we paid the denominator, we are 
calculating integers. The value of a is 
expressed in terms of b so that the 
two-way equation can be calculated as 
a one-way equation. a = 2/11b is 
substituted for the value of an in the 
calculation. Substitute a = 2/11b for 
the value of a and calculate 

Machine-generated Since the whole is five and, the line 
OP bisects the area of triangle ABC, 
the area of quadrilateral ABPO and 
triangle POC is 2/5. Considering the 
coordinates of points A and C, I 
found the coordinates of point P. 
Substituting the Q value (p,q) into 
the equation of OP, then q=5/6p, 
so Q(p,5/6p). If the area of triangle 
ABO is 1, then the area of triangle 
AOC is 4. Considering the 
coordinates of point O and point P, 
I found the coordinates of point Q. 

Do calculations. First, multiply both 
sides by 60. I rewrote the equation 
with all the denominators in place and 
moved 2b to the right of = to represent 
a by b 

Note. BERTScore represents the similarity between human-generated and machine-generated 
sentences. 

 

Discussion and limitations 

We conducted a study in 2021 using 1,434 self-explanations from 25 quizzes to evaluate 

the machine’s ability to generate sample self-explanations automatically. Our study aimed 

to answer three research questions. Firstly, we found that the machine generated sample 

answers that were 72% accurate in approximating human-generated knowledge 

components. Secondly, we evaluated the similarity between human-generated and 

machine-generated sentences using various metrics and found that BERTScore exhibited 

the highest similarity metric of 0.719, followed by ROUGE-1 with an average of 0.443. 

Furthermore, we found a moderate correlation between HES and BERTScore, as well as 

between HES and BLEU. Thirdly, we found that there was a difference in the readability 

of text, with the average human score being 3.8 and 3.0 for the machine. Interestingly, 65% 

of the respondents thought that the sentences created by the machine were human, while 

25% of the human-created answers were mistaken as machine-generated. This experiment 
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has implications for various information system developments, such as estimating user 

comprehension, automatically scoring self-explanations, and developing tools to promote 

awareness through self-explanation on the web. 

The 72% accuracy rate achieved in this study can serve as a benchmark for future 

research, although it is challenging to compare with previous benchmarks since none have 

been established to date. While accuracy is critical, the objective of this study was to 

facilitate learners’ cognitive processes rather than to achieve high accuracy rates. Thus, 

even incorrect self-explanations can be valuable in providing learners with insights, and 

the impact of low accuracy rates is minimal. 

Our findings suggest that BERTScore may be a more accurate metric for evaluating the 

similarity between human-generated and machine-generated sentences compared to other 

commonly used metrics. These findings are in line with previous research (Zhang et al., 

2020). BERTScore’s use of contextual embedding provides a more effective means of 

capturing sentence meaning than relying on n-gram matching with BLEU. Furthermore, 

we believe that BERTScore’s context-aware vectors mitigate the risk of unfairly inflating 

scores for candidates with many overlapping words, which is a drawback of ROUGE-1. 

Relationship between knowledge component extraction and similarity 

The BERTScore showed that machine-generated sentences were similar to human-

generated sentences semantically. However, the score for knowledge component extraction 

was still low despite the high similarity. This paragraph explores why this is the case and 

considers two factors that affect knowledge component extraction: mathematical units and 

clustering components. 

In the example of linear functions, mathematical units such as “triangle” and “line 

segment” were frequently used and recognized as nodes, making it relatively easy to extract 

step-by-step solutions. However, in the case of equations, the thought process of solving 

was not extracted successfully. Many symbols such as “X” and “=” were used, making it 

difficult to recognize them as chunks of meaning. 

While 20% of the dataset was from linear functions and triangle formulas, 80% were 

from factorization, square roots, and other equations. This affected the evaluation index, 

and it may be necessary to examine the suitability of the target problems for “knowledge 

component extraction” in the future. The second factor is some cases where extraction does 

not work well when generating semantic clusters in the model. The clustering component 

calculated the sum of squared errors and automatically set the number of clusters at 2 to 6. 

However, in some quizzes, the sum of squared errors exceeded 3000, and the semantic 

coherence was not well established. This is because the number of dimensions of the 

sentences encoded by BERT is 768, so the number would inevitably be large. 
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While the score for knowledge component extraction is moderate, it is not enough to 

replace human evaluation completely. The results suggest that the dependence on the 

dataset may also affect the evaluation index. Therefore, it is essential to consider different 

factors such as mathematical units, clustering components, and dataset dependence when 

using BERTScore for evaluation. 

Readability analysis 

The study found that determining whether a text was human or machine-generated was not 

straightforward, and some machine-generated texts were judged to be human. However, 

interpretation of the content was still necessary, as self-explanation sentences were difficult 

to read and understand, regardless of whether they were made by humans or machines. The 

study also suggested that some puzzling points in machine-made texts may hinder 

comprehension compared to human-made texts that were generally easy to read. 

These results are not extremely low compared to previous research. While there is no 

research on automatic generation in the field of self-explanatory mathematics, there are 

studies on text generation in mathematics. Drori et al. (2021) found that when measuring 

whether automatically generated math problems were created by humans or machines, 

students consistently rated human-created questions as more readable. In other words, at 

this stage of research, further investigation is needed to generate more human-like 

questions and texts in the complex domain of mathematics. 

The use of the extraction model may have made the sentences difficult to read due to the 

prefixes connecting them to the original sentences. When combined with the element 

extraction results, it is possible that the necessary elements for the problem were extracted, 

but the sentences were not connected well, resulting in machine-like sentences that were 

difficult to read. To improve the quality of the machine-generated sentences, the study 

suggests post-processing the extracted sentences more smoothly or adding an element of 

abstraction to the model. 

Dataset dependencies 

The proposed model is designed to generate sentences from collected data using a bottom-

up approach. However, the model’s effectiveness is heavily reliant on the quality and 

quantity of the data used in the process. The study found that missing components in the 

data can significantly impact the model’s sentence generation quality. Additionally, the 

type of problem being addressed can also influence the model’s performance. While the 

model met the minimum requirements, it is evident that further improvements are 

necessary to enhance its overall effectiveness. 

Despite these challenges, the model’s performance in extracting information from data 

with a quality score of 4 or higher was impressive. Although lower quality data may have 
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been omitted during preprocessing, the model’s ability to extract valuable sentences from 

good data was evident. Moving forward, the focus should be on developing strategies for 

collecting high-quality data and refining the preprocessing model to differentiate between 

good and bad data. Ultimately, this will lead to more accurate and effective sentence 

generation. 

Future work 

This study investigated the feasibility of generating standardized sample answers. This 

method could be applied to three main tasks to support the use of self-explanation in 

learning: (A) identifying knowledge gaps in students’ self-explanations, (B) providing 

support to learners who struggle with a specific problem, and (C) creating self-explanation 

scaffold templates using sample sentences. We proposed a new bottom-up approach to 

analyzing self-explanation data to generate standard solution examples, which aims to 

enhance learning through active thinking about mathematical concepts and procedures. We 

ensured that the generated standard sample answers are readable and effective, and further 

experiments are needed to assess its quality from a student’s perspective. 

To expand on this research, future studies should consider increasing the sample size and 

utilizing a variety of quizzes to facilitate deeper analysis and generalize the findings. 

Additionally, it is recommended to investigate the suitability of the target problem for 

knowledge component extraction and explore the generation of multiple solutions instead 

of relying on a single model answer. A comprehensive understanding of the effectiveness 

of this method can be gained by comparing it with template-based self-explanations, as 

proposed by Berthold et al. (2009). Template-based self-explanations involve providing 

students with predefined templates to assist them in constructing their self-explanations. 

Conducting such a comparison would enable a thorough evaluation of the advantages and 

limitations of each approach, thus identifying the most effective instructional strategies. 

Furthermore, it would be valuable to explore the transferability of this method to different 

domains, such as English, in order to gain insights into its broader applicability. 

Considering alternative data sources, such as keystrokes instead of pen strokes, could also 

yield more accurate and relevant results. Exploring these possibilities would contribute to 

the overall advancement of the field of educational technology. 
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