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Abstract—Service chaining provides network services by flex-
ibly configuring service chains that connect virtualized network
functions (VNFs) in the appropriate order so as to satisfy
users’ needs. Existing models can be inefficient in terms of
consuming network and computation resources since the models
do not consider the traffic changes due to VNFs or the models
restrict routing and VNF placement. This paper proposes a
service chain provisioning model that handles the traffic changes
created by VNFs while determining the VNF visit order of
each request, request routes, and VNF placement. The service
chain provisioning problem is formulated as an integer linear
programming (ILP) problem. Three methods for limiting the
number of VNF visit order patterns considered in the ILP
problem are introduced to shorten the computation time. In
order to handle a problem that is intractable with the ILP
model, we introduce a greedy algorithm and an algorithm that
divides the problem into the VNF placement part and the routing
part. Numerical results show that considering the traffic changes
due to VNFs yields more efficient consumption of network and
computation resources than the alternative of assuming that the
traffic amount of each request is constant between the endpoints.
The results also show that the computation time can be shortened
in our examined scenarios while we obtain the objective value
larger by at most 0.4% than the optimal value by limiting the
number of visit order patterns considered.

Index Terms—network function virtualization, service chain-
ing, traffic changing effect, integer linear programming.

I. INTRODUCTION

Network function virtualization (NFV) is a technology that
realizes network functions such as firewalls, wide area network
(WAN) optimization, and intrusion detection systems (IDSs) as
software-based virtualized network functions (VNFs) running
on commercial off-the-shelf (COTS) servers [1], [2]. Tradition-
ally, dedicated hardware devices are needed in order to install
network functions. Such hardware devices need to be installed
in particular places and be configured individually; this incurs
excessive time and cost overheads. By virtualizing networks,
we only need to purchase licenses for the VNFs desired and
install them in COTS servers, so we can expect significant cost
reductions. Furthermore, we can easily install, uninstall, or
update VNFs on demand, so we can provide network services
to users more rapidly and flexibly.

Service chaining is a technology that provides the user
with the network service needed by linking VNFs in the
appropriate order [3]. We call each concatenation of VNFs a
service chain. The user makes a request to a network provider
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Fig. 1. Example of service chain.

for provisioning a service chain. The service chain traverses
the network from its source to its destination while passing
through required VNFs in the appropriate order. In order to
instantiate network services for users, we need to determine
the best request routes and VNF placement so as to minimize
the total cost of service chain provisioning, while satisfying
some constraints of computation resources and transmission
capacity.

Some VNFs change the traffic amount when processing a re-
quest [4], [5]. For example, a Bose-Chaudhuri-Hocquenghem
(BCH) encoder increases traffic since it adds checksum infor-
mation to each packet. On the other hand, WAN optimizers
and firewalls decrease the traffic amount since they compress
and discard packets, respectively.

There are several studies on service chain provisioning.
Huin et al. [6] introduced a logical layered network consisting
of replicas of the physical network topology in order to
relax routing constraints. A logical layered network enables
a request route to pass through the same link in the same
direction more than once, which offers flexible determination
of request routes. Allybokus et al. [7] introduced a parameter
representing constraints on VNF visit order so as to solve
an optimization problem for service chain provisioning while
relaxing visit order constraints. Hyodo et al. [8] introduced a
logical layered network and a decision variable that represents
node visit order so as to relax both visit order constraints
and routing constraints. However, none of these studies con-
sider the impact of traffic amount changed by VNFs; they
assume each request has constant traffic from end to end.
This assumption demands that the route be provisioned for
the maximum possible traffic value along the entire route. This
implies that the transmission capacity reserved on some links
can be more than the actual traffic. For example, consider the
service chain in Fig. 1. The initial transmission capacity of the
request is 1000Mbps. VNF 1 halves the traffic changing rate
to 500Mbps while VNF 2 doubles the traffic to 1000Mbps.
In this case, reserving the transmission capacity at least
1000Mbps over the entire route wastes transmission capacity
on the path between VNF 1 and VNF 2.

Several works dealt with service chain provisioning prob-
lems in consideration of traffic changing effects of VNFs [4],
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[5], [9], [10], which lack flexibility in determining the re-
quest routes and the VNF placement. The model in [4]
is not applicable to the case where the request routes and
the VNF placement are determined for multiple requests
simultaneously. Furthermore, the model in [4] does not allow
looping routes. The model in [5] determines only the VNF
placement; if we use this model for service chaining, we
must construct request routes after the VNF placement. The
model in [9] assumes that request routes are predetermined;
VNFs are deployed on only nodes that are included in the
predetermined routes. The model in [10] determines a request
route by choosing the best of several candidates; the required
VNFs of each request are forced to be placed only on the
nodes of the predetermined route candidates. Service chain
provisioning with these models can lead to inefficient use of
the network and computation resources. In order to reduce
the cost of service chain provisioning, we need a model that
relaxes the constraints in routing and the VNF placement while
considering traffic changing effects of VNFs.

This paper proposes a service chain provisioning model
considering VNF traffic changes while determining the VNF
visit order of each request, request routes, and VNF placement
flexibly. The proposed model determines request routes and
VNF placement so as to minimize the total cost, i.e., the sum
of the link utilization cost and the VNF placement cost. The
proposed model ensures that only the transmission capacity
needed to satisfy each request is reserved on a link-by-link
basis. The proposed model uses a logical layered network
to handle VNF traffic changes and looping routes. The main
contributions of this work in conjunction with the proposed
model are summarized as follows:

• We formulate the proposed model as an optimization
problem. If the transmission capacity of each request
on each layer is given as a decision variable and pa-
rameters of visit order constraints are introduced in the
optimization problem, the objective function and some
constraints become non-linear. Therefore, the proposed
model is transformed into an integer linear programming
(ILP) problem that takes the transmission capacity as a
constant by calculating it in advance.

• We introduce three methods to limit the number of visit
order patterns to shorten the computation time while
keeping the total cost as close to the optimal value as
possible. We use the algorithm presented in [4] to deter-
mine visit order patterns considered in the ILP problem.

• We introduce two heuristic algorithms for the proposed
model. One is a greedy algorithm that iteratively solves
the ILP problem with a limited number of requests. The
other is an algorithm that divides the problem into the
VNF placement part and the routing part.

• We evaluate the performances of the proposed model and
heuristic algorithms. Numerical results show that the total
cost can be reduced by considering VNF traffic changes
and allowing looping routes. The computation time can be
shortened by limiting the number of visit order patterns
considered. We also observe that the heuristic algorithms
obtain request routes and VNF placement in a scenario

where it is hard to obtain an optimal solution by solving
the ILP problem.

This work is an extended version of [11]. The extensions
to [11] are described as follows. We survey existing researches
related to our work. We introduce heuristic algorithms for the
proposed model. We compare the performances of heuristic
algorithms in terms of the computation time and the total cost.
We extensively evaluate the performance of proposed model
and heuristic algorithms with various order constraints.

The rest of this paper is organized as follows. Section II ex-
plains related technologies and algorithms. Section III explains
the proposed model and the formulation of the service chain
provisioning problem. Section IV introduces the methods used
to limit the number of visit order patterns to shorten the
computation time of the proposed model. Section V introduces
the heuristic algorithms. Section VI shows numerical results.
Finally, Section VII concludes this paper.

II. RELATED WORKS

A. Overview of studies on service chaining

Table I shows the summary of studies on service chaining,
which are related to this work in that the studies dealt with
optimization problems that determine request routes and VNF
placement.

The studies in [6]–[8], [12]–[15] dealt with service chaining
problems where the required transmission capacity of each
request is constant between the endpoints. Huin et al. [6]
dealt with a problem that determines the VNF placement and
request routes while allowing looping routes by using a logical
layered network. The authors presented a column generation
based scheme that enables to obtain a near-optimal solution
of the problem, which is intractable with an ILP solver when
the scale of a given network is large. Allybokus et al. [7]
dealt with a problem that determines VNF visit orders of
requests in addition to the VNF placement and request routes
under circumstances in which there are relative orders be-
tween VNFs. Hyodo et al. [8] presented a model that allows
looping routes and relaxes order constraints at the same time.
Sasabe et al. [12] presented a routing and VNF placement
model based on an augmented network in order to allow
looping routes. Xu et al. [13] showed that setup and operation
costs increase when a set of required VNFs is a totally-
ordered set compared to when there is no order constraint.
The authors presented a dynamic programming based scheme
that determines the VNF placement and request routes in order
to deal with requests arriving at or leaving from a network
dynamically.

Pei et al. [14] presented a dynamic service chaining model
that determines whether to use VNF instances that are already
running or deploy additional instances for new arrival requests.
The authors presented a service chain embedding algorithm
and an algorithm that releases the resources of redundant
VNF instances. Li et al. [15] presented a model that balances
the time-varying workload of service chain requests where
how the workload fluctuates is already known. The authors
presented a two-stage solution scheme where each request
is mapped one by one and then the mapping is adjusted
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TABLE I
SUMMARY OF STUDIES ON SERVICE CHAINING.

Reference Objective
Traffic

changing
effects

Looping
routes

Relaxing
order

constraints

Delay
constraints

Static /
dynamic Others

Ma et al. [4] Minimizing link utilization ✓ ✓ Static
Huang et al. [5] Maximizing profit ✓ Static

Huin et al. [6] Minimizing link utilization
✓

(Layered
network)

Static

Allybokus et al. [7]
Minimizing sum of
link utilization cost

and VNF placement cost
✓ ✓ Static

Hyodo et al. [8]
Minimizing sum of
link utilization cost

and VNF placement cost

✓
(Layered
network)

✓ ✓ Static

Chen et al. [9]
Minimizing sum of
link utilization cost

and VNF placement cost
✓ ✓ Static

Sumi et al. [10] Minimizing link utilization
and number of VNF instances ✓ ✓ Static

Sasabe et al. [12] Minimizing total delay
✓

(Augmented
network)

Static

Xu et al. [13] Minimizing setup
and operation costs ✓ Static /

dynamic

Pei et al. [14]
Minimizing sum of

resource consumption cost
and VNF placement cost

✓ Dynamic

Li et al. [15] Minimizing number of
activated physical machines ✓ Static Time-varying

workloads

Li et al. [16] Minimizing number of
used servers Static Availability

requirements

Hawilo et al. [17] Minimizing total delay ✓ Static Availability
requirements

Karimzadeh-Farshbafan
et al. [18]

Minimizing
service placement cost Dynamic Availability

requirements

Pei et al. [19] Minimizing total delay ✓ Dynamic Deep
learning

Solozabal et al. [20] Minimizing
power consumption ✓ Dynamic

Deep
Reinforcement

learning

This work
Minimizing sum of
link utilization cost

and VNF placement cost
✓

✓
(Layered
network)

✓ Static

so that the resource consumption is reduced. The mapping
adjustment part is divided into the intra cluster adjustment
and the inter cluster adjustment, where a cluster is a set of
neighboring physical machines. Since these studies assume
that the transmission capacity does not change along the
service path, the link capacity can be overprovisioned to
service chains.

The studies in [4], [5], [9], and [10] dealt with service chain-
ing problems considering traffic chaining effects of VNFs.
Ma et al. [4] dealt with a problem that determines the VNF
placement and the VNF visit order of a single request that
requires traffic-changing VNFs. The authors presented VNF
placement algorithms and an algorithm that determines the
VNF visit order of a request while considering the traffic
changing effects of VNFs. The model in [4] does not determine
the VNF placement while considering multiple requests in a
time. Furthermore, request routes cannot include any loops.
Huang et al. [5] dealt with a problem that determines the
deployment of virtual machines that run VNFs on physical
machines. The authors did not discuss the routing problem; the

impact of the link utilization cost is ignored. Chen et al. [9]
dealt with a problem that determines the VNF placement
for multiple requests in a time where request routes are
predetermined; VNFs can be deployed on only nodes that are
included in the predetermined routes. Sumi et al. [10] dealt
with a problem that determines the VNF placement, the VNF
visit orders of requests, and request routes while considering
multiple requests in a time. Request routes are determined by
choosing the best of several candidates output by a k-shortest
path algorithm [21], [22]. The model in [10] does not allow
looping routes.

The studies in [16], [17], and [18] dealt with service chain-
ing problems with availability requirements. These studies de-
termine the resource allocation with redundancy. Li et al. [16]
presented a service chaining model that guarantees the avail-
ability requirements while minimizing the number of acti-
vated physical machines. The authors presented an algorithm
that executes the request mapping and the modification of
the resource allocation so that the VNF instantiation cost
is reduced without violating the availability requirements.
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Hawilo et al. [17] presented a reliability-aware service chain-
ing model with delay constraints. The authors presented a
VNF placement algorithm based on the betweenness central-
ity. Karimzadeh-Farshbafan et al. [18] presented a dynamic
reliability-aware service chaining model. The authors obtained
the resource allocation with a Markov decision process. Ser-
vice availabilities are not focused in our proposed model.
However, the proposed model has a room of expansion by
introducing availability requirements and redundant resource
allocation.

The studies in [19] and [20] presented deep learning based
approaches to service chaining problems. Pei et al. [19] pre-
sented a deep learning based two-phase algorithm consisting of
a VNF selection part and a VNF chaining part. The algorithm
determines which VNF instances are used for each request
and then constructs request routes according to the predefined
VNF visit orders. Training data for the deep learning model are
generated by running an optimal algorithm. Compared to an
approach that computes an optimal solution, we can expect that
a cost-efficient resource allocation is obtained in a short time
with the deep learning model. Solozabal et al. [20] presented
a deep reinforcement learning based approach for a VNF
placement problem. The reinforcement learning model does
not need optimal labels; the model is trained in a feedback loop
where feedback signals that represent the quality of solutions
are generated. Deep reinforcement learning models like that
in [20] can carry on learning processes while provisioning
service chains dynamically. There is a possibility that dynamic
service chain provisioning based on our proposed model is
realized with deep learning.

B. Relaxing routing constraints
A route of a service chain request consists of several

sections: a section between the source and the first VNF
node, that between each pair of nodes where consecutive
VNFs are deployed, and that between the final VNF node and
the destination. Packet transmission is conducted sequentially
section by section, which can cause a looping route that
consists of multiple sections. The network service header
(NSH) [23] is attached to packets to realize service chaining.
Packets are transmitted to the specified VNFs by service
function forwarders, which are switches that forward arriving
packets according to the NSHs of the packets.

The models in [7] and [10] determine request routes on a
single-layered graph. If the physical network is represented
by a single-layered graph, it is difficult to consider the case
that a request route passes through the same link in the same
direction more than once. There is a chance to reduce the
cost of service chain provisioning by permitting such a case
in determining request routes.

Huin et al. [6] and Hyodo et al. [8] introduced a logical
layered network in order to allow looping routes. Figs. 2(a)
and 2(b) show an example of physical network G = (V, L)
and that of logical layered network GL, respectively. In this
work, we use a logical layered network; detailed explanations
of the logical layered network are described in Section III-A.
Sasabe et al. [12] presented an augmented network. Aug-
mented network Gaug is constructed by adding imaginary
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(a) Physical network G = (V, L).
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(b) Logical layered network GL.
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(c) Augmented network Gaug .

Fig. 2. Physical network, logical layered network, and augmented network.

nodes and virtual links to physical network G = (V, L).
Fig. 2(c) shows an example of Gaug, which corresponds to
physical network G = (V, L) shown in Fig. 2(a). The expla-
nation of the augmented network is described in Appendix A.

Both a logical layered network and an augmented network
can be applied to the service chaining problem that we deal
with in this work. The number of decision variables in the ILP
problem introducing a logical layered network is less than that
introducing an augmented network. We discuss the number of
decision variables when each network is adopted in detail in
Appendix A.

C. Relaxing visit order constraints

Some VNFs have visit order constraints, but there are some
cases in which changing the visit order does not impact
service chain performance. For example, the request must pass
through the internet protocol security (IPSec) decryptor before
entering the network address translation (NAT) gateway, while
the request can pass through a virtual private network (VPN)
proxy either before or after a firewall [4]. We can expect more
efficient service chaining if the determination of visit order is
flexible.

In order to realize the relaxation of visit order constraints,
Allybokus et al. [7] introduced the parameter representing
visit order constraints among VNFs. Let F be a set of VNFs.
pr(f, g) represents the visit order constraints between f ∈ F
and g ∈ F . If f ∈ F must be processed before g ∈ F ,
we define pr(f, g) as pr(f, g) = −pr(g, f) = 1. If pr(g, f)
equals −1, g ∈ F must be processed after f ∈ F . If there is
no constraint between f ∈ F and g ∈ F , we define pr(f, g)
as pr(f, g) = pr(g, f) = 0. The visit order parameter enables
us to consider, and thus relax, visit order constraints in the
optimization problem.
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D. Visit order determination algorithm considering traffic
changes

We can accommodate more requests in a network by mini-
mizing, for each request, the traffic capacity reserved on each
link of its route. Moreover, traffic-decreasing VNFs should
be visited as early as possible, given the constraints on visit
order, while traffic-increasing VNFs should be visited as late
as possible on the route.

Ma et al. [4] presented Converting Partially-Ordered Set
to Totally-Ordered Set With Lookahead of k, an algorithm
for determining visit order considering both traffic changes
and visit order constraints. This algorithm determines the
visit order so as to minimize the traffic amount of a request
between its source and destination while considering visit
order constraints. We refer to this algorithm as Ma’s algorithm
hereinafter. The definition and the procedure of Ma’s algorithm
are described in Appendix B.

Note that Ma’s algorithm is applied to only one service
chain request at a time. In [4], the VNF visit order and
VNF placement are determined for each request one by one.
Furthermore, the work in [4] assumes that each VNF instance
cannot be shared by multiple requests. This leads to an
increase in the cost for the computation resource utilization.
In this work, we determine VNF placement while considering
multiple requests at a time and assuming that each VNF
instance can be shared.

III. PROPOSED MODEL

A. Definition of proposed model

We represent the physical network by bidirected graph G =
(V, L), where V is the set of nodes and L is the set of links.
A set of requests is denoted by R. Let F be a set of VNFs and
Fr be the set of VNFs that r ∈ R requires, where Fr ⊆ F .
The number of VNFs that r ∈ R requires is denoted by nr,
i.e., nr = |Fr|.

In order to permit a request route to pass through the same
link in the same direction more than once and express of VNF
traffic changes, we introduce logical layered network graph
GL. GL is constructed by adding nmax replicas of G = (V, L)
to original graph G = (V, L), where nmax = maxr∈R nr.
We call original graph G = (V, L) the zeroth layer and each
replica of G = (V, L) the ith layer (i = 1, 2, ..., nmax). The ith
layer and the (i+1)th layer are connected by directed virtual
links from vi to vi+1, where vi is the node on the ith layer
corresponding to v ∈ V . We put vrs , the source of r ∈ R, on
the zeroth layer and vrd, the destination of r ∈ R, on the nrth
layer. The route of r ∈ R passes through on links of the ith
layer until it reaches the node where the ith required VNF of
r ∈ R is processed, and then the route uses a virtual link to
move to the (i+1)th layer. If a request route goes through the
same link on different layers, the proposed model reserves the
transmission capacity for each layer. Service chains are routed
in the network so that the sum of the demanded transmission
capacity of each link does not exceed its maximum capacity.

We assume CPU cores as the computation resources that
VNFs require. The fractional number of CPU cores that VNF
f ∈ F requires per unit of transmission capacity is denoted by

TABLE II
DESCRIPTIONS OF SETS.

Set Description
G = (V, L) Physical network

GL Logical layered network
V Set of nodes
L Set of links
R Set of requests
F Set of VNFs
Fr Set of VNFs that r ∈ R requires (Fr ⊆ F )

ω+(v) Set of egress flows from v ∈ V
ω−(v) Set of ingress flows to v ∈ V
Jr Set of visit order patterns for r ∈ R satisfying visit order

constraints

∆f . If several requests require the same VNF, they can share
the same VNF on the same CPU core as long as the total of the
computation resources required by VNFs does not exceed that
of the CPU core. If the sum of the fractional number of the
CPU core that is used for VNF f exceeds one, additional CPU
cores, which can be on a different server, are used for VNF
f . Note that we can prohibit a CPU core from being shared
by multiple requests by regarding the same type of VNFs for
different requests as different VNFs if there is a problem in
sharing the same core. For example, if requests r1 and r2 pass
through VNF f , we can distinguish VNF f for r1 and r2 by
designating them as fr1 and fr2 , respectively.

The maximum transmission capacity of link l ∈ L is
denoted by bl. The total number of CPU cores on node v ∈ V
is denoted by cv . hf represents the traffic change rate of VNF
f . In this model, we assume that the traffic change rate of
each VNF to be constant. The initial transmission capacity of
r ∈ R is denoted by Dr

init. The set of egress flows from v ∈ V
and the set of ingress flows to v ∈ V are denoted by ω+(v)
and ω−(v), respectively.
Ψl represents the cost per unit of transmission capacity,

which is incurred when requests pass through l ∈ L. The cost
of passing through virtual links in the logical layered network,
GL, is set to zero. Ψf represents the cost per CPU core that
VNF f ∈ F utilizes. The proposed model determines request
routes and VNF placement so as to minimize the sum of the
cost of link utilization and the cost of VNF placement.

For easy reference, the descriptions of sets, parameters, and
decision variables are summarized in Tables II, III, and IV,
respectively.

B. Problem formulation

1) Basic formulation: The transmission capacity of r ∈ R
on the ith layer is denoted by decision variable δir. ϕr,i

l is a
decision variable such that ϕr,i

l = 1 if r ∈ R passes through
l ∈ L on the ith layer and 0 otherwise. The number of CPU
cores that VNF f ∈ F requires on v ∈ V is denoted by Af

v .
The service chain provisioning problem is formulated as

follows.

minimize
∑
r∈R

∑
l∈L

nr∑
i=0

δirϕ
r,i
l Ψl +

∑
v∈V

∑
f∈F

Af
vΨf . (1)

The objective function is shown in (1). The first term of (1)
represents the sum of the link utilization cost. The second term
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TABLE III
DESCRIPTIONS OF PARAMETERS.

Parameter Description
nr Number of VNFs that r ∈ R requires (nr = |Fr|)
vrs Source of r ∈ R
vrd Destination of r ∈ R
∆f Number of CPU cores that f ∈ F requires per unit of

transmission capacity
bl Maximum transmission capacity of l ∈ L
cv Total number of CPU cores on v ∈ V
hf Traffic change rate of f ∈ F

Dr
init Initial transmission capacity of r ∈ R
Ψl Link utilization cost per unit of transmission capacity for

l ∈ L
Ψf CPU utilization cost per core that f ∈ F utilizes
Di,j

r Transmission capacity of r ∈ R on the ith layer for
j ∈ Jr

er,i,jf Binary parameter that is 1 if the ith VNF in j ∈ Jr is
f ∈ Fr ; 0 otherwise

TABLE IV
DESCRIPTIONS OF DECISION VARIABLES.

Variable Description

δir Real number variable that represents the transmission capacity
of r ∈ R on the ith layer

ϕr,i
l Binary variable that is 1 if r ∈ R passes through l ∈ L on

the ith layer; 0 otherwise
Af

v Integer variable that represents the number of CPU cores that
f ∈ F requires on v ∈ V

αr,i,f
v Binary variable that is 1 if f ∈ Fr is the ith VNF of r ∈ R

and is processed on v ∈ V ; 0 otherwise
Y r,f
i Binary variable that is 1 if f ∈ Fr of r ∈ R has been passed

through until the ith layer; 0 otherwise
πr,i,j
l Binary variable that is 1 if r ∈ R passes through l ∈ L on

the ith layer with order pattern j ∈ Jr ; 0 otherwise
αr,i
v Binary variable that is 1 if the ith VNF of r ∈ R is processed

on v ∈ V ; 0 otherwise
βr,i,j
v Binary variable that is 1 if the ith VNF of r ∈ R in j ∈ Jr

is processed on v ∈ V ; 0 otherwise
κr
j Binary variable that is 1 if r ∈ R uses order pattern j ∈ Jr ;

0 otherwise

represents the sum of the VNF placement cost. Constraints are
represented as follows.∑
l∈ω+(v)

ϕr,i
l −

∑
l∈ω−(v)

ϕr,i
l +

∑
f∈Fr

αr,i,f
v −

∑
f∈Fr

αr,i−1,f
v = 0,

∀v ∈ V, r ∈ R, 0 < i < nr, (2)∑
l∈ω+(v)

ϕr,0
l −

∑
l∈ω−(v)

ϕr,0
l +

∑
f∈Fr

αr,0,f
v =

{
1 if v = vrs ,

0 otherwise,

∀v ∈ V, r ∈ R, (3)∑
l∈ω+(v)

ϕr,nr

l −
∑

l∈ω−(v)

ϕr,nr

l −
∑
f∈Fr

αr,nr−1,f
v

=

{
−1 if v = vrd,

0 otherwise,
∀v ∈ V, r ∈ R. (4)

Equations (2), (3), and (4) represent the constraints that
guarantee flow conservation on the ith layer (0 < i < nr), the
zeroth layer, and the nrth layer of logical layered network GL,
respectively. αr,i,f

v is a decision variable such that αr,i,f
v = 1

if the ith VNF f ∈ Fr of r ∈ R is processed on v ∈ V and 0
otherwise. Note that the index of required VNFs is zero-based.

αr,i,f
v also represents a flow from the ith layer to the (i+1)th

layer. Equation (3) shows that the number of egress flows is
one more than that of ingress flows on source vrs . Equation (4)
shows that the number of ingress flows is one more than that
of egress flows on destination vrd.∑

r∈R

nr∑
i=0

δirϕ
r,i
l ≤ bl, ∀l ∈ L, (5)∑

f∈F

Af
v ≤ cv, ∀v ∈ V. (6)

Equation (5) guarantees that the sum of the transmission
capacity demanded of l ∈ L does not exceed maximum
transmission capacity bl. Equation (6) guarantees that the sum
of CPU cores that VNFs require on v ∈ V does not exceed
total number of CPU cores cv .

Y r,f
0 = 0, ∀r ∈ R, f ∈ F, (7)

Y r,f
nr

= 1, ∀r ∈ R, f ∈ Fr, (8)

Y r,f
i − Y r,f

i−1 =
∑
v∈V

αr,i−1,f
v , ∀r ∈ R, f ∈ Fr, 0 < i < nr,

(9)

(Y r,f
i − Y r,g

i )pr(f, g) ≥ 0, ∀r ∈ R, f, g ∈ Fr, 0 < i < nr.
(10)

Equations (7)–(10) represent visit order constraints. Y r,f
i is a

decision variable such that Y r,f
i = 1 if f ∈ Fr of r ∈ R

has been passed through until the ith layer and 0 otherwise.
Equation (7) means that no VNF is processed on the zeroth
layer before reaching the node on which the first VNF is
processed. Equation (8) guarantees that all the VNFs required
have been processed before reaching the nrth layer. In (7),
Y r,f
i − Y r,f

i−1 = 1 if (i − 1)th VNF of r ∈ R is f ∈ Fr and
0 otherwise. In (10), Y r,f

i is forced to be equal to or more
than Y r,g

i if f ∈ F needs to be processed before g ∈ F , i.e.,
pr(f, g) = 1. Equation (10) holds in all cases if there are no
constraints between f ∈ F and g ∈ F , i.e., pr(f, g) = 0.

δ0r = Dr
init, ∀r ∈ R, (11)

δir = δi−1
r

∑
f∈Fr

hf (Y
r,f
i − Y r,f

i−1), ∀r ∈ R, 0 < i ≤ nr. (12)

Equations (11) and (12) determine the traffic amount of r ∈ R
on the zeroth layer and the ith layer (0 < i ≤ nr), respectively.
Equation (11) means that the traffic amount of r ∈ R on
the zeroth layer is equal to initial transmission capacity Dr

init.
Equation (12) means that the traffic amount on the ith layer
is the product of the traffic amount on the (i− 1)th layer and
the traffic change rate of the (i− 1)th VNF.

nr∑
i=0

∑
v∈V

αr,i,f
v = 1, ∀f ∈ Fr, r ∈ R. (13)

Equation (13) guarantees that f ∈ Fr is processed on only
one node in the network for r ∈ R.∑

r∈R

nr−1∑
i=0

∆fδ
i
rα

r,i,f
v ≤ Af

v , ∀f ∈ F, v ∈ V. (14)

Equation (14) determines the number of CPU cores that f ∈ F
utilizes on v ∈ V .
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2) Formulation in ILP form: As the objective function
and some constraints involve the product of δir and binary
variables, the problem formulated in (1)–(14) is non-linear. In
order to formulate the problem as an ILP problem, we write the
transmission capacity as constant Di,j

r . Di,j
r can be obtained

by calculating the transmission capacity on the ith layer for
each visit order pattern j ∈ Jr, where Jr is the set of visit
order patterns for r ∈ R satisfying visit order constraints;
Di,j

r = hfD
i−1,j
r if f ∈ F is the (i − 1)th VNF of r ∈ R

for j ∈ Jr. Note that we can also handle the case where the
traffic change rate is a non-linear function of the transmission
capacity; Di,j

r = hf
nlf(D

i−1,j
r ), where hf

nlf(·) is a non-linear
function that represents the traffic change rate of f ∈ F , if
f ∈ F is the (i − 1)th VNF of r ∈ R for j ∈ Jr. er,i,jf is a
parameter such that er,i,jf = 1 if the ith VNF in order pattern
j ∈ Jr is f ∈ Fr and 0 otherwise. πr,i,j

l is a decision variable
such that πr,i,j

l = 1 if r ∈ R passes through l ∈ L on the
ith layer with order pattern j ∈ Jr and 0 otherwise. αr,i

v is a
decision variable such that αr,i

v = 1 if the ith VNF of r ∈ R
is processed on v ∈ V and 0 otherwise. βr,i,j

v is a decision
variable such that βr,i,j

v = 1 if the ith VNF of r ∈ R in order
pattern j ∈ Jr is processed on v ∈ V and 0 otherwise. κr

j is
a decision variable such that κr

j = 1 if r uses order pattern
j ∈ Jr and 0 otherwise.

The proposed model can be formulated as an ILP problem
as follows.

minimize
∑
r∈R

∑
l∈L

nr∑
i=0

∑
j∈Jr

Di,j
r πr,i,j

l Ψl +
∑
v∈V

∑
f∈F

Af
vΨf .

(15)
The objective function is shown in (15), which corresponds
to (1). Constraints are represented as follows.

(6), (16)∑
l∈ω+(v)

ϕr,i
l −

∑
l∈ω−(v)

ϕr,i
l + αr,i

v − αr,i−1
v = 0,

∀v ∈ V, r ∈ R, 0 < i < nr, (17)∑
l∈ω+(v)

ϕr,0
l −

∑
l∈ω−(v)

ϕr,0
l + αr,0

v =

{
1 if v = vrs ,

0 otherwise,

∀v ∈ V, r ∈ R, (18)∑
l∈ω+(v)

ϕr,nr

l −
∑

l∈ω−(v)

ϕr,nr

l − αr,nr−1
v =

{
−1 if v = vrd,

0 otherwise,

∀v ∈ V, r ∈ R, (19)

∑
r∈R

nr∑
i=0

∑
j∈Jr

Di,j
r πr,i,j

l ≤ bl, ∀l ∈ L, (20)

∑
r∈R

nr−1∑
i=0

∑
j∈Jr

∆fD
i,j
r er,i,jf βr,i,j

v ≤ Af
v , ∀f ∈ F, v ∈ V. (21)

Equations (17)–(19) correspond to (2)–(4). Equation (20)
corresponds to (5). Equation (21) corresponds to (14).∑

j∈Jr

κr
j = 1, ∀r ∈ R. (22)

Equation (22) guarantees that r ∈ R uses only one order
pattern j in Jr.

1− ϕr,i
l − κr

j + πr,i,j
l ≥ 0, ∀l ∈ L, r ∈ R, j ∈ Jr, 0 ≤ i ≤ nr,

(23)

ϕr,i
l − πr,i,j

l ≥ 0, ∀l ∈ L, r ∈ R, j ∈ Jr, 0 ≤ i ≤ nr, (24)

κr
j − πr,i,j

l ≥ 0, ∀l ∈ L, r ∈ R, j ∈ Jr, 0 ≤ i ≤ nr, (25)

1− αr,i
v − κr

j + βr,i,j
v ≥ 0, ∀v ∈ V, r ∈ R, j ∈ Jr, 0 ≤ i ≤ nr,

(26)

αr,i
v − βr,i,j

v ≥ 0, ∀v ∈ V, r ∈ R, j ∈ Jr, 0 ≤ i ≤ nr, (27)

κr
j − βr,i,j

v ≥ 0, ∀v ∈ V, r ∈ R, j ∈ Jr, 0 ≤ i ≤ nr. (28)

Equations (23)–(25) and (26)–(28) yield πr,i,j
l = ϕr,i

l κr
j and

βr,i,j
v = αr,i

v κr
j in linear equations, respectively. The number

of constraints in (15)–(28) is |V |(
∑

r∈R(3|Jr|+1)(nr +1)+
|F |+1)+ |L|(3

∑
r∈R |Jr|(nr+1)+1)+ |R|. The number of

decision variables in (15)–(28) is |V |(
∑

r∈R(|Jr| + 1)(nr +
1) + |F |) + |L|(

∑
r∈R(|Jr|+ 1)(nr + 1)) +

∑
r∈R |Jr|.

3) Special case where |Jr| = 1: If the visit order of each
request is predetermined, i.e., |Jr| = 1, decision variables
such as κr

j and constraints such as (22)–(28) for determining
the visit order are not needed. Therefore, the ILP model
in (15)–(28) can be simplified in this case. Di

r represents the
transmission capacity of r ∈ R on the ith layer. er,if is a
parameter such that er,if = 1 if the ith VNF of r ∈ R is
f ∈ Fr and 0 otherwise. An ILP model for requests whose
visit orders are predetermined is formulated as follows:

minimize
∑
r∈R

∑
l∈L

nr∑
i=0

Di
rϕ

r,i
l Ψl +

∑
v∈V

∑
f∈F

Af
vΨf , (29)

(6), (17)–(19), (30)

∑
r∈R

nr∑
i=0

Di
rϕ

r,i
l ≤ bl, ∀l ∈ L, (31)

∑
r∈R

nr−1∑
i=0

∆fD
i
re

r,i
f αr,i

v ≤ Af
v , ∀f ∈ F, v ∈ V. (32)

The number of constraints in (29)–(32) is |V |(
∑

r∈R(nr+1)+
|F |+1)+ |L|. The number of decision variables in (29)–(32)
is |V |(

∑
r∈R nr + |F |) + |L|(

∑
r∈R(nr + 1)).

C. Problem hardness analysis

We analyze the hardness of the service chaining problem
considering traffic changes due to VNFs (SCP-TCV), which
is formulated in the ILP problem in (15)–(28). We define the
decision version of SCP-TCV (SCP-TCV-D) as follows.
Definition 1. Bidirected graph G = (V, L), set of requests R,
and set of VNFs F are given. Logical layered network GL is
constructed from G = (V, L). The number of layers in GL is
nmax = maxr∈R nr, where nr is the number of required VNFs
for r ∈ R. The maximum transmission capacity of l ∈ L is bl.
The total number of CPU cores on v ∈ V is cv . The source
and destination nodes of r ∈ R are vsr ∈ V and vdr ∈ V ,
respectively. r ∈ R must pass through VNFs in Fr ⊆ F . A
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set of possible VNF visit order patterns for r ∈ R is given
as Jr. The transmission capacity of r ∈ R on the ith layer of
GL for j ∈ Jr is Di,j

r . f ∈ F requires ∆f CPU cores per
unit of transmission capacity. The link utilization cost per unit
of transmission capacity for l ∈ L is Ψl. The CPU utilization
cost per core for f ∈ F is Ψf . Is there any resource allocation
such that the total cost is T or less?

Theorem 1. SCP-TCV-D is NP-complete.

Proof. First, we show that SCP-TCV-D is in NP. Let Jmax

be the maximum number of VNF order visit patterns, i.e.,
Jmax = maxr∈R |Jr|. The time complexities of confirming
whether each constraint is satisfied are as follows:

• Flow conservation: O(nmax|R||V ||L|)
• Link capacity: O(Jmaxnmax|R||L|)
• Node capacity: O(|V ||F |)
• Determining required number of CPU cores for each VNF

on each node: O(Jmaxnmax|R||V ||F |)
• Selecting VNF visit order pattern: O(Jmax|R|)
• Associating VNF visit order pattern with link utilization:

O(Jmaxnmax|R||L|)
• Associating VNF visit order pattern with VNF placement:

O(Jmaxnmax|R||V |)
The time complexity of checking whether the total cost is T or
less is O(Jmaxnmax|R||L|+ |V ||F |). Therefore, SCP-TCV-D
is in NP.

Second, we prove that the decision version of the bin
packing problem (BPP-D), which is NP-complete [24], [25], is
reducible to SCP-TCV-D. Let H a set of items. BPP-D decides
whether there is an allocation of items to a finite number of
bins such that the sum of the sizes of items in each bin does
not exceed the capacity of the bin, where the size of item
h ∈ H , the number of bins, and the capacity of each bin are
wh, K, and B, respectively.

We construct an SCP-TCV-D instance from any BPP-D
instance in the following steps:

1) Connected bidirected graph G = (V, L) is given, where
the number of node is K, i.e., |V | = K. Logical layered
network GL is constructed from G = (V, L).

2) The number of requests is the same with the number
of items in the corresponding BPP-D instance, i.e.,
|R| = |H|. There is a one-to-one correspondence be-
tween requests in SCP-TCV-D and items in BPP-D. The
item that corresponds to r ∈ R is denoted as r ∈ H
hereafter.

3) The link utilization cost is set to zero, i.e., Ψl = 0, ∀l ∈
L.

4) Each link can accommodate all requests no matter how
many times each request passes through the link, i.e.,
bl =

∑
r∈R

∑nr

i=0

∑
j∈Jr

Di,j
r , ∀l ∈ L.

5) All requests pass through only one particular VNF,
namely f , i.e., Fr = {f} = F, ∀r ∈ R. From this,
the number of VNF visit order pattern is one, i.e.,
|Jr| = 1, ∀r ∈ R. In addition, GL consists of two layers,
i.e., i ∈ {0, 1}. VNF f does not change the transmission
capacity.

6) The transmission capacity of each request is set to the
size of the corresponding item, i.e., Di,j

r = wr, ∀r ∈
R, i ∈ {0, 1}.

7) The source and destination nodes of each request are
arbitrarily selected from nodes in V .

8) The CPU utilization cost of VNF f is set to one, i.e.,
Ψf = 1.

9) The number of CPU cores that VNF f requires per unit
of transmission capacity is set to 1/B, i.e., ∆f = 1/B;
the sum of the transmission capacity that is processed
by VNF f cannot exceed B.

10) Each node has only one CPU core, i.e., cv = 1, ∀v ∈ V .
From this, |V | = K, and ∆f = 1/B, there is a one-to-
one correspondence between nodes in SCP-TCV-D and
bins in BPP-D.

11) The threshold of the total cost is set to K, i.e., T = K.

The time complexity of the construction of an SCP-TCV-D
instance is O(Jmaxnmax|R||L|+ |V |).

If a BPP-D instance is a Yes instance, a given set of items
can be accommodated in K bins or less; there is an item
allocation such that

∑
h∈Hp

wh ≤ B, ∀p ∈ P,
⊔

p∈P Hp = H ,
where P and Hp are a set of K bins and a set of items
packed in p ∈ P , respectively. Note that Hp = ∅, ∃p ∈ P
if a set of items is accommodated in less than K bins. From
the one-to-one correspondence between requests and items and
that between nodes and bins, there is a VNF placement such
that

∑
r∈Rv

∑nr−1
i=0

∑
j∈Jr

Di,j
r =

∑
r∈Rv

wr ≤ B, ∀v ∈
V,

⊔
v∈V Rv = R, where Rv is a set of requests that passes

through VNF f on v ∈ V in the SCP-TCV-D instance;
this ensures that there is a VNF placement such that the
number of used CPU cores is K or less since the transmission
capacity of r ∈ R, the number of nodes, and the maximum
accommodatable transmission capacity of v ∈ V are wr, K
and B, respectively. The route of r ∈ R can be constructed
by finding two paths, one is that between the source and vr
and the other is that between vr and the destination, where vr
is the node where VNF f is running for r. From this, there
is a resource allocation such that the number of used CPU
cores can be K or less. The total cost is K or less since
Ψl = 0, ∀l ∈ L and Ψf = 1. As the threshold of the total cost
is set to K, the SCP-TCV-D instance is a Yes instance.

Conversely, if the constructed SCP-TCV-D instance is a
Yes instance, the total cost is K or less. As the node ca-
pacity constraints are satisfied,

∑
r∈Rv

∑nr−1
i=0

∑
j∈Jr

Di,j
r =∑

r∈Rv
wr ≤ B, ∀v ∈ V,

⊔
v∈V Rv = R. Note that Rv =

∅, ∃v ∈ V if the number of used CPU cores is less than
K. From the one-to-one correspondence between requests
and items and that between nodes and bins, there is an item
allocation such that

∑
h∈Hp

wh ≤ B, ∀p ∈ P,
⊔

p∈P Hp = H
in the corresponding BPP-D instance; this ensures that there
is no item that cannot be packed in any bin in P , where the
size of item h ∈ H , the number of bins, and the capacity of
each bin are wh, K, and B, respectively. Therefore, there is
an item allocation to K bins or less; the corresponding BPP-D
instance is a Yes instance.

From the discussion above, BPP-D is reducible to SCP-
TCV-D; any problem in NP is reducible to SCP-TCV-D since
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BPP-D is NP-complete. As SCP-TCV-D is in NP, SCP-TCV-D
is NP-complete.

IV. METHODS OF SELECTING VISIT ORDER PATTERNS

A. Overview

If in solving the ILP problem of (15)–(28) we consider all
possible visit order patterns, it is difficult to obtain the routes
and VNF placement in a practical time. We introduce some
methods of selecting visit order patterns in order to shorten
the computation time while keeping the total costs as close to
the optimal value as possible.

The sum of the traffic amount reserved by each service
chain request on its route can be minimized by configuring the
route of each request so that it preferentially passes through
VNFs with low traffic change rates while satisfying visit order
constraints; this leads to a reduction in the link utilization cost.
Moreover, computation resources that VNFs require can be
reduced by minimizing the sum of the traffic amount reserved
by each request on its route; this leads to a reduction in the
VNF placement cost. In order to determine the VNF visit
order of each request so as to suppress the traffic amount in
the whole network, we apply Ma’s algorithm [4], which is
described in Appendix B.

This section introduces three methods of selecting visit
order patterns based on Ma’s algorithm. First, Section IV-B
explains a method of solving the ILP problem in (15)–(28)
with a limited number of order patterns. This method selects
the visit order patterns so as to reduce the total cost while
considering both routes and VNF placement. Section IV-C
explains the second and the third methods, which predetermine
the visit order of each request. Section IV-C1 explains a
method of predetermining the visit order of each request with
Ma’s algorithm by setting the same value of k for all requests.
Section IV-C2 explains a method of predetermining the visit
order of each request with an ILP model that selects the visit
order so as to suppress the number of CPU cores used.

B. Solving ILP model with limited number of order patterns

This method first obtains kM order patterns for each request
by setting the value of parameter k from 1 to kM in Ma’s
algorithm. We can set kM to an integer from 1 to kmax,
where kmax is the maximum size of the trees representing
dependency relations among VNFs. Note that kmax is less than
or equal to nmax, that is, the maximum number of required
VNFs. Let Jr be a set of kM order patterns obtained with the
algorithm for r ∈ R. We can solve the ILP problem in (15)–
(28) by considering only kM order patterns for each request.
Thus, we can expect shorter computation times than needed
when considering all possible order patterns. The total cost
can decrease as kM increases since there can be more efficient
combinations of visit order patterns than the case where kM is
set to a smaller number. On the other hand, the computation
time can increase since the number of decision variables also
increases.

C. Solving ILP model with predetermined visit order

This section introduces the second and the third methods
of selecting visit order patterns. These methods heuristically
predetermine the visit order of each request with Ma’s algo-
rithm. Since the number of visit order patterns is only one for
each request, we obtain request routes and VNF placement by
solving the ILP model in (29)–(32), which is a simplified form
of the ILP problem in (15)–(28).

1) Visit order predetermination with same value of k for
all requests: This method uses Ma’s algorithm and applies
the same value of k to all requests. The total cost is obtained
by solving the ILP model in (29)–(32) with the predetermined
order obtained with the algorithm for each request. We can
expect the traffic amount of each request to be suppressed by
increasing k.

2) Visit order predetermination with ILP model: This
method selects the visit order from several candidates for each
request. It may be possible to obtain lower cost by using
several values of k in Ma’s algorithm than that achieved by
applying the same value of k for all requests. We determine
order patterns so as to reduce the number of VNF instances,
which can lead to the reduction of the total cost.

This method first obtains kmax order patterns for each
request by setting the value of parameter k from 1 to kmax in
Ma’s algorithm. Let Jr be a set of kmax order patterns obtained
with the algorithm for r ∈ R. Then, the visit order for each
request is selected by solving the optimization problem that
minimizes the number of used CPU cores, which is defined
as follows.

minimize
∑
f∈F

Af . (33)

The objective function is shown in (33). Af represents the
number of CPU cores that f ∈ F requires. Constraints are
represented as follows.

(22), (34)

∑
r∈R

nr−1∑
i=0

∑
j∈Jr

∆fD
i,j
r er,i,jf κr

j ≤ Af , ∀f ∈ F. (35)

Equation (35) determines the number of CPU cores that f ∈ F
requires, i.e., Af .

In order to obtain the visit order patterns that minimize the
minimum necessary number of used CPU cores, we assume
that all VNFs run on one particular node in this method.
Note that the actual VNF placement is determined by solving
the ILP problem in (29)–(32) after determining the visit
orders with this method; VNF instances can be distributed on
different nodes in the actual VNF placement. By applying the
visit order patterns obtained with this method, we can expect
that the CPU utilization cost can be suppressed. In addition, by
suppressing the number of used CPU cores, we can expect that
the link utilization cost can be suppressed since the number
of used CPU cores depends on the transmission capacity of
each request; if the number of used CPU cores decreases, the
transmission capacity of each request is expected to decrease.
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V. HEURISTIC ALGORITHMS

As the problem size increases, the ILP problems in (15)–
(28) and (29)–(32) also become difficult to be solved in a
practical time regardless of limiting the number of VNF visit
order patterns. We introduce two heuristic algorithms for the
proposed model. Section V-A explains a greedy algorithm
that iteratively solves the optimization problem for a limited
number of requests. Section V-B explains a heuristic algorithm
that divides the problem into the VNF placement part and the
routing part. We call this algorithm a problem dividing (PD)
algorithm hereinafter.

A. Greedy algorithm

The greedy algorithm is illustrated in Algorithm 1. We call
one execution of the while loop in lines 2–12 of Algorithm 1
an iteration here. First, the algorithm determines the VNF
visit order for each request with Ma’s algorithm and the
ILP model in (33)–(35) as illustrated in Section IV-C2. The
algorithm solves the ILP model in (29)–(32) for ngrd requests
(1 ≤ ngrd ≤ |R|) picked from R in each iteration. If
the number of the remaining requests is less than ngrd, the
algorithm solves the ILP model in (29)–(32) for all remaining
requests. Link capacities, link utilization cost, and CPU uti-
lization for each node and VNF are updated after solving the
ILP model in (29)–(32) in each iteration. After all iterations
are completed, the algorithm outputs request routes, VNF
placement, and the total cost.

The greedy algorithm solves the ILP problem in (29)–(32),
whose decision version is NP-complete, ⌈|R|/ngrd⌉ times.
The number of constraints and that of decision variables of
the ILP model in (29)–(32) in each iteration are less than
or equal to those in the case where all requests are given
to the ILP model in (29)–(32) at a time since ngrd ≤ |R|.
The number of possible value patterns of integer variables
in (29)–(32) exponentially increases according to the number
of requests. Therefore, we can expect that the computation
time is shortened by iteratively solving the ILP problem
in (29)–(32) with a limited number of requests.

B. PD algorithm

The PD algorithm determines the resource allocation by
solving two problems: the VNF placement problem and the
routing problem. Note that the routing problem is solved
according to the VNF placement determined with the VNF
placement problem.

The VNF placement problem in the PD algorithm (VPP-PD)
is formulated in an ILP problem as follows.

minimize
∑
r∈R

∑
v∈V

nr−1∑
i=0

(d(vrs , v) + d(vrd, v))α
r,i
v . (36)

d(u, v) is the minimum number of hops between nodes u ∈ V
and v ∈ V . d(vrs , v)α

r,i
v represents the number of the hops

between the source and the node where the ith VNF of r ∈
R is placed. d(vrd, v)α

r,i
v represents the number of the hops

Algorithm 1 Greedy algorithm
Input: Network topology G, set of requests R, set of VNFs

F , and ngrd

Output: Request routes, VNF placement, and total cost
1: Determine the VNF visit order for each request r ∈ R

with Ma’s Algorithm and the ILP model in (33)–(35)
2: while R ̸= ∅ do
3: if ngrd ≤ |R| then
4: Let R′ to be a set of ngrd requests picked from R
5: else
6: R′ ← R
7: end if
8: Determine routes for r ∈ R′ and VNF placement with

the ILP model in (29)–(32)
9: Update link capacities and link utilization cost

10: Update CPU utilization for each node and VNF
11: R← R \R′

12: end while

between the destination and the node where the ith VNF of
r ∈ R is placed. Constraints are represented as follows.

(6), (32), (37)∑
v∈V

αr,i
v = 1, ∀r ∈ R, 0 ≤ i < nr, (38)∑

f∈F

∑
v∈V

Af
v ≤ I. (39)

Equation (38) guarantees that the ith VNF of r ∈ R is
placed on any one node in the network. Equation (39) limits
the number of CPU cores used by VNFs. We obtain the
cost of VNF placement, TVNF, from a solution of (36)–(39).
The number of constraints in (36)–(39) is |V |(|F | + 1) +∑

r∈R nr + 1. The number of decision variables in (36)–(39)
is |V |(

∑
r∈R nr + |F |). The decision version of VPP-PD is

NP-complete, which is shown in Appendix C.
The routing problem in the PD algorithm (RP-PD) is

formulated in an ILP problem as follows.

minimize
∑
r∈R

∑
l∈L

nr∑
i=0

Di
rϕ

r,i
l Ψl. (40)

The objective function is shown in (40). This corresponds
to the first term of (29); it represents the sum of the link
utilization cost. Constraints are represented as follows.

(17)–(19), (31), (41)

αr,i
vfr

i

= 1, ∀r ∈ R, 0 ≤ i < nr. (42)

vfr
i

is the node where the ith VNF of r ∈ R is placed, which
is determined in the VNF placement problem in (36)–(39).
Equation (42) guarantees that r ∈ R passes through its ith
VNF on vfr

i
∈ V . The number of constraints in (40)–(42)

is |V |
∑

r∈R(nr +1)+ |L|
∑

r∈R nr. The number of decision
variables in (40)–(42) is |V |

∑
r∈R nr+|L|

∑
r∈R(nr+1). The

decision version of RP-PD is NP-complete, which is shown
in Appendix C.

The procedure of the PD algorithm is illustrated in Algo-
rithm 2. First, the algorithm determines the VNF visit order
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Algorithm 2 Problem dividing (PD) algorithm
Input: Network topology G, set of requests R, and set of

VNFs F
Output: Request routes, VNF placement, and total cost T

1: Determine the VNF visit order for each request r ∈ R
with Ma’s algorithm and the ILP model in (33)–(35)

2: I ← optimal value obtained with the ILP model in (33)–
(35)

3: T ←∞
4: while I ≤

∑
v∈V cv do

5: Determine VNF placement by solving VPP-PD
6: TVNF ← Cost of VNF placement obtained by solving

VPP-PD
7: Determine request routes by solving RP-PD
8: Tlink ← Cost of link utilization obtained by solving

RP-PD
9: Tcur ← TVNF + Tlink

10: if T < Tcur then
11: Break
12: end if
13: I ← I + 1
14: end while

for each request with Ma’s algorithm and the ILP model
in (33)–(35) as illustrated in Section IV-C2. Let I be the
maximum number of CPU cores that VNFs use. We set I
to be the optimal value obtained with the ILP model in (33)–
(35). Then, the algorithm determines the VNF placement and
request routes. We call one execution of the while loop in
lines 4–14 of Algorithm 2 an iteration here.

In each iteration, the PD algorithm first determines VNF
placement by solving VPP-PD, i.e., the ILP problem in (36)–
(39). After the VNF placement is obtained, the PD algorithm
determines request routes by solving RP-PD, i.e., the ILP
problem in (40)–(42). After request routes are determined,
we obtain Tcur, the total cost in the current iteration. If T ,
the total cost in the previous iteration, is less than Tcur, the
algorithm outputs T as the total cost. Similarly, the algorithm
outputs the VNF placement and request routes obtained in
the previous iteration. If Tcur is less than or equal to T ,
Algorithm 2 substitutes Tcur for T . Then, I is incremented
and the algorithm goes to the next iteration.

In addition, we introduce a modified variation of the
PD algorithm. We call this variation PD considering traffic
changes (PD-TC). In PD-TC, the objective function of the
VNF placement problem in (36) is replaced with the following
one.

minimize
∑
r∈R

∑
v∈V

nr−1∑
i=0

(d(vrs , v)q
r,i
s + d(vrd, v)q

r,i
d )αr,i

v .

(43)
qr,is and qr,id are binary parameters. Let hi

r be the traffic change
rate of the ith VNF of r ∈ R. If ι = argmin0≤ι≤nr−1

∏ι
i=0 h

i
r

for r ∈ R, qr,is = 1 and qr,id = 0 for 0 ≤ i ≤ ι, and qr,is = 0
and qr,id = 1 for ι < i < nr. d(vrs , v)q

r,i
s αr,i

v represents the
number of the hops between the source and the node where
the ith VNF of r ∈ R is placed (0 ≤ i ≤ ι). d(vrd, v)q

r,i
d αr,i

v

represents the number of the hops between the destination and
the node where the ith VNF of r ∈ R is placed (ι < i < nr).
We can expect that the traffic amount decreases on nodes that
are near the source and increases on nodes that are near the
destination.

The PD algorithm includes solving VPP-PD and RP-PD,
whose decision versions are NP-complete, at most

∑
v∈V cv

times. However, the sizes of VPP-PD and RP-PD are small
compared to SCP-TCV where |Jr| = 1. The number of
constraints and that of decision variables of VPP-PD is smaller
by (|V |−1)

∑
r∈R nr+|L|+|V ||R|−1 and |L|

∑
r∈R(nr+1),

respectively, than SCP-TCV where |Jr| = 1. The number of
constraints and that of decision variables of RP-PD are smaller
by |V |(|F |+1)+ |L|(1−

∑
r∈R nr) and |V ||F |, respectively,

than SCP-TCV where |Jr| = 1.

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
model in terms of the computation time and the total cost. Sec-
tion VI-A shows the comparison among the proposed model
and benchmarks based on existing works. Section VI-B shows
the comparison between the case considering all the possible
VNF visit order patterns and those limiting the number of or-
der patterns considered in the ILP model. Section VI-C shows
the evaluation of heuristic algorithms. In Sections VI-A–VI-C,
we evaluate the basic performances of the proposed model and
heuristic algorithms by using artificial values of parameters.
Section VI-D shows the evaluation in realistic situations where
the parameters of requests and VNFs are set based on data
shown in [6], [12], [26]–[32].

A. Comparison with existing works

This section compares the performance of the proposed
model and those of benchmarks based on existing works. One
benchmark is a model that assumes the traffic amount to be
constant between the endpoints, which is based on the models
in [6]–[8]. We call this benchmark a constant traffic (CT)
model hereafter. In the CT model, the transmission capacity
of each request needs to be set to the maximum value in the
traffic changes due to the required VNFs. This means that the
CT model reserves the transmission capacity of each request
more than actually needed when any VNF changes the traffic
amount. The other is a model that considers traffic changes
and selects request routes from among candidates obtained
with a k-shortest path algorithm, which is based on the model
in [10]. The k-shortest path algorithm is applied individually to
each request since the source and destination can vary among
requests. We call this benchmark a k-shortest path algorithm
based (KSP) model hereafter.

We use two network topologies in this evaluation. One is
a network topology that has six nodes and eight links as
shown in Fig. 3(a). This network topology is called the 6-
node 8-link network hereafter. The other is NSFNET [33],
which is shown in Fig. 3(b). We assume a set of VNFs
F = {f0, f1, f2, f3, f4}. The traffic change rates of f0, f1,
f2, f3, and f4, are 0.5, 0.7, 1.0, 1.5, and 2.0, respectively.
Each request randomly chooses at least three and at most five
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Fig. 3. Network topologies.

VNFs in F without overlap. Visit order constraints are set as
follows:

• f0 has to be passed through after f2 if both of them are
required.

• f4 has to be passed through after f1 if both of them are
required.

Visit order of each request is determined with Ma’s algorithm
with k = 1.

The maximum transmission capacity of each link is 200, i.e.,
bl = 200. The link utilization cost of each link is 1 per unit of
transmission capacity, i.e., Ψl = 1. The number of CPU cores
attached to each node is 20, i.e., cv = 20. The VNF placement
cost of each VNF is 10, i.e., Ψf = 10. The number of CPU
cores that each VNF requires per unit of transmission capacity
is 0.1, i.e., ∆f = 0.1. The initial transmission capacity of each
request is 1. The total cost in the case of considering traffic
amount changes is obtained by solving the ILP model in (29)–
(32) as it is. For the case of constant traffic amount, the total
cost is obtained by solving an ILP model that corresponds
to (29)–(32); the transmission capacity of r ∈ R is represented
by Dr, where Dr = max0≤i≤nr

Di
r, and Di

r represents the
transmission capacity that must be reserved for r ∈ R on the
ith layer. The ILP models are solved with CPLEX Interactive
Optimizer 12.8.0.0 [34] on a computer equipped with Intel
Xeon CPU E3-1270 and 64 GB of RAM. We set the limit
computation time to 1000 seconds.

The traffic change rates of VNFs are set so that the set
of VNFs includes both traffic-decreasing VNFs and traffic-
increasing VNFs along with a VNF that does not change the
traffic amount. The maximum transmission capacity of each
link, bl, and the number of CPU cores on each node, cv , are set
to sufficient numbers so that we can obtain a feasible solution.
The link utilization cost, Ψl, and the VNF placement cost, Ψf ,
are set to the same values to the simulation settings in [8].
The number of CPU cores that each VNF requires per unit of
transmission capacity, ∆f , is set according to the setting in [8],
where the processing capacity of each VNF is 10; ∆f = 0.1
is the reciprocal of 10.

Figs. 4(a) and 4(b) show the computation time and the total
cost, respectively, for each case on the 6-node 8-link network.
The maximum number of route candidates obtained with the
k-shortest path algorithm in the KSP model is set to eight,
which is the maximum number of paths that can be found
between two different nodes on the 6-node 8-link network.
The computation time of the CT model is larger than those of
the proposed model and the KSP model. The proposed model
cuts the total cost by 33.1% and 0.9% compared to the CT
model and the KSP model, respectively, when the number of

(a) Comparison of computation time. (b) Comparison of total cost.

Fig. 4. Comparison with existing works on 6-node 8-link network.

(a) Comparison of computation time. (b) Comparison of total cost.

Fig. 5. Comparison with existing works on NSFNET.

requests is set to 35. The proposed model cuts the total cost
by 0.9% compared to the KSP model when the number of
requests is set to 50.

Figs. 5(a) and 5(b) show the computation time and the total
cost, respectively, for each case on NSFNET. The maximum
number of route candidates obtained with the k-shortest path
algorithm in the KSP model is set to 8 and 16. The proposed
model cuts the total cost by 23.2%, 10.9%, and 10.9% com-
pared to the CT model, the KSP model with up to 8 paths,
and the KSP model with up to 16 paths, respectively, when
the number of requests is set to 15. The proposed model cuts
the total cost by 8.8% compared to the KSP model with up to
8 paths when the number of requests is set to 30.

These results show that considering the VNF traffic changes
reduces the consumption of network and computation re-
sources compared to the case of assuming constant traffic. In
addition, the total cost can be suppressed by allowing looping
routes.

Note that the computation time of the ILP problem does
not always increase by an increase in the number of requests.
CPLEX optimizer uses a branch and cut algorithm [35] when
it solves an ILP problem. In the branch and cut algorithm,
CPLEX optimizer solves continuous relaxation subproblems
that are managed in a tree. The running time of the branch and
cut algorithm depends on the number of subproblems that need
to be solved and the computation time of each subproblem.
The tree of subproblems is extended by branch generations,
which are processes that create multiple new subproblems
by substituting different integers into a certain variable of a
parent subproblem. The number of subproblems exponentially
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increases in each branch generation according to the number
of variables if there is no additional action to efficiently
search subproblems. In the branch and cut algorithm, some
constraints, namely cuts, are added to subproblems in order
to avoid a solution that includes non-integer variables; cuts
generally reduce the necessary number of branches, i.e., the
number of subproblems. This means that the computation time
does not necessarily increase depending on the size of the
problem.

B. Evaluation of order pattern limitation

This section compares the performance of the proposed
model achieved when considering all visit order patterns with
that when the number of visit order patterns is limited.

1) Computation time and total cost: We use the 6-node 8-
link network shown in Fig. 3(a) and NSFNET. We assume the
same set of five VNFs, F , and visit order constraints shown
in Section VI-A. Each request randomly chooses at least
three and at most five VNFs in F without overlap. Network
parameters such as the maximum transmission capacity of
each link, the number of CPU cores of each node, the link
utilization cost, and the VNF placement cost are set to the
values shown in Section VI-A. The maximum transmission
capacity of each link and the number of CPU cores on each
node are set to sufficient numbers so that we can obtain a
feasible solution. The initial transmission capacity of each
request is 1.

Let jr1 and jr2 be visit order patterns of r ∈ R obtained with
Ma’s algorithm by setting k = 1 and k = 2, respectively. In
evaluating the 6-node 8-link network, we compare five cases:
ILPall: The ILP model in (15)–(28) where Jr includes

all possible order patterns for each request
ILPrdc: The ILP model in (15)–(28) where Jr = {jr1 , jr2}

for each request
ILPprd1: The ILP model in (29)–(32) with Jr = {jr1} for

each request
ILPprd2: The ILP model in (29)–(32) with Jr = {jr2} for

each request
ILPprdmix: The ILP model in (29)–(32) with the visit order

obtained by solving the ILP model in (33)–(35)
with Jr = {jr1 , jr2} for each request

In evaluating NSFNET, we compare three cases: ILPprd1,
ILPprd2, and ILPprdmix. These evaluations determine the
average values of computation time and total cost in ten
scenarios. We set the limit computation time to 1000 seconds.
The computation environment is the same as that shown in
Section VI-A.

Figs. 6(a) and 6(b) show the computation time and the total
cost for each case on the 6-node 8-link network, respectively.
The results in ILPall when the number of requests is set to 5 or
more and those in ILPrdc when the number of requests is set to
25 or more are not shown as their computation time exceeded
1000 seconds. The total cost in ILPall, which considers all
possible order patterns, is the optimal total cost in the proposed
model. ILPrdc, ILPprd1, ILPprd2, and ILPprdmix, which limit
the number of order patterns, shorten the computation time
compared to ILPall. ILPprd1, ILPprd2, and ILPprdmix, which

(a) Comparison of computation time. (b) Comparison of total cost.

Fig. 6. Evaluation of order pattern limitation on 6-node 8-link network.

(a) Comparison of computation time. (b) Comparison of total cost.

Fig. 7. Evaluation of order pattern limitation on NSFNET.

consider only one order pattern for each request in the ILP
model, shorten the computation time compared to ILPrdc.
The total costs in ILPrdc, ILPprd1, ILPprd2, and ILPprdmix

increase by at most 0.4% compared to ILPall when the number
of requests is set to 4. The total costs in cases ILPprd1,
ILPprd2, and ILPprdmix increase by 4.4%, 0.2%, and 0.2%
compared to ILPrdc, respectively, when the number of requests
is 20. ILPprdmix yields less cost than ILPprd1 and ILPprd2

when the number of requests is set to 25 or more.
Figs. 7(a) and 7(b) show the computation time and the total

cost for each case on NSFNET, respectively. The computation
time in each NSFNET case is longer than that on the 6-node
8-link network because of the increased number of nodes and
links. ILPprdmix yields less cost than the other cases when the
number of requests is set to 15 or more.

These results show that the computation time can be short-
ened by limiting the number of order patterns considered
in the ILP model, especially when the visit order of each
request is predetermined; the penalty is an increase in total
cost. Moreover, we can expect to lower the total cost by using
the ILP model in (33)–(35) to select the visit order rather than
using Ma’s algorithm, where k is set to the same value for all
requests.

2) Number of feasible scenarios: The limitation in the
number of order patterns can cause an inefficient combination
of visit orders among requests. Some requests may need to
make a detour in order to share the same VNF instance with
others; this leads to an increase in the reserved transmission
capacity. On the other hand, some requests may avoid sharing
VNF instances with others in order to suppress the reserved
transmission capacity by shortening the routes or passing
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(a) cv = 1. (b) cv = 2.

Fig. 8. Number of feasible scenarios out of 100 scenarios.

through traffic-decreasing VNFs; this leads to an increase in
the number of used CPU cores. Therefore, if the maximum
transmission capacity of each link and the number of CPU
cores on each node are limited, no feasible solution that
accommodates all requests on the network can be obtained.

We evaluate the number of feasible scenarios when the
number of order patterns is limited. We compare five cases:
ILPall, ILPrdc, ILPprd1, ILPprd2, and ILPprdmix. 100 scenar-
ios are randomly generated in terms of the source node, the
destination node, and required VNFs of each request. Note that
the number of feasible scenarios with ILPall, which considers
all possible order patterns, is the maximum number of feasible
scenarios in the proposed model. The evaluation is conducted
on the 6-node 8-link network where the number of request
is two. We vary the maximum transmission capacity of each
link, bl, from 0.1 to 1.5 at an interval of 0.1. We conduct the
evaluation in two circumstances where the number of CPU
cores on each node, cv , is set to one and two.

Fig. 8 shows the number of feasible scenarios out of 100
scenarios. Figs. 8(a) and 8(b) show the results when cv = 1
and cv = 2, respectively. There is no feasible scenario when
bl ≤ 0.5, cv = 1 or when bl ≤ 0.3, cv = 2. We observe
that there are several scenarios where no feasible solution can
be obtained if the number of visit order patterns is limited,
whereas the optimal solution is obtained with ILPall when
0.7 ≤ bl ≤ 1.0, cv = 1 or 0.4 ≤ bl ≤ 0.9, cv = 2. For
example, when bl = 0.7, cv = 1, there are 32 feasible scenar-
ios with ILPall. On the other hand, the numbers of feasible
scenarios with ILPrdc, ILPprd1, ILPprd2, and ILPprdmix are
25, 25, 4, and 25, respectively. When bl = 1.5, cv = 1 or
bl ≥ 1.0, cv = 2, all of the 100 scenarios are feasible with
ILPall, ILPrdc, ILPprd1, ILPprd2, and ILPprdmix. In addition,
we observe that the numbers of feasible scenarios with ILPrdc,
ILPprd1, ILPprd2, and ILPprdmix in cv = 2 are larger than
those in cv = 1 when 0.4 ≤ bl ≤ 1.4. In particular, when
1.0 ≤ bl ≤ 1.4, all of the 100 scenarios are feasible in cv = 2,
while there are at least 10 infeasible scenarios in cv = 1.
The results indicate that we can obtain feasible solutions in
a shorter time with ILPrdc, ILPprd1, ILPprd2, and ILPprdmix

than with ILPall if the maximum transmission capacity of each
link and the number of CPU cores on each node are set to
sufficient values.

C. Evaluation of heuristic algorithms

This section compares the performance of the greedy al-
gorithm and the PD algorithm including its variation, PD-TC,
with ILPprd1, ILPprd2, and ILPprdmix shown in Section VI-B.
In this evaluation, ngrd is set to one and five. The greedy
algorithm randomly picks ngrd requests from R at line 4
of Algorithm 1. We set the limit computation time to 1000
seconds. We evaluate in three conditions in terms of the visit
order constraints. Results shown in this section are obtained
with a 95% confidence interval that is not greater than 5% of
the average values in terms of the total costs.

1) Partially-ordered (traffic-decreasing VNFs are required
before traffic-increasing ones): We set visit order constraints
as follows here:

• f0 has to be passed through after f2 if both of them are
required.

• f4 has to be passed through after f1 if both of them are
required.

These constraints are the same with those shown in Sec-
tion VI-A. Figs. 9(a) and 9(b) show the computation time and
the total cost, respectively, on the 6-node 8-link network. Fig. 9
shows the average values in 20 trials. The computation times
of the greedy algorithm with ngrd = 1, that with ngrd = 5,
and PD-TC are shorter than those of ILPprd1, ILPprd2, and
ILPprdmix when the number of requests is 15 or more. The
computation time of PD exceeds those of ILPprd1, ILPprd2,
and ILPprdmix when the number of requests is 5 and 10, and
those of ILPprd1 and ILPprd2 when the number of requests
is 40. The total costs obtained with the greedy algorithm with
ngrd = 1, that with ngrd = 5, PD, and PD-TC increase by
56.0%, 32.1%, 35.1%, and 13.4% compared to ILPprdmix,
respectively, when the number of requests is 50.

Figs. 10(a) and 10(b) show the computation time and the
total cost, respectively, on NSFNET. Fig. 10 shows the average
values in 40 trials when the number of requests is 10, in 30
trials when the number of requests is 15, and in 20 trials
in other cases. The result of ILPprdmix when the number of
requests is 40 is not shown since the computation time exceeds
1000 seconds, the limit computation time. The computation
times of the greedy algorithm with ngrd = 1, that with
ngrd = 5, PD, and PD-TC are shorter than those of ILPprd1,
ILPprd2, and ILPprdmix when the number of requests is 15
or more. The total costs obtained with the greedy algorithm
with ngrd = 1, that with ngrd = 5, PD, and PD-TC increase
by 54.5%, 31.1%, 23.3%, and 23.3% compared to ILPprd2,
respectively, when the number of requests is 40.

We observe that the total cost obtained with the greedy
algorithm with ngrd = 1 is the largest when the number of
requests is 10 or more on both the 6-node 8-link network and
NSFNET. This is because the greedy algorithm with ngrd = 1
determines request routes and VNF placement with only one
request for each iteration and does not consider the remaining
requests. This leads to inefficiency in terms of request routes
and VNF placement. The total cost is expected to decrease as
ngrd increases since more requests are considered in the ILP
model in (29)–(32) at a time. In fact, the total cost obtained
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(a) Comparison of computation time. (b) Comparison of total cost.

Fig. 9. Evaluation of heuristic algorithms on 6-node 8-link network (traffic-
decreasing VNFs are required before traffic-increasing ones).

(a) Comparison of computation time. (b) Comparison of total cost.

Fig. 10. Evaluation of heuristic algorithms on NSFNET (traffic-decreasing
VNFs are required before traffic-increasing ones).

with the greedy algorithm with ngrd = 5 is always smaller
than that with ngrd = 1.

We also observe that the total cost obtained with PD is
larger than that obtained with PD-TC when the number of
requests is 15 or more on the 6-node 8-link network and when
the number of requests is 25 or more on NSFNET. This is
because PD tends to place VNFs on nodes those are in the
middle between the source and the destination of a request.
The number of hops between the source and the node on which
the first VNF is placed can be larger than that with PD-TC.
Similarly, the number of hops between the destination and the
node on which the final VNF is placed can be larger than that
with PD-TC. These behaviors of PD can cause an increase
in the total cost since the sum of reserved link capacity can
increase.

2) Partially-ordered (traffic-increasing VNFs are required
before traffic-decreasing ones): We set visit order constraints
as follows here:

• f0 has to be passed through after f3 if both of them are
required.

• f1 has to be passed through after f4 if both of them are
required.

Figs. 11(a) and 11(b) show the computation time and the
total cost, respectively, on the 6-node 8-link network. Fig. 11
shows the average values in 30 trials when the number of
requests is 10 and in 20 trials in other cases. The computation
times of the greedy algorithm with ngrd = 1, that with ngrd =

5, PD, and PD-TC are shorter than those of ILPprd1, ILPprd2,
and ILPprdmix when the number of requests is 10 or more. The
total costs obtained with the greedy algorithm with ngrd = 1,
that with ngrd = 5, PD, and PD-TC increase by 37.7%, 21.2%,
38.0% and 15.1% compared to ILPprdmix, respectively, when
the number of requests is 50.

Figs. 12(a) and 12(b) show the computation time and the
total cost, respectively, on NSFNET. Fig. 12 shows the average
values in 30 trials when the number of requests is 5 and
10 and in 20 trials in other cases. The results of ILPprd1,
ILPprd2, and ILPprdmix when the number of requests is 30 or
more are not shown since the computation time exceeds 1000
seconds, the limit computation time. The computation times of
the greedy algorithm with ngrd = 1, that with ngrd = 5, PD,
and PD-TC are shorter than those of ILPprd1, ILPprd2, and
ILPprdmix when the number of requests is 10 or more. The
total costs obtained with the greedy algorithm with ngrd = 1,
that with ngrd = 5, PD, and PD-TC increase by 36.1%, 16.9%,
31.1% and 33.4% compared to ILPprdmix, respectively, when
the number of requests is 25.

We observe that the total cost obtained with the greedy
algorithm with ngrd = 5 is always smaller than that obtained
with PD and PD-TC on NSFNET, which is different from
the results shown in Sections VI-C1 and VI-C3. In the case
applying the greedy algorithm with ngrd = 5, VNFs tend
to be concentratedly placed on fewer nodes than the cases
with PD and PD-TC. Some requests pass through all of their
required VNFs on a particular node. On the other hand, in the
cases with PD and PD-TC, VNFs tend to be distributed since
PD and PD-TC place VNFs on nodes near the source or the
destination of requests. This can cause roundabout and round-
trip routes. When we set visit order constraints such that a
traffic-increasing VNF is required before a traffic-decreasing
one, the traffic increased by the former VNF is forwarded to
the latter VNF. If the two VNFs are placed on different nodes,
links between the nodes need to reserve transmission capacity
for the increased traffic. These aspects lead to increases in the
total costs obtained with PD and PD-TC.

The difference in total costs between PD and PD-TC varies
depending on the network size. The total cost obtained with
PD is larger than that with PD-TC by 14.7% on the 6-node 8-
link network when the number of requests is 40. On the other
hand, the total cost obtained with PD is larger than that with
PD-TC by 2.2% on NSFNET when the number of requests
is 40. These results indicate that the relative difference in
total costs between PD and PD-TC on NSFNET is smaller
than that on the 6-node 8-link network. This is because the
sources or the destinations of requests can be distributed and
be distant from each other on a larger network. This leads to
an increase in the number of hops between the source and
the node on which VNFs are placed. Similarly, the number
of hops between the destination and the node on which VNFs
are placed can increase.

3) Non-ordered: We set no visit order constraint here.
Figs. 13(a) and 13(b) show the computation time and the

total cost, respectively, on the 6-node 8-link network. Fig. 13
shows the average values in 20 trials. We do not show the
results in ILPprd2 and ILPprdmix since the visit orders in these
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(a) Comparison of computation time. (b) Comparison of total cost.

Fig. 11. Evaluation of heuristic algorithms on 6-node 8-link network (traffic-
increasing VNFs are required before traffic-decreasing ones).

(a) Comparison of computation time. (b) Comparison of total cost.

Fig. 12. Evaluation of heuristic algorithms on NSFNET (traffic-increasing
VNFs are required before traffic-decreasing ones).

cases are the same to that in ILPprd1; the total costs are also
the same. The computation times of the greedy algorithm with
ngrd = 1, that with ngrd = 5, PD, and PD-TC are shorter than
that of ILPprd1 when the number of requests is 20 or more.
The total costs obtained with the greedy algorithm with ngrd =
1, that with ngrd = 5, PD, and PD-TC increase by 60.9%,
36.1%, 30.5%, and 15.0% compared to ILPprd1, respectively,
when the number of requests is 50.

Figs. 14(a) and 14(b) show the computation time and the
total cost, respectively, on NSFNET. Fig. 14 shows the average
values in 30 trials when the number of requests is 20 and in
20 trials in other cases. The computation times of the greedy
algorithm with ngrd = 1, that with ngrd = 5, PD, and PD-TC
are shorter than that of ILPprd1 when the number of requests is
15 or more. The total costs obtained with the greedy algorithm
with ngrd = 1, that with ngrd = 5, PD, and PD-TC increase
by 55.1%, 32.3%, 24.3%, and 17.3% compared to ILPprd1,
respectively, when the number of requests is 40.

D. Evaluation in realistic situations

This section compares the performances of the greedy
algorithm with ngrd = 5 and PD-TC in realistic situations.
In this evaluation, we use five types of service chains shown
in Table V. The demand shown in Table V is the ratio of
the traffic amount of a service to the total traffic amount.
For example, the sum of the traffic of the web service is
120 GB when the total traffic amount is 1 TB. The number

(a) Comparison of computation time. (b) Comparison of total cost.

Fig. 13. Evaluation of heuristic algorithms on 6-node 8-link network (non-
ordered).

(a) Comparison of computation time. (b) Comparison of total cost.

Fig. 14. Evaluation of heuristic algorithms on NSFNET (non-ordered).

of requests for each service is determined by solving the
following simultaneous equations:∑

s∈S

xs = |R|, (44)∑
s∈S

Dsxs = Dtotal, (45)

Dsxs = PsDtotal, ∀s ∈ S. (46)

S is a set of service types. xs is a variable that represents
the number of requests for service s ∈ S. Note that xs can
be a non-integer number. Ds is the transmission capacity of
s ∈ S. Ps is the demand of s ∈ S. Dtotal is a variable that
represents the total traffic amount. Equation (44) represents
that the sum of the number of requests for each service is
|R|, the number of requests. Equation (45) represents that the
sum of the traffic amount of each service is the total traffic
amount. Equation (46) represents that the traffic amount of
s ∈ S is the product of the demand of s and the total traffic
amount. After the simultaneous equations are solved, we round
xs down to the nearest integer x′

s. If
∑

s∈S x′
s is less than

|R|, we randomly select one service s′ and increment x′
s′ . We

iterate this until
∑

s∈S x′
s becomes |R|.

Table VI shows the number of required CPU cores and
the throughput of VNFs. We assume that a NAT VNF and
a firewall (FW) VNF are combined into one VNF according
to Juniper vSRX virtual firewall, which also includes NAT
function [26], [28]. We call this combined VNF a NAT-FW.
Note that a file sharing request is assumed to pass through a
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FW VNF and a NAT VNF independently. In this evaluation,
we assume that a FW for a file sharing is executed by a NAT-
FW which can be shared with other services. On the other
hand, we assume that a NAT VNF for a file sharing cannot
be shared with other services. We refer to a NAT VNF for a
file sharing as NAT-FW2, which is identical with a NAT-FW
except that a NAT-FW2 is used by only file sharing requests.
∆f , the number of CPU cores that VNF f requires, can be
determined by dividing the number of required CPU cores by
the throughput. For example, ∆NAT-FW = 1/Gbps since the
number of CPU cores that a NAT-FW requires is two and the
throughput of a NAT-FW is 2 Gbps.

The traffic change rate of a WAN optimization controller
(WOC) VNF is set to 0.2 according to the Citrix NetScaler
SD-WAN WAN optimizer, which reduces the traffic amount
by 80% [36]. The traffic change rate of a video optimization
controller (VOC) VNF is set to 0.5 according to Akamai Image
and Video Manager, which reduces the file size by 50% when
it converts the video from MP4 (H.264) to MP4 (H.265) or
WebM (V9) [37]. The traffic change rate of a traffic monitor
(TM) VNF is set to 1.0 since it does not affect the transmission
capacity of a request. A firewall VNF, an intrusion detection
prevention system (IDPS) VNF, and a deep packet inspection
(DPI) VNF discard the packets against the security policies
of the VNFs. Therefore, the traffic change rates of a NAT-
FW, an IDPS VNF, and a DPI VNF is 1.0 for the admitted
traffic and 0 for the rejected traffic. In this evaluation, we
fix the traffic change rates of a NAT-FW, an IDPS VNF,
and a DPI VNF to 1.0 as with the experiment conducted
in [4], that is, we assume that all packets are admitted. A
traffic shaper (TS) VNF buffers the data if the traffic amount
exceeds the threshold. The buffered data are sent when the
traffic amount decreases below the threshold. If there is no
remaining buffer space, the excessive data are discarded. The
transmission capacity required to be reserved for the service
can be reduced by using a TS VNF. In this evaluation, we
assume that a TS VNF suppresses the required transmission
capacity of the egress flow to 80% of that of the ingress flow;
the traffic change rate of a TS VNF is set to 0.8.

Visit order constraints are set as follows:
• A WOC VNF has to be passed through after a NAT-FW

if both of them are required.
• An IDPS VNF has to be passed through after a WOC

VNF if both of them are required.
• An IDPS VNF has to be passed through after a VOC

VNF if both of them are required.
• A TS VNF has to be passed through after a DPI VNF if

both of them are required.
• A NAT-FW2 has to be passed through after an IDPS VNF

if both of them are required.
We vary the number of requests, |R|, from 100 to 1000 at

an interval of 100. Note that, in the case where all five services
are provisioned for all source-destination pairs on NSFNET,
the number of requests is 14 × 13 × 5 = 910; we set the
maximum number of |R| to 1000 so that it is larger than the
number of possible request patterns.

The maximum transmission capacity of each link is
10 Gbps, i.e., bl = 10Gbps. The number of CPU cores

attached to each node is 20, i.e., cv = 20. Similar to the
evaluations in Sections VI-A–VI-C, the maximum transmis-
sion capacity of each link and the number of CPU cores
on each node are set to sufficient numbers so that we can
obtain a feasible solution. The link utilization cost and the
VNF placement cost depend on how network service providers
configure the network system. Therefore, we evaluate the
performances of the greedy algorithm and PD-TC by varying
the values of Ψl, the link utilization cost of each link, and
Ψf , the VNF placement cost of each VNF. We use NSFNET
in this section. The results shown in this section are obtained
with a 95% confidence interval that is not greater than 5% of
the average values in terms of the total costs.

First, we set Ψl = 1/Mbps and Ψf = 10. Figs. 15(a)
and 15(b) show the computation time and the total cost,
respectively. Fig. 15 shows the average values in 70 trials
when |R| = 100, in 60 trials when the number of requests
is |R| = 200, in 50 trials when 300 ≤ |R| ≤ 600, and
in 40 trials in other cases. The computation time of PD-TC
is shorter than that of the greedy algorithm by 88.1% when
|R| = 1000. The total cost obtained with PD-TC is smaller
than that with the greedy algorithm by 2.8% when |R| = 1000.
The proportions of the link utilization cost to the total cost
obtained with the greedy algorithm and PD-TC are 89.8%
and 91.8%, respectively, when |R| = 1000. In the rest of
this section, we discuss the numerical results by using these
results as the baseline values.

Next, we set Ψl = 10/Mbps and Ψf = 10; Ψl is ten times
larger than that in the case shown in Fig. 15 for all links in
L. Figs. 16(a) and 16(b) show the computation time and the
total cost, respectively. Fig. 16 shows the average values in
90 trials when |R| = 100, in 70 trials when |R| = 100, in 60
trials when 300 ≤ |R| ≤ 600, in 50 trials when |R| = 700,
and in 40 trials in other cases. The total cost obtained with
the greedy algorithm and PD-TC are 4.6 times and 9.3 times,
respectively, larger than the case of Fig. 15 when |R| = 1000.
The proportion of the link utilization cost to the total cost
obtained with the greedy algorithm is larger by 0.6 percentage
point than the case of Fig. 15 when |R| = 1000. On the other
hand, the proportion of the link utilization cost to the total
cost obtained with PD-TC is larger by 7.3 percentage point
than the case of Fig. 15. The reason is explained as follows.
The greedy algorithm determines VNF placement and request
routes at a time for each ngrd requests. When Ψl increases,
the greedy algorithm tends to deploy more VNF instances so
that the total number of hops, and thus, the link utilization
cost can be suppressed. For example, the link utilization cost
is 4.7 times but not 10 times larger than the case of Fig. 15
when |R| = 1000; this indicates that the link utilization cost
is suppressed with the increase in the CPU utilization cost.
On the other hand, PD-TC determines request routes after
VNF placement is obtained in each iteration. Furthermore,
PD-TC tends to deploy VNFs so that the total number of
used CPU cores is as small as possible since the while loop
of determining VNF placement and request routes in PD-TC
starts from the minimum number of CPU cores obtained with
the ILP problem in (33)–(35). This leads to increase in the
number of hops between the source and the node where traffic-
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TABLE V
SERVICE CHAINS (EVALUATION IN REALISTIC SITUATIONS) [6], [12],

[29], [30].

Service Required VNFs Transmission
capacity Demand

Web service NAT-FW-TM-WOC-IDPS 100 kbps 12%
VoIP NAT-FW-TM-FW-NAT 64 kbps 11%

Video streaming NAT-FW-TM-VOC-IDPS 4 Mbps 71%
Online gaming NAT-FW-VOC-WOC-IDPS 4 Mbps 4%

File sharing DPI-TS-FW-IDPS-NAT 5 Mbps 2%

TABLE VI
NUMBER OF REQUIRED CPU CORES AND THROUGHPUT OF VNFS

[26]–[28], [31], [32].

VNF Number of
CPU cores Throughput

NAT-FW 2 2 Gbps
TM 1 1 Gbps

WOC 1 0.5 Gbps
IDPS 4 1 Gbps
VOC 2 2 Gbps
DPI 1 10 Gbps
TS 1 1 Gbps

decreasing VNFs are placed, and thus, leads to increase in the
link utilization cost. For example, the link utilization cost is
10 times larger than the case of Fig. 15 when |R| = 1000;
this corresponds to that Ψl is 10 times larger.

Finally, we set Ψl = 1/Mbps and Ψf = 100; Ψf is ten
times larger than that in the case shown in Fig. 15 for all VNFs
in F . Figs. 17(a) and 17(b) show the computation time and
the total cost, respectively. Fig. 17 shows the average values
in 80 trials when |R| = 100, in 60 trials when |R| = 200,
in 50 trials when 300 ≤ |R| ≤ 600, and in 40 trials in other
cases. The total cost obtained with the greedy algorithm and
PD-TC are 2.0 times and 1.7 times, respectively, larger than
the case of Fig. 15 when |R| = 1000. The proportions of
the link utilization cost to the total cost obtained with the
greedy algorithm and PD-TC are smaller by 30.3 and 39.1
percentage points, respectively, than the case of Fig. 15 when
|R| = 1000. The reason is explained as follows. Both the
greedy algorithm and PD-TC tend to deploy VNFs so that the
total number of used CPU cores is as small as possible when
Ψf increases. Indeed, the number of used CPU cores obtained
with the greedy algorithm is the same with that obtained with
PD-TC; the difference in the total cost comes only from the
difference in the link utilization cost. The greedy algorithm
first determines the optimal VNF placement for the first ngrd

requests. The rest of the requests tend to pass through the VNF
instances which the first ngrd requests pass through in order
not to increase the number of used CPU cores. This can cause
inefficiency in the link utilization for the requests other than
the first ngrd requests. On the other hand, PD-TC determines
the VNF placement for all requests at a time so that the traffic-
decreasing VNFs are placed on the nodes near to the request
sources.

E. Large-size networks

We additionally conduct the evaluation by using three large-
size networks, namely BICS, Viatel, and US Carrier [38],

(a) Comparison of computation
time.

(b) Comparison of total cost.

Fig. 15. Evaluation in realistic situations (NSFNET, Ψl = 1/Mbps, Ψf =
10).

(a) Comparison of computation
time.

(b) Comparison of total cost.

Fig. 16. Evaluation in realistic situations (NSFNET, Ψl = 10/Mbps, Ψf =
10).

which are shown in Figs. 18, 19, and 20, respectively. The
evaluation settings other than the network topology are the
same as those in Section VI-D.

Fig. 21 shows the computation time and the total cost in
Ψl = 1/Mbps and Ψf = 10 on BICS. The computation time
with the greedy algorithm on BICS is 7.0 times larger than
that on NSFNET when |R| = 200. The computation time with
PD-TC on BICS is 2.3 times larger than that on NSFNET
when |R| = 1000. Compared to the results on NSFNET,
the computation time with both algorithms increases due to
the increase of network size. The total cost with the greedy
algorithm on BICS is 1.2 times larger than that on NSFNET
when |R| = 200. Specifically, the link utilization cost and the
CPU utilization cost with the greedy algorithm on BICS are
1.3 and 1.2 times, respectively, larger than those on NSFNET;
both link utilization cost and CPU utilization cost have an
impact on the increase in the total cost. On the other hand,
the total cost with PD-TC on BICS is 1.3 times larger than
that on NSFNET when |R| = 1000. The CPU utilization cost
with PD-TC on BICS when |R| = 1000 is the same as that on
NSFNET; the increase in the total cost is due to the increase
in the link utilization cost.

Fig. 22 shows the computation time and the total cost in
Ψl = 1/Mbps and Ψf = 10 on Viatel. The results with the
greedy algorithm are not shown since the computation time
exceeds 1000 seconds. The computation time with PD-TC on
Viatel is 6.6 times larger than that on NSFNET when |R| =
1000. The total cost with PD-TC on Viatel is 4.8 times larger
than that on NSFNET when |R| = 1000.

Fig. 23 shows the computation time and the total cost in
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(a) Comparison of computation
time.

(b) Comparison of total cost.

Fig. 17. Evaluation in realistic situations (NSFNET, Ψl = 1/Mbps, Ψf =
100).

Fig. 18. BICS.

Ψl = 1/Mbps and Ψf = 10 on US Carrier. The results with
the greedy algorithm are not shown since the computation time
exceeds 1000 seconds. The computation time with PD-TC on
US Carrier is 15.7 times larger than that on NSFNET when
|R| = 600. The total cost with PD-TC on US Carrier is 3.2
times larger than that on NSFNET when |R| = 600. The total
cost with PD-TC on US Carrier is smaller by 10.2% than
that on Viatel when |R| = 600, whereas the number of nodes
and links on US Carrier are 1.7 and 2.0 times, respectively,
larger than those on Viatel. This is because the average number
of hops between two nodes on US Carrier is smaller than
that on Viatel; those on US Carrier and Viatel are 12.1 and
13.1, respectively. The increase in the number of hops leads
to the increase in the link utilization cost. Note that the CPU
utilization costs on US Carrier and Viatel are the same with
each other when |R| = 600.

VII. CONCLUSION

This paper proposed a service chain provisioning model
that considers the traffic changes created by VNFs while
determining the VNF visit order of each request, route, and
VNF placement flexibly. The proposed model expresses the
traffic amounts changed by VNFs by using a logical layered
network model, which also relaxes routing constraints. When
the traffic amounts are given as decision variables and parame-
ters of visit order constraints are introduced to the optimization
problem, the objective function and some constraints become
non-linear. In order to formulate service chain provisioning as
an ILP problem, the traffic amount on each layer is given as
constants by calculating the values in advance. It is difficult to
obtain the optimal solution in practical time if we consider all
possible visit order patterns. Therefore, we introduced three
methods of limiting the number of visit order patterns so

Fig. 19. Viatel.

Fig. 20. US Carrier.

as to shorten the computation time; the methods use Ma’s
algorithm. In order to handle a problem that is intractable
with the ILP model, we introduced a greedy algorithm and an
algorithm that divides the problem into the VNF placement
part and the routing part. Numerical results showed that the
total cost can be reduced by 34.4% when considering VNF
traffic changes than when assuming constant traffic amounts.
The results also showed that the computation time can be
shortened by limiting the number of order patterns considered
in the ILP model, especially when the visit order of each
request is predetermined, with at most 0.4% of increase in the
total cost. We observed that one of the heuristic algorithms,
PD-TC, decreases the computation time with at most 23.3%
of increase in the total cost compared to the case where we
solve the ILP model.

APPENDIX A
NUMBER OF DECISION VARIABLES WITH AUGMENTED

NETWORK

Sasabe et al. [12] presented an augmented network, which
allows request routes to make loops similarly to a logical
layered network. An augmented network has imaginary nodes
that correspond to required VNFs. For example, imaginary
nodes vf and vg in Fig. 2(c) correspond to VNFs f and
g, respectively. A virtual link connects a physical node and
an imaginary node. Each imaginary node is connected to all
physical nodes by virtual links. An augmented network allows
looping routes by considering subpaths. The service path of
request r on an augmented network consists of nr+1 subpaths,
where nr is the number of required VNFs. The source of the
first subpath is the source of the request. The destination of
the (nr + 1)th subpath is the destination of the request. The
destination of the ith subpath and the source of the ith subpath
is imaginary node vfr

i
, where fr

i is the ith VNF of r. The
ingress flow of the ith subpath to vfr

i
and the egress flow of
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(a) Comparison of computation
time.

(b) Comparison of total cost.

Fig. 21. Evaluation in realistic situations (BICS, Ψl = 1/Mbps, Ψf = 10).

(a) Comparison of computation
time.

(b) Comparison of total cost.

Fig. 22. Evaluation in realistic situations (Viatel, Ψl = 1/Mbps, Ψf = 10).

the (i + 1)th subpath from vfr
i

must pass through the same
virtual link connected to vfr

i
.

We discuss the number of decision variables when an logical
layered network or an augmented network is adopted to the
proposed model. Let Gaug represent an augmented network.
V + is a set of nodes in Gaug. Laug is a set of links in Gaug. vr,is

and vr,id are the source and the destination of the ith subpath
for r, respectively. vf is the imaginary node corresponding to
f ∈ F . fr

i is the ith VNF for r. An augmented network based
ILP model for requests whose visit orders are predetermined
is formulated as follows:

minimize
∑
r∈R

∑
l∈L

nr∑
i=0

Di
rϕ

r,i
l Ψl +

∑
v∈V

∑
f∈F

Af
vΨf , (47)

∑
l∈ω+(vr,i

s )

ϕr,i
l = 1, ∀r ∈ R, 0 ≤ i ≤ nr, (48)

∑
l∈ω−(vr,i

d )

ϕr,i
l = 1, ∀r ∈ R, 0 ≤ i ≤ nr, (49)

∑
l∈ω+(v)

ϕr,i
l =

∑
l∈ω−(v)

ϕr,i
l ,

∀v ∈ V + \ {vr,is , vr,id }, r ∈ R, 0 ≤ i ≤ nr, (50)

ϕr,i
lu,vfr

i

= ϕr,i+1
lvfr

i
,u
,

∀lu,vfr
i
∈ Laug, lvfr

i
,u ∈ Laug, r ∈ R, 0 ≤ i < nr, (51)

ϕr,i
lu,vfm

r

= 0,

∀lu,vfm
r
∈ Laug, r ∈ R, 0 ≤ i ≤ nr,m ̸= i, (52)

ϕr,0
lvf ,u

= 0,

(a) Comparison of computation
time.

(b) Comparison of total cost.

Fig. 23. Evaluation in realistic situations (US Carrier, Ψl = 1/Mbps, Ψf =
10).

∀lvf ,u ∈ Laug, f ∈ F, r ∈ R, (53)

∑
r∈R

nr∑
i=0

Di
rϕ

r,i
l ≤ bl, ∀l ∈ L, (54)∑

f∈F

Af
v ≤ cv, ∀v ∈ V, (55)

∑
r∈R

nr−1∑
i=0

∆fD
i
re

r,i
f ϕr,i

lv,vfr
i

≤ Af
v , ∀f ∈ F, v ∈ V. (56)

The number of constraints in (47)–(56) is |V |((|F | +
1)

∑
r∈R nr + 2|R||F | + |R| + |F | + 1) + |L| +

∑
r∈R nr.

This is larger than that in (29)–(32), which adopts a logical
layered network, by |F ||V |

∑
r∈R(nr +2)+ 2

∑
r∈R nr. The

number of decision variables in (47)–(56) is |L|
∑

r∈R(nr +
1) + |F ||V |(

∑
r∈R 2(nr + 1) + 1). This is larger than that in

(29)–(32) by |V |(2|F | − 1)
∑

r∈R(nr + 1) + |F ||V ||R|. For
example, in the case where |F | = 5, |R| = 50, nr = 5 for all
r ∈ R, and the network topology is the 6-node 8-link network,
the number of constraints in (47)–(56) and that in (29)–(32)
are 12852 and 1852, respectively. Similarly, the number of
decision variables in (47)–(56) and that in (29)–(32) are 22830
and 6330, respectively.

Fig. 24(a) shows the impact of the number of requests
on computation time when each network is adopted to the
proposed model. The number of required VNFs is at least
three and at most five for each request. Fig. 24(b) shows the
impact of the number of required VNFs on computation time.
Note that the number of layers in a logical layered network
is one more than the number of required VNFs. The number
of requests is 30. Comparison of the total cost is not shown
since the total cost is always the same in each case.

APPENDIX B
MA’S ALGORITHM

Dependency relations among VNFs are represented in the
form of trees. We determine the visit order by removing
vertices from the trees according to the algorithm. We treat
VNF f as independent if there is no VNF that needs to
be passed through before VNF f , and we treat VNF g as
dependent on VNF f if VNF g must be passed through after
VNF f .
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(a) Impact of number of requests. (b) Impact of number of required
VNFs.

Fig. 24. Comparison of computation time (evaluation of augmented network).

Fr represents the set of VNFs that request r requires. Or

represents a totally-ordered set of VNFs expressing the visit
order of r. Let Or initially be an empty set. Request r needs
to pass through VNFs in the order in which VNFs are added
to Or. Trees whose root is an independent VNF and VNFs
depending on VNF f are regarded as children of VNF f .
kmax is the maximum size of the trees, where the size of a
tree equals to the number of VNFs that the tree contains.

The procedure of Ma’s algorithm is as follows. First, we
determine the value of parameter k. k is an integer from 1 to
kmax. Second, we calculate trees of size up to k whose root is
an independent VNF and the product of traffic change rates of
all VNFs contained in the tree is minimum. Let Tr denote the
set of trees in this phase. The algorithm selects the tree with
the minimum product of traffic change rates from Tr, removes
its root, namely VNF g, from the tree, and adds VNF g to Or.
The algorithm calculates trees whose root is VNF g′, which
depends on VNF g, and the product of traffic change rates
of all VNFs contained in the tree is minimum. The algorithm
then adds these trees to Tr. After this, the algorithm iteratively
removes VNFs and adds them to Or until all required VNFs
are added to Or.

APPENDIX C
HARDNESS ANALYSES OF PROBLEMS SOLVED IN PD

ALGORITHM

We analyze the hardness of VPP-PD, which is formulated in
the ILP problem in (36)–(39). We define the decision version
of VPP-PD (VPP-PD-D) as follows:

Definition 2. Bidirected graph G = (V, L), set of requests
R, and set of VNFs F are given. Logical layered network
GL is constructed from G = (V, L). The number of layers
in GL is nmax = maxr∈R nr, where nr is the number of
required VNFs for r ∈ R. The total number of CPU cores on
v ∈ V is cv . The source and destination nodes of r ∈ R are
vrs ∈ V and vrd ∈ V , respectively. The transmission capacity of
r ∈ R on the ith layer of GL is Di

r. f ∈ F requires ∆f CPU
cores per unit of transmission capacity. Let vri be the node
where the ith VNF of r ∈ R is deployed. We define dsum =∑

r∈R

∑
v∈V

∑nr−1
i=0 (d(vrs , v

r
i ) + d(vrd, v

r
i )), where d(vrs , v

r
i )

and d(vrd, v
r
i ) represent the distance between the source and

vri and that between the destination and vri , respectively. Is
there any VNF placement such that dsum is T or less?

Theorem 2. VPP-PD-D is NP-complete.

Proof. First, we show that VPP-PD-D is in NP. The time
complexities of confirming whether each constraint is satisfied
are as follows:

• Node capacity: O(|V ||F |)
• Determining required number of CPU cores for each VNF

on each node: O(nmax|R||V ||F |)
• Selecting node for each VNF of each request: O(|R||V |)
• Maximum number of used CPU cores: O(|V ||F |)

The time complexity of checking whether dsum is T or less
is O(nmax|R||V |). Therefore, VPP-PD-D is in NP.

Second, we prove that BPP-D, which is NP-complete, is
reducible to VPP-PD-D. We construct a VPP-PD-D instance
from any BPP-D instance in the following steps:

1) The number of requests is the same with the number
of items in the corresponding BPP-D instance, i.e.,
|R| = |H|. There is a one-to-one correspondence be-
tween requests and items. The item that corresponds to
r ∈ R is denoted as r ∈ H hereafter.

2) Let N be the smallest integer that satisfies ⌊wrN/B⌋ ≥
1, ∀r ∈ R. Bidirected graph G = (V, L) is given, where
|V | = 2|R|+K+

∑
r∈R(⌊wrN/B⌋−1). There are three

disjoint subsets of V , Vsd, Vc, and Vm, where |Vsd| =
2|R|, |Vc| = K, and |Vm| =

∑
r∈R(⌊wrN/B⌋ − 1).

In addition, Vm has disjoint subset V r
m = {vr,nm |n =

1, ..., ⌊wrN/B⌋ − 1}, ∀r ∈ R. The source and destina-
tion nodes of each request are set to different nodes
in Vsd with each other and those of other requests,
i.e., vrs ̸= vrd, ∀r ∈ R, vrs ̸= vr

′

s , ∀r, r′ ∈ R, r ̸= r′,
vrd ̸= vr

′

d , ∀r, r′ ∈ R, r ̸= r′. There is no link between
two nodes in Vsd, between those in Vc, and between a
node in V r

m and that in V r′

m , where r, r′ ∈ R, r ̸= r′.
Nodes in V r

m are concatenated in the order of index n by
(⌊wrN/B⌋−2) links. vr,1m ∈ V r

m is adjacent to the source
and destination nodes of r ∈ R. vr,⌊wrN/B⌋−1

m ∈ V r
m is

adjacent to all nodes in Vc. Note that if |V r
m| = 1, the

node in V r
m is adjacent to the source and destination

nodes of r ∈ R and all nodes in Vc. Furthermore, if
|V r

m| = 0, the source and destination nodes of r ∈ R
are adjacent to all nodes in Vc. Therefore, the number of
hops between the source and a node in Vc is ⌊wrN/B⌋,
i.e., d(vrs , v) = ⌊wrN/B⌋, ∀r ∈ R, v ∈ Vc. Similarly,
the number of hops between the destination and a node
in Vc is ⌊wrN/B⌋, i.e., d(vrd, v) = ⌊wrN/B⌋, ∀r ∈
R, v ∈ Vc.
An example of G = (V, L) is shown in Fig. 25, where
R = {r1, r2, r3}, wr1 = 3, wr2 = 2, wr3 = 1, B = 3,
K = 2, and then N = 3. Since ⌊wr1N/B⌋ = 3, the path
between u ∈ {vr1s , vr1d } and v ∈ Vc has middle nodes
v1m, v

2
m ∈ V r1

m ; d(vr1s , v) = d(vr1d , v) = ⌊wr1N/B⌋ =
3, v ∈ Vc. Similarly, since ⌊wr2N/B⌋ = 2, the path
between u ∈ {vr2s , vr2d } and v ∈ Vc has middle node
v3m ∈ V r2

m ; d(vr2s , v) = d(vr2d , v) = ⌊wr2N/B⌋ = 2, v ∈
Vc. On the other hand, since ⌊wr3N/B⌋ = 1, the path
between u ∈ {vr3s , vr3d } and v ∈ Vc has no middle node;
d(vr3s , v) = d(vr3d , v) = ⌊wr3N/B⌋ = 1, v ∈ Vc.

3) All requests pass through only one particular VNF,
namely f , i.e., Fr = {f} = F, ∀r ∈ R. VNF f does not
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Fig. 25. Example of G = (V, L) in VPP-PD-D.

change the transmission capacity.
4) The transmission capacity of each request is set to wr,

i.e., Di
r = wr, ∀r ∈ R, i ∈ {0, 1}.

5) The number of CPU cores that VNF f requires per unit
of transmission capacity is set to 1/B, i.e., ∆f = 1/B;
the sum of the transmission capacity that is processed
by VNF f cannot exceed B.

6) Nodes in Vsd and Vm have no CPU core, i.e., cv =
0, ∀v ∈ Vsd ∪ Vm. On the other hand, nodes in Vc have
one CPU core, i.e., cv = 1, ∀v ∈ Vc. From this, |Vc| =
K, and ∆f = 1/B, there is a one-to-one correspondence
between nodes in Vc in VPP-PD-D and bins in BPP-D.

7) The number of used CPU cores cannot exceed K, i.e.,
I = K.

8) The threshold of dsum is set to 2KN , i.e., T = 2KN .

The time complexity of the construction of a VPP-PD-D
instance is O(|V ||R|).

If a BPP-D instance is a Yes instance, a given set of items
can be accommodated in K bins or less; there is an item
allocation such that

∑
h∈Hp

wh ≤ B, ∀p ∈ P,
⊔

p∈P Hp = H ,
where P and Hp are a set of K bins and a set of items packed
in p ∈ P , respectively. Note that Hp = ∅, ∃p ∈ P if a set of
items is accommodated in less than K bins. From the one-
to-one correspondence between requests and items and that
between nodes in Vc and bins, there is a VNF placement such
that

∑
r∈Rv

wr ≤ B, ∀v ∈ Vc,
⊔

v∈Vc
Rv = R, where Rv

is a set of requests that passes through VNF f on v ∈ Vc

in the VPP-PD-D instance; this ensures that there is a VNF
placement such that the number of used CPU cores is K or
less since the transmission capacity of r ∈ R, the number of
nodes where VNFs can be deployed, and the maximum accom-
modatable transmission capacity of v ∈ Vc are wr, K, and B,
respectively. From this, ⌈

∑
r∈Rv

(wr/B)⌉ = 1 if Rv ̸= ∅ and 0
otherwise; ⌈

∑
r∈Rv

(wr/B)⌉ represents whether the CPU core
on v ∈ Vc is used or not. As the number of used CPU core
cannot exceed K,

∑
v∈Vc
⌈
∑

r∈Rv
(wr/B)⌉ ≤ K and then∑

r∈R(wr/B) =
∑

v∈Vc

∑
r∈Rv

(wr/B) ≤ K. Furthermore,∑
r∈R⌊wrN/B⌋ ≤

∑
r∈R(wrN/B) ≤ KN . From the num-

ber of hops between two nodes, dsum = 2
∑

r∈R⌊wrN/B⌋.
Therefore, dsum ≤ 2KN ; the VPP-PD-D instance is a Yes
instance.

Conversely, if the constructed VPP-PD-D instance is a Yes
instance, there is a VNF placement such that dsum is 2KN
or less. Since the number of used CPU cores cannot exceed
K from the setting, this simultaneously indicates that there
is a VNF placement such that the number of used CPU
cores is K or less. As the node capacity constraints are
satisfied,

∑
r∈Rv

wr ≤ B, ∀v ∈ Vc,
⊔

v∈Vc
Rv = R. Note that

Rv = ∅, ∃v ∈ V if the number of used CPU cores is less than
K. From the one-to-one correspondence between requests and
items and that between nodes in Vc and bins, there is an item
allocation such that

∑
h∈Hp

wh ≤ B, ∀p ∈ P,
⊔

p∈P Hp = H
in the corresponding BPP-D instance; this ensures that there
is no item that cannot be packed in any bin in P , where the
size of item h ∈ H , the number of bins, and the capacity of
each bin are wh, K, and B, respectively. Therefore, there is
an allocation of items to K bins or less; the corresponding
BPP-D instance is a Yes instance.

From the discussion above, BPP-D is reducible to VPP-
PD-D; any problem in NP is reducible to VPP-PD-D since
BPP-D is NP-complete. As VPP-PD-D is in NP, VPP-PD-D
is NP-complete.

Then, we analyze the hardness of RP-PD, which is formu-
lated in the ILP problem in (40)–(42). We define the decision
version of RP-PD (RP-PD-D) as follows:

Definition 3. Bidirected graph G = (V, L), set of requests R,
and set of VNFs F are given. Logical layered network GL is
constructed from G = (V, L). The number of layers in GL

is nmax = maxr∈R nr, where nr is the number of required
VNFs for r ∈ R. The maximum transmission capacity of l ∈ L
is bl. The source and the destination of r ∈ R are vsr ∈ V and
vdr ∈ V , respectively. The transmission capacity of r ∈ R on
the ith layer is Di

r. The ith VNF for r ∈ R, fr
i , is deployed on

vfr
i

. The link utilization cost per unit of transmission capacity
for l ∈ L is Ψl. Is there any set of request routes such that
the total link utilization cost is T or less?

Theorem 3. RP-PD-D is NP-complete.

Proof. We prove the NP-completeness of RP-PD-D by using
the decision version of the integer multicommodity flow prob-
lem (IMFP-D), which is NP-complete [39]. IMFP-D decides
whether there is a set of flow routes such that the total cost is C
or less for flow set M on graph G = (V, L), where the demand
of flow m is Qm, the capacity of link l is al, and the utilization
cost of link l is Ωl. The total cost is

∑
m∈M

∑
l∈L ΩlQmxm

l ,
where xm

l is a binary variable such that xm
l = 1 if m ∈ M

passes through l ∈ L and 0 otherwise. In IMFP-D, each flow
cannot be separated to multiple flows.

RD-PD-D is equivalent to IMFP-D if the settings of RD-
PD-D are as follows:

1) Logical layered network GL is constructed from graph
G = (V, L). G = (V, L) is the same with the graph used
in the IMFP-D instance.

2) The number of requests is the same with the number
of flows in the corresponding IMFP-D instance, i.e.,
|R| = |M |. There is a one-to-one correspondence
between requests in RP-PD-D and flows in IMFP-D.
The source and destination nodes of r ∈ R are the same
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with those of the corresponding flow in M . The flow that
corresponds to r ∈ R is denoted as r ∈M hereafter.

3) Each request passes through only one VNF, i.e., Fr =
{fr

0 }, ∀r ∈ R. From this, GL consists of two layers, i.e.,
i ∈ {0, 1}. VNF fr

0 does not change the transmission
capacity.

4) The transmission capacity of each request is set to Qr,
i.e., Di

r = Qr, ∀r ∈ R, i ∈ {0, 1}.
5) VNF fr

0 is deployed on the destination of r ∈ R, i.e.,
vfr

0
= vrd, ∀r ∈ R. Therefore, we only need to find a

route that connects vsr and vdr on the zeroth layer of
GL.

6) The maximum transmission capacity of each link is al,
i.e., bl = al, ∀l ∈ L.

7) The link utilization cost is set to Ωl, i.e., Ψl = Ωl, ∀l ∈
L.

8) The threshold of the link utilization cost is set to C, i.e.,
T = C.

Therefore, RD-PD-D is NP-complete.

ACKNOWLEDGMENT

The authors would like to thank Prof. Ryoichi Shinkuma
for discussions.

REFERENCES

[1] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp.
236–262, 2016.

[2] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtual-
ization: Challenges and opportunities for innovations,” IEEE Commun.
Magazine, vol. 53, no. 2, pp. 90–97, Feb. 2015.

[3] Y. Li and M. Chen, “Software-defined network function virtualization:
A survey,” IEEE Access, vol. 3, pp. 2542–2553, Dec. 2015.

[4] W. Ma, J. Beltran, D. Pan, and N. Pissinou, “Placing traffic-changing
and partially-ordered NFV middleboxes via SDN,” IEEE Trans. Netw.
Service Manag., vol. 16, no. 4, pp. 1303–1317, Dec. 2019.

[5] H. Huang, P. Li, S. Guo, W. Liang, and K. Wang, “Near-optimal
deployment of service chains by exploiting correlations between network
functions,” IEEE Trans. Cloud Comput., vol. 8, no. 2, pp. 585–596, Dec.
2020.

[6] N. Huin, B. Jaumard, and F. Giroire, “Optimal network service chain
provisioning,” IEEE/ACM Trans. Netw., vol. 26, no. 3, pp. 1320–1333,
Jun. 2018.

[7] Z. Allybokus, N. Perrot, J. Leguay, L. Maggi, and E. Gourdin, “Virtual
function placement for service chaining with partial orders and anti-
affinity rules,” Networks, vol. 71, no. 2, pp. 97–106, Mar. 2018.

[8] N. Hyodo, T. Sato, R. Shinkuma, and E. Oki, “Virtual network function
placement for service chaining by relaxing visit order and non-loop
constraints,” IEEE Access, vol. 7, pp. 165 399–165 410, Aug. 2019.

[9] Y. Chen and J. Wu, “NFV middlebox placement with balanced set-
up cost and bandwidth consumption,” in Proceedings of the 47th
International Conference on Parallel Processing. New York, NY, USA:
Association for Computing Machinery, Aug. 2018.

[10] Y. Sumi and T. Tachibana, “Heuristic service chain construction al-
gorithm based on VNF performances for optimal data transmission
services,” IEICE Trans. Commun., vol. E104.B, no. 7, pp. 817–828,
Jul. 2021.

[11] S. Ozaki, T. Sato, and E. Oki, “Service chain provisioning model
considering traffic amount changed by virtualized network functions,”
in IEEE Int. Conf. High Perform. Switching and Routing (HPSR), Jun.
7–10, 2021, pp. 1–6.

[12] M. Sasabe and T. Hara, “Capacitated shortest path tour problem-based
integer linear programming for service chaining and function placement
in NFV networks,” IEEE Trans. Netw. Service Manag., vol. 18, no. 1,
pp. 104–117, Dec. 2021.

[13] Y. Xu and V. P. Kafle, “A mathematical model and dynamic program-
ming based scheme for service function chain placement in NFV,” IEICE
Trans. Inf. & Syst., vol. E102.D, no. 5, pp. 942–951, Jul. 2019.

[14] J. Pei, P. Hong, K. Xue, and D. Li, “Efficiently embedding service
function chains with dynamic virtual network function placement in geo-
distributed cloud system,” IEEE Trans. Parallel Distrib. Syst., vol. 30,
no. 10, pp. 2179–2192, Nov. 2019.

[15] D. Li, P. Hong, K. Xue, and J. Pei, “Virtual network function placement
considering resource optimization and SFC requests in cloud datacenter,”
IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 7, pp. 1664–1677, Feb.
2018.

[16] D. Li, P. Hong, K. Xue, and J. Pei, “Availability aware VNF deployment
in datacenter through shared redundancy and multi-tenancy,” IEEE
Trans. Netw. Service Manag., vol. 16, no. 4, pp. 1651–1664, Aug. 2019.

[17] H. Hawilo, M. Jammal, and A. Shami, “Network function virtualization-
aware orchestrator for service function chaining placement in the cloud,”
IEEE J. Sel. Areas Commun., vol. 37, no. 3, pp. 643–655, Jan. 2019.

[18] M. Karimzadeh-Farshbafan, V. Shah-Mansouri, and D. Niyato, “A
dynamic reliability-aware service placement for network function vir-
tualization (NFV),” IEEE J. Sel. Areas Commun., vol. 38, no. 2, pp.
318–333, Dec. 2020.

[19] J. Pei, P. Hong, K. Xue, D. Li, D. S. L. Wei, and F. Wu, “Two-phase
virtual network function selection and chaining algorithm based on deep
learning in SDN/NFV-enabled networks,” IEEE J. Sel. Areas Commun.,
vol. 38, no. 6, pp. 1102–1117, Apr. 2020.

[20] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and
F. Liberal, “Virtual network function placement optimization with deep
reinforcement learning,” IEEE J. Sel. Areas Commun., vol. 38, no. 2,
pp. 292–303, Dec. 2020.

[21] J. Y. Yen, “Finding the K shortest loopless paths in a network,”
Management Science, vol. 17, no. 11, pp. 712–716, Jul. 1971.

[22] B. Y. Chen, X.-W. Chen, H.-P. Chen, and W. Lam, “Efficient algorithm
for finding k shortest paths based on re-optimization technique,” Trans-
portation Research Part E Logistics and Transportation Review, vol.
133, p. 101819, Jan. 2020.

[23] P. Quinn, U. Elzur, and C. Pignataro, “Network Service Header
(NSH),” RFC 8300, Internet Engineering Task Force, Jan. 2018.
[Online]. Available: http://www.ietf.org/rfc/rfc8300.txt

[24] M. Delorme, M. Iori, and S. Martello, “Bin packing and cutting stock
problems: Mathematical models and exact algorithms,” Eur. J. Oper.
Res., vol. 255, no. 1, pp. 1–20, Nov. 2016.

[25] C. Munien and A. Ezugwu, “Metaheuristic algorithms for one-
dimensional bin-packing problems: A survey of recent advances and
applications,” J. Intell. Syst., vol. 30, no. 1, pp. 636–663, Apr. 2021.

[26] “vSRX Virtual Firewall.” https://www.juniper.net/content/dam/www/
assets/datasheets/us/en/security/vsrx-virtual-firewall-datasheet.pdf
(accessed Aug. 24, 2021).

[27] “McAfee Virtual Network Security Platform.”
https://www.mcafee.com/enterprise/en-us/assets/data-sheets/ds-virtual-
network-security-platform.pdf (accessed Aug. 25, 2021).

[28] L. Ruiz, R. J. Durán, I. de Miguel, N. Merayo, J. C. Aguado,
P. Fernández, R. M. Lorenzo, and E. J. Abril, “Joint VNF-provisioning
and virtual topology design in 5G optical metro networks,” in IEEE Int.
Conf. Transparent Opt. Netw. (ICTON), Jul. 9–13, 2019, pp. 1–4.

[29] G. Li, H. Zhou, G. Li, and B. Feng, “Application-aware and dynamic
security function chaining for mobile networks,” J. Internet Serv. Inf.
Secur., vol. 7, pp. 21–34, Nov. 2017.

[30] D. Careglio, S. Spadaro, A. Cabellos, J. A. Lazaro, P. Barlet-Ros,
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