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 Abstract 

Recommender systems can provide personalized advice on learning for individual 
students. Providing explanations of those recommendations are expected to 
increase the transparency and persuasiveness of the system, thus improve students’ 
adoption of the recommendation. Little research has explored the explanations’ 
practical effects on learning performance except for the acceptance of 
recommended learning activities. The recommendation explanations can improve 
the learning performance if the explanations are designed to contribute to relevant 
learning skills. This study conducted a comparative experiment (N = 276) in high 
school classrooms, aiming to investigate whether the use of an explainable math 
recommender system improves students’ learning performance. We found that the 
presence of the explanations had positive effects on students’ learning 
improvement and perceptions of the systems, but not the number of solved quizzes 
during the learning task. These results imply the possibility that the 
recommendation explanations may affect students’ meta-cognitive skills and their 
perceptions, which further contribute to students’ learning improvement. When 
separating the students based on their prior math abilities, we found a significant 
correlation between the number of viewed recommendations and the final learning 
improvement for the students with lower math abilities. This indicates that the 
students with lower math abilities may benefit from reading their learning progress 
indicated in the explanations. For students with higher math abilities, their learning 
improvement was more related to the behavior to select and solve recommended 
quizzes, which indicates a necessity of more sophisticated and interactive 
recommender system. 

Keywords: Recommender system, Explainable recommender system, Educational 
recommender system, Learning performance, Math learning 
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Introduction 

In a traditional school environment, students get advice on what content to review, what 

exercise to practice from their teachers, peers, or parents. This advice can be viewed as 

recommendations and is easy to accept as it is provided from trustworthy people around 

the student. However, this type of recommendation is not always available as these people 

are not full-time personal advisors for an individual student. With the adoption of 

information technologies in education, it is possible for a system to make personalized 

recommendations of learning activities and materials through complex computations based 

on the learning data it collects (da Silva et al., 2023). In a broader scope, such recommender 

systems have been criticized as being black boxes in terms of how they get to the decision 

that the recommendation is necessary for the user (Shin, 2021). Providing explanations is 

an effective way to increase the transparency, persuasiveness, effectiveness, 

trustworthiness, and satisfaction of the recommender system (Zhang & Chen, 2020). 

In terms of being explainable, educational recommender systems have some distinct 

needs, such as meeting developmental needs of learners (G. Wang et al., 2022), serving 

various stakeholders including teachers and parents (Murgia et al., 2019), and supporting 

learners’ metacognitive processes of controlling, monitoring, and planning (Khosravi et al., 

2022). Some researchers have attempted to generate explanations for the recommendations 

(Barria-Pineda et al., 2021; Conati et al., 2021; Rahdari et al., 2020; Takami et al., 2022; 

Yu et al., 2021), aiming to improve the acceptance of the recommendations, the perceptions 

of the system, and learning performance. As da Silva et al. (2023) pointed out, the online 

evaluation was under-researched in the area of educational recommender systems due to 

the complexity and high cost of conducting a real-life experiment. To the best of our 

knowledge, only few research (Barria-Pineda et al., 2021) had evaluated the effectiveness 

beyond the acceptance of the recommendations. As reading more recommended materials 

or solving more recommended quizzes does not necessarily relate to a higher learning 

performance, it is necessary to explore how the explanations can improve learning 

performance beyond the acceptance of the recommendation. 

In this study, we focus on the scenario of learning math by practicing quizzes that are 

problems requiring the students to reach the answer in a step-by-step manner. When having 

a large repository of quizzes to practice, a recommender system can help detect the students’ 

knowledge states and identify appropriate quizzes to address a students’ weak points 

efficiently. Providing explanations of such recommender systems can not only improve the 

transparency of the model, but also improve the learning performance if the explanations 

are designed to contribute to relevant learning skills. We selected the concept-explicit 

explainable recommender system (Dai, Flanagan, et al., 2022) as our target model for the 

following reasons: 1) the model recommends math quizzes that are supposed to address 

students’ weak concepts, which is considered important in learning math (Birenbaum et al., 
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1993). 2) The recommender system estimates students’ current mastery levels of math 

concepts and provides visual and textual explanations on this. In learning, knowing what 

one knows and what one does not know, which is also named as meta-cognitive skill, plays 

an important role in cognitive learning outcomes (Bahri & Corebima, 2015; Veenman et 

al., 2014). 3) The recommender system recommends quizzes that contribute to the students’ 

current learning states and provides visual and textual explanations on this. We suppose 

the explanations help the students understand the connections between the newly 

encountered knowledge and the already known knowledge, which is considered an 

important process in learning (Ausubel, 1962). 

We then investigate the effect of the concept-explicit explainable recommender system 

on learning performance, perceptions of the system, and quiz solving behaviors in the 

system. Students’ perceptions of the system and quiz solving behaviors were also examined 

as they have the potential to provide insight into the aspects of the recommender that were 

influential in outcomes achieved by using the system. Consequently, we address the 

following research questions: 

RQ1: Do recommendation explanations improve students’ learning performance in terms 

of the summative assessment of mathematical concepts? 

RQ2: Do recommendation explanations improve students’ perceptions of the 

recommender system and attitudes towards math learning? 

RQ3: Do recommendation explanations encourage the students to solve more quizzes? 

RQ4: What is the relation of explanation-related learning activities (e.g., viewing the 

explanations, clicking the recommendations) in the recommender system and learning 

improvement, and is the relation different between high and low math ability groups? 

Related work 

Explainable recommender systems and their effects 

Recommender systems make recommendations from a large set of available items based 

on users’ preferences (Bobadilla et al., 2013). With the fast development of information 

technology, such recommender systems have become pervasive in various domains such 

as government, business, and education (Lu et al., 2015). However, recommender systems 

have been criticized as being black boxes in terms of how they decide a user may like an 

item (Shin, 2021). Research efforts have been observed in developing explainable 

recommender systems that not only provide users with recommendations on what 

information to consume, but also the reason why the recommendation is considered to be 

relevant to users’ interests (Zhang & Chen, 2020). Providing explanations is supposed to 

increase users’ trust towards the system (Huang et al., 2019; Kizilcec, 2016), acceptance 
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of recommendations (Cramer et al., 2008; Huang et al., 2019; Xie et al., 2021), and help 

users make an informed decision (Bilgic & Mooney, 2005; N. Wang et al., 2018; X. Wang 

et al., 2018; Xian et al., 2019). 

Compared with the explainable recommender systems applied in a broader scope, 

educational recommender systems have some distinct needs related to teaching and 

learning. Wang et al. (2022) pointed out that meeting developmental needs of learners is 

an important principle when designing an artificial intelligent system, which suggests 

providing the learners with training opportunities to articulate the system. Murgia et al. 

(2019) argued that the explanations of educational recommender systems should serve 

multiple stakeholders including learners, teachers, and parents. Khosravi et al. (2022) 

considered this problem related to learning science as the explanations may improve 

learners’ metacognitive processes such as controlling, monitoring, and planning. In this 

study, we stand in the same line as we consider the explanations not only increase the 

chances of students to practice the recommended quizzes, but more importantly, help them 

track their learning progress, select the appropriate recommendations, and achieve good 

learning performance. 

Evaluation of the effects of explainable recommender systems 

Following Erdt et al.’s (2015) classification, there are mainly three goals for evaluating 

educational recommender systems: 

⚫ recommender system performance, focusing on the accuracy of the recommendations, 

which is usually measured by a large existing dataset, namely, offline evaluation; 

⚫ user-centric elements, focusing on how learners perceive the system and whether they 

are satisfied with the system, which can be measured by user studies such as surveys 

and interviews; 

⚫ and learning performance, emphasizing on the ultimate goal of adopting the 

recommender system, namely, whether the learning achievement or the learning 

efficiency is improved. This is measured by real-life experiments which require a 

longer span of evaluation time and more system support. 

According to Erdt et al.’s (2015) literature review, only around 10% of works conducted 

real-life evaluations during 2000 to 2014. This trend can also be observed if we further 

narrow down to the evaluation of the explanations in educational recommender systems. 

In Table 1, we summarize the recent works on explainable recommender systems who 

conducted real-life experiments to evaluate the system. As highlighted in bold letters, only 

a number of limited studies explored the system’s effects on learning performance and 

conducted real-life experiments more than one time. Note that Barria-Pineda et al.’s work 

(2021) conducted a semester-long real-life experiment and found that the students invested 

their time to read the explanations. However, their results cannot directly answer whether  
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Table 1 Evaluations of the effects of educational explainable recommender systems 

 

 

the explanations help improve learning performance for two reasons: 1) Their experiment 

did not include a control/experimental setting to conduct direct comparisons. 2) They 

adopted regression models to explore the relationships between average success rate of the 

problems and post-test scores, which was not direct evidence of the explanations’ effects. 

Our study aims at exploring the explanations’ effects on learning performance by a direct 

experiment design, and therefore provides an important contribution to the body of 

evidence in this field of research. 

Mechanism to generate explanations for recommender systems 

Basically, there are two approaches to generate explanations in recommender systems—

model-intrinsic and post-hoc (Zhang & Chen, 2020). In the model-intrinsic approach, the 

models’ mechanism is transparent, and the explanation explains exactly how the model 

generates a recommendation. To this end, the processes of generating recommendation and 

generating explanation are mutually dependent. Sometimes, the goal of being explainable 

constrains the model from being complex and “deep”. In contrast, the post-hoc approach 

generates the explanation after a recommendation is generated. As a result, the model is 

allowed to be a “black box” and the explanation does not necessarily explain why an item 

is recommended. Model-intrinsic approach is desirable when the main purpose is to help 

users understand why they may need the recommended item. For example, Yu et al. (2021) 

recommended courses to university students based on the bag-of-words similarities 

between the candidate course and the courses the students liked. In the explanation, they 

displayed the common keywords, such as “programming” and “linear”, of the 

recommended course and the student’s favorite course, which reflected how the algorithm 

worked. Given this explanation, the students can understand the course is recommended 

because it contains similar topics to the courses s/he is interested in. Other educational 

recommender systems generate model-intrinsic explanations, such as rule-based (Conati et 

al., 2021), keyword-based (Yu et al., 2021), concept-based (Dai, Flanagan, et al., 2022; 

Rahdari et al., 2020), and parameter-based (Takami et al., 2022) methods. 

Previous work Evaluation metric Evaluation method 

Karga & Satratzemi (2019) Acceptance of the recommendation, 
perception of decision effectiveness, decision 
confidence, etc. 

One-time online real-life 
experiment 

Conati et al. (2021) Usage of the explanation, perception of the 
explanation, learning gain 

One-time laboratory 
real-life experiment 

Yu et al. (2021) Perception of the novelty, unexpectedness, 
and the acceptance of the recommendation 

One-time laboratory 
real-life experiment 

Barria-Pineda et al. (2021) Learning activity engagement, learning 
performance 

Semester-long real-life 
experiment 

Takami et al. (2022), 
Dai, Takami, et al. (2022) 

Acceptance of the recommendation Week-long real-life 
experiment 
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Different types of explanations expose different levels of detailedness of the 

recommendation algorithm, therefore having different effects on users’ perceptions and 

learning. In this study, we selected the concept-explicit recommender system (Dai, 

Flanagan, et al., 2022) as the experiment target for the following reasons: 1) the model 

recommends math quizzes that are supposed to address students’ weak concepts, which is 

considered important in learning math (Birenbaum et al., 1993); 2) The recommender 

system estimates students’ current mastery levels of math concepts and provides visual and 

textual explanations on this. In learning, knowing what one knows and what one does not 

know, which is also named as meta-cognitive skill, plays an important role in cognitive 

learning outcomes (Bahri & Corebima, 2015; Veenman et al., 2014); 3) the explanations 

reveal how the recommended quizzes can contribute to the students’ existing knowledge 

of math concepts. This is in line with the subsumption theory (Ausubel, 1962), which 

suggested that a piece of new knowledge can be retained and reused in long-term memory 

if its relationships with the already-known knowledge can be established. We consider the 

explanations in the concept-explicit recommender system help students to build the 

relationships between their current knowledge and the quiz to be solved, and it is 

anticipated that this will improve their motivation to learn and consolidate what they have 

learnt. 

Concept explicit recommender system 

The concept explicit recommender system assumes that solving a math quiz requires the 

knowledge of related math concepts. For instance, the quiz “Find the set of all positive 

divisors of 12” requires the students know the knowledge of “set” and “positive divisor”. 

Therefore, a student’s ability to solve a quiz depends on his/her mastery level of related 

math concepts. Again, the student’s mastery level of concepts can be improved by 

attempting new quizzes. Details of the recommender system design were reported in Dai, 

Flanagan, et al.’s work (2022). In this study, we briefly summarized the mechanism in 

Figure 1 and the following steps: 

1) Adopt natural language processing methods to extract math concepts from the quiz 

texts and compute a quiz-concept matrix whose entries indicate the concept’s 

importance to solve a quiz. Compute a student-quiz matrix where the entries represent 

students’ correctness rates of the quizzes from students’ answering histories. 

Compute the current student-concept matrix which estimates the students’ mastery 

levels of the concepts by multiplying student-quiz and quiz-concept matrices. 

2) Multiplying student-concept and quiz-concept matrices to estimate the students’ 

probabilities to solve the quizzes successfully. Subtracting this probability from one 

to acquire the personalized quiz difficulty. 
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3) For each quiz, compute the expected student-concept matrix by assuming the student 

answers it correctly. Compute student-concept matrix using the expected student-

concept matrix and the quiz-concept matrix. 

4) Compute the expected learning gain, namely, the average improvement of concept 

mastery level for each quiz by comparing current and expected student-concept 

matrices. 

5) Generate recommendations and explanations by utilizing the estimated student-quiz 

matrix and expected learning gain. The system selects quizzes of appropriate 

difficulties and ranks the quizzes based on the expected learning gain. Top 5 quizzes 

and the corresponding explanations are generated and displayed as illustrated in 

Figure 2, where a panel of current mastery level of math concepts (Recommendation 

explanation a) is displayed on the top, and a list of recommended quizzes is followed 

with the corresponding two recommendation explanations. Recommendation 

explanation b1 converts the estimated difficulty into three levels—high, medium, and 

low. Recommendation explanation b2 displays the changes of the mastery levels by 

using the data in 4). 

Method 

The recommender system was implemented as an application module in the Learning 

Evidence Analytics Framework (LEAF) (Flanagan & Ogata, 2018), which includes the 

learning management system Moodle to manage students and course information, the 

ebook reading application BookRoll to view and answer math quizzes, and the 

recommender system to view recommendations. 

 

Fig. 1 Mechanism of concept explicit recommender system (Regenerated from Dai, Flanagan, 
et al., 2022) 
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Experiment design 

We conducted a quasi-experiment (Cohen et al., 2011) in a Japanese high school that has 

adopted the LEAF system as a digital complement to traditional education. 276 first year 

students (who are generally aged between 15 to 16) whose legal guardian consented to 

provide their learning data for research use took part in the experiment. We designed the 

experiment following the procedures outlined in Figure 3. 

 

Fig. 3 Experiment design 

 

Fig. 2 Generated explanations of the concept explicit recommender system 
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I. Task guidance. 

We prepared a manual to describe how to use the system with detailed screenshots and 

uploaded it in the course homepage in Moodle. At the same time, we asked the teachers to 

announce the task and give a brief guidance in their classes. All the students received the 

same instructions with the minimal information about how to use the recommender system. 

II. Learning task. 

The students were supposed to solve math quizzes at home in a short holiday preparing 

for an upcoming regular test on a specific topic “geometry and equation”. The school 

selected two quiz books for the students to practice and there were 263 quizzes in this topic. 

The teachers specified 20 quizzes as the assignment and asked the students to additionally 

complete 10 quizzes recommended by the system. Once the students finish answering a 

quiz, they were supposed to check their answer with the standard answer and report 

correct/wrong to the system. Note that the students had both of the hard copies and digital 

version of the quiz books at hand, and they were free to use either of them to solve the 

quizzes. However, to get the system’s recommendations, they were strongly encouraged to 

solve the quizzes and report their answers in the system. 

To ensure the ecological validity of the study, we decided to divide the students at a class 

level at which the usual school activities were conducted. We randomly assigned four 

classes of students to the control condition where a recommender system without 

explanations was provided, and three classes of students to the experimental condition 

where the same recommender system with explanations was provided. 

III. Post-test and post-survey. 

After the learning task, a school regular test was conducted to assess the students’ 

understanding of the topic. The test consisted of 7 quizzes pooled from the quiz books and 

the students were not informed what quizzes would be tested. A post-survey on students’ 

perceptions of the system was conducted. 

Data collection 

As shown in Table 2, we collected three types of data—behavioral data, perception data, 

and assessment data during the experiment. We then explain the details of each data by the 

method it was collected. 

Data collected in the recommender system 

Figure 4 illustrates the students’ workflow in the recommender system and the collected 

log data. 1) To get started, the students have a basic route to access a quiz page in BookRoll: 

Open the PDF file viewer of the target topic through BookRoll’s directory and then jump 

between quizzes in different pages using the navigation tools in BookRoll viewer. 2) With 

the recommender system, the students have two more ways to access a specific quiz: Open 
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Table 2 Notations and descriptions of collected data 

Source Variable Description 

Log data viewed_count The number of times a student viewed a 
recommended quiz when s/he accessed the 
recommendation page 

clicked_count The number of times a student clicked the link of a 
recommended quiz. 

clickedstats_count The number of times a student clicked the link of a 
quiz in the list. 

rec_answered_count The number of times a student clicked the link of a 
recommended quiz, solved it, and reported her/his 
answer. 

answered_count The number of times a student solved and reported 
his/her answer to a quiz. 

click_rate The ratio of clicked recommended quizzes out of 
viewed recommended quizzes. 

rec_answer_rate The ratio of answered recommended quizzes out of 
clicked recommended quizzes. 

Survey data 

(Adapted from 
Conati et al.’s 
work (2021)) 

Q01-> satisfaction “I was satisfied with the recommender system.” 

Q02-> helpfulness “I think the recommender system is helpful for my 
math learning.” 

Q03-> trust “I trust the recommender system.” 

Q04-> motivation “I was more motivated to solve the quizzes because of 
the recommender system.” 

Q05-> reason “I understood why the quizzes were recommended to 
me.” 

Assessment data midterm_score The score of a midterm regular test in the school. 

posttest_score The score of a post regular test in the school. 

learning_improvement The difference between the z-scores of the post-test 
and the midterm test. 

 

 

the recommendation page, click the hyperlink of a quiz from the recommendation block on 

the top or from a quiz list at the bottom. The quiz list lists up all the quizzes in a topic in 

the default order of the quiz book and shows the students’ trial information with marks. 

This list was added to increase the usability of the recommendation page and the 

opportunity that students view the recommendations when they prefer to access the quizzes 

on their own choices. 3) Once the students open a quiz page in BookRoll viewer, they are 

supposed to solve the quiz using a stylus pen, check the standard answer in the next page, 

and report their answering situation (correct or wrong) in a quiz tab. If a student reports 

his/her answer, the system records a quiz answer. We view a quiz answer as a result of the 

recommendation if there was a previous click on the recommendation hyperlink within one 

day. Overall, the students can choose to solve the quizzes on their own ways at any phases 

in the flow. 
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Data collected in the post-survey 

To understand students’ perceptions on the recommender system, we conducted a short 

survey which includes five 5-Likert-scale questions after the learning task. The details of 

each question are shown in Table 2. 

 

 

Fig. 4 Data collected in the recommender system 
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Data collected in the regular assessment in the school 

A regular assessment on the knowledge of the target topic was scheduled after the 

experiment period by the school. The test consisted of 7 quizzes selected from the quiz 

books and was scored from 0 to 100 by the school teachers. Due to the tight learning 

schedule of the school, we were not able to conduct an extra pre-test to assess students’ 

knowledge of the target topic before using the recommender system. Instead, we utilized a 

regular midterm test conducted two months before the experiment period as an indicator 

of students’ previous math knowledge. Since the two tests covered different topics, we 

adopted z-score to normalize the scores and utilize the difference between two z-scores to 

measure students’ improvement in math learning. Note that the z-score difference is not a 

direct measurement of the learning gain on the target topic but a measurement of students’ 

learning performance improvement among their peers. 

Results 

Descriptive results 

To exclude undesirable usage of the recommender system (e.g., solve the quizzes in hard 

copies and report answers to the system all at once), we filtered the log data in the sessions 

where the average time spent on a quiz answer is shorter in one minute (Dai, Takami, et 

al., 2022). All the data was processed in statistical platform jamovi (The jamovi project, 

2022) and Python language (Python Software Foundation, 2022). As Table 3 shows, a part 

of the students accessed the system and a part of them answered the post-survey. In this 

study, we consider that the behavioral and assessment data are more objective than 

perceptional data. As a result, we mainly focused on the students who took both of the tests 

and had accessed the recommender system in the following analysis (Results 1, 3, and 4). 

For the analysis of survey data (Result 2), a subset of the students was available and the 

Cronbach’s α was 0.87, which indicates a good reliability. 

 

 

 

 

Table 3 Numbers of students who participated in different activities 

 

Analysis Group Control Experimental 

 Total participants 158 118 

Results 1, 3, and 4 Students who took both tests and had accessed 
the recommender system (viewed_count > 0) 

81 77 

Result 2 Students who took both tests, had accessed the 
recommender system (viewed_count > 0), and 
answered the post-survey 

30 39 
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Result 1: Explanations’ effects on learning performance 

We conducted a student t-test on the learning improvement between two conditions with 

the hypothesis that the mean learning improvement of the experimental condition is greater 

than the control condition. To strengthen the persuasiveness, we also conducted a student 

t-test on the midterm scores between two conditions, which indicates the difference of the 

prior math ability of the students under two conditions. The results of Levene’s test were 

not significant (learning improvement: F = 0.005, p = 0.943 > 0.05; midterm score:  

F = 2.481, p = 0.117 > 0.05), which indicated the assumption of homogeneity of variance. 

As Table 4 shows, the t-test revealed a significant difference (t = -1.671, p = 0.048 < 0.05) 

in learning improvement, and no significant difference (t = 0.256, p = 0.601 > 0.05) in the 

midterm scores of the students under two conditions. These results indicate that the 

students acquired greater learning improvement when utilizing the recommender system 

with the explanations, and this was not due to the students had higher or lower levels of 

prior math ability. Therefore, we positively answer RQ1. 

Result 2: Explanations’ effects on students’ perceptions of the recommender 

system 

We conducted student’s t-tests on students’ perceptions on the system of two conditions. 

As the Levene’s test of Q02-> helpfulness was significant (F = 4.231, p = 0.044 < 0.05), 

we conducted Welch’s t test for this variable instead. As Table 5 shows, the mean values 

of the perceptions of students under the experimental condition were greater than the 

students under the control condition, and the difference of Q04-> motivation was 

statistically significant (t = -1.668, p = 0.05). As not all the t-test results were significant, 

we cannot answer RQ2 positively. However, we did observe higher average values of the 

perceptions under the experimental condition. We promisingly consider that the 

explanations in the recommender system positively affect students’ perceptions of the 

system if more data was collected. 

 

 

 

 

Table 4 T-test results of learning improvement and prior math ability of two conditions 

 Condition N Mean SD t df p 

learning_improvement control 81 -0. 127 0. 981 
-1. 671* 156.00 0.048 

experimental 77 0. 133 0. 977 

midterm_score 
(prior math ability) 

control 81 55. 901 17. 897 
0. 256 156.00 0.601 

experimental 77 55. 130 19. 931 

Note. Ha 𝜇𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 > 𝜇𝑐𝑜𝑛𝑡𝑟𝑜𝑙  

*p<.05 
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Table 5 T-test results of students’ perceptions of two conditions 

  Condition N Mean SD t df p 

Q01-> satisfaction Student’s t control 30 3.000 0.983 
-1.172 67 0.123 

experimental 39 3.308 1.151 

Q02-> helpfulness Welch’s t control 30 3.067 0.944 
-1.313 67 0.097 

experimental 39 3.410 1.229 

Q03-> trust Student’s t control 30 2.800 1.064 
-0.931 67 0.178 

experimental 39 3.051 1.146 

Q04-> motivation Student’s t control 30 2.333 0.884 
-1.668 67 0.050 

experimental 39 2.769 1.202 

Q05-> reason Student’s t control 30 3.167 1.234 
-1.280 67 0.102 

experimental 39 3.538 1.166 

Note. Ha 𝜇𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 > 𝜇𝑐𝑜𝑛𝑡𝑟𝑜𝑙  

 

Result 3: Students’ behaviors of solving quizzes in the recommender system 

We further explored whether there exists a difference between students’ recommender 

system usage under two conditions. As Table 6 shows, interestingly, there were no 

significant differences between the numbers of viewed recommended quizzes 

(viewed_count), the numbers of clicked recommended quizzes (clicked_count), the 

numbers of clicked quizzes in the quiz list (clickedstats_count), the number of answered 

recommended quizzes (rec_answered_count), and the total number of answered quizzes 

(answered_count) under two conditions. Namely, the students under two conditions did 

not have a difference in terms of the amount of learning. This provides an answer to RQ3 

as the larger learning improvement under the condition of recommender system with 

explanations is not due to the students solving more quizzes. 

The mean values of answered_count (control: 27.086, experimental: 28.117) under both 

conditions met the required numbers of quizzes (total: 30) to solve in the learning task 

 

 

Table 6 T-test results of students’ recommender system usage of two conditions 

  Condition N Mean SD t df p 

viewed_count Student’s t control 81 112.778 92.760 
1.277 156 0.898 

experimental 77 92.857 103.203 

clicked_count Student’s t control 81 9.012 7.302 
1.553 156 0.939 

experimental 77 7.221 7.190 

clickedstats_count Student’s t control 81 8.691 9.573 
-0.054 156 0.479 

experimental 77 8.779 10.976 

rec_answered_count Student’s t control 81 7.136 5.850 
1.133 156 0.871 

experimental 77 6.052 6.175 

answered_count Student’s t control 81 27.086 11.751 
-0.306 156 0.380 

experimental 77 28.117 27.849 

click_rate Welch’s t control 81 0.126 0.176 
-1.445 137.401 0.075 

experimental 77 0.175 0.245 

rec_answer_rate Welch’s t control 81 0.628 0.364 
-1.385 149.710 0.916 

experimental 77 0.541 0.425 

Note. Ha 𝜇𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 > 𝜇𝑐𝑜𝑛𝑡𝑟𝑜𝑙  
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approximately. It can be interpreted as the explanations in the recommender system did not 

encourage the students to solve more quizzes if the learning task had a specific instruction 

on how much the students should learn. However, if we further analyze the ratio of clicked 

recommendations over viewed recommendations (click_rate) and the ratio of answered 

recommendations over clicked recommendations (rec_answer_rate), we observed a 

marginal significant difference of click_rate under two conditions. The explanation’s effect 

of motivating students to accept the recommendations was also found in previous studies 

(Dai, Takami, et al., 2022). In summary, the findings in this study are: 1) the students 

exposed to the explanations improved more in learning performance, 2) the students 

exposed to the explanations did not solve more quizzes, and 3) the students exposed to the 

explanations had a high probability to accept the recommended quizzes. We assume that 

the explanations may improve the students’ determination to solve the quizzes when using 

the system. In other words, the students do not hesitate on selecting quizzes as the 

explanations provide clues on how the quiz may contribute to their learning. Without the 

explanations, the students are not aware of how the quizzes are relevant and merely 

complete the learning task unwillingly. 

Result 4: The relations between students’ behaviors of solving quizzes in the 

recommender system, learning improvement, and students’ math abilities 

To explore which students’ behaviors of solving quizzes in the recommender system may 

contribute to the learning improvement, we conducted correlation analysis on the students 

under the experimental condition. First, we examined all the students under the 

experimental condition, and did not find any significant correlations between the students’ 

behavior indicators (viewed_count, clicked_count, clickedstats_count, 

rec_answered_count, answered_count) and learning_improvement. Secondly, we decided 

to investigate if there was a difference based on a student’s prior math ability. We divided 

the students into two groups based on their midterm test z-scores, which was computed 

among the students who had accessed the system. 1 If the student’s z-score was greater than 

0, s/he was assigned to the group with high prior math ability. Otherwise, the student was 

assigned to the group with low prior math ability. As a result, we had a group of students 

with high math ability (N = 41, Mean = 0.886, SD = 0.574), and a group of students with 

low math ability (N = 36, Mean = -0.816, SD = 0.438). We then conducted correlation 

analysis again in each group. Table 7 shows that there is a significant correlation (Pearson 

correlation coefficient = 0.365, p = 0.014) between the number of viewed recommendations 

and the learning improvement for the students with low prior math ability. The concept 

mastery level panel (refer to Explanation.a in Figure 3) and the recommendation reasons 

under each recommended quiz (refer to Explanation.b1 and Explanation.b2 in Figure 3) is 

related to the behavior of viewing recommendations. As the students solved more and more  
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Table 7 Correlations between learning improvement and recommender system usage in the groups 
of high and low math abilities 

 learning_improvement 

 High math ability 
(N = 41) 

Low math ability 
(N = 36) 

viewed_count -0.044 
(p = 0.607) 

0.365* 
(p = 0.014) 

clicked_count 0.256 
(p = 0.053) 

0.073 
(p = 0.337) 

clickedstats_count -0.114 
(p = 0.762) 

0.208 
(p = 0.111) 

rec_answered_count 0.220 
(p = 0.084) 

0.044 
(p = 0.400) 

answered_count 0.127 
(p = 0.214) 

0.175 
(p = 0.154) 

Note. 𝐻𝑎 is positive correlation 
*p<.05 

 

 

quizzes, the better they understand how the explanations changed and how the 

recommender system function when they viewed the recommendation. However, we did 

not observe such a correlation in the group of students with high math ability. Instead, there 

are marginally significant correlations between the number of clicked recommendations 

and the learning improvement (Pearson correlation coefficient = 0.256, p = 0.053), and 

between the number of answered recommended quizzes and the learning improvement 

(Pearson correlation coefficient = 0.220, p = 0.084). A possible interpretation is that the 

students may have a higher level of ability to monitor their learning progress. What is more 

important for these group of students is the action to make a decision on what quizzes to 

take next time and then execute the decision. 

Discussion 

Our results show that students achieved more learning improvement by using the 

recommender system with explanations compared with the students using the 

recommender system without explanations. In addition, the students using the 

recommender system with explanations demonstrated more positive perceptions of the 

system including the satisfaction with the system, the perceived helpfulness of the system, 

the trust toward the system, the motivation to use the system for math learning, and the 

understanding of the system’s mechanism, though not statistically significant. Besides, 

Result 3 shows that the students under two conditions did not have a significant difference 

in terms of the number of solved math quizzes. That is to say, the students solved around 

30 quizzes just as required by the teachers. Given this specific learning context where the 

students had rather high extrinsic motivation to complete the task, the explanations did not 

encourage the students to attempt and solve more quizzes. However, the explanations may 
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have a positive effect on the acceptance rate of the recommended quizzes and students’ 

final learning improvement. This finding can be linked to the statements about the 

functions of open leaner models in intelligent tutoring systems. Learner models refer to the 

learning status that is recorded and maintained by the system (Bull, 2020). By opening the 

model to the learners, the system can promote learner reflection, facilitate monitoring of 

learning, preserve learners’ rights to access and control over their data, increase the learners’ 

trust towards the content (Bull & Kay, 2013). Our concept-explicit recommender system 

confronts the students with their learning progress through the concept mastery level panel 

and allows the students to select the quizzes that fits to their learning needs. As explored 

in previous research, the meta-cognitive skills—knowing what one knows and controlling 

one’s learning—play an important role in improving cognitive learning outcomes (Bahri 

& Corebima, 2015; Veenman et al., 2014). Our results imply the possibility that the 

recommendation explanations affect students’ meta-cognitive skills and their perceptions, 

which further contribute to students’ learning improvement. For example, with the concept 

master level panel, the students become aware of learning goals and their weak concepts. 

On the contrast, the students may negatively complete the learning tasks without fully 

convinced that solving recommended quizzes is helpful without the explanations. 

Consequently, they may access the system more frequently but conduct less actions of 

attempting the quizzes. To verify this assumption, we need to conduct further studies where 

meta-cognitive skills are measured directly or indirectly in using the explanations and 

recommendations in the system. 

When we focus on the students under the condition of using the recommender system 

with explanations, we found that the students with different levels of prior math ability 

benefit differently from the system. Result 4 shows that for the students with lower math 

ability, the more they viewed the recommendations, the better they improved learning. 

Interestingly, there was no significant correlations between the number of clicked 

recommendations and their learning improvement. A potential interpretation is that 

viewing the recommendation page exposes the concept mastery level panel to the students, 

therefore they have a better understanding of their learning progress, which has a positive 

effect of their overall learning performance. On the other hand, more clicks or answers on 

the recommended quizzes did not indicate a better learning performance. We consider two 

possible reasons: 1) The recommendations do not fit to students’ mastery level; 2) The 

students are not able to process the explanations of each individual recommendation and 

make a good choice of quizzes to solve. For the first reason, we need to investigate the 

accuracy and validity of the recommendations. For the second reason, we need to further 

analyze how students make decisions when given the alternatives and explanations. For the 

students with higher math ability, there was a marginal significant correlation between the 

number of clicked recommended quizzes and their learning improvement. This implies that 
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they may benefit from using the recommender system by making more decisions. We 

consider that the meta-cognitive skills of these students are relatively high, and they may 

be more critical towards the recommendations and explanations. 

Conclusion and future work 

In this study, we conducted a comparative experiment (N = 276) in high school classrooms, 

aiming to investigate whether the use of an explainable math recommender system 

improves students’ learning performance. We found that the presence of the explanations 

had positive effects on students’ learning improvement but not the number of solved 

quizzes during the learning task. The only difference of the recommender systems under 

two conditions is the presence of the explanations. Although without direct measurement, 

we interpreted that the overall concept mastery panel, the difficulty and learning gain in 

the individual explanations help student to track their leaning progress and select the 

quizzes at their own choices, which affects students’ meta-cognitive skills and their 

perceptions. These meta-cognitive skills and perceptional elements further contribute to 

the learning improvement (Bahri & Corebima, 2015; Veenman et al., 2014). When 

separating the students based on their prior math abilities, we found a significant 

correlation between the number of viewed recommendations and the final learning 

improvement for the students with lower math abilities. This indicates that the current 

recommendation explanations fit to the students with lower math abilities. For students 

with higher math abilities, more sophisticated and interactive recommender system is more 

desirable. The main contributions of this study are three-fold: 

1) We conducted a continuous real-life experiment in high school classes to investigate 

the recommendation explanations’ effects on learning performance, which provides 

important empirical evidence to this research field. 

2) We found that the recommendation explanations positively affected the learning 

improvement without leading to more attempts on the quizzes. As the 

recommendation explanations revealed students’ learning progress and provided 

opportunities of allowing the students to make their own choices of quizzes to solve, 

the explanation may positively affect students’ meta-cognitive skills, which then 

efficiently affect learning performance. 

3) We found that students with different levels of math abilities had different behaviors 

in the recommender system, which implies a necessity to personalize the 

recommendations and explanations based on students’ characteristics. 

There are still some limitations in this study. In this study, we mainly focused on the 

effects of the recommendation explanations. Since the explanations of the concept-explicit 

recommender system are model-intrinsic, the goodness of the explanations is intertwined 

with the goodness of the recommendations. In the future work, more investigation should 



Dai et al. Research and Practice in Technology Enhanced Learning   (2024) 19:20 Page 19 of 21 

be conducted to reveal how the recommender system can help learning as a whole. 

Regarding students’ perceptions and reactions on the explanations, we need to record more 

log data or resort to other methods such as interviews to understand which part of the 

explanations causes a specific action, and how it is related to meta-cognitive skills. As 

described in the discussion, one of other future directions is to improve the recommender 

system with personalized or interactive explanations for advanced students. 
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