
Prog. Theor. Exp. Phys. 2023 083I01(64 pages) 
DOI: 10.1093/ptep/ptad086 

Generalized homology and Atiyah–Hirzebruch 

spectral sequence in crystalline symmetry 

protected topological phenomena 

Ken Shiozaki 1 , � , Charles Zhaoxi Xiong 

2 , and Kiyonori Gomi 3 

1 Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan 

2 Department of Physics, Harvard University, Cambridge, MA 02138, USA 

3 Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, 
Japan 

� E-mail: k en.shiozaki@yukaw a.kyoto-u.ac.jp 

Received September 26, 2022; Revised June 6, 2023; Accepted June 15, 2023; Published July 5, 2023 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
We propose that symmetry-protected topological (SPT) phases with crystalline symmetry are 
formulated by an equi v ariant generalized homology h 

G 

n (X ) o v er a real space manifold X with G 

a crystalline symmetry group. The Atiyah–Hirzebruch spectral sequence unifies various notions 
in crystalline SPT phases, such as the layer construction, higher-order SPT phases, and Lieb–
Schultz–Mattis-type theorems. This formulation is applicable to not only free fermionic systems 
but also interacting systems with arbitrary onsite and crystal symmetries. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Subject Index A13, A63, I47, I68, I96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/8/083I01/7220033 by Kyoto U

niversity user on 18 D
ecem

ber 2023
1. Introduction 

Symmetry-protected topological (SPT) phases are topologically distinct phases of gapped, invertible
states with symmetry [ 1–21 ]. A quantum state is said to be invertible when it is realized as the unique
gapped ground state of a Hamiltonian constructed of local terms for any system size and closed
space manifold. Two invertible states are said to belong to the same SPT phase if there exists a
continuous path of Hamiltonians interpolating between them that preserves both the symmetry and
the energy gap [ 2 ]. For SPT phases protected solely by onsite symmetry, the classification scheme
is well developed. The group (super) cohomology theory produces explicit lattice Hamiltonians
and topological actions of nonlinear σ models in discretized Euclidean spacetime [ 4 , 9 ], so that
gauging the onsite symmetry yields twisted discrete pure gauge theories [ 5 , 22 ]. The cobordism
group [ 16 , 17 , 23 , 24 ] and other invertible field theory invariants [ 18 ] give classifications of low-
energy ef fecti ve response actions of SPT phases. A physical feature of nontrivial SPT phases is
the quantum anomaly in boundary states: in the presence of a real space boundary, the topological
response action is not invariant under gauge transformations. This is a manifestation of the ’t Hooft
anomaly, which can only be canceled by the low-energy degrees of freedom living on the boundary
of an SPT phase with the opposite anomaly. 

Soon after SPT phases were proposed, it was realized that crystalline symmetries [ 25 , 26 ] can
also serve to protect nontrivial phases of invertible systems, giving rise to the notion of crystalline
SPT phases [ 3 , 7 , 27–36 ]. Two systematic approaches to classifying crystalline SPT phases have been
proposed. Song et al. constructed crystalline SPT phases by placing lower-dimensional invertible
states at high-symmetry points and demonstrated how classification could be obtained by considering
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trivialization of invertible states on lower-dimensional cells by invertible states in adjacent higher-
dimensional cells [ 34 ]. Later, this idea was applied to the classification of Lieb–Schultz–Mattis (LSM)
theorems through the bulk–boundary correspondence [ 7 , 37 ] and a comprehensive classification of
3D bosonic SPT phases with space group symmetries [ 38 ]. Thorngren and Else [ 36 ] proposed a useful
picture for interpreting crystalline symmetries as gauge fields. They contended that, if the spatial
scale of a crystalline symmetry (such as the lattice vector) is large compared to the correlation length,
the crystalline symmetry will behave in a topological quantum field theory (TQFT) as if it is an onsite
symmetry, hence allowing one to recast the classification of crystalline SPT phases as a classification
of onsite SPT phases. 

The notion of higher-order SPT phases is of importance to crystalline systems and highlights the
difference between crystalline SPT phases and SPT phases protected only by onsite symmetries [ 39–
49 ]. An n th-order SPT phase in d space dimensions is an SPT phase that exhibits an anomalous
surface state localized on a ( d − n )-dimensional spatial edge on the boundary . Historically , higher-
order SPT phases were first disco v ered in free fermionic systems and interpreted in known phases
from the perspective of layer construction. Huang et al. [ 38 ] and Trifunovic and Brouwer [ 49 ] found a
fundamental structure behind crystalline SPT phases: there is a filtration 0 ⊂ F 0 h 

G 

n ⊂ · · · ⊂ F d h 

G 

n =
h 

G 

n (X ) for the classification of crystalline SPT phases (the notation here is introduced in Sect. 4 )
with respect to the space dimension for which the layer construction is defined so that the quotient
F p h 

G 

n /F p−1 h 

G 

n is the classification of ( d − p + 1)-dimensional higher-order SPT phases. In Sect. 4 ,
we show that the filtration structure holds true for SPT phases with many-body interactions and
demonstrate how it may be properly formulated. 

Kitaev [ 50 , 51 ] pointed out that the physical properties of invertible states imply that the “spaces of
invertible states” of different dimensions form an �-spectrum in the sense of generalized cohomology,
which gives us a general mathematical framework for describing SPT phases [ 52–54 ]. The nature
of the microscopic degrees of freedom (i.e., bosons versus fermions) is encoded in the �-spectrum.
That is, there is one �-spectrum for bosonic SPT phases and another �-spectrum for fermionic SPT
phases. Kitaev proposed that the classification of d -dimensional SPT phases with onsite G i symmetry
is given by the generalized cohomology h 

d ( BG i ), where h 

∗( −) is the generalized cohomology theory
associated with the �-spectrum and BG i is the classifying space of G i . 

More generally, one can show, by the same argument, that the spaces of invertible states form an
�-spectrum even if we restrict attention to subspaces that respect a given onsite symmetry (possibly
antiunitary) [ 53 , 54 ]. Taking this as our fundamental assumption, we propose that the classification
of SPT phases o v er a real space X protected by crystalline symmetry G is given by h 

G 

n (X ) , where h 

G 

n 

is the equi v ariant generalized homology theory defined by the said �-spectrum, and the symmetry
group G acts on both the real space X and the �-spectrum. To support this proposal, we will apply
the Atiyah–Hirzeburch spectral sequence (AHSS) to the generalized homology theory h 

G 

n and show
that the various terms and differentials in the spectral sequence have concrete physical meanings.
In particular, we will see that the technology developed by Song et al. [ 34 ] is nothing but the first
differential in the AHSS. 

The AHSS is one of many spectral sequences commonly used in the mathematical literature to
compute generalized (co)homology groups h ∗( X ) (resp. h 

∗( X )) [ 55 ]. The first step in applying the
AHSS is to collect the local topological data for each cell in a cell decomposition of the space X . Then,
we compare the local data in cells of different dimensions and glue them together appropriately—
these procedures are known as “differentials” in the language of the spectral sequence—to obtain
global information. Iterating differentials, we finally get the so-called E 

∞ -page (resp. E ∞ 

-page),
2/64 
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which approximates the generalized (co)homology theory h 

G 

∗ (X ) (resp. h 

∗
G 

(X ) ) in the manner of a
filtration. The filtration is ef fecti vely a set of short exact sequences that need to be solved. Solving
these short exact sequences, we will then be able to determine the generalized (co)homology group
h 

G 

∗ (X ) (resp. h 

∗
G 

(X ) ). We emphasize, for crystalline SPT phases, that differentials and group exten-
sions in the AHSS have well defined physical meanings even in higher orders, lending themselves
to full determination using our understanding of the physical properties of the rele v ant phases. 

The organization of this paper is as follows. Section 2 is devoted to introducing the viewpoint of
the �-spectrum, which Kitaev pointed out, and its connection to the adiabatic pump and an emergent
invertible state trapped on a texture. In Sect. 3 , we define the equi v ariant generalized homology
for a given �-spectrum of invertible states. Some generic properties of a generalized homology
are given. We formulate the AHSS in Sect. 4 in detail. We collect physical implications of the
AHSS in Sect. 4.6 . The connection to the higher-order SPT phases and various LSM-type theorems
are described there. Sections 5 and 6 present various examples of the computation of the AHSS.
Section 5 is for interacting crystalline SPT phases. For free fermions, the generalized homology is
recast as the K -homology. We describe the AHSS for free fermions in Sect. 6 . We summarize this
paper and suggest future directions in Sect. 7 . 

In this paper , “In v 

d ” and “SPT 

d ” mean “d -dimensional invertible” and “d -dimensional SPT”,
respectively. Unless stated otherwise, dimension al w ays refers to the spatial dimension. 

2. Invertible states as a spectrum 

The essence of the generalized cohomology approach for SPT phases by Kitaev is the following
homotopy equi v alence relation among invertible states with dif ferent space dimensions [ 50 ]: 

F d 
∼= 

�F d+1 . (1) 

Here, F d is the based topological space consisting of Inv 

d states protected by onsite sym-
metry, where the base point is the trivial tensor product state denoted by | 1 〉 . �F d+1 ={
� : S 

1 → F d+1 | � (0) = � (1) = | 1 〉 } is the based loop space of F d + 1 , the Inv 

d + 1 states. The clas-
sification of SPT 

d phases is given by disconnected parts of F d , the generalized cohomology h 

d ( pt )
= [ pt , F d ]. 

2.1. On the homotopy equivalence F d 
∼= 

�F d + 1 

The relation ( 1 ) states that an adiabatic cycle in Inv 

d + 1 states that begins and ends at the trivial state
is uniquely labeled by an Inv 

d state (up to homotopy equi v alence). In particular, the topological
classification of such adiabatic processes is given by [ S 

1 , F d + 1 ] ∗ = [ pt , �F d + 1 ] = [ pt , F d ] = h 

d ( pt ),
the classification of SPT 

d phases. Kitaev provided a canonical construction of the map f : F d →
�F d + 1 [ 50 ], which is best understood from Fig. 1 [a] and is described below. Let | χ〉 ∈ F d be an Inv 

d 

state and | ̄χ〉 ∈ F d be its conjugate so that the tensor product of them is adiabatically equi v alent to a
trivial state | χ〉 ⊗ | ̄χ〉 ∼ | 1 〉 ⊗ | 1 〉 . The existence of the “inverse” in this sense is a characteristic of
invertible states. At the initial time λ = 0, we consider the layer of trivial states | λ = 0 

〉 = 

⊗ 

j∈ Z 

| 1 〉 j 
along the x d + 1 -direction. During the adiabatic time evolution in a half-period, for a given Inv 

d state
| χ〉 ∈ F d , we take the adiabatic deformation | 1 〉 2 j−1 ⊗ | 1 〉 2 j ∼ | χ〉 2 j−1 ⊗ | ̄χ〉 2 j for adjacent two sites
2 j and 2 j + 1 to get the Inv 

d + 1 state ∣∣∣∣λ = 

1 

2 

〉
= 

⊗ 

j∈ Z 

(| χ〉 2 j−1 ⊗ | ̄χ〉 2 j 
)
. (2) 
3/64 
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[a] [b]

Fig. 1. [a] An adiabatic cycle in Inv 

d + 1 states labeled by an Inv 

d state | χ〉 . [b] An Inv 

d state localized as the 
texture of Inv 

d + 1 states. 
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Next, we take the inverse adiabatic deformation | ̄χ〉 2 j ⊗ | χ〉 2 j+1 ∼ | 1 〉 2 j ⊗ | 1 〉 2 j+1 with switching 

bipartite sublattices. The resulting Inv 

d + 1 state goes back to the trivial state | λ = 1 〉 = | λ = 0 〉 , which
achieves an adiabatic cycle labeled by an Inv 

d state | χ〉 that begins at the trivial Inv 

d + 1 state. For an
open system in the x d + 1 -direction, an adiabatic cycle pumps the Inv 

d state | χ〉 from the right to the
left boundary (see Fig. 1 [a]). 

The condition of adiabatic cycles so that the initial state is the trivial Inv 

d + 1 state is crucial to have a
canonical construction of F d → �F d + 1 . In fact, for the free loop space L F d+1 = Map (S 

1 , F d+1 ) , the
initial state may be topologically nontrivial, and since topologically nontrivial Inv 

d + 1 states cannot
be decomposed into the tensor product of Inv 

d states on sites j ∈ Z we do not expect a canonical
construction of adiabatic cycles. 

To verify the homotopy equi v alence ( 1 ), it is required an inverse map g : �F d + 1 → F d such that g ◦f
and f ◦g are homotopically equi v alent to the identity maps. A canonical construction of the inverse
map g is not known yet but is understood as an Inv 

d state trapped on a texture of a family of Inv 

d + 1 

states in between a trivial Inv 

d + 1 state. Let H ( λ ∈ [0, 1]) be an adiabatic Hamiltonian realizing the
adiabatic cycle | λ ∈ [0, 1] 〉 . With this, we have a semiclassical Hamiltonian H ( λ = x d + 1 ) that slowly
varies compared with the correlation length along the x d + 1 -direction. A nontrivial cycle labeled by
the Inv 

d state | χ〉 implies the existence of the localized Inv 

d state | χ〉 at the texture represented by
the Hamiltonian H ( x d + 1 ) (see Fig. 1 [b]). A simple example is the following tensor product state: 

· · · 1111 χχ̄χχ̄ · · ·χχ̄χχ̄χ · · · χ̄χχ̄χ1111 · · · , (3) 

where there exists a single Inv 

d state | χ〉 per texture. 

2.2. On the homotopy equivalence F d 
∼= 

�2 F d + 2 

It would be instructive to see the physical meaning of the iterated based loop space 

F d 
∼= 

�F d+1 
∼= 

�2 F d+2 = { � : S 

2 
∗ → F d+2 | � (∗) = | 1 〉 } . (4) 

An element of �2 F d + 2 represents a two-parameter adiabatic cycle. By applying the canonical con-
struction of F d → �F d + 1 twice, we have that for F d 

∼= 

�2 F d + 2 . For a given Inv 

d state | χd 〉 , we have an
adiabatic cycle | χd+1 (t 1 ) 〉 moving in topologically trivial Inv 

d + 1 states so that one period of the adi-
abatic cycle pumps the state | χd 〉 . Also, at each time slice t 1 , there is an adiabatic cycle | χd+2 (t 1 , t 2 ) 〉
moving in topologically trivial Inv 

d + 2 states so that one period of the second parameter t 2 gives
a pump of the state | χd+1 (t 1 ) 〉 . The parameter space ( t 1 , t 2 ) becomes the 2-sphere (see Fig. 2 [a])
4/64 
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[a] [b]

[c] [d]

Fig. 2. [a] Adiabatic parameters ( t 1 , t 2 ) living in the 2-sphere. [b] The subsequent adiabatic pumps for the t 2 
and t 1 time directions. [c] Adiabatic pump of the t 1 direction with a texture. [d] A texture-induced Inv 

d state. 
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compactified to the trivial Inv 

d + 1 state. As in the case of adiabatic pumps with a single time, one can
see that on a rectangular system, subsequent adiabatic cycles of t 1 and t 2 give the pump of the Inv 

d 

state | χd 〉 : Let us consider topologically trivial Inv 

d + 2 states | χd+2 (t 1 , t 2 ) 〉 parameterized by S 

2 on a
rectangular open system along the x d + 1 - and x d + 2 -directions as shown in Fig. 2 [b]. First we take an
adiabatic cycle for t 2 , resulting in the topologically trivial Inv 

d + 1 state | χd+1 (t 1 ) 〉 and its conjugate
| ̄χd+1 (t 1 ) 〉 on the boundary. Then, an adiabatic cycle of t 1 gives the Inv 

d states | χd 〉 and | ̄χd 〉 at the
four corners. 

Adiabatic parameters can be replaced by semiclassical variables representing a texture in real
space. When t 2 is replaced by the semiclassical parameter slowly depending on the x d + 2 -direction,
an adiabatic deformation at the time t 1 corresponds to the topologically trivial Inv 

d + 1 state | χd+1 (t 1 ) 〉
localized at the kink along the x d + 2 -direction. The adiabatic cycle of the time t 1 gives the localized
Inv 

d states | χd 〉 and | ̄χd 〉 on the boundary of the kink (see Fig. 2 [c]). If both the adiabatic parameters
t 1 and t 2 are replaced by the texture variables, the semiclassical state | χd+2 ( n (x d+1 , x d+2 )) 〉 , n ∈ S 

2 ,
represents a skyrmion-induced Inv 

d state | χd 〉 . In a similar way to Eq. ( 3 ), for a bipartite 2D lattice,
a simple realization is given by putting an Inv 

d state | χd 〉 at the center and wrapping the center with
trivial pairs | χd 〉 ⊗ | ̄χd 〉 (see Fig. 2 [d]). The Inv 

d state | χd 〉 trapped at a single skyrmion-like texture
is stable under a perturbation leaving the system gapped. 

3. Crystalline SPT phases and generalized homology 

Let { F d } d∈ Z 

be the �-spectrum so that F d is the space of Inv 

d states with a given onsite symmetry. Let
X be a real space manifold. X is typically the infinite Euclidean space X = R 

d in the context of SPT
phases, but X can be an arbitrary real space manifold. Let G be a symmetry group that acts on the real
space X and also the Inv 

d states, i.e., the spectrum F d . For a pair ( X , Y ) of G -equi v ariant real spaces
X and Y with Y ⊂X , the G -equi v ariant generalized homology theory h 

G 

n (X , Y ) is mathematically
defined by [ 56 , 57 ] 

h 

G 

n (X , Y ) := colim 

k→∞ 

[
S 

n + k , (X /Y ) ∧ F k 
]

G 

, (5) 
5/64 
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where G trivially acts on the sphere S 

n + k . When Y = ∅ , we simply write h 

G 

n (X ) = h 

G 

n (X , ∅ ) . 
The group h 

G 

n (X , Y ) enjoys the axioms of the equi v ariant generalized homology theory. They are
dual to those of equi v ariant generalized cohomology theory described in, e.g., Ref. [ 58 ], and are
shown by generalizing Ref. [ 56 ]: 

� (homotopy) If G -equi v ariant maps f , f ′ : X → X 

′ are G -equi v ariantly homotopic by a homotopy that
carries Y ⊂X into Y 

′ ⊂X 

′ all the way, then the induced maps f ∗, f ′ ∗ : h 

G 

n (X , Y ) → h 

G 

n (X 

′ , Y 

′ )
are the same: f ∗ = f ′ ∗. 

� (e xcision) F or A , B ⊂X , the inclusion A → A ∪ B induces an isomorphism h 

G 

n (A, A ∩ B) →
h 

G 

n (A ∪ B, B) . 
� (e xactness) F or Y ⊂X , there is a long exact sequence · · · → h 

G 

n (Y ) → h 

G 

n (X ) → h 

G 

n (X , Y ) →
h 

G 

n −1 (Y ) → · · · . 
� (additivity) For Y λ⊂X λ parameterized by a set � = { λ}, the inclusion X λ → � λX λ induces an

isomorphism 

∏ 

λ h 

G 

n (X λ, Y λ) → h 

G 

n (� λX λ, � λY λ) . 

In the abo v e, the spaces and their subspaces are assumed to be G -CW comple x es and their sub-
comple x es (see Ref. [ 59 ] for a definition). 

By design, the counterpart of the dimension axiom is h 

G 

n (pt) = h 

−n 
G 

(pt) = π0 (F 

G 

−n ) , where F 

G 

−n ⊂
F −n consists of G -fixed points. Here we assumed that F d is an equi v ariant �-spectrum, which would
be the general assumption in the context. From the axiom, we can derive various exact sequences.
F or instance, we hav e the Mayer–Vietoris e xact sequence · · · → h 

G 

n +1 (X ) → h 

G 

n (A ∩ B) → h 

G 

n (A �
B) → h 

G 

n (X ) → · · · for a co v er X = A ∪ B . We also have h 

G 

n (X × D 

d , X × ∂D 

d ) ∼= 

h 

G 

n −d (X ) , where
D 

d is the d -dimensional disk endowed with trivial G -action. 
In the following, we will use the following property of the generalized homology, which is called

“rolling and unrolling” in Ref. [ 36 ]: 

� F or an y normal subgroup H ⊂G that acts on X freely and the �-spectrum trivially, we have
h 

G 

n ( X ) ∼= 

h 

G/H 

n ( X /H ) . 

Note that this is independent of the axioms of generalized homology theory. 
Let us see the physical meaning of the integer grading n ∈ Z . When X is the d -dimensional

disk D 

d , Y is its boundary ∂D 

d , and the crystalline symmetry group G is trivial G = { e }, the
Poincaré–Lefschetz duality implies that h n ( D 

d , ∂D 

d ) ∼= 

h 

d − n ( D 

d ) ∼= 

h 

d − n ( pt ) = [ pt , F d − n ]. That is,
the generalized homology h n ( D 

d , ∂D 

d ) gives the classification of SPT 

d − n phases. For this reason, we
call the integer degree n ∈ Z the degree of SPT phenomena . Similarly, with crystalline symmetry G ,
the generalized homology h 

G 

n (X , Y ) is understood as the classification of degree- n SPT phenomena
o v er X up to degree-( n − 1) SPT phenomena over Y . For example, 

� h 

G 

0 (X , Y ) is the classification of SPT phases o v er X that can have anomalies over Y . 
� h 

G 

1 (X , Y ) is the classification of adiabatic cycles over X that can change SPT phases nonadia-
batically o v er Y . 

� h 

G 

−1 (X , Y ) is the classification of anomalies o v er X that can have “sources and sinks of anomalies”
o v er Y . 

In the rest of this section, we interpret the exactness axiom and Mayer–Vietoris sequences from
the viewpoint of SPT physics. 
6/64 
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3.1. Exactness 
Let X and Y , Y ⊂X , be a pair of G -symmetric real spaces. Associated with the inclusions f : Y → X
and g : ( X , ∅ ) → ( X , Y ), we have the long exact sequence 

· · · ∂ n +1 −−→ h 

G| Y 
n ( Y ) 

f n ∗−→ h 

G 

n ( X ) 
g n ∗−→ h 

G 

n ( X , Y ) 
∂ n −→ h 

G 

n −1 ( Y ) 
f n −1 
∗−−→ · · · . (6) 

The existence of this sequence is an axiom of the generalized homology. Let us illustrate the defini-
tions of homomorphisms f n ∗ , g 

n 
∗, and ∂ n for SPT phases, i.e., n = 0. 

The homomorphism f 0 ∗ is defined by embedding an SPT phase o v er Y into X : 

The homomorphism f −1 
∗ is defined similarly. 

The homomorphism g 

0 
∗ is defined as follows. For a given SPT phase x o v er X , cutting out Y from

X leads to anomalies localized on Y . Then, the SPT phase x o v er X \ Y that can have anomalies on Y
defines an element of g 

0 
∗(x ) ∈ h 

G 

0 (X , Y ) : 

For an SPT phase x ∈ h 

G 

0 (X , Y ) on X that can be anomalous on Y , the boundary map ∂ 0 (x ) ∈
h 

G 

−1 (Y ) is defined as the anomaly of x on Y : 

For the exactness of the sequence, Im ⊂Ker for n = 0 is readily confirmed. An SPT phase on Y has
no anomaly on Y , meaning Im f 0 ∗ ⊂ Ker g 

0 
∗. In the same way, an SPT phase on X has no anomaly,

leading to Im g 

0 
∗ ⊂ Ker ∂ 0 . Since an anomaly ∂ 0 (x ) ∈ h 

G 

−1 (Y ) given by the boundary map ∂ 0 from
( X , Y ) should be represented as the boundary of an SPT phase o v er X \ Y , ∂ 0 ( x ) is nonanomalous as
an anomaly on X . (Note that, by definition, an SPT phase x ∈ h 

G 

0 (M ) on M has no anomaly even if
M has a boundary ∂M � = ∅ .) 
7/64 
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3.1.1. Boundary map ∂ 0 : the bulk–boundary correspondence. When X has a boundary ∂X , the
boundary map ∂ 0 : h 

G 

0 (X , ∂X ) → h 

G 

−1 (∂X ) is what we call the bulk–boundary correspondence. With
crystalline symmetry, not every SPT phase on X implies a boundary anomaly on ∂X . Conversely,
not every anomaly on ∂X implies a bulk SPT phase on X . The precise relationship among bulk
SPT phases and boundary anomalies is that for an SPT phase x ∈ h 

G 

0 (X , ∂X ) in bulk, the boundary
anomaly of the SPT phase x is given by the element x �→ ∂ 0 (x ) ∈ h 

G 

−1 (∂X ) . 

3.2. Mayer–Vietoris sequence 

1. Let us introduce a G -symmetric co v er X = U ∪ V for a real space X where each U and V is
G -symmetric. 1 Associated with the sequence of inclusions 

we have the long exact sequence called the Mayer–Vietoris sequence of generalized homology [ 60 ] 

· · · ∂ n +1 −−→ h 

G 

n (U ∩ V ) 
i n ∗−→ h 

G 

n (U ) ⊕ h 

G 

n (V ) 
j n ∗−→ h 

G 

n (X ) 
∂ n −→ h 

G 

n −1 (U ∩ V ) 
i n −1 
∗−−→ · · · . (8) 

We illustrate the homomorphisms i n ∗, j 
n 
∗ , and ∂ n in Eq. ( 8 ) for SPT phases ( n = 0, say). Other

homomorphisms with n � = 0 are understood similarly. 
The homomorphism i 0 ∗ is defined as follows. First, for a given SPT phase x ∈ h 

G 

0 (U ∩ V ) we
adiabatically create a pair of SPT phases x and its conjugate x̄ = −x inside U ∩ V . Next, we move
the SPT phase x to the interior of U and ( −x ) to the interior of V , which defines the homomorphism
i 0 ∗ : x �→ (x | U 

, −x | V 

) ∈ h 

G 

0 (U ) ⊕ h 

G 

0 (V ) , where x | U 

and x | V 

represent the SPT phases of x as those
in the real spaces U and V , respectively. 

Similarly, the homomorphism i −1 
∗ is defined by making a pair of anomalies x and x̄ = −x inside

U ∩ V belonging to h 

G 

−1 (U ∩ V ) and moving those anomalies to U and V . 
The homomorphism j 0 ∗ is defined by embedding the SPT phases x o v er U and y o v er V into the

total real space X . This defines the homomorphism j 0 ∗ : (x, y ) �→ x | X 

+ y | X 

∈ h 

G 

0 (X ) . 
The boundary homomorphism ∂ 0 is defined by the anomaly of SPT phases. For an SPT phase x

o v er X , cutting the real space X into the two pieces U and V yields the anomaly localized on the
boundaries ∂U that belongs to the generalized homology h 

G 

−1 (U ∩ V ) . This defines the boundary
homomorphism ∂ 0 : x �→ x | ∂U 

∈ h 

G 

−1 (U ∩ V ) . 
Some parts of the exactness of the Mayer–Vietoris sequences are readily confirmed. It holds that

Im i 0 ∗ ⊂ Ker j 0 ∗ , since an adiabatically created pair of SPT phases x and x̄ = −x o v er U ∩ V is a trivial
SPT phase o v er X . Im j 0 ∗ ⊂ Ker ∂ 0 holds true since an SPT phase o v er U has no anomaly unless
cutting U , and so is an SPT phase o v er V . Similarly, we find that Im ∂ 0 ⊂ Ker i −1 

∗ holds since the
anomaly o v er U ∩ V created by the boundary homomorphism ∂ 0 becomes nonanomalous o v er U and
V . We should note that, to pro v e the exactness, we should further show the inverse inclusions. 
1 We say that a space X is G -symmetric if g ( x ) ∈ X for any point x ∈ X and any g ∈ G . 
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4. Atiyah–Hirzebruch spectral sequence 

A useful tool to compute a generalized (co)homology h 

G 

n (X , Y ) is the AHSS. For SPT phases, X is
a real space manifold with a finite dimension. In such cases the E 

r -page of the spectral sequences
converges at E 

∞ = E 

d + 1 , where d is the dimension of X . In this section, we illustrate the AHSS
for crystalline SPT phenomena. We especially describe how to compute the differentials d 

r of the
AHSS from the viewpoint of physics and how to solve the short exact sequences by the E 

∞ -page to
get the generalized homology. It turns out that the AHSS is the mathematical structure behind prior
works [ 34 , 37 , 38 , 49 ]. 

4.1. Cell decomposition and E 

1 -pa g e 

Let X be a d -dimensional space manifold and G be a crystalline symmetry group or point group
acting on the space X . The first step of the AHSS is to introduce a G -symmetric filtration of X , 

X 0 ⊂ X 1 ⊂ · · · ⊂ X d = X , (9) 

where the p -dimensional subspace X p is called the p -skeleton. If we have a G -symmetric cell de-
composition of X , associated with its cell decomposition, the p -skeleton X p is given inductively
by 

X 0 = { 0 -cells } , X p = X p−1 ∪ { p -cells } . (10) 

Here, p -dimensional open cells composing the cell decomposition are called p -cells. It should be
remarked in the construction of AHSS that the spectral sequence itself is constructed from the
filtration of a space that may not be associated with a cell decomposition, and a cell structure is only
necessary for a useful expression of the spectral sequence. 

In the rest of this section, we assume a G -symmetric cell decomposition so that the little group
G D 

p 
j 
⊂ G for a p -cell D 

p 
j does not change the real space position in D 

p 
j ; i.e., the group G D 

p 
j 

behaves

as an onsite symmetry inside the p -cell D 

p 
j . 

The E 

1 -page of the AHSS is defined as 

E 

1 
p, −q = h 

G 

p−q (X p ∪ Y , X p−1 ∪ Y ) . (11) 

By using the cell decomposition of X and Y , we can express E 

1 
p, −q as 

E 

1 
p, −q = 

∏ 

j∈ I p 

h 

G D p j 
p−q 

(
D 

p 
j , ∂D 

p 
j 

)
= 

∏ 

j∈ I p 

h 

q 
G D p j 

(pt) = “ SPT 

q phases on p-cells ′′ , (12) 

where j runs the set (denoted by I p ) of inequi v alent p -cells of X that are not in Y , and G D 

p 
j 

is the little

group fixing the p -cell D 

p 
j . Note that for each p -cell D 

p 
j , the group h 

q 
G D p j 

(pt) is dictated solely by the

subgroup G D 

p 
j 
. The E 

1 -page expresses the collection of “local data of SPT phases”, which we write
in the following table: 

. . . 
. . . 

. . . 
. . . 

. . . 
q = 0 SPT 

0 SPT 

0 SPT 

0 SPT 

0 · · ·
q = 1 SPT 

1 SPT 

1 SPT 

1 SPT 

1 · · ·
q = 2 SPT 

2 SPT 

2 SPT 

2 SPT 

2 · · ·
q = 3 SPT 

3 SPT 

3 SPT 

3 SPT 

3 · · ·
. . . 

. . . 
. . . 

. . . 
. . . 

E 

1 
p, −q p = 0 p = 1 p = 2 p = 3 · · ·
9/64 
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4.2. First differential and E 

2 -page 

Because the topological information contained in the E 

1 -page is spatially local, these data should be
glued in between different cells properly. To do so, we define the first differential 

d 

1 
p, −q : E 

1 
p, −q → E 

1 
p−1 , −q , (13) 

i.e., 

d 

1 
p, −q : “SPT 

q phases on p-cells” → “SPT 

q phases on (p − 1) -cells”, (14) 

as trivializing SPT 

q phases on ( p − 1)-cells by pair creation of SPT 

q phases on adjacent p -cells [ 34 ].
Let us see some first differentials in low-space dimensions. The physical meaning of d 

1 
p, −q depends

on the degree of SPT phenomena n = p − q . 

� d 

1 
1 , 0 : “SPT 

0 phases on 1-cells” → “SPT 

0 phases on 0-cells”
An SPT 

0 phase | χ〉 in a 1-cell D 

1 
j is identified with the adiabatic pump labeled by the SPT 

0 

state | χ〉 . SPT 

0 phases on 0-cells adjacent to the 1-cell may be trivialized by the pair creation of
the SPT 

0 state | χ〉 and its conjugate | ̄χ〉 : 

The point is that this trivialization is doable within a unique gapped ground state . This yields the
equi v alence relation E 

1 
0 , 0 / Im (d 

1 
1 , 0 ) . 

Note that d 

1 
1 , 0 is also identified with the consistency condition Ker (d 

1 
1 , 0 ) ⊂ E 

1 
1 , 0 for adiabatic

cycles inside 1-cells. This is because, if there remains an edge SPT 

0 state at 0-cells per adiabatic
cycle, such an adiabatic cycle produces an SPT 

0 state at the 0-cell, meaning the resulting invertible
state adiabatically differs from the initial state. 

� d 

1 
2 , −1 : “SPT 

1 phases on 2-cells” → “SPT 

1 phases on 1-cells”
The homomorphism d 

1 
2 , −1 represents how SPT 

1 phases on 2-cells trivialize SPT 

1 phases on
adjacent 2-cells. This trivialization exists since inside a 2-cell one can make an SPT 

1 phase
localized on a circle within a unique gapped ground state, which results in the equi v alence
relation E 

1 
1 , −1 / Im (d 

1 
2 , −1 ) : 

At the same time, d 

1 
2 , −1 yields the consistency condition, Ker (d 

1 
2 , −1 ) ⊂ E 

1 
2 , −1 , to have a nontrivial

adiabatic cycle to produce an SPT 

1 phase in 2-cells; otherwise there remains a nontrivial SPT 

1 

phase somewhere after a period of adiabatic cycle. 
There is a strong constraint on SPT 

1 phases created by an adiabatic cycle of d 

1 
2 , −1 . A pumped

SPT 

1 phase o v er a circle should hav e no flux inside the circle; i.e., the pumped SPT 

1 phase is a
10/64 
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disk state created from the vacuum through the imaginary time path-integral: 

Put differently, the twisted boundary condition of the pumped SPT 

1 state is trivial. 
� d 

1 
1 , −1 : “SPT 

1 phases on 1-cells” → “SPT 

1 phases on 0-cells”
An SPT 

1 phase o v er a 0-cell represents an anomalous 0D edge state realized on the 0-cell. Not
every Hilbert space belonging to edges of SPT 

1 phases o v er 0-cells contained in E 

1 
0 , −1 is truly

anomalous o v er the whole space X , since some of them become anomaly free. If a 1-cell admits
a nontrivial SPT 

1 state, there exists a nonanomalous process to produce left and right anomalous
edge states γ L and γ R 

, and they can trivialize the anomalous edges states at the adjacent 0-cell: 

This defines the trivialization E 

1 
0 , −1 / Im (d 

1 
1 , −1 ) . It should be noted that this process is anomaly

free; i.e., it does not change the anomaly of the Hilbert space. 
Moreo v er, the homomorphism d 

1 
1 , −1 is also considered the consistency condition to put SPT 

1 

phases on 1-cells. An anomaly-free combination of SPT 

1 phases o v er 1-cells should be in the
subgroup Ker (d 

1 
1 , −1 ) ⊂ E 

1 
1 , −1 . Otherwise, an anomalous edge state remains somewhere, which

means that the resulting Hilbert space cannot carry a unique gapped ground state. 
� d 

1 
2 , −2 : “SPT 

2 phases on 2-cells” → “SPT 

2 phases on 1-cells”
The Abelian group E 

1 
1 , −2 represents anomalous 1D edge states on 1-cells. The homomorphism

d 

1 
2 , −2 indicates how these anomalous edge states are canceled out with the edge anomaly of SPT 

2 

phases adiabatically created in 2-cells: 

This yields the equi v alence relation E 

1 
1 , −2 / Im (d 

1 
2 , −2 ) . The point is that this process is anomaly

free: The resulting state after trivialization acquires the tensor product of a nontrivial SPT phase,
but it does not matter whether the Hilbert space in question is anomalous or not. 

The homomorphism d 

1 
2 , −2 imposes the consistency condition on the set E 

1 
2 , −2 of SPT 

2 phases
locally defined on 2-cells. An element in E 

1 
2 , −2 must be trivial under the homomorphism d 

1 
2 , −2 ;

otherwise there remains an anomalous edge state some where. This gi v es the consistenc y condition
Ker (d 

1 
2 , −2 ) ⊂ E 

1 
2 , −2 . 
11/64 
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It is important that an SPT 

2 phase o v er a disk inside a 2-cell created by d 

1 
2 , −2 should have no

flux inside the disk. Otherwise, an SPT 

2 phase with a flux may have an anomalous edge state
localized at the flux, which breaks the anomaly-free condition of d 

1 
2 , −2 . 

� d 

1 
1 , −2 : “SPT 

2 phases on 1-cells” → “SPT 

2 phases on 0-cells”
The Abelian group E 

1 
0 , −2 represents SPT 

2 phases at 0-cells and can be understood as “sources
and sinks” of anomalous 1D edge states (the anomaly of anomalies, say). The homomorphism
d 

1 
1 , −2 can be viewed as how the source of anomalous 1D edge states at 0-cells is trivialized by

anomalous edge states on adjacent 1-cells, which is expressed as E 

1 
0 , −1 / Im (d 

1 
1 , −2 ) . Also, the

homomorphism d 

1 
1 , −2 represents the consistency condition for anomalous 1D edge states on 1-

cells to extend those states to adjacent 0-cells, which is expressed as Ker (d 

1 
1 , −2 ) ⊂ E 

1 
1 , −1 . See

the following figure. 

Similarly, we have the physical pictures for all the first differentials d 

1 
p, −q . 

The first differential obeys the requirement that the boundary of a boundary is trivial: 

d 

1 
p−1 , −q ◦ d 

1 
p, −q = 0 . (16) 

This holds true: an SPT 

q phase on a ( p − 1)-cell made from an adjacent p -cell via the adiabatic cycle
is anomaly free. Taking the homology of d 

1 we have the E 

2 -page 

E 

2 
p, −q := Ker 

(
d 

1 
p, −q 

)
/ Im 

(
d 

1 
p−1 , −q 

)
. (17) 

The term E 

2 
p, −q has the following physical meaning: SPT 

q phases in p -cells that cannot be trivialized
by adjacent ( p + 1)-cells adiabatically and can extend to adjacent ( p − 1)-cells without showing an
anomalous state. 

4.3. Higher differentials 
This is not the end of the story. In general, there exist r th-order trivialization and obstruction, the
trivialization of SPT 

q phases in p -cells by ( p − r )-cells and the obstruction to extend SPT 

q phases
in p -cells to ( p + r )-cells. In the AHSS, this is expressed by the r th differential 

d 

r 
p, −q : E 

r 
p, −q → E 

r 
p−r, −q + r −1 , (18) 

i.e., 

d 

r 
p, −q : “SPT 

q phases on p-cells” → “SPT 

q −r +1 phases on (p − r ) -cells”. 

The r th differential also obeys the requirement that 

d 

r 
p−r, −q + r −1 ◦ d 

r 
p, −q = 0 , (19) 

and its homology defines the E 

r + 1 -page 

E 

r +1 
p, −q := Ker 

(
d 

r 
p, −q 

)
/ Im 

(
d 

r 
p+ r, −q −r +1 

)
. (20) 

If X is d -dimensional, the E 

r -page converges at the E 

d + 1 -page: 

E 

1 ⇒ E 

2 ⇒ · · · ⇒ E 

d+1 = E 

d+2 = · · · =: E 

∞ . (21) 

The converged page is called the limiting page and is denoted by E 

∞ . The physical meaning of
E 

∞ 

p, −q is SPT 

q phases in p -cells that cannot be trivialized by any adjacent high-dimensional cells
12/64 



PTEP 2023 , 083I01 K. Shiozaki et al. 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/8/083I01/7220033 by Kyoto U

niversity user on 18 D
ecem

ber 2023
adiabatically and can extend to any adjacent low-dimensional cells without anomaly. 
In the context of SPT phases, the higher differentials of the AHSS may be computed in a physical

picture. We describe the physical definitions of some higher differentials in order. 

� d 

2 
2 , −1 : “SPT 

1 phases on 2-cells” → “SPT 

0 phases on 0-cells”
Since E 

2 
2 , −1 ⊂ Ker d 

1 
2 , −1 , an adiabatically created SPT 

1 phase in 2-cells belonging to E 

2 
2 , −1 can

glue together on 1-cells. Ho we ver, it is nontrivial if its SPT 

1 phase can collapse at 0-cells. The
SPT 

1 phase of E 

2 
2 , −1 may have an SPT 

0 charge around 0-cells; it behaves as the obstruction to
collapse the SPT 

1 state: 

This defines the homomorphism d 

2 
2 , −1 : E 

2 
2 , −1 → E 

2 
0 , 0 . 

In fact, some sort of rotation symmetry around a 0-cell enforces nontrivial symmetry flux at
the 0-cell. In the presence of such flux, an SPT 

1 phase may possess an SPT 

0 phase localized at
the flux. This phenomenon is well known in bosonic SPT phases and formulated by the slant
product of the group cohomology [ 22 , 61 ]. 

See Sect. 5.2.2 for a nontrivial example of d 

2 
2 , −1 . 

� d 

2 
2 , −2 : “SPT 

2 phases on 2-cells” → “SPT 

1 phases on 0-cells”
Similarly, the homomorphism d 

2 
2 , −2 : E 

2 
2 , −2 → E 

2 
0 , −1 measures the obstruction for the collapse

of the SPT 

2 phase in 2-cells at 0-cells: 

There may exist an anomalous SPT 

1 edge state localized at the hole of the SPT 

2 phase. It behaves
as the obstruction to shrink the SPT 

2 phase at the 0-cell, which defines the homomorphism d 

2 
2 , −2 .

See Sects. 5.2.2 , 5.7 , and 5.8.1 for nontrivial examples of d 

2 
2 , −1 . 

� d 

2 
3 , −2 : “SPT 

2 phases on 3-cells” → “SPT 

1 phases on 1-cells”
Suppose we have an SPT 

2 phase on a cylinder S 

1 × R wrapping a 1-cell. In the presence of a
rotation symmetry enforcing a symmetry flux along this 1-cell, the dimensional reduction of the
SPT 

2 phase to the 1-cell may lead to a nontrivial SPT 

1 phase along the 1-cell: 
13/64 
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This defines the homomorphism d 

2 
3 , −2 : E 

2 
3 , −2 → E 

2 
1 , −1 . 

� d 

2 
3 , −3 : “SPT 

3 phases on 3-cells” → “SPT 

2 phases on 1-cells”
Similarly, the homomorphism d 

2 
3 , −3 : E 

2 
3 , −3 → E 

2 
1 , −2 measures the obstruction to collapsing

SPT 

3 states in 3-cells on 1-cells. In the presence of the flux enforced by the symmetry, an
SPT 

3 phase may have an anomalous SPT 

1 edge state localized at the 1-cell, which defines the
homomorphism d 

2 
3 , −3 : 

� d 

3 
3 , −2 : “SPT 

2 phases on 3-cells” → “SPT 

0 phases on 0-cells”
The definition of the homomorphism d 

3 
3 , −2 : E 

3 
3 , −2 → E 

3 
0 , 0 is analogous to d 

2 
2 , −1 . E 

3 
3 , −2 ⊂

Ker d 

2 
3 , −2 ⊂ Ker d 

1 
3 , −2 implies that an SPT 

2 phase created adiabatically in a 3-cell glues together
except for adjacent 0-cells. The homomorphism d 

3 
3 , −2 measures the obstruction to collapsing the

SPT 

2 phase at the 0-cells: 

In general, a sort of inversion symmetry around the 0-cell may enforce a monopole flux inside
the 2-sphere enclosing the 0-cell. In the presence of such a monopole flux, the SPT 

2 state defined
on the 2-sphere may have a nontrivial SPT 

0 charge, which defines the homomorphism d 

3 
3 , −2 . See

Sect. 6.7 for an example of nontrivial d 

3 
3 , −2 . 

� d 

3 
3 , −3 : “SPT 

3 phases on 3-cells” → “SPT 

1 phases on 0-cells”
Similarly, the homomorphism d 

3 
3 , −3 : E 

3 
3 , −3 → E 

3 
0 , −1 is defined as the obstruction to collapsing

an SPT 

3 phase in a 3-cell at 0-cells: 

4.4. Limiting pa g e and filtration 

The limiting page E 

∞ 

p, −q approximates the generalized homology h 

G 

p−q (X , Y ) , the classification of
the degree -n = ( p − q ) SPT phenomena o v er the real space X with the symmetry G up to the degree-( n
− 1) = ( p − q − 1) SPT phenomena o v er the subspace Y . Let h 

G 

n ( X p , X p ∩ Y )( ∼= 

h 

G 

n ( X p ∪ Y , Y ))
14/64 
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be the generalized homology o v er the pair of p -skeletons ( X p , X p ∩ Y ). h 

G 

n (X p , X p ∩ Y ) represents
the classification of degree- n SPT phenomena over the p -skeleton X p up to anomaly over Y , and it is
understood as the collection of k -dimensional layer constructions where k is equal to or lower than
p . With this, we introduce the filtration of h 

G 

n (X , Y ) as in 

F p h n := Im [ h 

G 

n (X p , X p ∩ Y ) → h 

G 

n (X , Y )] , (23) 

0 ⊂ F 0 h n ⊂ · · · ⊂ F d h n = h 

G 

d (X , Y ) . (24) 

Here, the quotient F p h n / F p − 1 h n is isomorphic to the limiting page E 

∞ 

p,n −p : 

F p h n /F p−1 h n 
∼= 

E 

∞ 

p,n −p . (25) 

The reason for this is as follows. E 

∞ 

p,n −p is the set of SPT 

p − n phases on p -cells that are not trivialized
by high-dimensional adjacent cells and are consistent with low-dimensional adjacent cells. On the
one hand, F p h n ( F p − 1 h n ) is the patchwork of the degree- n SPT phenomena on the p -skeleton (( p − 1)-
skeleton). Therefore, an element of the quotient F p h n / F p − 1 h n represents a degree- n SPT phenomenon
that is realized as a pure p -dimensional patchwork, which is equi v alent to E 

∞ 

p,n −p . We should note
that the structure of the filtration ( 24 ) of SPT phases in the presence of a crystalline symmetry and
its relation to higher-order SPT phases (see Sect. 4.6.2 ) were pointed out in Refs. [ 38 , 49 ]. It is useful
to rewrite the relations ( 24 ) and ( 25 ) in the manner of short exact sequences: 

0 −→ F d−1 h n −→ h 

G 

n (X , Y ) −→ E 

∞ 

d .n −d −→ 0 , 

0 −→ F d−2 h n −→ F d−1 h n −→ E 

∞ 

d −1 .n −d +1 −→ 0 , 

· · ·
0 −→ E 

∞ 

0 ,n −→ F 1 h n −→ E 

∞ 

1 ,n −1 −→ 0 . 

(26) 

4.5. Group extension 

The group extension of E 

∞ 

p,n −p by F p − 1 h n in the short exact sequence 

0 → F p−1 h n → F p h n → E 

∞ 

p,n −p → 0 (27) 

states that a degree- n SPT phenomenon inside p -cells classified by E 

∞ 

p,n −p may be be nontrivially
extended by a degree- n SPT phenomenon on the ( p − 1)-skeleton X p − 1 . 

To clarify the point, we explain the group extension for SPT phases, i.e., n = 0. (The following
discussion applies to general degrees n ∈ Z .) The Abelian group E 

∞ 

p, −p represents nontrivial SPT
phases inside p -cells that cannot be trivialized by higher-dimensional cells and can extend to lower-
dimensional cells. Let us consider an SPT phase x ∈ E 

∞ 

p, −p with k th order, i.e., k x = 0 as an element of
E 

∞ 

p, −p . The triviality of kx ∈ E 

∞ 

p, −p implies that the SPT phase k x is trivial within in p -cells. Ho we ver,
the SPT phase k x may remain nontrivial in lower-dimensional cells, i.e., the ( p − 1)-skeleton X p − 1 

in which SPT phases are classified by F p − 1 h 0 . See Fig. 3 for a schematic picture. If this is the case,
15/64 
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the SPT phase k x should be equi v alent to a nonzero element y ∈ F p − 1 h 0 , and the group extension
of E 

∞ 

p, −p by F p − 1 h 0 becomes nontrivial. 
See Sect. 5.1.1 for a simple example where the group extension is nontrivial. 

4.6. Physical properties of AHSS 

In this subsection, we collect relationships between the mathematical structure of the AHSS and the
physics of SPT phases. 

4.6.1. Any crystalline SPT phase is a patchwork of local SPT phases. The generalized homology
formulation of crystalline SPT phases is based on the picture by Thorngren and Else that, in the
topological limit, the spatial scale of crystalline symmetry a can be regarded as large enough com-
pared to the correlation length of bulk ξ [ 36 ]. Once we accept the Thorngren and Else prescription,
we should conclude that 

� Every crystalline SPT phase is made of SPT phases on high-symmetry points (0-cells), open
line segments (1-cells), open polygons (2-cells), and open polyhedrons (3-cells). Briefly, every
crystalline phase is a “patchwork” of local SPT phases. 

This can be explicitly seen in the filtration ( 24 ) of the homology h 

G 

n =0 (X , Y ) , where an SPT phase
belongs to either of the subgroups F p h n = 0 that are composed of p -dimensional cells or cells with
dimension lower than p . 

4.6.2. Higher-order SPT phenomena. Let X = R 

d be the d -dimensional infinite space and G be a
point group symmetry acting on X . The p th-order SPT phases protected by a point group symmetry
are SPT phases having an anomaly localized on a ( d − p )-dimensional subspace in the boundary.
We especially define the d th-order SPT phases as SPT phases without an anomalous boundary state.
Since the existence of a ( d − p )-dimensional anomalous boundary state originates from a ( d − p +
1)-dimensional SPT phase protected by onsite symmetry defined on a ( d − p )-dimensional layer,
we can conclude that the limiting page E 

∞ 

p, −p is nothing but the classification of ( d − p + 1)th-order
SPT phases. More generally, we conclude that 

� The classification of p th-order degree- n SPT phenomena over a real space X is given by
E 

∞ 

d −p+1 ,n −d + p−1 . 

We should note that the classification of p th-order degree- n SPT phenomena itself does not imply
the classification of the degree- n SPT phenomena, since, as discussed in Sect. 4.5 , the group extension
( 27 ) can be nontrivial. 

4.6.3. LSM-type theorems as the boundary of an SPT phase. Let X be a d -dimensional space and G
be a point or space group acting on X . Let us focus on the d th-order anomalies, i.e., anomalous edge
degrees of freedom classified by the Abelian group F 0 h −1 

∼= 

E 

∞ 

0 , −1 . In a Hilbert space H belonging
to E 

∞ 

0 , −1 there remains an anomaly to not have a unique gapped ground state since, from the quotient
by Im d 

r 
r, −r to make the limiting page, the anomaly of H cannot be trivialized by higher-dimensional

cells. This phenomenon is known as the LSM theorem as the boundary of an SPT phase [ 7 , 37 , 62–67 ].
We conclude that 

� The classification of the LSM theorem as the boundary of an SPT phase is given by E 

∞ 

0 , −1 . 
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We would like to emphasize that the E 

2 -page is insufficient to conclude that a given system is
anomalous. To see this, let us begin with the E 

1 -page for 3-space dimensions: 

q = 1 SPT 

1 SPT 

1 

q = 2 SPT 

2 SPT 

2 SPT 

2 

q = 3 SPT 

3 SPT 

3 

E 

1 
p, −q p = 0 p = 1 p = 2 p = 3 

(28) 

The first differential d 

1 
1 , −1 : E 

1 
1 , −1 → E 

1 
0 , −1 represents how anomalous edge states at 0-cells are

trivialized by SPT 

1 phases on 1-cells (see Eq. (15)). Taking the homology of the first differentials,
we get the E 

2 -page 

q = 1 E 

2 
0 , −1 

q = 2 E 

2 
2 , −2 

q = 3 E 

2 
3 , −3 

E 

2 
p, −q p = 0 p = 1 p = 2 p = 3 

(29) 

In the E 

2 -page, E 

2 
0 , −1 is the set of anomalous edge states at 0-cells that cannot be trivialized from

SPT 

1 phases on 1-cells. The second differential d 

2 
2 , −2 : E 

2 
2 , −2 → E 

2 
0 , −1 represents how anomalous

edge states at 0-cells are trivialized by SPT 

2 phases in 2-cells. This is possible in general. If, for an
SPT 

2 phase, a symmetry flux enforced by crystalline symmetry traps an anomalous edge state, one
may remo v e the anomalous edge state at 0-cells via pair annihilation. Taking the homology of d 

2 ,
we get the E 

3 -page 

q = 1 E 

3 
0 , −1 

q = 2 

q = 3 E 

3 
3 , −3 

E 

3 
p, −q p = 0 p = 1 p = 2 p = 3 

(30) 

The third differential d 

3 
3 , −3 : E 

3 
3 , −3 → E 

3 
0 , −1 can also be nontrivial. It represents how anomalous edge

states at 0-cells are trivialized by SPT 

3 phases in 3-cells. Eventually, we get the E 

∞ = E 

4 -page 

q = 1 E 

4 
0 , −1 

q = 2 

q = 3 

E 

4 
p, −q p = 0 p = 1 p = 2 p = 3 

(31) 

For 3-space dimensions, E 

∞ 

0 , −1 = E 

4 
0 , −1 gives the classification of the LSM theorem as the boundary

of an SPT phase. 

4.6.4. LSM-type theorem to enforce a nontrivial SPT phase. Let us focus on the r th differential 

d 

r 
r, −r : E 

r 
r, −r → E 

r 
0 , −1 (32) 

discussed in Sect. 4.6.3 . The physical meaning of a Hilbert space H belonging to Im d 

r 
r, −r ⊂ E 

r 
0 , −1 

is that the edge anomalies localized at 0-cells of H can be remo v ed by an SPT 

r phase in r -cells. See
Eq. (22) for r = 2. Put differently, if we have a unique gapped ground state | χ〉 in the Hilbert space
H, the state | χ〉 should be a nontrivial SPT 

r phase composed of an r -dimensional layer construction.
This is the mechanism to have the LSM theorem enforcing an SPT phase discussed in Refs. [ 68 , 69 ].
In sum, 

� The classification of the LSM theorem enforcing a nontrivial r -dimensional SPT phase for a
Hilbert space is given by Im d 

r 
r, −r . 
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4.6.5. LSM-type theorem with U(1) symmetry. In the presence of the U (1) particle number con-
servation and a space group symmetry G , the U (1) charge per unit cell, called the filling number
ν, is well defined. We here also assume the absence of particle–hole symmetry flipping the U (1)
charge. In such systems, the LSM theorem [ 70 ] and its generalizations [ 71–73 ] give a constraint on
filling number ν to have a gapped unique ground state. We also have the LSM theorem to enforce a
nontrivial SPT phase that is not an atomic insulator by a filling number [ 69 , 74 ]. 

Let us formulate the LSM-type theorem in the presence of the U (1) particle number conservation
from the viewpoint of generalized homology. Atomic insulators are classified by the term E 

∞ 

0 , 0 that
is generated by Wyckoff orbitals. The possible filling numbers ν ∈ n AI Z of atomic insulators are
determined by E 

∞ 

0 , 0 . For generic insulators classified by h 

G 

0 (X ) , a filling number ν can be a fractional
ν ∈ (n AI /p) Z when the filling number n AI Z ∈ E 

∞ 

0 , 0 leads to a nontrivial group extension ( 26 ) of SPT
phases in higher-dimensional cells. We have two consequences: 

� If the filling number ν is not in (n AI /p) Z , then the system has no unique gapped symmetric
ground state. 

� For a unique gapped symmetric ground state, if the filling number ν is a fractional number q 
p n AI Z

with q ∈ {1, …, p − 1}, the ground state is an SPT phase defined on a d -dimensional layer with
d ≥ 1. 

5. Interacting crystalline SPT phases 
In this section, we present case studies of the AHSS for interacting SPT phases. We leave the AHSS
for free fermions to Sect. 6 . 

5.1. Interacting fermions with inversion symmetry: the case of I 2 = ( −1) F 

As a benchmark test of the generalized homology framework and the AHSS, we calculate the
fermionic SPT phases with inversion symmetry ( x 1 , …, x d ) �→ ( −x 1 , …, −x d ) obeying the algebra
I 2 = ( −1) F , where ( −1) F is the fermion parity. The corresponding generalized homology is written
by h 

Z 4 
n ( R 

d , ∂ R 

d ) where R 

d is the real space and Z 4 acts on R 

d as the inversion. (The mathemati-
cally precise meaning of the homology h 

Z 4 ( R 

d , ∂ R 

d ) is the homology of the pair of the one point
compactification R 

d ∪ {∞} and the infinity { ∞ }.) 
The classification of such SPT phases is given by the Anderson dual of the corresponding bordism

groups. Let us denote a reflection transformation that changes only one spacetime coordinate as R , and
a Z 2 symmetry that does not change any spacetime points as U . R 

2 = 1 and R 

2 = ( −1) F correspond to
pin 

+ and pin 

− bordism groups, respectively, while U 

2 = 1 and U 

2 = ( −1) F correspond to Spin × Z 2 

and ( Spin × Z 4 ) / Z 2 bordism groups, respectively. 2 Note that the corresponding bordism groups
depend on the spatial dimension as the number of spatial directions to be flipped varies with the
spatial dimension d : The Anderson dual of the bordism group classification assumes the symmetry
of the TQFT. In particular, fermionic fields obey relativistic rotational symmetry, where rotational
operations that do not change the orientation of spacetime accompany internal transformations of
the internal spinor space, and a phase given by the fermion parity operator ( −1) F arises for a 2 π

rotation of spacetime. As a result, the correspondence between the spatial inversion I satisfying I 2 

= ( −1) F and the four bordism groups described abo v e is giv en as follows for spatial d dimensions:
In the case of d ≡ 1 mod 4, R 

2 = ( −1) F , i.e., pin 

− bordism. In the case of d ≡ 2 mod 4, U 

2 = 1,
2 In ( Spin × Z 4 ) / Z 2 , a 2 π rotation of spacetime and U 

2 , symmetry actions of the element 2 ∈ Z 4 are identified. 
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[a] [b] [c]

Fig. 4. [a], [b], and [c]: inversion-symmetric cell decomposition of R 

1 , R 

2 , and R 

3 , respectively. 
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i.e., Spin × Z 2 bordism. In the case of d ≡ 3 mod 4, R 

2 = 1, i.e., pin 

+ bordism. In the case of d ≡
0 mod 4, U 

2 = ( −1) F , i.e., ( Spin × Z 4 ) / Z 2 bordism. 

5.1.1. 1D fermions. Let us consider 1D fermions o v er the infinite real space R . The inversion-
symmetric cell decomposition is given as Fig. 4 [a]; it is composed of the 0-cell A and the 1-cell a .
The E 

1 -page is given by 

q = 0 Z 4 Z 2 

q = 1 0 Z 2 

E 

1 
p, −q p = 0 p = 1 

(33) 

Here, E 

1 
0 , 0 = Z 4 is generated by the occupied state f † | 0 〉 of a complex fermion f † with the inversion

eigenvalue If †I −1 = if †, where | 0 〉 is the Fock vacuum. Similarly, E 

1 
1 , 0 = Z 2 is generated by the

occupied state f † | 0 〉 . E 

1 
1 , −1 = Z 2 is generated by the topologically nontri vial Kitae v chain on the

1-cell a . The reason that E 

1 
0 , −1 = 0 is as follows: Due to the Z 4 permutation symmetry generated

by I , edge Majorana fermions should appear as a pair { γ 1 , γ 2 } with I γ 1 I −1 = γ 2 and I γ 2 I −1 =
−γ 2 . The Majorana fermions form a complex fermion f = ( γ 1 + i γ 2 )/2, making the Hilbert space
nonanomalous. 

The first differential d 

1 
1 , 0 is found to be trivial d 

1 
1 , 0 = 0 . The first differential d 

1 
1 , 0 represents a pair

creation of complex fermions f † 1 f 
† 
2 at the 1-cell a and its inversion image f † 3 f 

† 
4 , and moving fermions

to the center and the infinite while preserving the inversion symmetry: 

At the inversion center, the inversion-symmetric pair f † 1 f 
† 
3 of complex fermions may trivialize part

of the SPT 

0 phase classified by E 

1 
0 , 0 . Ho we ver, the state f † 1 f 

† 
3 is trivial since the Z 4 structure of

inversion I 2 = ( −1) F implies that I is the permutation I f † 1 I 
−1 = f † 3 and I f † 3 I 

−1 = − f † 1 and it means
that the trivial U (1) phase I f † 1 f 

† 
3 I 

−1 = f † 1 f 
† 
3 under I . 

The first differential d 

1 
1 , −1 is trivial because E 

1 
0 , −1 = 0 . This means that a pair of topologically

nontri vial Kitae v chains defined locally on the 1-cell a and the inversion image can glue together at
the inversion center without breaking the inversion symmetry. 
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[a] [b]

Fig. 5. [a] The double nontrivial Kitaev chains preserving the inversion symmetry. [b] An adiabatically equiv- 
alent Hamiltonian ef fecti vely consisting only of four sites around the inversion center. 
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The E 

2 -page is the same as E 

1 , and it is the limiting page E 

∞ . The classification of SPT phases fits
into the short exact sequence 

0 → Z 4 ︸︷︷︸ 
E 

∞ 

0 , 0 

→ h 

Z 4 
0 ( R , ∂ R ) → Z 2 ︸︷︷︸ 

E 

∞ 

1 , −1 

→ 0 . (35) 

To determine the group extension, we ask if the double of Z 2 nontrivial Kitaev chains inside the
1-cell is equi v alent to the generator of E 

∞ 

0 , 0 = Z 4 , a complex fermion at the inversion center. The
only facts necessary for calculating the group extension are 

� For four Majorana fermions { a , b , c , d } there is a 1-parameter family of the gapped Hamiltonian
H ( θ ) that switches the inter-Majorana hopping terms 

H (θ ) = cos θ (i ab + i cd ) + sin θ (i ac − i bd ) . (36) 

In particular, H (0) = iab + icd is adiabatically deformed to H ( ± π /2) = ±( iac − ibd ). 
� The nontrivial Kitaev chain with the periodic boundary condition (corresponding to the π -flux

piercing the chain) has odd fermion parity [ 75 ]. 

The Hamiltonian for the topologically nontrivial Kitaev chain classified by E 

∞ 

1 , −1 is given by 

H ν = 2 

∑ 

x ∈ Z +1 / 2 

f † x +1 ,ν

(
f x,ν + f † x,ν

)+ h . c . = 

∑ 

x ∈ Z +1 / 2 

ib x,νa x +1 ,ν, (37) 

with the inversion symmetry I f † x,νI −1 = i f † −x,ν and ν the fla v or index. We have introduced the
Majorana fermions by a x,ν = f x,ν + f † x,ν and b x,ν = −i( f x,ν − f † x,ν ) , and the inversion acts on them
by Ia x , νI −1 = b −x , ν and Ib x , νI −1 = −a −x , ν . It should be noticed that the inversion of the Kitaev
chain representing E 

∞ 

1 , −1 is the bond center inversion , since E 

2 
1 , −1 is defined by gluing the left and

right edge Majorana fermions at the inversion center (see Fig. 5 [a]). Now we consider the two
Kitaev chains H ↑ + H ↓ . Applying the equi v alent relation ( 37 ) to two quartets of Majorana fermions
{ b − 3 

2 , ↑ , a − 1 
2 , ↑ , b − 3 

2 , ↓ , a − 1 
2 , ↓ } and { b 1 

2 , ↑ , a 3 
2 , ↑ , b 1 

2 , ↓ , a 3 
2 , ↓ } while preserving the inversion symmetry, we

find that the Hamiltonian H ↑ + H ↓ decouples at x = −1 and x = 1. By moving the decoupled Kitaev
chains at | x | > 1 to the infinite, the Hamiltonian H ↑ + H ↓ is recast as the Kitaev chain composed of
eight Majorana fermions (Fig. 5 [b]): 

H ↑ + H ↓ ∼ ib − 1 
2 ↑ a 1 

2 ↑ + ib − 1 
2 ↓ a 1 

2 ↓ + ia − 1 
2 ↓ a − 1 

2 ↑ + ib 1 
2 ↓ b 1 

2 ↑ . (38) 

Notice that the inversion symmetry requires the relative sign in between ia − 1 
2 ↓ a − 1 

2 ↑ and ib 1 
2 ↓ b 1 

2 ↑ to
be 1. The r.h.s. of Eq. ( 38 ) obeys the periodic boundary condition, i.e., the π -flux inserted in the
Kitaev chain. Therefore, we conclude that the Hamiltonian H ↑ + H ↓ traps an odd fermion parity at
the inversion center, implying that H ↑ + H ↓ is equi v alent to an odd state 1 or 3 ∈ E 

∞ 

0 , 0 = Z 4 . This
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means that the group extension ( 35 ) is nontrivial. The homology group becomes h 

Z 2 
0 ( R ) = Z 8 , which

is consistent with the pin − cobordism group �
pin −
2 = Z 8 [ 17 ]. 

It is instructive to derive the same result using the Dirac Hamiltonian in the continuous system.
Near the critical point, the Kitaev chain is described by the Dirac Hamiltonian H = −i∂ x τy + mτz 

on the basis of the Nambu fermion �( x ) = ( f ( x ), f †( x )) T . We assume that m < 0 for nontrivial and
m > 0 for trivial phases. The inversion is defined by If †( x ) I −1 = if †( −x ). It is found that the double
stack of Hamiltonians H ↑ ⊕ H ↓ admits an inversion-symmetric mass term M ( x ) as in 

H = −i∂ x τy + mτz + M (x ) τx σy , M (−x ) = −M(x ) , (39) 

where σα( α ∈ 0, x , y , z ) is the Pauli matrix for the layer indices { ↑ , ↓ }. At the inversion center, there
exists a single kink. For a kink with M ( x ) > 0 for x > 0, the two Jackiw–Rebi soliton modes ( 

1 

0 

) 

τ

⊗
( 

1 

i 

) 

σ

e −
∫ x M(x ′ ) dx ′ , 

( 

0 

1 

) 

τ

⊗
( 

1 

−i 

) 

σ

e −
∫ x M(x ′ ) dx ′ (40) 

appear, and the ef fecti ve lo w-energy Hamiltonian within the localized modes reads H e = mτz . The
localized modes contribute to the ground state via the creation operator 

f † loc ∼
∫ 

dxe −
∫ x M(x ′ ) dx ′ 

{ 
f † ↑ (x ) − i f † ↓ (x ) 

} 
. (41) 

This has the inversion eigenvalue I f † loc I 
−1 = i f † loc , meaning that the localized mode f † loc generates

E 

1 
0 , 0 = Z 4 . 

5.1.2. 2D fermions. Let us consider 2D fermions with inversion symmetry I : ( x , y ) �→ ( −x , −y )
with I 2 = ( −1) F . An inversion-symmetric cell decomposition of the infinite real space R 

2 is given
as Fig. 4 [b]. The E 

1 -page is 

q = 0 Z 4 Z 2 Z 2 

q = 1 0 Z 2 Z 2 

q = 2 Z Z 

E 

1 
p, −q p = 0 p = 1 p = 2 

(42) 

Here, E 

1 
p∈{ 1 , 2 } , −2 = Z is generated by the ( p x + ip y ) superconductor. E 

1 
0 , −2 remains blank since it

does not matter to SPT phases. It is easy to see that the first differentials are trivial in this table.
F or e xample, the first dif ferential d 

1 
2 , −2 : Z → Z represents ho w the boundary anomalies of ( p x +

ip y ) states in 2-cells contribute to anomalous edges in 1-cells. An inversion-symmetric pair of chiral
edges cancels out, which means d 

1 
2 , −2 = 0 : 
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The E 

2 -page is 

q = 0 Z 4 Z 2 Z 2 

q = 1 0 Z 2 Z 2 

q = 2 Z 

E 

2 
p, −q p = 0 p = 1 p = 2 

(44) 

( E 

2 
1 , −2 is not determined since we did not specify d 

1 
1 , −2 .) In this table, d 

2 
2 , −1 can be nontrivial. It

represents how an adiabatically created nontrivial Kitaev chain enclosing the inversion center A
trivializes the SPT 

0 state at the inversion center A . We find that d 

2 
2 , −1 is trivial. This is because I 2 =

( −1) F implies the antiperiodic boundary condition (the Neveu–Schwarz sector) of the Kitaev chain,
and its ground state is the disk state of the invertible spin TQFT, meaning that the ground state of the
Kitaev chain with the inversion symmetry with I 2 = ( −1) F can collapse. 3 As a result, the E 

2 -page
displayed in Eq. ( 44 ) is the limit. 

The homology group h 

Z 4 
0 ( R 

2 , ∂ R 

2 ) , the classification of SPT phases, fits into the short exact se-
quences 

0 → F 

1 h 0 → h 

Z 4 
0 ( R 

2 , ∂ R 

2 ) → Z ︸︷︷︸ 
E 

∞ 

2 , −2 

→ 0 , 

0 → Z 4 ︸︷︷︸ 
E 

∞ 

0 , 0 

→ F 

1 h 0 → Z 2 ︸︷︷︸ 
E 

∞ 

1 , −1 

→ 0 . (45) 

We have already determined the latter extension F 

1 h 0 = Z 8 in Sect. 5.1.1 , yielding to h 

Z 4 
0 ( R 

2 , ∂ R 

2 ) =
Z 8 × Z , which is consistent with Tor �Spin 

3 (B Z 2 ) × Free �Spin 
4 (B Z 2 ) . 

5.1.3. 3D fermions. Let us consider 3D fermions with inversion symmetry I : ( x , y , z ) �→ ( −x , −y ,
−z ) with I 2 = ( −1) F . An inversion-symmetric cell decomposition of the infinite real space R 

3 is
given as Fig. 4 [c]. The E 

1 -page is 

q = 0 Z 4 Z 2 Z 2 Z 2 

q = 1 0 Z 2 Z 2 Z 2 

q = 2 Z Z Z 

q = 3 0 0 0 

E 

1 
p, −q p = 0 p = 1 p = 2 p = 3 

(46) 

The first differential d 

1 
3 , −2 : Z → Z , which represents how adiabatically created ( p x + ip y ) states

in 3-cells trivialize those in 2-cells, is nontrivial. Because the inversion does not change the Chern
3 Explicitly, the ground state of the Kitaev chain Hamiltonian composed of an even number of sites enclosing 

the inversion center A is written as 

| GS ns 〉 = 

∑ 

j∈ e v en 

∑ 

1 ≤p 1 ≤···≤p j ≤2 L 

f † p 1 · · · f † p j | 0 〉 . 

Under the inversion I f † x I −1 = i f † x + L 

, this state has no U (1) phase. 
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number, we find that d 

1 
3 , −2 = 2 : 

The homology of d 

1 gives the E 

2 -page 

q = 0 Z 4 Z 2 Z 2 Z 2 

q = 1 0 Z 2 Z 2 Z 2 

q = 2 Z 2 0 

q = 3 0 0 0 

E 

2 
p, −q p = 0 p = 1 p = 2 p = 3 

(47) 

For SPT phases, the E 

2 -page is sufficient to give the E 

∞ terms. The homology group h 

Z 4 
0 ( R 

3 , ∂R 

3 )
fits into the exact sequences 

0 → F 

2 h 0 → h 

Z 4 
0 ( R 

3 , ∂ R 

3 ) → 0 ︸︷︷︸ 
E 

∞ 

3 , −3 

→ 0 , 

0 → F 

1 h 0 → F 

2 h 0 → Z 2 ︸︷︷︸ 
E 

∞ 

2 , −2 

→ 0 , 

0 → Z 4 ︸︷︷︸ 
E 

∞ 

0 , 0 

→ F 

1 h 0 → Z 2 ︸︷︷︸ 
E 

∞ 

1 , −1 

→ 0 . (48) 

We have already solved the third extension in Sect. 5.1.1 . The above exact sequences are recast into 

0 → Z 8 ︸︷︷︸ 
F 1 h 0 

→ h 

Z 4 
0 ( R 

3 , ∂ R 

3 ) → Z 2 ︸︷︷︸ 
E 

∞ 

2 , −2 

→ 0 . (49) 

One can fix the extension of E 

∞ 

2 , −2 by F 

1 h 0 in a way similar to Sect. 5.1.1 . It is useful to describe the
( p x + ip y ) state by the coupled wire 

H ν = 

∑ 

x ∈ Z +1 / 2 

∫ 
d y 

{
L x,ν (y ) i∂ y L x,ν (y ) − R x,ν (y ) i∂ y R x,ν (y ) 

}+ 

∑ 

x ∈ Z +1 / 2 

it 
∫ 

d yR x,ν ( y ) L x +1 ,ν ( y ) .

(50) 

Here, L x , ν( y ) and R x , ν( y ) are left- and right-mo v er chiral Majorana fermions along the y -direction
at the wire x ∈ Z + 1 / 2 with ν the fla v or index. The second term is the inter-wire hopping term to
make the system gapped. Since the ( p x + ip y ) state of E 

∞ 

2 , −2 is made from gluing local ( p x + ip y )
states at the 2-cell and its inversion image, the site index x should be in odd integers. The inversion is
defined by I ( L x , ν( y ), R x , ν( y )) I −1 = ( R −x , ν( −y ), −L −x , ν( −y )). We use the following facts to calculate
the group extension: 
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[a] [b]

[c]

Nontrivial Kitaev chain

Fig. 6. [a] The coupled wire Hamiltonian H ↑ + H ↓ . [b] A coupled wire Hamiltonian equi v alent to [a]. [c] An 

alternative process to the nontrivial Kitaev chain from the double-layered ( p x + ip y ) states. First we rotate a 
( p x + ip y ) state by the π -angle to get the nonchiral ( p x + ip y ) ⊕( p x − ip y ) state. Next, we induce an inversion- 
symmetric mass term, resulting in the nontrivial Kitaev chain. 
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� For two pairs of left- and right-mover chiral Majorana fermions { R 1 ( y ), L 1 ( y ), R 2 ( y ), L 2 ( y )}, there
is a 1-parameter family of the gapped Hamiltonian H ( θ ) that switches the hopping terms 

H (θ ) = 

∑ 

a =1 , 2 

∫ 
dy 

{
L a (y ) i∂ y L a (y ) − R a (y ) i∂ y R a (y ) 

}
+ cos θ

∫ 
dyit { R 1 (y ) L 1 (y ) + R 2 (y ) L 2 (y ) } 

+ sin θ

∫ 
dyit { R 1 (y ) L 2 (y ) − R 2 (y ) L 1 (y ) } . (51) 

� For the ( p x ± ip y ) state defined on a cylinder S 

1 × R with the π -flux piercing S 

1 , the dimensional
reduction along S 

1 gives the nontrivial Kitaev chain. 

The latter is due to the existence of a Majorana zero mode localized at the π -flux defect in the ( p x 

± ip y ) state. Now let us consider the two-layered ( p x + ip y ) states H ↑ + H ↓ (see Fig. 6 [a]). Applying
the adiabatic deformation ( 51 ) to two quartets of chiral Majoranas { R − 3 

2 , ↑ , L − 1 
2 , ↑ , R 1 

2 , ↓ , L 3 
2 , ↓ } and

{ R − 3 
2 , ↓ , L − 1 

2 , ↓ , R 1 
2 , ↑ , L 3 

2 , ↑ } while preserving the inversion symmetry, we find that the Hamiltonian
H ↑ + H ↓ is decomposed into the three layers of ( p x + ip y ) states (see Fig. 6 [b]). Moving the inversion-
symmetric pair of ( p x + ip y ) states to the infinite z = ±∞ , the Hamiltonian H ↑ + H ↓ is found to be
equi v alent to the ( p x + ip y ) state localized at the inversion center: ˜ H = ( kinetic terms ) + it 

∫ 
dy 

{ 
R − 1 

2 , ↑ L 1 
2 , ↑ + R 1 

2 , ↑ L − 1 
2 , ↓ + R − 1 

2 , ↓ L 1 
2 , ↓ + R 1 

2 , ↓ L − 1 
2 , ↑ 
} 

. (52) 

Here, the relative sign of the coefficients in between itR 1 
2 , ↑ L − 1 

2 , ↓ and itR 1 
2 , ↓ L − 1 

2 , ↑ is fixed at 1 from

the inversion symmetry. The boundary condition of the Hamiltonian 

˜ H is periodic, meaning that˜ H is equi v alent to the nontri vial Kitae v chain along the y -direction, the generator of F 

1 h 0 = Z 8 .
Therefore, the extension ( 49 ) is nontrivial and fixed as h 

Z 4 
0 ( R 

3 , ∂ R 

3 ) = Z 16 , which is consistent with

the pin + 

cobordism group �
pin + 
4 = Z 16 [ 17 ]. 

The same conclusion can be derived by using the continuous Dirac Hamiltonian. Here we show
this in a slightly different (but equivalent) manner. The single layer of the ( p x + ip y ) state is described
by the BdG Hamiltonian 

H = −i ∂ x τx − i ∂ y τy + mτz , C = τx K, I = iτz , (53) 
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with m < 0, where τμ ∈ { x , y , z } is the Pauli matrix for the Nambu space. Because the generalized
homology h 

Z 4 
0 ( R 

3 , ∂ R 

3 ) classifies SPT phases o v er the disk D 

3 ∼ R 

3 that may be anomalous on
the boundary ∂ D 

3 ∼ ∂ R 

3 of the disk, one can rotate the ( p x + ip y ) layer around the inversion
center without breaking the inversion symmetry [ 45 ]. The π rotation around the y -axis makes the
Hamiltonian H a ( p x − ip y ) state H 

′ : 

H ∼ H 

′ = i ∂ x τx − i ∂ y τy + mτz , C = τx K, I = iτz . (54) 

Then, the double layer of ( p x + ip y ) states H ⊕ H is equi v alent to the nonchiral state 

H ⊕ H 

′ = −i∂ x τx σz − i∂ y τy + mτz , C = τx K, I = iτz , (55) 

where σμ is the Pauli matrix for the layer indices. See Fig. 6 (c). This Hamiltonian admits an inversion-
symmetric mass term 

M (x ) τx σy , M (−x ) = −M(x ) , (56) 

which induces the localized doublet modes at x ∼ 0: 

{ φloc , 1 (x, y ) , φloc , 2 (x, y ) } ∼
{ ( 

1 

0 

) 

τ

, 

( 

0 

1 

) 

τ

} 

⊗
( 

1 

1 

) 

σ

e −
∫ x dx ′ M(x ′ ) . (57) 

in the case where M ( x ) > 0 for x > 0. The ef fecti ve lo w-energy Hamiltonian within the doublet reads 

H loc = −i∂ y τy + mτz , C = τx K, I = iτz . (58) 

This is the nontrivial Kitaev Hamiltonian, the generator of F 

1 h 0 = Z 8 . 

5.2. Interacting fermions with inversion symmetry: the case of I 2 = 1 

Next, we consider the inversion-symmetric fermionic systems again, but the inversion square is I 2 = 1,
the identity operator. Because the fermion permutation operator U 12 , U 12 f 1 U 

−1 
12 = f 2 , U 12 f 2 U 

−1 
12 =

− f 1 , satisfies U 

2 
12 = (−1) F , the algebraic relation I 2 = 1 implies a π -flux line ending at the inversion

center. Put differently, I 2 = 1 enforces the π -flux. In the following, we see that the higher differentials
d 

r in the AHSS reflect the constraint from I 2 = 1. 
At the inversion center, the inversion symmetry behaves as Z 2 onsite symmetry. The classification

of SPT 

d phases is given by the Anderson dual to the spin cobordism, which is noncanonically
isomorphic to Tor �Spin 

d+1 (B Z 2 ) × Free �Spin 
d+2 (B Z 2 ) , where the free part represents the Chern–Simons

term from the theta term in ( d + 2)-spacetime dimensions [ 17 , 18 ]. 
In this section, we also present the classification of anomalies h 

Z 2 
−1 ( R 

d , ∂ R 

d ) for d = 1, 2, 3. 
In the same manner as at the beginning of Sect. 5.1 , the correspondence between the spatial

inversion I satisfying I 2 = 1 and the four bordism groups described abo v e is giv en as follows for
spatial d dimensions: In the case of d ≡ 1 mod 4, R 

2 = 1, i.e., pin 

+ bordism. In the case of d ≡
2 mod 4, U 

2 = ( −1) F , i.e., ( Spin × Z 4 ) / Z 2 bordism. In the case of d ≡ 3 mod 4, R 

2 = ( −1) F , i.e.,
pin 

− bordism. In the case of d ≡ 0 mod 4, U 

2 = 1, i.e., Spin × Z 2 bordism. 

5.2.1. 1D fermions. Let us consider 1D fermions o v er the infinite line R . We shall compute the
homology h 

Z 2 
n ( R , ∂ R ) where Z 2 acts on R by the inversion x �→−x . The E 

1 -page is given by 

q = 0 Z 2 × Z 2 Z 2 

q = 1 Z 2 × Z 2 Z 2 

q = 2 Z × Z 8 Z 

E 

1 
p, −q p = 0 p = 1 

(59) 
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Here, E 

1 
0 , 0 = Z 2 × Z 2 is generated by the occupied state f † ± | 0 〉 of a complex fermion with inversion

parity I f † ±I −1 = ± f † ±. Similarly, E 

1 
0 , −1 is generated by a Majorana fermion γ ± with the inversion

parity I γ ±I −1 = ±γ ±. E 

1 
0 , −2 = Z × Z 8 is generated, from the viewpoint of the anomaly, by a right-

mo v er chiral Majorana fermion R + 

( y ) with the trivial Z 2 onsite symmetry action for the subgroup
Z , and a pair ( R + 

( y ), L −( y )) of right- and left-mo v er chiral Majorana fermions with even and odd
parities under the Z 2 onsite symmetry, respectively, for Z 8 . 

The first differential d 

1 
1 , 0 is defined as the trivialization of SPT 

0 phases at the 0-cell from 1-
cells; see Fig. (34). Unlike the case of I 2 = ( −1) F , the inversion-symmetric pair has the odd
inversion parity I f † 1 f 

† 
3 | 0 〉 = − f † 1 f 

† 
3 because I f † 1 I 

−1 = f † 3 and I f † 3 I 
−1 = f † 1 , which means that

d 

1 
1 , 0 = (1 , 1) . In the same way, we find that d 

1 
1 , −1 = (1 , 1) . The first differential d 

1 
1 , −2 is computed

as follows [ 34 ]: An inversion-symmetric pair ( R 

1 ( y ), R 

3 ( y )), IR 

1 ( y ) I −1 = R 

3 ( y ) and IR 

3 ( y ) I −1 =
R 

1 ( y ), of right-mo v er chiral Majorana fermions has the inversion parity IR ±( y ) I −1 = ±R ±( y ) where
R ±(y ) = (R 

1 (y ) ± R 

3 (y )) / 

√ 

2 is the linear combination. Therefore, by adding the triv-
ial state R −( y ) ⊕L −( y ), the inversion-symmetric pair is equi v alent to ( R + 

( y ), R −( y )) ∼
( R −( y )) ⊕( R −( y )) ⊕( R + 

( y ), L −( y )), the anomalous state ( −2, 1) in Z × Z 8 , which means that
d 

1 
1 , −2 = (−2 , 1) . The homology of d 

1 gives us the E 

2 -page 

q = 0 Z 2 0 

q = 1 Z 2 0 

q = 2 Z 16 0 

E 

2 
p, −q p = 0 p = 1 

(60) 

With this, we find that SPT phases are classified by Z 2 , and it is generated by a complex fermion
f † | 0 〉 at the inversion center. We also conclude that the 1D anomalies with inversion symmetry are
classified by Z 2 , and it is generated by a single Majorana fermion at the inversion center. 

It is noteworthy that E 

2 
0 , −2 = Z 16 classifies the 3D SPT phase with reflection symmetry, where the

square of the reflection is R 

2 = 1. This is known to be a Z 16 classification [ 38 ]. 

5.2.2. 2D fermions. Let us consider 2D fermions with inversion symmetry I : ( x , y ) �→ ( −x , −y )
with I 2 = 1. This corresponds to even (odd) parity 2D superconductors in spinless (spinful) fermions.
The E 

1 -page is 

q = 0 Z 2 × Z 2 Z 2 Z 2 

q = 1 Z 2 × Z 2 Z 2 Z 2 

q = 2 Z × Z 8 Z Z 

q = 3 0 0 0 

E 

1 
p, −q p = 0 p = 1 p = 2 

(61) 

By the same discussion as in Sect. 5.2.1 , the E 

2 -page is computed as 

q = 0 Z 2 0 Z 2 

q = 1 Z 2 0 Z 2 

q = 2 Z 16 0 Z 

q = 3 0 0 0 

E 

2 
p, −q p = 0 p = 1 p = 2 

(62) 

In this table, the second differentials d 

2 
2 , −1 and d 

2 
2 , −2 can be nontrivial. 

The second differential d 

2 
2 , −1 : E 

2 
2 , −1 → E 

2 
0 , 0 represents how an adiabatically generated nontrivial

Kitaev chain in the 2-cell α trivializes the Z 2 fermion parity at the inversion center while preserving
26/64 
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the inversion symmetry. Put differently, d 

2 
2 , 1 measures the obstruction whether the Kitaev chain

enclosing the inversion center collapses or not. See the following figure: 

In the abo v e figure, the blue lines represent the nontri vial Kitae v chains. In the middle of the figure,
the top and bottom Kitaev chains go to infinity. Thanks to d 

1 
2 , −1 = 0 , it is guaranteed that the Kitaev

chains in the upper and lower half-planes related by the inversion symmetry can glue together at
1-cells. Ho we ver, it is nontri vial if the Kitae v chain on the circle enclosing the 0-cell (the right in the
abo v e figure) collapses in unique and gapped ground states. We find that d 

2 
2 , −1 is actually nontrivial.

Because the square of the inversion is identified with the 2 π -rotation, the Kitaev chain enclosing the
0-cell A obeys the periodic boundary condition, i.e., the π -flux inside the chain. It is well known that
the topologically nontrivial Kitaev chain with the periodic boundary condition has the odd fermion
parity 〈 G S PBC 

| (−1) F | G S PBC 

〉 = −1 for the ground state | GS PBC 

〉 [ 75 ], which implies the nontrivial
second differential d 

2 
2 , −1 : 1 �→ 1 . Another viewpoint is that the nontrivial Kitaev chain with the

inversion symmetry with I 2 = 1 must accompany a π -flux defect inside the closed chain and the
π -flux defect behaves as the obstruction to collapsing. 

The nontriviality of the second differential d 

2 
2 , −2 : E 

2 
2 , −2 → E 

2 
0 , −1 is found in a similar way to

d 

2 
2 , −1 . It represents how a ( p x + ip y )-wave superconductor generated in the 2-cell α without chaining

the anomaly of the system trivializes the Z 2 Majorana fermion at the 0-cell A in the presence of the
inversion symmetry. See the following figure: 

In the abo v e figure, the blue regions represent the ( p x + ip y ) superconductors preserving the
inversion symmetry. Thanks to d 

1 
2 , −2 = 0 , the upper and lower ( p x + ip y ) superconductors can glue

together at 1-cells. Ho we ver, it is nontrivial if they glue together at the 0-cell, the inversion center.
As for the Kitaev chain enclosing the 0-cell, the ( p x + ip y ) superconductor with I 2 = 1 must have a
π -flux defect piercing the inversion center to make the boundary condition of the chiral Majorana
fermion periodic (the Ramond sector). It is well known that there is an exact zero Majorana mode
localized at the π -flux reflecting the bulk topology, which implies that the second differential is
nontrivial d 

2 
2 , −2 : 1 �→ 1 . 
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We get the E 

3 = E 

∞ -page 

q = 0 0 0 

q = 1 0 0 0 

q = 2 Z 16 0 2 Z 

q = 3 0 0 0 

E 

3 
p, −q p = 0 p = 1 p = 2 

(63) 

We conclude that the classification of SPT phases is h 

Z 2 
0 ( R 

2 , ∂ R 

2 ) = 2 Z , which is generated by the ( p x 

+ ip y ) ⊕( p x + ip y ) superconductor. Also, the E 

∞ -page indicates the absence of a nontrivial anomaly.

5.2.3. 3D fermions. Let us consider 3D fermions with inversion symmetry I : ( x , y , z ) �→ ( −x , −y ,
−z ) with I 2 = 1. This corresponds to even (odd) parity 3D superconductors in spinless (spinful)
fermions. The E 

1 -page is 

q = 0 Z 2 × Z 2 Z 2 Z 2 Z 2 

q = 1 Z 2 × Z 2 Z 2 Z 2 Z 2 

q = 2 Z × Z 8 Z Z Z 

q = 3 0 0 0 0 

q = 4 0 0 0 0 

E 

1 
p, −q p = 0 p = 1 p = 2 p = 3 

(64) 

The E 

2 -page is computed as 

q = 0 Z 2 0 Z 2 Z 2 

q = 1 Z 2 0 Z 2 Z 2 

q = 2 Z 16 0 Z 2 0 

q = 3 0 0 0 0 

q = 4 0 0 0 0 

E 

2 
p, −q p = 0 p = 1 p = 2 p = 3 

(65) 

Here, d 

1 
3 , −2 = 2 is found by the same discussion in Sect. 5.1.3 . We have the E 

3 -page 

q = 0 0 0 

q = 1 0 0 0 Z 2 

q = 2 Z 16 0 0 0 

q = 3 0 0 0 0 

q = 4 0 0 0 0 

E 

3 
p, −q p = 0 p = 1 p = 2 p = 3 

(66) 

We conclude that both the classification of SPT phases and anomalies are trivial. 

5.3. 2D fermion with U(1) and n-fold rotation symmetry 

In this section, we shall discuss the classification of 2D SPT phases of fermions with U (1) charge
conservation and n -fold rotation symmetries. There are four cases of n -fold rotation: (i) C n rotation
preserving the U (1) charge, (ii) magnetic C n T rotation where T is the time-reversal transformation,
(iii) C n C rotation where C is the particle–hole transformation, and (iv) C n CT rotation where CT is
an antiunitary PHS. The n -fold rotation-symmetric cell decomposition of infinite 2D space is shown
in Fig. 7 . For C n rotation, we give the complete classification in Sect. 5.3.1 . For other rotations, we
pick up examples. 
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Fig. 7. The cell decomposition of 2D space with the n -fold rotation symmetry. 
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5.3.1. C n rotation symmetry. It has been discussed that the SPT phases with n -fold rotation sym-
metry are closely related to those with onsite Z n -symmetry, where the classification is given by
the spin 

c cobordism Tor �spin c 

3 (B Z n ) × Free �spin c 

4 (B Z n ) [ 34 , 36 , 76 ]. Thanks to the U (1) symmetry,
without loss of generality, one can assume that the n -fold rotation symmetry is normalized as ( C n ) n 

= 1. The E 

1 -page rele v ant to SPT phases is given by 

q = 0 Z × Z n Z 

q = 1 0 0 0 

q = 2 Z 

×2 Z 

×2 

E 

1 
p, −q p = 0 p = 1 p = 2 

(67) 

Here, E 

1 
0 , 0 = Z × Z n represents an integer-valued U (1) charge and a Z n eigenvalue of the C n -rotation,

and E 

1 
1 , −2 = E 

1 
2 , −2 = Z 

×2 represents Chern insulators and bosonic integer quantum Hall states. There
is an even–odd effect in the first differential d 

1 
1 , 0 : Z → Z × Z n . d 

1 
1 , 0 represents how adiabatically

created complex fermions f † 1 , . . . , f 
† 
n on 1-cells trivialize SPT phases at the rotation center, where

the complex fermions are related by the C n rotation as C n f 
† 
j C 

−1 
n = f † j+1 with f † n +1 = f † 1 . The n -

plet � := f † 1 . . . f 
† 
n has the U (1) charge n ∈ Z , and the Z n charge C n �C 

−1 
n = −� for even n and

 n �C 

−1 
n = � for odd n , which means 

d 

1 
1 , 0 : 1 �→ 

{ 

(n, n/ 2) for even n 

(n, 0) for odd n 

. (68) 

Also, we have d 

1 
2 , −2 = 0 because the C n -rotation does not change the charge and thermal Hall

conductivities. The homology of d 

1 gives the E 

2 -page 

q = 0 Z 2 n × Z 

n 
2 

0 

q = 1 0 0 0 

q = 2 Z 

×2 

E 

2 
p, −q p = 0 p = 1 p = 2 

for even n , (69) 

q = 0 Z n × Z n 0 

q = 1 0 0 0 

q = 2 Z 

×2 

E 

2 
p, −q p = 0 p = 1 p = 2 

for odd n , (70) 

where Z 2 n × Z 

n 
2 

( Z n × Z n ) is generated by SPT phases (1 , 0) , (2 , 1) ∈ E 

1 
0 , 0 ( (1 , 0) , (0 , 1) ∈ E 

1 
0 , 0 )

at the rotation center when n is even (odd). (The (0,1) state is understood as the particle and hole
excitation f †f ′ with C n f † C 

−1 
n = e 

2 π i 
n f † and C n f ′ C 

−1 
n = f ′ .) The E 

2 -page is the limiting page for SPT
phases. As a result of the exact sequences to get the homology h 

Z n ( R 

2 , ∂ R 

2 ) from the E 

∞ -page split,
0 
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we have the classification 

h 

Z n 
0 ( R 

2 , ∂ R 

2 ) = 

{ 

Z 

×2 × Z 2 n × Z 

n 
2 

for even n , 

Z 

×2 × Z n × Z n for odd n . 
(71) 

This agrees with the spin 

c cobordism group �
spin c 
∗ (B Z n ) for onsite Z n symmetry [ 76 , 77 ]. 

5.3.2. C 2 T rotation symmetry. In this section, we give the AHSS for magnetic rotation symmetry
C 2 T . There are two cases: (i) ( C 2 T ) 2 = 1 and (ii) ( C 2 T ) 2 = ( −1) F . Due to the additional U (1) phase
factor ( C 2 ) 2 = ( −1) F for fermionic systems, in the TQFT limit, the former case would be equi v alent
to class AII TRS T 

2 = ( −1) F , while the latter case would be the class AI TRS T 

2 = 1. At the rotation
center, the C 2 T rotation behaves as the onsite TRS. In this section, we also address the classification
of anomalies on 2D systems, the surface of 3D SPT phases with C 2 T rotation symmetry. 

The case of (C 2 T) 2 = 1 : In this case, the E 

1 -page rele v ant to SPT phases and anomalies is given
by 

q = 0 Z Z Z 

q = 1 Z 2 0 0 

q = 2 0 Z 

×2 Z 

×2 

q = 3 0 0 0 

E 

1 
p, −q p = 0 p = 1 p = 2 

(72) 

We have used the classification results in, e.g., Ref. [ 18 , 78 ] for the E 

1 -page at the rotation center.
E 

1 
0 , −1 = Z 2 is generated by the 1D bosonic SPT phase with TRS, the Haldane chain. The first

differential d 

1 
1 , 0 : Z → Z is given by d 

1 
1 , 0 : 1 → 2 , since the doublet f † 1 f 

† 
2 of C 2 T invariant complex

fermions on 1-cells has the fermion number 2. Also, d 

1 
2 , −2 : Z 

×2 → Z 

×2 is found as d 

1 
2 , −2 : (n, m ) →

(2 n, 2 m ) , since the charge and thermal Hall conductivities change to those inverse under the time-
reversal rotation C 2 T . As a result, we have the E 

2 -page 

q = 0 Z 2 0 Z 

q = 1 Z 2 0 0 

q = 2 0 ( Z 2 ) ×2 0 

q = 3 0 0 0 

E 

2 
p, −q p = 0 p = 1 p = 2 

(73) 

We find that 2D SPT phases are classified by h 

Z 2 
0 ( R 

2 , ∂ R 

2 ) = Z 2 , which is consistent with that for
onsite class AII TRS. Also, the classification of anomalies h 

Z 2 
−1 ( R 

2 , ∂ R 

2 ) fits into the short exact
sequence 

0 → Z 2 → h 

Z 2 
−1 ( R 

2 , ∂ R 

2 ) → ( Z 2 ) ×2 → 0 . (74) 

This is also consistent with the ( Z 2 ) ×3 classification of 3D SPT phases of class AII insulators [ 15 , 18 ].
The case of (C 2 T) 2 = ( −1) F : In this case, the E 

1 -page rele v ant to SPT phases anomalies is given
by 

q = 0 Z Z Z 

q = 1 0 0 0 

q = 2 Z 2 Z 

×2 Z 

×2 

q = 3 ( Z 2 ) ×3 0 0 

E 

1 
p, −q p = 0 p = 1 p = 2 

(75) 
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At the rotation center, the C 2 T symmetry becomes the onsite class AII TRS. E 

1 
0 , −2 = Z 2 is generated

by the quantum spin Hall insulator. The first differential d 

1 
1 , 0 : Z → Z is given by the identity map

d 

1 
1 , 0 : 1 → 1 , since E 

1 
0 , 0 = Z is generated by the Kramers doublet of two complex fermions and it

can go to the infinity without breaking the C 2 T symmetry. Also, d 

1 
2 , −2 : Z 

×2 → Z 

×2 is the same as
for ( C 2 T ) 2 = 1. The first differential d 

1 
1 , −2 : Z 

×2 → Z 2 is nontrivial: a C 2 T -symmetric pair of chiral
edge states of Chern insulators form the quantum spin Hall state, implying d 

1 
1 , −2 : (n, m ) → n (mod

2). We have the E 

2 -page 

q = 0 0 0 Z 

q = 1 0 0 0 

q = 2 0 Z 2 0 

q = 3 0 0 0 

E 

2 
p, −q p = 0 p = 1 p = 2 

(76) 

The absence of nontrivial SPT phases h 

Z 4 
0 ( R 

2 , ∂ R 

2 ) = 0 is consistent with that for 2D class AI
insulators. On the one hand, unexpectedly, we have a nontrivial anomaly h 

Z 4 
−1 ( R 

2 , ∂ R 

2 ) = Z 2 , which
can be compared with 2D class AI anomalies where the classification is trivial. 

5.4. 3D fermions with U(1) and inversion symmetry 

Let us consider 3D fermions with U (1) charge conservation and inversion symmetry that preserves
the U (1) charge. The inversion-symmetric cell decomposition of the infinite 3D space R 

3 is shown
in Fig. 4 [c]. We focus on the SPT phases. The E 

1 -page is given by 

q = 0 Z × Z 2 Z Z Z 

q = 1 0 0 0 0 

q = 2 Z × Z Z × Z Z × Z 

q = 3 0 0 0 

E 

1 
p, −q p = 0 p = 1 p = 2 p = 3 

(77) 

Here we have left some terms blank since those terms do not contribute to SPT phases. E 

1 
p∈{ 1 , 2 , 3 } , 1 =

Z × Z is generated by the Chern insulator ( σ xy = 1, κxy = 1) and bosonic integer quantum Hall state
( σ xy = 8, κxy = 0). 

The first differential d 

1 
1 , 0 represents a pair creation of complex fermions with unit charges e and −e at

the 1-cell a and moving the fermion with charge e to the inversion center and that with −e to the infinite
(see Fig. (34)). One can fix the inversion to be I 2 = 1. Then, the inversion-symmetric pair of complex
fermions has the odd inversion parity I f † 1 f 

† 
3 I 

−1 = − f † 1 f 
† 
3 . We find that d 

1 
1 , 3 : 1 → (2 , 1) ∈ Z × Z 2 .

The first differential d 

1 
2 , 1 is trivial, since the boundary anomalies of SPT 

2 phases in the 2-cells are
canceled out (see Fig. (43)). The first differential d 

1 
3 , 1 is nontrivial: E 

1 
3 , 1 = Z × Z means that a Z × Z

SPT 

2 phase on a 2-sphere is created adiabatically in the 3-cell V . The north and south SPT phases
contribute to SPT 

2 phases on the 2-cell α with an equal weight, since the inversion transformation
does not change the Hall conductivity. We have d 

1 
3 , 1 : (n, m ) �→ (2 n, 2 m ) . 

Taking the homology of the first differentials, we get the E 

2 -page 

q = 0 Z 4 0 

q = 1 0 0 0 0 

q = 2 Z 2 × Z 2 0 

q = 3 0 0 0 

E 

2 
p, −q p = 0 p = 1 p = 2 p = 3 

(78) 
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Here, the generator of E 

2 
0 , 3 = Z 4 is [(1,0)] with (1 , 0) ∈ Z × Z 2 , i.e., a complex fermion with a

unit charge. This is the limiting page for the homology h 

Z 2 
0 ( R 

3 , ∂ R 

3 ) . We find that the classification
of the second-order SPT phases is Z 2 × Z 2 , and it is generated by the Chern insulator and bosonic
integer quantum Hall state on the inversion-symmetric plane. 

The classification of SPT phases fits into the exact sequence 

0 → Z 4 → h 

Z 2 
0 ( R 

3 , ∂ R 

3 ) → Z 2 × Z 2 → 0 . (79) 

The group extension is determined in a way similar to Sect. 5.1.3 . Using the coupled wire construction
of the Chern insulator, one can show that the two layers of Chern insulators are equivalent to the
Chern insulator compactified on S 

1 × R with the π -flux (the periodic boundary condition) piercing
S 

1 . Because of the absence of the edge anomaly in SPT 

1 phases of complex fermions, one can cut
the Chern insulator at y > 0 and y < 0. The resulting Chern insulator is defined on the 2-sphere with
the periodic boundary condition along S 

1 , meaning an odd monopole charge inside S 

2 . Due to the
quantum Hall effect, the Chern insulator defined on a closed manifold with a magnetic monopole
m g has the U (1) charge m g × ch , where ch is the Chern number. This implies that the two layers of
Chern insulators are eventually equivalent to the generator of E 

∞ 

0 , 0 = Z 4 . 
The abo v e observation is also verified by the continuous Dirac Hamiltonian with a texture of the

mass term. Taking the π -rotation to a single layer of the Chern insulator as in Fig. 6 [c], we find that
the double layer of inversion-symmetric Chern insulators H ⊕ H is equi v alent to a nonchiral state 

H ⊕ H 

′ = −i∂ x τx σz − i∂ y τy + mτz , I = τz , (80) 

where σμ is the Pauli matrix for the layer indices. In the same way as Sect. 5.1.3 , by adding a mass
term M ( x ) τ x σ y with M ( −x ) = −M ( x ), the ef fecti ve lo w-energy Hamiltonian reads 

H loc = −i∂ y τy + mτz , I = τz . (81) 

In the absence of particle–hole symmetry, we further have a mass term varying in the y -direction: 

M 

′ (y ) τx , M 

′ (−y ) = −M 

′ (y ) , (82) 

which yields a single mode ˜ φloc (x, y ) localized at the inversion center. The low-energy effective
Hamiltonian for this single mode is ˜ H = m with I = 1. Therefore, for m < 0 the ground state is the
occupied state ˜ f † loc | 0 〉 of the localized mode ̃  φloc (x, y ) with even parity I = 1, which is the generator
of E 

∞ 

0 , 0 = Z 4 . 
Also, since there is no localized mode at the inversion center for the double-layer bosonic integer

quantum Hall states, the extension of the bosonic integer quantum Hall state by E 

∞ 

0 , 0 is trivial.
We conclude that h 

Z 2 
0 ( R 

3 ) ∼= 

Z 8 × Z 2 , which is consistent with the pin 

c cobordism group �Pin c 
4 =

Z 8 × Z 2 . 

5.5. 1D boson with Z 2 onsite and Z 

R 

2 reflection symmetry 

In this section, we present an example of the AHSS for a bosonic system. Let us consider the 1D
bosonic system with Z 2 onsite and Z 

R 

2 reflection symmetry x �→−x . We denote the generator of Z 2 

by σ and that of Z 

R 

2 by r . We assume σ r = r σ ; i.e., the total symmetry group is Z 2 × Z 

R 

2 . Some
basic calculation techniques in the AHSS for bosonic systems can be seen in this example. We will
compare the symmetry class in the present section with a slightly different symmetry class in the
next section, which highlights some features of the AHSS and the LSM-type theorems in bosonic
systems. 
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Fig. 8. The cell decomposition of 1D real space with translation and reflection symmetry. The figure shows a 
unit cell. 
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The reflection-symmetric decomposition of the 1D space R was shown in Fig. 4 [a]. The little
groups G 

p of p -cells ( p = 0, 1) are G 

0 = Z 2 × Z 

R 

2 and G 

1 = Z 2 . The E 

1 -page is 

q = 0 Z 2 × Z 2 Z 2 

q = 1 Z 2 0 

E 

1 
p, −q p = 0 p = 1 

(83) 

Here, E 

1 
p∈{ 0 , 1 } , 0 ∼= 

H 

1 
group ( G 

p , U ( 1)) is generated by 1D irreps. at the p -cell with the little group G 

p ,
and E 

1 
p∈{ 0 , 1 } , −1 

∼= 

H 

2 
group ( G 

p , U ( 1)) is generated by nontri vial projecti ve representations at p -cells. 
The first differential d 

1 
1 , 0 is determined from the induced representation explained as follows. Let

| ε〉 , ε ∈ { 1 , −1 } , be the basis of the 1D irrep. at the right 1-cell a so that ˆ σ | ε〉 = ε | ε〉 . We formally
introduce ˆ r | ε〉 as the basis of the 1D irrep. for the left 1-cell. We ask what the 1D irrep. of the tensor
product | ε〉 ⊗ ˆ r | ε〉 as a 1D irrep. of Z 2 × Z 

R 

2 is. Noting that 

( ̂  σ ⊗ ˆ σ )( | ε〉 ⊗ ˆ r | ε〉 ) = | ε〉 ⊗ ˆ r | ε〉 , (84) 

( ̂  r ⊗ ˆ r )( | ε〉 ⊗ ˆ r | ε〉 ) = ˆ r | ε〉 ⊗ | ε〉 = | ε〉 ⊗ ˆ r | ε〉 , (85) 

we find that the tensor product irrep. is the trivial irrep. of Z 2 × Z 

R 

2 . This means that d 

1 
1 , 0 = 0 .

Therefore, the E 

1 -page is the limiting page. 

We find that SPT phases are classified by h 

Z 2 ×Z 

R 
2 

0 ( R , ∂ R ) ∼= 

E 

2 
0 , 0 = Z 2 × Z 2 and they are generated

by 1D irreps. at the reflection center. Also, E 

2 
0 , −1 = Z 2 means the presence of the LSM theorem as a

boundary of an SPT phase in the sense of Sect. 4.6.3 . This means that the Hilbert space composed of a
nontri vial projecti ve representation at the reflection center must not have a unique gapped symmetric
ground state. To make the point clear, we consider the LSM theorem with the translation symmetry
in the following. 

5.5.1. W ith translation symmetry . In addition to the Z 2 × Z 

R 

2 symmetry, we add the translation
symmetry Z , Z � n : x �→ x + n . The total symmetry becomes ( Z � Z 

R 

2 ) × Z 2 where r ∈ Z 

R 

2 acts
on Z as reflection. The reflection- and translation-symmetric cell decomposition is shown in Fig. 8 ;
it is composed of 0-cells (reflection centers) { A , B } and a 1-cell { a }. The E 

1 -page is given by 

q = 0 Z 

×2 
2 × Z 

×2 
2 Z 2 

q = 1 Z 2 × Z 2 0 

E 

1 
p, −q p = 0 p = 1 

(86) 

and this becomes the E 

2 -page because d 

1 
1 , 0 = 0 . 

Let us focus on E 

2 
0 , −1 = Z 2 × Z 2 , which indicates the LSM theorem classified by Z 2 × Z 2 . The

former (latter) Z 2 × Z 2 is generated by a nontrivial projective irrep. at the reflection center A ( B ). It
should be noticed that (1 , 1) ∈ Z 2 × Z 2 Hilbert space, which is composed of a projective irrep. at
A and also at B , remains anomalous even if the Hilbert space per unit cell has two projective irreps.
(i.e., a linear representation per unit cell), which is consistent with the literature [ 37 , 38 ]. 
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5.6. 1D boson with Z 2 onsite and Z 

R 

4 reflection symmetry 

In this section, we consider a slightly different symmetry from that in the previous section. Let us
consider 1D bosonic systems with Z 2 onsite and Z 

R 

4 reflection symmetry, in which the square r 2 of
reflection r ∈ Z 

R 

4 is another onsite Z 2 symmetry. We assume σ r = r σ ; i.e., the total symmetry group
is Z 2 × Z 

R 

4 . The little groups are G 

0 = Z 2 × Z 

R 

4 for the 0-cell and G 

1 = Z 2 × Z 

R 

2 

2 for the 1-cell.
The E 

1 -page becomes 

q = 0 Z 2 × Z 4 Z 2 × Z 2 

q = 1 Z 2 Z 2 

E 

1 
p, −q p = 0 p = 1 

(87) 

The first differential d 

1 
1 , 0 : E 

1 
1 , 0 → E 

1 
0 , 0 is computed as follows. Let { | ε1 , ε2 〉 } ε1 ,ε2 ∈{ 1 , −1 } be the

basis of the 1D irrep. with ˆ σ | ε1 , ε2 〉 = ε1 | ε1 , ε2 〉 and 

̂ r 2 | ε1 , ε2 〉 = ε2 | ε1 , ε2 〉 for the right 1-cell a .
We formally introduce ˆ r | ε1 , ε2 〉 as the basis of the 1D irrep. for the left 1-cell. We ask what the 1D
irrep. of the tensor product | ε1 , ε2 〉 ⊗ ˆ r | ε1 , ε2 〉 is. Noting that 

( ̂  σ ⊗ ˆ σ )( | ε1 , ε2 〉 ⊗ ˆ r | ε1 , ε2 〉 ) = | ε1 , ε2 〉 ⊗ ˆ r | ε1 , ε2 〉 , (88) 

( ̂  r ⊗ ˆ r )( | ε1 , ε2 〉 ⊗ ˆ r | ε1 , ε2 〉 ) = ε2 ( | ε1 , ε2 〉 ⊗ ˆ r | ε1 , ε2 〉 ) , (89) 

we find that the tensor product irrep. has a nontrivial Z 

R 

4 phase −1 when ε2 = −1. This means that
d 

1 
1 , 0 : Z 2 × Z 

R 

2 

2 → Z 2 × Z 4 , (n, m ) �→ (0 , 2 m ) . 

The calculation of d 

1 
1 , −1 is similar to d 

1 
1 , 0 . Let | j〉 j∈{↑ , ↓} be a nontrivial projective irrep. of Z 2 × Z 

R 

2 

2 

at the right 1-cell so that 

ˆ σ | j〉 = | i〉 [ D σ ] i j , 
̂ r 2 | j〉 = | i〉 [ D r 2 ] 

i 
j , D σ D r 2 = −D r 2 D σ . (90) 

We formally introduce the basis ˆ r | j〉 for the left 1-cell that is the induced representation so as to
satisfy 

ˆ σ ( ̂  r | j〉 ) = ( ̂  r | j〉 ) α[ D σ ] i j , 
̂ r 2 ( ̂  r | j〉 ) = ( ̂  r | j〉 ) β[ D r 2 ] 

i 
j , (91) 

where α and β are unfixed U (1) phases. We ask whether the factor system of the tensor product
representation | j 1 〉 ⊗ ˆ r | j 2 〉 is nontrivial or not. The representation matrices for the tensor product
representation read as 

( ̂  σ ⊗ ˆ σ )( | j 1 〉 ⊗ ˆ r | j 2 〉 ) = ( | i 1 〉 ⊗ ˆ r | i 2 〉 )[ D σ⊗σ ] i 1 i 2 j 1 j 2 , [ D σ⊗σ ] i 1 i 2 j 1 j 2 = α[ D σ ] i 1 j 1 [ D σ ] i 2 j 2 , (92) 

( ̂  r ⊗ ˆ r )( | j 1 〉 ⊗ ˆ r | j 2 〉 ) = ( | i 1 〉 ⊗ ˆ r | i 2 〉 )[ D r ⊗r ] 
i 1 i 2 
j 1 j 2 , [ D r ⊗r ] 

i 1 i 2 
j 1 j 2 = β[ D r 2 ] 

i 1 
j 2 δ

i 2 
j 1 , (93) 

from which we find that σ anticommutes with r , D σ⊗σ D r ⊗r = −D r ⊗r D σ⊗σ . This means that the
tensor product representation belongs to a nontrivial projective representation of Z 2 × Z 

R 

4 , and so
d 

1 
1 , −1 : Z 2 → Z 2 , n �→ n . Also, from tr [ D r 2 ⊗r 2 ] = β2 tr [ D r ⊗r ] 2 = 0 , we find that the tensor product

representation is the direct sum of the two projective irreps. of Z 2 × Z 4 . We also notice that, as a
projective representation of G 

1 = Z 2 × Z 

R 

2 

2 , the tensor product state is linear. 
The homology of d 

1 gives the E 

2 -page 

q = 0 Z 2 × Z 2 Z 2 

q = 1 0 0 

E 

2 
p, −q p = 0 p = 1 

(94) 
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From this table, we find that SPT phases are classified by h 

Z 2 ×Z 

R 
4 

0 
∼= 

E 

2 
0 , 0 = Z 2 × Z 2 and they are

generated by 1D irreps. at the reflection center. E 

2 
0 , −1 = 0 implies the absence of the LSM theorem

as a boundary of SPT phases in the sense of Sect. 4.6.3 . 
We observed that the first differential d 

1 
1 , −1 is nontrivial. On the basis of the terminology in

Sect. 4.6.4 , this means the LSM theorem that enforces that a state is an SPT phase if the Hilbert
space is composed of nontrivial projective representations of the onsite symmetry Z 2 × Z 

R 

4 at the
reflection center. To make the point clear, we consider this LSM theorem in the presence of translation
symmetry. 

5.6.1. W ith translation symmetry . In addition to the Z 2 × Z 

R 

4 symmetry, we add the translation
symmetry Z . The total symmetry becomes ( Z � Z 

R 

4 ) × Z 2 where r ∈ Z 

R 

4 acts on Z as reflection.
The reflection- and translation-symmetric cell decomposition is shown in Fig. 8 and is composed of
0-cells { A , B } and a 1-cell { a }. The E 

1 - and E 

2 -pages are given as 

q = 0 ( Z 2 × Z 4 ) × ( Z 2 × Z 4 ) Z 2 × Z 2 

q = 1 Z 2 × Z 2 Z 2 

E 

1 
p, −q p = 0 p = 1 

, (95) 

q = 0 Z 

×3 
2 × Z 4 Z 2 

q = 1 Z 2 0 

E 

2 
p, −q p = 0 p = 1 

(96) 

Here, the first differentials are d 

1 
1 , 0 : (n, m ) �→ (0 , 2 m, 0 , 2 m ) and d 

1 
1 , −1 : n �→ (n, n ) . Here, E 

2 
1 , 0 =

Z 2 is understood as the usual LSM theorem to forbid a system having a unique gapped ground state
if the Hilbert space contains a nontrivial projective representation per unit cell. 

Let us consider the physical consequence of the nontrivial first differential d 

1 
1 , −1 . As we introduced

in Sect. 4.6.4 , Im d 

1 
1 , −1 � = 0 yields the LSM theorem enforcing a nontrivial SPT phase. The Hilbert

space H belonging to (1 , 1) ∈ Im d 

1 
1 , −1 ⊂ E 

1 
0 , −1 is composed of a nontrivial projective irrep. per

reflection center A and B . Im d 

1 
1 , −1 � = 0 means that if we have a unique symmetric state | ψ〉 in the

Hilbert space H, | ψ〉 should be the Haldane chain state; i.e., | ψ〉 shows a projective representation of
the onsite Z 2 × Z 

R 

2 

2 symmetry at the edge. Let us demonstrate this. As a projective representation of
Z 2 × Z 

R 

4 at A and B , we consider two Ising spins ˆ σ j ( j = 1 , 2) obeying ˆ σ ˆ σ j ̂  σ−1 = σ z 
j ˆ σ j σ

z 
j , ˆ r ̂  σ1 ̂  r −1 =

ˆ σ2 , and ̂  r ̂  σ2 ̂  r −1 = σ x 
1 ˆ σ1 σ

x 
1 under Z 2 × Z 

R 

2 

4 for each A and B . We cannot make a unique state within the
Hilbert space of two Ising spins due to a nontrivial factor system; however, we may be able to create
singlet bonds in between sites A and B without breaking the symmetry to form a unique state. Let us
denote the Ising spin at the inversion center by ˆ σ j (n ) with n ∈ Z , Z + 1 / 2 . The full symmetry acts on
Ising spins as ˆ T ˆ σ j ( n ) ˆ T 

−1 = ˆ σ j ( n + 1) , ˆ σ ˆ σ j ( n ) ̂  σ−1 = σ z 
j ( n ) ̂  σ j ( n ) σ z 

j ( n ) , ˆ r ̂  σ1 ( n ) ̂  r −1 = ˆ σ2 ( −n ) , and
ˆ r ̂  σ2 ( n ) ̂  r −1 = σ x 

1 ( −n ) ̂  σ1 ( −n ) σ x 
1 ( −n ) , where ˆ T is the lattice translation. We have a tensor product of

singlet bonds 

| ψ〉 = · · · ( | ↑ 〉 2 ,n − 1 
2 
| ↓ 〉 2 ,n − | ↓ 〉 2 ,n − 1 

2 
| ↑ 〉 2 ,n 

)( | ↑ 〉 1 ,n | ↓ 〉 1 ,n + 

1 
2 
− | ↓ 〉 1 ,n | ↑ 〉 1 ,n + 

1 
2 

) · · · (97) 

as a symmetric unique state. This is equi v alent to the Haldane state protected by onsite Z 2 × Z 

R 

2 

2 

symmetry. 

5.7. 2D boson with Z 4 two-fold rotation symmetry 

In this section, we see an example of the nontrivial group extension from the E 

∞ -page in a bosonic
system. Let us consider the 2D bosonic system with C 2 -rotation symmetry of which the square is
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an onsite symmetry C 

2 
2 = U . The total symmetry is Z 

C 2 
4 and is orientation-preserving; hence the

classification of SPT phases is expected to be H 

3 ( B Z 4 ;U ( 1)) ∼= 

Z 4 . 
The C 2 -rotation-symmetric cell decomposition was shown in Fig. 4 [b]. The E 

1 -page is 

q = 0 Z 4 Z 2 Z 2 

q = 1 0 0 0 

q = 2 Z 4 Z 2 Z 2 

E 

1 
p, −q p = 0 p = 1 p = 2 

(98) 

Let us focus on the E 

2 -page rele v ant to the classification of SPT phases. In the same way as Sect. 5.6 ,
we find d 

1 
1 , 0 : 1 → 2 . Also, d 

1 
2 , −2 = 0 because the little groups of 1- and 2-cells are the same. The

E 

2 -page is 

q = 0 Z 2 0 Z 2 

q = 1 0 0 0 

q = 2 Z 2 

E 

2 
p, −q p = 0 p = 1 p = 2 

(99) 

To determine the classification of SPT phases h 

Z 

C 2 
4 

0 ( R 

2 , ∂ R 

2 ) , we should solve the extension problem:

0 → Z 2 ︸︷︷︸ 
E 

2 
0 , 0 

→ h 

Z 

C 2 
4 

0 ( R 

2 , ∂ R 

2 ) → Z 2 ︸︷︷︸ 
E 

2 
2 , −2 

→ 0 ; (100) 

i.e., we ask whether or not the double layer of the Levin–Gu Z 2 SPT phase with the π -flux piercing
the rotation center (this is enforced by the symmetry algebra C 

2 
2 = U ) is equi v alent to a 0D SPT

phase (i.e., a linear representation) with a U (1) phase i or −i under the Z 

C 2 
4 rotation. Because the

double stack of the Z 2 Levin–Gu state becomes a trivial state as a 2D SPT phase in a generic
region, the C 2 -eigenvalue can be calculated by the partial C 2 -rotation acting on a disk [ 76 ]. Since
the contribution from each layer is in common, the C 2 -eigenvalue is equi v alent to the 2 π -rotation
on a single layer. Therefore, the C 2 -eigenvalue is the same as the topological spin e iθa of the anyon a
yielding the twisted boundary condition on the edge CFT, which is known to be a fourth root of unity

e iθa = ±i. Therefore, we conclude that the extension ( 100 ) is nontrivial and h 

Z 

C 2 
4 

0 ( R 

2 , ∂ R 

2 ) ∼= 

Z 4 as
expected. 

5.8. Magnetic translation symmetry 

It is shown that the magnetic translation symmetry gives rise to various LSM-type theorems to enforce
a nontrivial SPT phase solely from degrees of freedom per unit cell [ 68 , 69 , 79 , 80 ]. We describe how
such LSM-type theorems in the presence of magnetic translation symmetry are formulated in the
AHSS. 

Magnetic translation symmetry is defined so that the lattice translations T x and T y are accompanied
by an Aharonov–Bohm flux per unit cell 

T 

−1 
y T 

−1 
x T y T x = g, (101) 

where g is an onsite unitary symmetry with a finite order g 

n = 1. A useful way to visualize the g -flux
is to introduce background g -symmetry open lines that start and end at the magnetic g -fluxes. In this
section, we only discuss the cases of order-two magnetic flux, i.e., g 

2 = 1. The AHSS discussed in
this section is straightforwardly generalized to general magnetic translation symmetry. See Fig. 9
for an example of the configuration of g -symmetry lines for g 

2 = 1. Figure 9 also shows the cell
decomposition of the unit cell. It is composed of a 0-cell { A }, 1-cells { a , b }, and a 2-cell { α}. 
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Fig. 9. Symmetry defect lines for magnetic translation symmetry with g 

2 = 1. Marks with the red crosses 
represent magnetic g -fluxes. 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/8/083I01/7220033 by Kyoto U

niversity user on 18 D
ecem

ber 2023
5.8.1. Fermion with magnetic translation symmetry. In this section, we illustrate the AHSS for
2D fermionic SPT phases with magnetic translation symmetry with π -flux per unit cell 

T x T y = (−1) F T y T x , (102) 

where ( −1) F is the fermion parity. For fermions, the π -flux enforces the periodic boundary condition
of fermions enclosing the π -flux. The LSM-type theorem was discussed in Ref. [ 69 ]. The E 

1 -page
is given by 

q = 0 Z 2 Z 2 × Z 2 Z 2 

q = 1 Z 2 Z 2 × Z 2 Z 2 

q = 2 Z Z × Z Z 

E 

1 
p, −q p = 0 p = 1 p = 2 

(103) 

Because the first differential does not see the π -flux, all the first differentials d 

1 
p, −q are zero, and

it holds that E 

2 = E 

1 as for the usual translation symmetry without magnetic flux. The second
differentials can be nontrivial. As discussed in Sect. 5.2.2 , in the presence of the π -flux, we have
that (i) the nontrivial Kitaev chain enclosing the π -flux has the fermion parity ( −1) F = −1, and (ii)
a ( p x + ip y ) superconductor traps a Majorana zero mode at the π -flux. These mean 

d 

2 
2 , −1 : Z 2 → Z 2 , 1 �→ 1 , (104) 

d 

2 
2 , −2 : Z → Z 2 , 1 �→ 1 . (105) 

We have the E 

3 -page 

q = 0 0 Z 2 × Z 2 

q = 1 0 Z 2 × Z 2 0 

q = 2 Z × Z 2 Z 

E 

3 
p, −q p = 0 p = 1 p = 2 

(106) 

The classification of SPT phases is given by h 

Z 

×2 

0 ( R 

2 ) ∼= 

2 Z × Z 2 × Z 2 , where 2 Z is generated by the
superconductor with chiral central charge c − c̄ = 1 . It should be noticed that SPT phases represented
by the homology h 

Z 

×2 

0 ( R 

2 ) are made in a nonanomalous Hilbert space, where odd Majorana fermions
per unit cell are forbidden. 

According to the terminology in Sect. 4.6.4 , the nontrivial second differential d 

2 
2 , −2 : E 

2 
2 , −2 →

E 

2 
0 , −1 implies the LSM theorem to enforce the 2D SPT phase. E 

2 
0 , −1 = Z 2 is generated by the
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anomalous Hilbert space composed of a Majorana fermion per unit cell. d 

2 
2 , −2 : 1 �→ 1 means that

the ( p x + ip y ) superconductor with π -flux per unit cell belongs to the same anomaly as E 

2 
0 , −1 , an

odd number of Majorana fermions per unit cell. Because the ( p x + ip y ) superconductor is a unique
gapped state, it holds that if, under the magnetic translation symmetry, in the Hilbert space composed
of odd Majorana fermions per unit cell, a unique gapped ground state should be a nontrivial SPT
state with a half-integer chiral central charge c − c̄ ∈ Z + 1 / 2 [ 69 ]. 

5.8.2. Class AII insulators with magnetic translation symmetry. Let us consider 2D fermionic
systems with U (1) symmetry and TRS T with Kramers T 

2 = ( −1) F . Also, we assume the magnetic
translation symmetry ( 102 ) with π -flux per unit cell. The E 

1 -page rele v ant to SPT phases is given
by 

q = 0 2 Z 2 Z 

q = 1 0 0 0 

q = 2 Z 2 Z 2 

E 

1 
p, −q p = 0 p = 1 p = 2 

(107) 

Because the first differential does not see the π -flux, d 

1 = 0. Also, the second differential d 

2 is trivial
in Table ( 107 ); the E 

1 -page is already the E 

3 -page. The classification of SPT phases fits into the short
exact sequence 

0 → 2 Z ︸︷︷︸ 
E 

3 
0 , 0 

→ h 

Z 

×2 

0 ( R 

2 ) → Z 2 ︸︷︷︸ 
E 

3 
2 , −2 

→ 0 , (108) 

where E 

3 
0 , 0 is generated by a pair of complex fermions forming the Kramers de generac y per unit

cell, and E 

3 
2 , −2 is generated by the quantum spin Hall state. We find that the group extension ( 108 )

is nontrivial. The key is that the π -flux in the quantum spin Hall state traps a mid-gap localized
state with the fermion parity ( −1) F = −1 [ 81 , 82 ]. Thanks to the magnetic translation symmetry,
the bound state energies of mid-gap localized states at π -fluxes are in common, and so are localized
fermion numbers. Therefore, the double stack of the quantum spin Hall states with magnetic π -flux
is adiabatically equi v alent to an atomic insulator with the Kramers de generac y per unit cell, i.e., the
generator of E 

3 
0 , 0 . This means the group extension ( 108 ) is nontrivial and the homology is given by

h 

Z 

×2 

0 ( R 

2 ) ∼= 

Z . According to the terminology in Sect. 4.6.5 , the mismatch of the fermion number
per unit cell between the atomic insulator E 

3 
0 , 0 = 2 Z and the generator of SPT phases h 

Z 

×2 

0 ( R 

2 ) = Z
leads to the LSM theorem for filling-enforced SPT phases: if a pure state has an odd fermion number
per unit cell, this state should be the quantum spin Hall state [ 69 ]. 

5.9. 1-form Z N 

and mirror symmetry in 3D 

In this section, we present an example of the AHSS for SPT phases with Z N 

1-form symmetry [ 83 ]
in 3-space dimensions. In addition to the 1-form Z N 

symmetry, we consider the mirror symmetry
that commutes with the Z N 

1-form charge of the line object, which is CPT dual to the TRS. Such
symmetry is realized in the SU ( N ) pure Yang–Mills theory. 

To calculate the AHSS, we introduce the mirror-symmetric decomposition of the infinite real space
R 

3 as shown in Fig. 10 where there are no 0- and 1-cells. We regard the 1-form Z N 

symmetry as
onsite symmetry. As the classification of d -dimensional SPT phases on each p -cell, we consider the
ordinary cohomology H 

d+2 (B, Z ) o v er the corresponding classifying space B. (Adapting the ordi-
nary cohomology as the classifications of SPT phases implies omitting the gravitational contribution
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to SPT phases.) Some low-dimensional cohomologies for Z N 

1-form and Z 2 0-form symmetries are
given as follows (see Appendix A for a derivation): 

d = −2 d = −1 d = 0 d = 1 d = 2 d = 3 d = 4 

H 

d+2 (B Z 2 ; Z ) Z 0 Z 2 0 Z 2 0 Z 2 

H 

d+2 ( K ( Z N∈ e v en , 2) ; Z ) Z 0 0 Z N 

0 Z 2 N 

Z 2 

H 

d+2 ( K ( Z N∈ odd , 2) ; Z ) Z 0 0 Z N 

0 Z N 

0 

. (109) 

Here, K ( Z N 

, 2) is the Eilenberg–MacLane space. H 

3 ( K ( Z N 

, 2) ; Z ) = Z N 

is generated by the
charged line object with a unit Z N 

1-form symmetry charge. H 

5 ( K ( Z N 

, 2) ; Z ) represents the 3D SPT
phase with the Z N 

1-form symmetry and, at the same time, 2D anomalies generated by the SU ( N ) 1 
Chern–Simons theory [ 83 ]. H 

6 ( K ( Z N∈ e v en , 2) ; Z ) = Z 2 means the existence of an unknown 4D SPT
phase and 3D anomaly from 1-form Z N∈ e v en symmetry. On the mirror plane, the classification of
d -dimensional SPT phases is given by H 

d+2 ( K ( Z N 

, 2) × B Z 2 ; Z ) . 

5.9.1. Odd N. Using the Künneth formula, we have the E 

1 -page 

q = 0 0 0 Z 2 0 

q = 1 0 0 Z N 

Z N 

q = 2 0 0 Z 2 0 

q = 3 0 0 Z N 

Z N 

q = 4 0 0 Z 2 0 

E 

1 
p, −q p = 0 p = 1 p = 2 p = 3 

(110) 

Because the SU ( N ) 1 Chern–Simons theory is compatible with the mirror reflection, the first dif-
ferential d 

1 
3 , −3 : Z N 

→ Z N 

should be d 

1 
3 , −3 = 2 . Then, because N is odd, d 

1 
3 , −3 is an isomorphism.

Similarly, we have d 

1 
3 , −1 = 2 . We have the E 

2 -page 

q = 0 0 0 Z 2 0 

q = 1 0 0 0 0 

q = 2 0 0 Z 2 0 

q = 3 0 0 0 0 

q = 4 0 0 Z 2 0 

E 

2 
p, −q p = 0 p = 1 p = 2 p = 3 

(111) 

We find that there is no SPT or anomalous phase protected by the Z N 

1-form symmetry in 3-
space dimensions. The absence of an anomaly for odd N is consistent with the classification of the
topological action [ 83 ]. 
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5.9.2. Even N. The Künneth formula gives the E 

1 -page 

q = 0 0 0 Z 2 0 

q = 1 0 0 Z N 

Z N 

q = 2 0 0 Z 

×2 
2 0 

q = 3 0 0 Z 2 N 

× Z 2 Z 2 N 

q = 4 0 0 Z 

×4 
2 Z 2 

E 

1 
p, −q p = 0 p = 1 p = 2 p = 3 

(112) 

Here, E 

1 
2 , −3 is generated by SU ( N ) 1 Chern–Simons theory labeled by the mirror parity Z 2 = { + , −} .

The first differential d 

1 
3 , −3 is found to be d 

1 
3 , −3 : 1 �→ (2 , 0) , because the quasiparticles (anyons) s ↑ / ↓ 

of the SU ( N ) 1 Chern–Simons theory living in upper/lower planes are mutually commuted; i.e., the
mirror parity of composite s ↑ s ↓ is even. We have part of an E 

2 -page: 

q = 0 0 0 Z 2 0 

q = 1 0 0 Z 2 0 

q = 2 0 0 Z 

×2 
2 0 

q = 3 0 0 Z 2 × Z 2 0 

q = 4 0 0 

E 

2 
p, −q p = 0 p = 1 p = 2 p = 3 

(113) 

We find the existence of the second-order anomaly E 

∞ 

2 , −3 for even N , which is consistent with the
mixed ’t Hooft anomaly among the Z N 

1-form and time-reversal symmetries in SU ( N ) pure Yang–
Mills with θ = π [ 84 ]. 

6. Free fermions 
In this section, we study the real space homological description of SPT phases of free fermions. For
free fermions the �-spectrum for invertible states with onsite symmetry is the K -theory spectrum [ 12 ],
which results in, in the presence of crystalline symmetry G , the K -homology K 

G 

n (X , Y ) o v er a pair of
real space ( X , Y ) with crystalline symmetry G acting on the real space X and the K -theory spectrum.
There are two characteristics in free fermion SPT phases that are not in generic SPT phases in many-
body Hilbert spaces. In free fermions an integer grading n ∈ Z of the K -homology group K 

G 

n (X , Y ) ,
which we have called the degree of SPT phenomena in Sect. 3 , has a different meaning: An integer
n ∈ Z also means the shift of the symmetry class (called the Altland–Zirnbauer (AZ) symmetry
class [ 11 , 85 ]) by adding n chiral symmetries (see Sect. 6.1 ). Another feature is that the K -homology
K 

G 

n ( R 

d ) o v er the infinite real space R 

d with a (magnetic) space group symmetry G is isomorphic to
a twisted equi v ariant K -cohomology group 

φK 

τ−n 
P (T 

d ) o v er the Brillouin zone torus T 

d , where P
includes the point and AZ symmetry groups and τ represents the nonprimitive lattice translation of
the space group symmetry G [ 13 , 86–89 ]. We see that the AHSS in real space K -homologies provides
a different filtration of the K -group K 

G 

n ( R 

d ) ∼= 

φK 

τ−n 
P (T 

d ) , which helps us to determine the K -group
algebraically. 4 

6.1. Integer grading and Altland–Zirnbauer symmetry class 
The purpose of this section is to provide the connection between the integer grading n ∈ Z in the K -
homology group K 

G (X , Y ) and the AZ symmetry classes of free fermions. For initial grading n = 0,
n 

4 The isomorphism K 

G 

n ( R 

d ) ∼= 

φK 

τ−n 
P (T 

d ) between the K -homology group o v er the real space R 

d and the 
K -cohomology group o v er the Brillouin zone torus T 

d in the case of complex AZ classes can be justified 

mathematically [ 90 ]. 

40/64 



PTEP 2023 , 083I01 K. Shiozaki et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/8/083I01/7220033 by Kyoto U

niversity user on 18 D
ece
the K -homology group K 

G 

0 (X , Y ) is represented by a family of the differential operator H ( x ), which
we call a Hamiltonian, depending continuously on the real space x ∈ X and acting on the internal
degrees of freedom at x ∈ X . For a symmetry group G acting on the real space X , as for the case of the
twisted and equi v ariant K -theory by Freed and Moore [ 13 ], we introduce the two homomorphisms
φ, c : G → Z 2 = { 1 , −1 } and the factor system τ as follows. Let U g be the g -action on the internal
de grees of freedom. F or our purpose to formulate the free fermion crystalline SPT phases, one can
assume that U g does not depend on real space coordinates x ∈ X . Per the homomorphism φg , U g is
written as 

U g = 

{ 

U } (φg = 1) 
U g K (φg = −1) 

(114) 

with U g a unitary matrix and K the complex conjugate. The factor system τ determines the algebra
among g -actions 

U g U h = e iτg,h U gh , e iτg,h ∈ U (1) . (115) 

The factor system belongs to the two-group cocycle τ ∈ Z 

2 ( G , U (1) φ) where U (1) φ means the left
G -module U (1) with the g -action so that g.z = z φg for z ∈ U (1). The homomorphism c g specifies
whether U g commutes or anticommutes with the Hamiltonian H ( x ), i.e., 

U g H (x ) U 

−1 
g = c g H (gx ) . (116) 

The K -homology group K 

G 

0 (X , Y ) represents “the topological classification of gapped Hamiltonian
H ( x ) o v er X which can be gapless on Y ”. 5 

As for the case of K -cohomology [ 88 , 89 ], the symmetry for n > 0 is defined by adding chiral
symmetries �i ( i = 1, …, n ) as in 

�i H (x )�−1 
i = −H (x ) , (117) 

{ �i , � j } = 2 δi j , (118) 

�i U g = c g U g �i , (119) 

where �i are unitary matrices. We define the n th K -homology group K 

G 

n (X , Y ) as the classification
of gapped Hamiltonians on X with the symmetries ( 116 ) and ( 117 ) up to gapless states on Y . For
example, when the initial symmetry class n = 0 is composed only of the class AI TRS T with T 

2 =
1, we find that the symmetry for n > 0 runs o v er the real AZ symmetry classes as in the following
5 A precise description of the K -homology is as follows. We illustrate this for the zeroth relative homology 

group K 0 ( X , Y ) without crystalline symmetry. The group K 0 ( X , Y ) is represented by a triple ( H , π, F ) consisting 

of a Z 2 -graded Hilbert space H , π : C( X ) → B( H ) , and an odd self adjoint operator F ∈ B( H ) satisfying 

that [ F , π ( f )] and π ( f )( F 

2 − 1) are compact for all f ∈ C ( X ) s.t. f | Y = 0. With the “Dirac Hamiltonian” D , F 

is written as F = D (1 + D 

2 ) −
1 
2 . F or e xample, K 0 ( R 

2 , ∂ R 

2 ) is generated by a triple with H = L 

2 ( R 

2 , C 

2 ) with 

the Z 2 -grading labeled by σ z = ±1, π being the left scalar multiplication, and F being given by the Dirac 
operator D = −i σ x ∂ x − i σ y ∂ y . Also, there is an isomorphism K K −1 ( R 

2 /∂ R 

2 , (0 , 1)) ∼= 

K 0 ( R 

2 , ∂ R 

2 ) where 
the K K −1 ( R 

2 , (0 , 1)) is generated by the 1-parameter family of the massive Hamiltonian D = −i σ x ∂ x − i σ y ∂ y 
+ m σ z with m ∈ (0, 1), which is what we call the classification of gapped Hamiltonians. K.S. thanks Yusuke 
Kubota for teaching him these points. 
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table: 
n AZ class T C K -spectrum 

n = 0 AI T 

2 = 1 BO × Z 

n = 1 BDI T 

2 = 1 C 

2 = 1 O 

n = 2 D C 

2 = 1 O/U 

n = 3 BDI T 

2 = −1 C 

2 = 1 U /Sp 

n = 4 AII T 

2 = −1 BSp × Z 

n = 5 CII T 

2 = −1 C 

2 = −1 Sp 

n = 6 C C 

2 = −1 Sp/U 

n = 7 CI T 

2 = 1 C 

2 = −1 U /O 

(120) 

where the empty columns mean the absence of symmetry. 

6.2. E 

1 -pa g e 

The E 

1 -page of the K -homology is straightforwardly given by counting the number of irreps. at
p -cells, i.e., high-symmetric points in the real space. The definition is parallel to the case of SPT
phases introduced in Sect. 4.1 : 

E 

1 
p,n := K 

G 

p+ n (X p ∪ Y , X p−1 ∪ Y ) 

= 

∏ 

j∈ I p 

K 

G D p j 
p+ n 

(
D 

p 
j , ∂D 

p 
j 

)

= 

∏ 

j∈ I p 

K 

G D p j 
n (pt) . (121) 

Here, j runs the set (denoted by I p ) of inequi v alent p -cells of X that are not in Y , and G D 

p 
j 

is the little

group that fixes the p -cell D 

p 
j . The first differential 

d 

1 
p,n : E 

1 
p,n → E 

1 
p−1 ,n (122) 

is viewed as how free fermion SPT phases with AZ class ( p + n ) in ( p − 1)-cells are trivialized by
those in ( p − 1)-cells. Unlike the AHSS for interacting SPT phases developed in Sect. 4.2 , there
is a simple formula to compute the first differential d 

1 . It is found that the first differential d 

1 
p,n is

determined by the induced representations of the little group G D 

p−1 
j 

at a ( p − 1)-cell by the adjacent

p -cells with the little groups G D 

p 
j ′ 

⊂ G D 

p−1 
j 

; i.e., the first differential d 

1 
p,n can be read off solely by

the character of the little groups. This is analogous to the compatibility relation to compute the first
differential d 1 in the AHSS in the K -cohomology [ 89 , 91–93 ]. 

In the rest of this section, we present various examples of the real space AHSS for free fermions. 

6.3. 1D Real AZ classes with mirror reflection symmetry 

Let us consider 1D free fermions with reflection symmetry in addition to TRS T and/or PHS C .
We assume that the square of reflection is R 

2 = −1 and R commutes with T and C so that the
antiunitary operators T and C exchange the reflection eigenvalues R = i and R = −i . For a complex
fermion creation operator ψ 

†( x ) o v er the 1D real space, the symmetries and their inter-relations are
summarized as 

T ψ 

† (x ) T 

−1 = ψ 

† (x ) U T , T 

2 ∈ { 1 , −1 } (123) 

and/or 

C ψ (x ) C 

−1 = ψ 

† (x ) U C 

, C 

2 ∈ { 1 , −1 } (124) 
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and the reflection symmetry 

Rψ 

† (x ) R 

−1 = ψ 

† (−x ) U R 

, R 

2 = −1 , (125) 

T R = RT, CR = RC. (126) 

The reflection-symmetric cell decomposition of the infinite 1D space is given as in Fig. 4 [a]. At
the reflection center A , the reflection symmetry behaves as a Z 2 onsite symmetry. Let us set the
initial symmetry class to T and R with T 

2 = 1. We shall compute the relative K -homology group

K 

Z 

T 
2 ×Z 

R 
2 

n ( R , ∂ R ) . The E 

1 -page and the first deri v ati ve d 

1 are straightforwardly determined as 

CI n = 7 0 0 

C n = 6 Z 0 

CII n = 5 0 0 

AII n = 4 Z 2 Z 

DIII n = 3 0 0 

D n = 2 Z Z 2 

BDI n = 1 0 Z 2 

AI n = 0 Z Z 

E 

1 
p,n p = 0 p = 1 

, (127) 

d 

1 
1 , 0 = 1 , d 

1 
1 , 4 = 2 . (128) 

The homology of d 

1 gives the E 

2 -page 

CI n = 7 0 0 

C n = 6 Z 0 

CII n = 5 0 0 

AII n = 4 Z 2 0 

DIII n = 3 0 0 

D n = 2 Z Z 2 

BDI n = 1 0 Z 2 

AI n = 0 0 0 

E 

2 
p,n p = 0 p = 1 

(129) 

This is the limiting page. We have obtained the classification of the first- and second-order SPT

phases. Except for class D ( n = 2), the K -groups K 

Z 

T 
2 ×Z 

R 
2 

n ( R , ∂ R ) have been fixed. 
For class D, there exist two possible group extensions for the short exact sequence 

0 → Z ︸︷︷︸ 
E 

2 
0 , 2 

→ K 

Z 

T 
2 ×Z 

R 
2 

2 ( R , ∂ R ) → Z 2 ︸︷︷︸ 
E 

2 
1 , 1 

→ 0 . (130) 

The symmetry class for n = 2 is the same as that discussed in Sect. 5.1.1 . Therefore, we conclude that

the group extension ( 130 ) is nontrivial and the K -group is K 

Z 

T 
2 ×Z 

R 
2 

2 ( R , ∂ R ) = Z , which is consistent
with the result by the K -cohomology [ 94–96 ]. 

6.4. 2D real AZ classes with C 2 -rotation symmetry 

Let us consider 2D spinless free fermions with antiunitary symmetry of real AZ classes and C 2 -
rotation symmetry C 2 : ( x , y ) �→ ( −x , −y ) that commutes with TRS T and/or PHS C . F or comple x
fermion creation and annihilation operators, the symmetries are summarized as 

T ψ 

† (x, y ) T 

−1 = ψ 

† (x, y ) U T , T 

2 ∈ { 1 , −1 } (131) 
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and/or 

C ψ (x, y ) C 

−1 = ψ 

† (x, y ) U C 

, C 

2 ∈ { 1 , −1 } (132) 

and the C 2 -rotation symmetry 

C 2 ψ 

† (x, y ) C 

−1 
2 = ψ 

† (−x, −y ) U C 2 , C 

2 
2 = 1 , (133) 

T C 2 = C 2 T, CC 2 = C 2 C. (134) 

A C 2 -symmetric cell decomposition of the infinite 2D real space is shown in Fig. 4 [b]. The C 2 -rotation
symmetry remains only at the 0-cell A , the rotation center. The E 

1 -page and the first deri v ati ve d 

1 

are straightforwardly determined to be 

CI n = 7 0 0 0 

C n = 6 0 0 0 

CII n = 5 0 0 0 

AII n = 4 (2 Z ) ×2 2 Z 2 Z 

DIII n = 3 0 0 0 

D n = 2 ( Z 2 ) ×2 Z 2 Z 2 

BDI n = 1 ( Z 2 ) ×2 Z 2 Z 2 

AI n = 0 ( Z ) ×2 Z Z 

E 

1 
p,n p = 0 p = 1 p = 2 

(135) 

d 

1 
1 , 0 = d 

1 
1 , 1 = d 

1 
1 , 2 = d 

1 
1 , 4 = (1 , 1) , (136) 

d 

1 
2 , 0 = d 

1 
2 , 1 = d 

1 
2 , 2 = d 

1 
2 , 4 = 0 . (137) 

Taking the homology of d 

1 , we get the E 

2 -page 

CI n = 7 0 0 0 

C n = 6 0 0 0 

CII n = 5 0 0 0 

AII n = 4 2 Z 0 2 Z 

DIII n = 3 0 0 0 

D n = 2 Z 2 0 Z 2 

BDI n = 1 Z 2 0 Z 2 

AI n = 0 Z 0 Z 

E 

2 
p,n p = 0 p = 1 p = 2 

(138) 

Comparing this table with the known result of the K -cohomology group [ 96 ], we find that the second
differentials d 

2 
2 , 0 and d 

2 
2 , 1 must be nontrivial. The second differentials d 

2 
2 , 0 and d 

2 
2 , 1 are the same as

d 

2 
2 , −2 and d 

2, −1 that we computed in Sect. 5.1.2 , where the C 2 rotation square is the identity. The
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homology of d 

2 gives the E 

3 = E 

∞ -page 

CI n = 7 0 0 0 

C n = 6 0 0 0 

CII n = 5 0 0 0 

AII n = 4 2 Z 0 2 Z 

DIII n = 3 0 0 0 

D n = 2 0 0 Z 2 

BDI n = 1 0 0 0 

AI n = 0 Z 0 2 Z 

E 

3 
p,n p = 0 p = 1 p = 2 

(139) 

The ev en inte gers of E 

3 
0 , 2 reflect that an odd Chern number is forbidden in even parity class D

superconductors. Except for class AII insulators, the K -groups K 

Z 

T 
2 ×Z 

C 2 
2 

n ( R 

2 , ∂ R 

2 ) are fixed. 
For class AII, the K -group fits into the short exact sequence 

0 → 2 Z ︸︷︷︸ 
Fermion number at the rotation center 

→ K 

Z 

T 
2 ×Z 

C 2 
2 

4 ( R 

2 ) → Z 2 ︸︷︷︸ 
Quantum spin Hall state 

→ 0 . (140) 

There exist two inequi v alent group extensions 

(i) 0 → 2 Z 

n �→ (n, 0) −−−−→ 2 Z × Z 2 
(n,m ) �→ m −−−−−→ Z 2 → 0 , (141) 

(ii) 0 → 2 Z 

n �→ 2 n −−−→ Z 

n �→ n −−→ Z 2 → 0 . (142) 

To fix the group extension ( 140 ), we ask if the double stack of C 2 -symmetric quantum spin Hall
states is adiabatically equi v alent to a Kramers pair at the rotation center or not. Two-layered quantum
spin Hall states are modeled as 

H = −i∂ x s x σx μ0 − i∂ y s y σx μ0 + mσz μ0 + M 1 (x, y ) σy μy + M 2 (x, y ) s z σx μy , (143) 

T = s y K, C 2 = σz , (144) 

where s α, σα, and μα ( α ∈ {0, x , y , z }) are Pauli matrices for spin, orbital, and layer degrees
of freedoms, respectively. To preserve the C 2 -rotation symmetry, the spatially varying mass terms
should satisfy M j ( −x , −y ) = −M j ( x , y ) for j = 1, 2. Thanks to the mass gap m , the mass texture of
M j ∈ 1, 2 ( x , y ) can be turned on adiabatically. In the presence of a single vortex of the mass texture
( M 1 ( x , y ), M 2 ( x , y )) with the C 2 -rotation symmetry, there appears a localized ingap doublet with the
ef fecti ve Hamiltonian H eff = ms 0 with C 2 = s 0 and T = s y K, i.e., a Kramers pair. Therefore, the

group extension ( 140 ) is nontrivial and the K -group for class AII is K 

Z 

T 
2 ×Z 

C 2 
2 

4 ( R 

2 , ∂ R 

2 ) ∼= 

Z , which
is consistent with the known result by the K -cohomology [ 96 ]. 

6.5. C 4 T-rotation symmetry 

Let us consider, as the symmetry class for n = 0, a magnetic point group symmetry C 4 T com-
posed of C 4 -rotation C 4 : ( x , y ) �→ ( −y , x ) and a time-reversal transformation T . We also assume
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( C 4 T ) 4 = −1 as for spinful systems. According to the recipe in Sect. 6.1 , the symmetries for n > 0
read as 

n = 0 : 

{ 

( C 4 T ) H ( x, y )( C 4 T ) −1 = H ( −y, x ) 
(C 4 T ) 4 = −1 , 

(145) 

n = 1 : 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

( C 4 T ) H ( x, y )( C 4 T ) −1 = H ( −y, x ) 
�H (x, y )�−1 = −H (x, y ) 
(C 4 T ) 4 = −1 , 

�(C 4 T ) = (C 4 T )�. 

(146) 

n = 2 : 

{ 

( C 4 T ) H ( x, y )( C 4 T ) −1 = −H ( −y, x ) 
(C 4 T ) 4 = −1 , 

(147) 

n = 3 : 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

( C 4 T ) H ( x, y )( C 4 T ) −1 = −H ( −y, x ) 
�H (x, y )�−1 = −H (x, y ) 
(C 4 T ) 4 = −1 , 

�(C 4 T ) = −(C 4 T )�. 

(148) 

Here, we have used that in the presence of a pair of chiral symmetries �1 = σ x and �2 = σ y a
Hamiltonian takes the form H = 

˜ H ⊗ σz and the symmetry is recast as for ˜ H [ 88 ]. The symmetry
for n = 4 is the same as n = 0, meaning that the periodicity n ∼ n + 4. 

A C 4 T -symmetric cell decomposition of the infinite real space R 

2 is shown as follows: 

The E 1 -page and the first differentials are found as 

n = 3 0 0 0 

n = 2 Z Z Z 

n = 1 0 0 0 

n = 0 Z Z Z 

E 

1 
p,n p = 0 p = 1 p = 2 

(149) 

d 

1 
0 , 1 = 2 , d 

1 
1 , 2 = 0 , d 

1 
2 , 0 = 0 , d 

1 
2 , 2 = 2 . (150) 

Some comments are in order. The first differentials d 

1 
1 ,n from 1-cells to the 0-cell are given by the

induced representation. The first differential d 

1 
2 , 0 ( d 

1 
2 , 2 ) represents how the chiral edge states of Chern

insulators in 2-cells contribute to the anomalous edge states on 1-cells in the symmetry class n = 2
( n = 0). Since for n = 2 (n = 0) the C 4 T -rotation is a particle–hole (time-reversal) type, chiral edge
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states cancel out (sum up) at a 1-cell. See the following figure: 

We have the E 

2 -page 

n = 3 0 0 0 

n = 2 Z Z 2 0 

n = 1 0 0 0 

n = 0 Z 2 0 Z 

E 

2 
p,n p = 0 p = 1 p = 2 

(151) 

and this is the limit. We find that there is a second-order topological insulator E 

∞ 

1 , 2 = Z 2 in the
symmetry class n = 3. E 

∞ 

1 , 2 also describes the second-order anomaly in the symmetry class n =
0, the magnetic 4-fold rotation symmetry C 4 T , where the anomalous edge state is localized at a
1-skeleton [ 42 ]: 

6.6. Glide symmetry 

Let us consider 2D free fermions with a spatial Z symmetry generated by the glide transformation
G : ( x , y ) �→ ( x + 1/2, −y ). Also, we assume a TRS T , T 

2 = 1, commuting with the glide symmetry
as the symmetry class for n = 0. We shall compute the classification of free fermion SPT phases

with glide and AZ symmetries that is represented by the K -homology K 

Z 

T 
2 ×Z 

G 

n ( R 

2 , R × {±∞} ) with
R × {±∞} the infinity at y = ±∞ . The glide-symmetric filtration of the 2D space R 

2 is shown as
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follows: 

We have shown a unit cell along the x -direction. Notice that there is no 0-cell. The E 

1 -page and the
first differentials are 

CI n = 7 0 0 0 

C n = 6 0 0 0 

CII n = 5 0 0 0 

AII n = 4 0 2 Z 2 Z 

DIII n = 3 0 0 0 

D n = 2 0 Z 2 Z 2 

BDI n = 1 0 Z 2 Z 2 

AI n = 0 0 Z Z 

E 

1 
p,n p = 0 p = 1 p = 2 

(152) 

d 

1 
2 , 0 = d 

1 
2 , 4 = 2 , d 

1 
2 , 1 = d 

1 
2 , 2 = 0 . (153) 

Here, d 

1 
2 , 0 = d 

1 
2 , 4 = 2 is because the glide reflection changes the chirality of the Chern insulator.

Taking the homology of d 

1 gives the E 

2 -page 

CI n = 7 0 0 0 

C n = 6 0 0 0 

CII n = 5 0 0 0 

AII n = 4 0 Z 2 0 

DIII n = 3 0 0 0 

D n = 2 0 Z 2 Z 2 

BDI n = 1 0 Z 2 Z 2 

AI n = 0 0 Z 2 0 

E 

2 
p,n p = 0 p = 1 p = 2 

(154) 

This is the limiting page E 

∞ = E 

2 . E 

∞ 

2 −k , −2+ k + n represents the classification of k th-order topological
insulators/superconductors for the symmetry class n , and, at the same time, the classification of
k th-order anomalies for the symmetry class n + 1. Except for n = 3, the K -homology groups

K 

Z 

T 
2 ×Z 

G 

n ( R 

2 , R × {±∞} ) are fixed. 
For n = 3, the K -group fits into the short exact sequence 

0 → Z 2 ︸︷︷︸ 
E 

∞ 

1 , 2 

→ K 

Z 

T 
2 ×Z 

G 

3 ( R 

2 , R × {±∞} ) → Z 2 ︸︷︷︸ 
E 

∞ 

2 , 1 

→ 0 . (155) 

Let us compute the group extension from the viewpoint of an anomaly in the class AII system. The
anomalous state described by E 

∞ 

2 , 1 , the surface state on top of the 3D class AII topological insulator,
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preserving the glide symmetry is given by 

H = −i ∂ x s y − i ∂ y s x , T = s y K, G = is y . (156) 

Doubling the anomalous states allows the surface to have a texture mass term 

H = −i ∂ x s y μ0 − i ∂ y s x μ0 + m (x ) s z μy (157) 

with μα( α ∈ {0, x , y , z }) being the Pauli matrices for two layers. The glide symmetry implies
m ( x + 1/2) = −m ( x ), i.e., enforcing a kink per interval [ x , x + 1/2]. The lo w-energy ef fecti ve
Hamiltonian localized at a kink is a helical edge state that is in the same anomaly as E 

∞ 

1 , 2 . Therefore,

the extension ( 155 ) is nontrivial and we have K 

Z 

T 
2 ×Z 

G 

3 ( R 

2 , R × {±∞} ) = Z 4 . This is consistent with
the classification by the K -cohomology [ 97 ]. 

6.7. 3D complex AZ classes with time-reversal inversion symmetry 

Here we present an example where a third differential d 

3 becomes nontrivial. Let us consider, as the
symmetry class for n = 0, 3D complex fermions with the time-reversal inversion symmetry TI : 

( T I ) ψ 

† ( x, y, z )( T I ) −1 = ψ 

† ( −x, −y, −z ) U T I , (T I ) 2 = 1 . (158) 

Figure 4 [c] shows an inversion-symmetric cell decomposition of the real space R 

3 . The E 

1 -page and
symmetry classes are summarized as 

n = 7 0 0 0 0 (T I ) 2 = 1 (CI ) 2 = −1 

n = 6 0 Z Z Z (CI ) 2 = −1 

n = 5 0 0 0 0 (T I ) 2 = −1 (CI ) 2 = −1 

n = 4 2 Z Z Z Z (T I ) 2 = −1 

n = 3 0 0 0 0 (T I ) 2 = −1 (CI ) 2 = 1 

n = 2 Z 2 Z Z Z (CI ) 2 = 1 

n = 1 Z 2 0 0 0 (T I ) 2 (CI ) 2 = 1 

n = 0 Z Z Z Z (T I ) 2 = 1 

E 

1 
p,n p = 0 p = 1 p = 2 p = 3 T I CI 

(159) 

Here, CI is particle–hole inversion symmetry. The first differentials are found to be 

d 

1 
1 , 0 = 2 , d 

1 
1 , 2 = 1 , d 

1 
1 , 4 = 1 , (160) 

d 

1 
2 , 0 = d 

1 
2 , 4 = 0 , d 

1 
2 , 2 = d 

1 
2 , 6 = 2 , (161) 

d 

1 
3 , 0 = d 

1 
3 , 4 = 2 , d 

1 
3 , 2 = d 

1 
3 , 6 = 0 . (162) 

The E 

2 -page is 

n = 7 0 0 0 0 (T I ) 2 = 1 (CI ) 2 = −1 

n = 6 0 Z 2 0 Z (CI ) 2 = −1 

n = 5 0 0 0 0 (T I ) 2 = −1 (CI ) 2 = −1 

n = 4 0 0 Z 2 0 (T I ) 2 = −1 

n = 3 0 0 0 0 (T I ) 2 = −1 (CI ) 2 = 1 

n = 2 0 2 Z 0 Z (CI ) 2 = 1 

n = 1 Z 2 0 0 0 (T I ) 2 (CI ) 2 = 1 

n = 0 Z 2 0 Z 2 0 (T I ) 2 = 1 

E 

2 
p,n p = 0 p = 1 p = 2 p = 3 T I CI 

(163) 
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In this table, d 

2 
2 , 0 : E 

2 
2 , 0 → E 

2 
0 , 1 can be nontrivial and is found to be nontrivial d 

2 
2 , 0 = 1 in a way

similar to d 

2 
2 , 1 in Sect. 6.4 : E 

2 
2 , 0 represents a Chern insulator with an odd Chern number in the 2-cell

α, and the symmetry ( CI ) 2 = 1 for n = 2 implies that the boundary condition of the chiral edge state
is periodic, yielding an exact zero energy state generating E 

2 
0 , 1 . 

The homology of d 

2 gives the E 

3 -page 

n = 7 0 0 0 0 (T I ) 2 = 1 (CI ) 2 = −1 

n = 6 0 Z 2 0 Z (CI ) 2 = −1 

n = 5 0 0 0 0 (T I ) 2 = −1 (CI ) 2 = −1 

n = 4 0 0 Z 2 0 (T I ) 2 = −1 

n = 3 0 0 0 0 (T I ) 2 = −1 (CI ) 2 = 1 

n = 2 0 2 Z 0 Z (CI ) 2 = 1 

n = 1 0 0 0 0 (T I ) 2 (CI ) 2 = 1 

n = 0 Z 2 0 0 0 (T I ) 2 = 1 

E 

3 
p,n p = 0 p = 1 p = 2 p = 3 T I CI 

(164) 

In this table, d 

3 
3 , 6 : E 

3 
3 , 6 → E 

3 
0 , 0 can be nontrivial. Let us derive d 

3 
3 , 6 from the viewpoint of an adiabatic

pump in the symmetry class of n = 0. E 

3 
3 , 6 represents the creation of a Chern insulator with a unit

Chern number on a sphere S 

2 inside the north and south 3-cells. Since d 

1 
3 , 6 = d 

2 
3 , 6 = 0 , these Chern

insulators can glue together at 2- and 1-cells. Hence, the problem is whether the Chern insulator
enclosing the inversion center preserving the time-reversal inversion symmetry with ( TI ) 2 = 1 has a
unit U (1) charge or not. For complex fermions on a 2-sphere, it is known that in the presence of a
monopole charge m g inside the sphere, the z -component of the angular momentum is quantized into
(i) odd integers if m g ∈ 2 Z and (ii) even integers if m g ∈ 2 Z + 1 . On the one hand, the symmetry
algebra ( TI ) 2 = 1 implies that the 2 π -rotation is the identity; i.e., the angular momentum should
be an ev en inte ger. Therefore, the symmetry algebra ( TI ) 2 = 1 enforces an odd monopole charge
m g ∈ 2 Z + 1 inside the 2-sphere. Then, from the quantum Hall effect, on the 2-sphere with an odd
monopole charge m g , the Chern insulator with a unit Chern number has an odd U (1) charge m g [ 98 ],
the generator of E 

3 
0 , 0 = Z 2 . Therefore, we conclude that d 

3 
3 , 6 = 1 . 

We arrived at the E 

4 = E 

∞ -page 

n = 7 0 0 0 0 (T I ) 2 = 1 (CI ) 2 = −1 

n = 6 0 Z 2 0 2 Z (CI ) 2 = −1 

n = 5 0 0 0 0 (T I ) 2 = −1 (CI ) 2 = −1 

n = 4 0 0 Z 2 0 (T I ) 2 = −1 

n = 3 0 0 0 0 (T I ) 2 = −1 (CI ) 2 = 1 

n = 2 0 2 Z 0 Z (CI ) 2 = 1 

n = 1 0 0 0 0 (T I ) 2 (CI ) 2 = 1 

n = 0 0 0 0 0 (T I ) 2 = 1 

E 

4 
p,n p = 0 p = 1 p = 2 p = 3 T I CI 

(165) 

The K -groups and the classification of higher-order topological insulators/superconductors are con- 
sistent with Refs. [ 49 , 96 ]. 
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Fig. 11. A P 222-equi v ariant cell decomposition of the real space R 

3 . The figure sho ws the independent region 

that is one-quarter of a unit cell. 
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6.8. 3D complex AZ classes with space group P222 

In this and the subsequent two sections we illustrate the AHSS for 3D space group symmetry. 
Let us consider the K -homology K 

G 

n ( R 

3 ) for complex AZ classes with the space group G = P 222
(No. 16). The space group P 222 is composed of the primitive 3D lattice translations T μ : x �→
x + ˆ x μ(μ = x, y, z ) and the point group D 2 = {1, 2 100 , 2 010 , 2 001 } that is generated by 2 100 : ( x ,
y , z ) �→ ( x , −y , −z ) and 2 010 : ( x , y , z ) �→ ( −x , y , −z ). We here consider spinless systems. A P 222-
symmetric cell decomposition of the real space R 

3 is shown in Fig. 11 , and is composed of 

0-cells = { A, B, C, D, E , F , G, H } , 
1-cells = { a, b, c, d, e, f , g, h, i, j, k, l } , 
2-cells = { α, β, γ , δ, ε} , 
3-cells = { vol } . (166) 

The little groups are D 2 at 0-cells and Z 2 at 1-cells. Counting the number of irreps. we have the
E 

1 -page 

AIII n = 1 0 0 0 0 

A n = 0 ( Z 

×4 ) ×8 ( Z 

×2 ) ×12 Z 

5 Z 

E 

1 
p,n p = 0 p = 1 p = 2 p = 3 

(167) 

From the induced representations, the first differentials are straightforwardly given as 
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d 1 1 , 0 = 

a b c d e f g h i j k l 
1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 

−1 0 −1 0 −1 0 1 A 

0 −1 −1 0 0 −1 t 1 
−1 0 0 −1 0 −1 t 2 

0 −1 0 −1 −1 0 t 1 t 2 
1 0 −1 0 −1 0 1 B 

0 1 −1 0 0 −1 t 1 
1 0 0 −1 0 −1 t 2 
0 1 0 −1 −1 0 t 1 t 2 

−1 0 1 0 −1 0 1 C 

0 −1 1 0 0 −1 t 1 
−1 0 0 1 0 −1 t 2 

0 −1 0 1 −1 0 t 1 t 2 
1 0 1 0 −1 0 1 D 

0 1 1 0 0 −1 t 1 
1 0 0 1 0 −1 t 2 
0 1 0 1 −1 0 t 1 t 2 

−1 0 −1 0 1 0 1 E 

0 −1 −1 0 0 1 t 1 
−1 0 0 −1 0 1 t 2 

0 −1 0 −1 1 0 t 1 t 2 
1 0 −1 0 1 0 1 F 
0 1 −1 0 0 1 t 1 
1 0 0 −1 0 1 t 2 
0 1 0 −1 1 0 t 1 t 2 

−1 0 1 0 1 0 1 G 

0 −1 1 0 0 1 t 1 
−1 0 0 1 0 1 t 2 

0 −1 0 1 1 0 t 1 t 2 
1 0 1 0 1 0 1 H 

0 1 1 0 0 1 t 1 
1 0 0 1 0 1 t 2 
0 1 0 1 1 0 t 1 t 2 

, 

(168) 
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d 

1 
2 , 0 = 

α β γ δ ε

1 1 a 

1 t 
1 1 b 

1 t 
−1 1 c 
−1 t 

1 1 d 

1 t 
−1 1 1 e 
−1 1 t 

−1 −1 1 f 
−1 −1 t 

1 −1 1 g 

1 −1 t 
−1 1 1 h 

−1 1 t 
−1 1 1 i 
−1 1 t 

1 −1 1 j 
1 −1 t 

−1 −1 1 k 

−1 −1 t 
1 1 1 l 
1 1 t 

, (169) 

and d 

1 
3 , 0 = 0 . Here, {1, t } in 1-cells means trivial and the sign irreps. of Z 2 , and {1, t 1 , t 2 , t 1 t 2 } in

0-cells are four irreps. of D 2 . We can check that d 

1 
2 , 0 d 

1 
3 , 0 = d 

1 
1 , 0 d 

1 
2 , 0 = 0 . Taking the homology of d 

1 

gives the E 

2 -page 

AIII n = 1 0 0 0 0 

A n = 0 Z 

×13 × Z 2 0 0 Z 

E 

2 
p,n p = 0 p = 1 p = 2 p = 3 

(170) 

Because d 

2 = 0, E 

2 = E 

3 . In the E 

3 -page, the third differential d 

3 
3 , 0 : Z → Z 

×13 × Z 2 can be nontrivial.
Interestingly, comparing the E 

3 -page ( 170 ) with the E ∞ 

-page [ 89 ] 

A n = 0 Z 

×13 Z 2 0 Z 

AIII n = 1 0 0 0 0 

E 

p, −n 
∞ 

p = 0 p = 1 p = 2 p = 3 

(171) 

of the K -cohomology group K 

−n 
D 2 

(T 

3 ) isomorphic to K 

G 

n ( R 

3 ) , we find that d 

3 
3 , 0 must remo v e the Z 2 

subgroup of E 

3 
0 , 0 ; otherwise the K -group K 

G 

n ( R 

3 ) ∼= 

K 

0 
D 2 

( T 

3 )( = Z 

×13 ) has a torsion. We have the
E 

∞ = E 

4 -page 

AIII n = 1 0 0 0 0 

A n = 0 Z 

×13 0 0 2 Z 

E 

4 
p,n p = 0 p = 1 p = 2 p = 3 

(172) 
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Fig. 12. A P 2 1 2 1 2 1 -equi v ariant cell decomposition of the infinite space R 

3 . The figure shows the independent 
region that is one-quarter of the unit cell. 
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Here, E 

4 
3 , 0 = 2 Z means that a class AIII insulator putting in 3-cells compatible with the P 222 space

group symmetry must have an even 3D winding number. Also, based on the terminology introduced
in Sect. 4.6.4 , the nontrivial third differential d 

3 
3 , −3 leads to the LSM-type theorem to enforce a

nontrivial topological insulator: If a class AIII system composed of anomalous zero energy degrees
of freedom living in Z 2 ⊂ E 

2 
0 , 0 forms a fully gapped state, this state must have an odd 3D winding

number. From the E 

4 -page, the K -groups are determined as 

K 

G 

0 ( R 

3 ) ∼= 

Z 

13 , K 

G 

1 ( R 

3 ) ∼= 

2 Z . (173) 

It should also be noticed that this result gives us the correct group extension of the E ∞ 

-page of the
K -cohomology K 

−n 
D 2 

(T 

3 ) for class AIII: 

0 → Z ︸︷︷︸ 
E 

3 , 0 ∞ 

→ K 

−1 
D 2 

(T 

3 ) ︸ ︷︷ ︸ 
∼= 

Z 

→ Z 2 ︸︷︷︸ 
E 

1 , 0 ∞ 

→ 0 . (174) 

The E 

∞ -page of the K -homology and the E ∞ 

-page for the dual K -cohomology are quite comple-
mentary. 

6.9. 3D complex AZ classes with space group P2 1 2 1 2 1 

The next example of a space group is P 2 1 2 1 2 1 (No. 19), which is composed of the primitive 3D lattice
translations and D 2 group action generated by 2 100 : ( x , y , z ) �→ ( x + 1/2, −y + 1/2, −z ) and 2 010 : ( x , y ,
z ) �→ ( −x , y + 1/2, −z + 1/2). A P 2 1 2 1 2 1 -symmetric cell decomposition is shown in Fig. 12 , where
we have shown one-quarter of the unit cell. p -cells are 

0-cells = { A, B} , 
1-cells = { a, b, c, d, e, f } , 
2-cells = { α, β, γ , δ, ε, η} , 
3-cells = { v ol 1 , v ol 2 } . (175) 
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Because the space group P 2 1 2 1 2 1 acts on the real space R 

3 freely, the irrep. at each p -cell is unique.
We have the E 

1 -page 

AIII n = 1 0 0 0 0 

A n = 0 Z 

×2 Z 

×6 Z 

×6 Z 

×2 

E 

1 
p,n p = 0 p = 1 p = 2 p = 3 

(176) 

From the induced representations, the first differentials are given as 

d 

1 
1 , 0 = 

a b c d e f 
1 −1 1 −1 −1 −1 A 

−1 1 −1 1 1 1 B 

, (177) 

d 

1 
2 , 0 = 

α β γ δ ε η

−2 1 −1 a 

−1 1 −2 b 

2 1 −1 c 
−1 1 2 d 

2 1 −1 e 
−2 1 −1 f 

, d 

1 
3 , 0 = 

vol 1 vol 2 
1 −1 α

−1 1 β

1 −1 γ

−1 1 δ

−1 1 ε

1 −1 η

, (178) 

which satisfy d 

1 ◦d 

1 = 0. The homology of d 

1 gives the E 

2 -page 

AIII n = 1 0 0 0 0 

A n = 0 Z Z 

×2 
4 0 Z 

E 

2 
p,n p = 0 p = 1 p = 2 p = 3 

(179) 

The third differential d 

3 
3 , 0 : Z → Z can be nontrivial. Comparing this with the E ∞ 

-page [ 89 ] 

A n = 0 Z Z 

×3 
4 0 Z 

AIII n = 1 0 0 0 0 

E 

p, −n 
∞ 

p = 0 p = 1 p = 2 p = 3 

(180) 

of the dual K -cohomology K 

τ−n 
D 2 

(T 

3 ) , we find that d 

3 
3 , 0 = 0 . Therefore, E 

2 = E 

∞ . The K -homology
group is fixed as 

K 

G 

0 ( R 

3 ) ∼= 

Z , K 

G 

1 ( R 

3 ) ∼= 

Z × Z 

×2 
4 . (181) 

It should be noticed again that the AHSSs for the K -cohomology and homology are complementary.
The E 

∞ - and E ∞ 

-pages imply that the K -cohomology group for class AIII obeys the nontrivial
extension 

0 → Z 

4 −→ K 

τ−1 
D 2 

(T 

3 ) 
mod 4 −−−→ Z 

×3 
4 → 0 . (182) 

6.10. 3D complex AZ classes with space group F222 

The final example is the 3D complex AZ classes with the space group F 222 (No. 22), which is
generated by the 3D lattice translations by (0,1,1), (0,1,0), and (0,1,1) of F222 and the D 2 point
group. An F 222-symmetric cell decomposition is shown in Fig. 13 . p -cells are composed of 

0-cells = { A, B, C, D, E , F , G, H, I , J } , 
1-cells = { a, b, c, d, e, f , g, h, i, j, k, l , m, n, o, p, q, r } , 
2-cells = { α, β, γ , δ, ε, ζ , η, θ, ι} , 
3-cells = { vol } . (183) 
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Fig. 13. An F 222-symmetric cell decomposition of the infinite space R 

3 . The left figure shows the face-centered 

cubic lattice. The right figure shows an independent region. 
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Let us consider spinful fermions, meaning that the high-symmetric points { A , B , C , D } of the D 2 

group obey the nontrivial projective representation of D 2 . We have the E 

1 -page 

AIII n = 1 0 0 0 0 

A n = 0 Z 

×16 Z 

×30 Z 

×9 Z 

E 

1 
p,n p = 0 p = 1 p = 2 p = 3 

(184) 

The first differentials are given as d 

1 
3 , 0 = 0 : 

d 1 1 , 0 = 

a b c d e f g h i j k l m n o p q r 
1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 

−1 −1 −1 −1 −1 −1 A 

−1 −1 −1 −1 −1 −1 B 

−1 −1 −1 −1 −1 −1 C 

−1 −1 −1 −1 −1 −1 D 

1 0 1 0 −1 −1 1 E 

0 1 0 1 −1 −1 t 
1 0 1 0 −1 −1 1 F 
0 1 0 1 −1 −1 t 

1 0 1 0 −1 1 1 G 

0 1 0 1 −1 1 t 
1 0 1 0 −1 1 1 H 

0 1 0 1 −1 1 t 
1 0 1 0 1 1 1 I 
0 1 0 1 1 1 t 

1 0 1 0 1 1 1 J 
0 1 0 1 1 1 t 

, 

(185) 
56/64 



PTEP 2023 , 083I01 K. Shiozaki et al. 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/8/083I01/7220033 by Kyoto U

niversity user on 18 D
ecem

ber 2023
d 

1 
2 , 0 = 

α β γ δ ε ζ η θ ι

1 −1 1 a 

1 −1 t 
−1 1 1 b 

−1 1 t 
−1 1 c 
−1 t 

1 1 d 

1 t 
−1 1 e 
−1 t 

1 1 f 
1 t 

−1 1 g 

−1 t 
−1 1 h 

−1 t 
−1 1 1 i 
−1 1 t 

1 −1 1 j 
1 −1 t 

1 −1 1 k 

1 −1 t 
1 1 1 l 
1 1 t 

−1 −1 1 m 

1 −1 −1 n 

1 −1 o 

−1 1 p 

1 −1 −1 1 q 

−1 1 1 1 r 

. (186) 

These satisfy d 

1 
1 , 0 ◦ d 

1 
2 , 0 = 0 . The homology of d 

1 gives the E 

2 = E 

3 -page: 

AIII n = 1 0 0 0 0 

A n = 0 Z × Z 2 Z 

×6 0 Z 

E 

2 
p,n p = 0 p = 1 p = 2 p = 3 

(187) 

The third differential d 

3 
3 , 0 can be nontrivial. Comparing the E 

3 -page with the E ∞ 

-page [ 89 ] 

A n = 0 Z Z 

×6 Z 2 Z 

AIII n = 1 0 0 0 0 

E 

p, −n 
∞ 

p = 0 p = 1 p = 2 p = 3 

(188) 

of the K -cohomology group K 

τ−n 
D 2 

(T 

3 ) , we find that d 

3 
3 , 0 is trivial. Therefore, E 

2 = E 

∞ . The K -
homology group is fixed as 

K 

G 

0 ( R 

3 ) ∼= 

Z × Z 2 , K 

G 

1 ( R 

3 ) ∼= 

Z × Z 

×6 . (189) 
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E 

∞ 

0 , 0 = Z × Z 2 tells us that the Z 2 nontrivial model in class A insulators is an atomic insulator, even
if the Z 2 invariant in the momentum space defined on the 2-skeleton includes the integral of the Berry
curvature [ 89 ]. The origin of the Z 2 in atomic insulators is found in the structure of the 1-skeleton
in the real space R 

3 . See Fig. 13 . The 1-skeleton X 1 is the disjoint union of the two sub-1-skeletons,
one of which includes the 0-cell A , the other, B . The K -group K 

G 

0 ( R 

3 ) ∼= 

Z × Z 2 is generated by two
inequi v alent atomic insulators | A 〉 and | B〉 defined by the projective irrep. of D 2 located at A and
B , respectively. The Z 2 structure is from the idea that the direct sum | A 〉 ⊕ | A 〉 of the irrep. at A is
deformable to | B〉 ⊕ | B〉 , the two irreps. at B . 

7. Conclusion 

In the present paper, we have studied a mathematical structure behind SPT phases and LSM-type
theorems protected by crystalline symmetry. Our approach is based on the same spirit of Kitaev’s
proposal that the family of invertible states forms an �-spectrum. [ 50 , 51 ] Once an �-spectrum is
given, one can define the generalized (co)homology theory. In this paper, we proposed and demon-
strated that the classification of a crystalline SPT phase is a generalized homology o v er the real space
manifold on which a physical system is defined. This approach divides the problems of crystalline
SPT phases into two aspects: SPT phases protected by onsite symmetry as building blocks and the
role of crystalline symmetry. In the generalized homology description, onsite symmetry is inherited
in the �-spectrum, and the topological nature compatible with the crystalline symmetry is described
by the mathematical structure of the equi v ariant generalized homology. In this sense, the general-
ized homology approach applies to any SPT phases, including fermionic systems. The underlying
physical picture of our approach is that regarding topological phenomena, the correlation length of a
bulk invertible state can be considered much smaller than the spatial length of crystalline symmetry,
such as lattice translation [ 36 ]. 

We have shown that the AHSS, the spectral sequence associated with a crystalline-symmetric cell
decomposition of the real space, is the perfect generalization of the prior developed machinery to
classify SPT phases and LSM-type theorems in the presence of crystalline symmetry [ 34 , 37 , 38 ]. The
AHSS successfully unifies various notions in crystalline SPT phases such as the layer construction,
higher-order SPT phases [ 42 ], LSM theorems as the boundary of an SPT phase [ 37 ], and LSM-type
theorem to enforce an SPT phase [ 68 , 69 ]. 

For free fermions, the generalized homology for free fermion SPT phases is attributed to the K -
homology. It turns out that the AHSS for real space K -homology is quite complementary to that for
momentum space K -cohomology [ 89 ]. As seen in Sect. 6 , these AHSSs present different limiting
pages that converge at the same K -group, which helps us to determine the K -group without explicitly
solving the exact sequences among the limiting page. 

Let us close by mentioning a number of future directions. 

� In this paper, we mainly focused on SPT phases on the infinite real space manifold. Ho we ver,
the generalized homology h 

G 

n (X ) is well defined for any pairs of real space manifolds ( X , Y ),
e.g., SPT phases on a sphere, Klein bottle, Möbius strip, etc. It will be interesting to explore the
topological nature of SPT phases defined on topologically nontrivial real space manifolds that
can be engineered. 

� The physics of SPT phases gives us a practical definition to compute the differentials of the AHSS
in generalized homology. It would also be interesting to reinterpret known (co)homological
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definitions of the differentials in the AHSS for the K -theory and some cobordisms from the
viewpoint of SPT physics. 

� The �-spectrum structure of invertible states relates an adiabatic cycle or a kink texture that
begins and ends at the trivial ( d + 1)-dimensional invertible state to a d -dimensional invertible
state. Therefore, the �-spectrum structure does not tell about the quantum number localized at
a topological texture (kink, skyrmion, etc.) within a nontrivial SPT phase (see, e.g., Ref. [ 99 ]).
In addition to the based loop space �F d + 1 , it should be of importance to understand the generic
structure of the free loop space L F d+1 = { � : S 

1 → F d+1 } of ( d + 1)-dimensional invertible states,
the space of adiabatic cycles that begin and end at an arbitrary ( d + 1)-dimensional invertible
state. 

� For crystalline bosonic SPT phases without the E 8 phase as a building block, the AHSS of the
corresponding generalized homology h 

G 

0 ( R 

3 ) with a 3D space group G is attributed to the strategy
by Huang et al. [ 38 ]. On the one hand, the classification result of Ref. [ 38 ] completely matches
the cohomology theory H 

4 
G 

( R 

3 , U ( 1) ori ) ∼= 

H 

4 ( BG, U ( 1) ori ) by Thorngren and Else [ 36 ], where
the equi v ariant cohomology H 

4 
G 

( R 

3 , U (1) ori ) is regarded as the classification of G -symmetric
topological response theories o v er the real space manifold R 

3 . This agreement suggests the
existence of a sort of (twisted) generalized cohomology formulation of crystalline SPT phases
o v er the real space X , which should be the Poincaré dual to the homological formulation. A
possible route would be the homological AHSS based on the dual cell decomposition of the real
space X and reinterpreting the AHSS as a cohomological one. 
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classification and construction of higher-order crystalline bosonic SPT phases. 

A. The cohomology of K ( Z N 

, 2) at low degree 

The Eilenberg–MacLane space K ( Z N 

, 2) is a topological space that is, up to homotopy, uniquely
characterized by its homotopy groups π2 ( K ( Z N 

, 2)) ∼= 

Z N 

and πi ( K ( Z N 

, 2)) = 0 for i � = 2. We
here give some details of the computation of its integral cohomology group H 

n ( K ( Z N 

, 2) ; Z ) at low
degree. 

A.1. Up to degree 3 

The main strategy is to apply the Leray–Serre spectral sequence [ 103 ] to the so-called path fibration
�K ( Z N 

, 2) → P K ( Z N 

, 2) → K ( Z N 

, 2) . Here P K ( Z N 

, 2) is the space consisting of paths that start
at a base point. Because the path space P K ( Z N 

, 2) is contractible, the based loop space �K ( Z N 

, 2)
is homotopically equi v alent to the classifying space of principal Z N 

-bundles K ( Z N 

, 1) � B Z N 

. Its
integral cohomology groups at low degree are H 

0 (B Z N 

; Z ) = Z , H 

1 (B Z N 

; Z ) = 0 , H 

2 (B Z N 

; Z ) =
Z N 

, and H 

3 (B Z N 

; Z ) ∼= 

0 . 

Theorem A.1. For positive integer N, we have 

n = 0 n = 1 n = 2 n = 3 

H 

n ( K ( Z N 

, 2) ; Z ) Z 0 0 Z N 
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Proof. By the Hurewicz theorem [ 60 ], we have H 0 ( K ( Z N 

, 2) ; Z ) = Z , H 1 ( K ( Z N 

, 2) ; Z ) =
0 , and H 2 ( K ( Z N 

, 2) ; Z ) = Z N 

. Applying the universal coefficient theorem [ 60 ], we con-
clude that H 

0 ( K ( Z N 

, 2) ; Z ) = Z , H 

1 ( K ( Z N 

, 2) ; Z ) = 0 , H 

2 ( K ( Z N 

, 2) ; Z ) = 0 . To determine
H 

3 ( K ( Z N 

, 2) ; Z ) , we use the Lerray–Serre spectral sequence to the path fibration. Its E 2 term 

E 

p,q 
2 = H 

p ( K ( Z N 

, 2) ; H 

q (B Z N 

; Z )) 

is summarized as follows: 

q = 2 Z N 

0 

q = 1 0 0 0 0 

q = 0 Z 0 0 

E 

p,q 
2 p = 0 p = 1 p = 2 p = 3 

From this, we find that E 

0 , 2 
2 = E 

0 , 2 
3 and E 

3 , 0 
2 = E 

3 , 0 
3 . We also find that E 

0 , 2 
4 = E 

0 , 2 
∞ 

and E 

3 , 0 
4 = E 

3 , 0 
∞ 

,
both of which must be trivial, since H 

n ( P K ( Z N 

, 2) ; Z ) = 0 for n = 2, 3. For this to be true, the
differential d 3 : E 

0 , 2 
3 → E 

3 , 0 
3 must be an isomorphism, so that 

H 

3 ( K ( Z N 

, 2) ; Z ) = E 

3 , 0 
2 = E 

3 , 0 
3 

∼= 

E 

0 , 2 
3 

∼= 

E 

0 , 2 
2 

∼= 

Z N 

, 

and the proof is completed. �

A.2. Degree 4 

Theorem A.2. H 

4 ( K ( Z N 

, 2) ; Z ) = 0 for any N > 0. 

Proof. It is known that the cohomology ring of the classifying space B Z N 

is the following quotient
of the polynomial ring: 

H 

∗(B Z N 

; Z ) = Z [ u ] / (Nu ) , 

where u ∈ H 

2 (B Z N 

; Z ) = Z N 

is a generator. Then the E 2 term of the Leray–Serre spectral sequence
for the path fibration 

E 

p,q 
2 = H 

p ( K ( Z N 

, 2) ; H 

q (B Z N 

; Z )) 

can be summarized as follows: 

q = 3 0 0 0 0 0 

q = 2 Z N 

0 

q = 1 0 0 0 0 0 

q = 0 Z 0 0 Z N 

E 

p,q 
2 p = 0 p = 1 p = 2 p = 3 p = 4 

It then turns out that H 

4 ( K ( Z N 

, 2) ; Z ) = E 

4 , 0 
2 = E 

4 , 0 
∞ 

. To keep the consistency with the fact that
H 

4 ( P K ( Z N 

, 2) ; Z ) = 0 , we must have E 

4 , 0 
∞ 

= 0 . �

A.3. Degrees 5 and 6 

Lemma A.3. For N > 0, the following holds true for H 

5 ( K ( Z N 

, 2) ; Z ) : 

� If N is odd, then H 

5 ( K ( Z N 

, 2) ; Z ) ∼= 

Z N 

. 
� If N is even, then H 

5 ( K ( Z N 

, 2) ; Z ) is either Z N 

⊕ Z 2 or Z 2 N 

. 
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Proof. The E 2 term of the Leray–Serre spectral sequence for the path fibration reads: 

q = 5 0 0 0 0 0 0 

q = 4 Z N 

0 Z N 

Z N 

q = 3 0 0 0 0 0 0 

q = 2 Z N 

0 Z N 

Z N 

q = 1 0 0 0 0 0 0 

q = 0 Z 0 0 Z N 

0 

E 

p,q 
2 p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 

For p + q = 4, the differential d 2 : E 

p,q 
2 → E 

p+2 ,q −1 
2 is trivial, so that E 

p,q 
2 = E 

p,q 
3 in this case. Then

we have possibly nontrivial differentials d 3 : E 

0 , 4 
3 → E 

3 , 2 
3 and d 3 : E 

2 , 2 
3 → E 

5 , 0 
3 . It is straightforward

to see that d 3 : E 

2 , 2 
3 → E 

5 , 0 
3 is injective. Therefore 

E 

5 , 0 
5 = E 

5 , 0 
4 = Coker [ d 3 : E 

2 , 2 
3 → E 

5 , 0 
3 ] . 

To compute d 3 : E 

0 , 4 
3 → E 

3 , 2 
3 , recall that Z is a ring. Then, as a matter of fact about the Leray–Serre

spectral sequence, the differential d 3 acts as a derivation. If u ∈ H 

2 (B Z N 

; Z ) = Z N 

is a generator,
then so is u 

2 ∈ H 

4 (B Z N 

; Z ) = Z N 

. We can regard u ∈ E 

0 , 2 
2 = E 

3 , 0 
2 , so that u 

2 ∈ E 

0 , 4 
2 = E 

0 , 4 
3 . We

know that d 3 : E 

0 , 2 
3 → E 

3 , 0 
3 is an isomorphism. This implies that ud 3 (u ) ∈ E 

3 , 0 
3 is a generator. We

have d 3 ( u 

2 ) = d 3 ( u ) u + ud 3 ( u ) = 2 ud 3 ( u ). Thus, if N is odd, then d 3 : E 

0 , 4 
3 → E 

3 , 2 
3 is an isomorphism

Z N 

∼= 

Z N 

, so that 0 = E 

0 , 4 
4 = E 

0 , 4 
5 and E 

5 , 0 
∞ 

= E 

5 , 0 
5 = E 

5 , 0 
4 . Then E 

5 , 0 
∞ 

= 0 implies that d 3 : E 

2 , 2 
3 →

E 

5 , 0 
3 is isomorphic, and 

H 

5 ( K ( Z N 

, 2) ; Z ) = E 

5 , 0 
2 = E 

5 , 0 
3 

∼= 

E 

2 , 2 
3 = E 

2 , 2 
2 = Z N 

. 

In contrast, if N is even, then E 

0 , 4 
5 = E 

0 , 4 
4 = Z 2 . To have E 

5 , 0 
∞ 

= E 

5 , 0 
6 = 0 , the map d 5 : E 

0 , 4 
5 → E 

5 , 0
5 

must be bijective. As a result, we have an exact sequence 

0 → Z N 

→ E 

5 , 0 
2 → Z 2 → 0 . 

The isomorphism classes of extensions of Z 2 by Z N 

are classified by the Ext group [ 103 ]
Ext ( Z 2 , Z N 

) = Z 2 . Hence E 

5 , 0 
2 = H 

5 ( K ( Z N 

, 2) ; Z ) is Z 2 ⊕ Z N 

or Z 2 N 

. �

To complete the computation of H 

5 ( K ( Z N 

, 2) ; Z ) , we appeal to the following fact [ 104 ]. 

Proposition A.4. Let f ≥ 1. The cohomology ring of K ( Z 2 f , 2) with coefficients in Z 2 is the polynomial
ring 

H 

∗( K ( Z 2 f , 2) ; Z 2 ) ∼= 

Z 2 [ w 2 , w 3 , w 5 , w 9 , w 17 , . . . ] 

generated by elements w d ∈ H 

d ( K ( Z 2 f , 2) ; Z 2 ) of degree d = 2 + 

∑ r 
i=0 2 

i with r = 0, 1, 2, …. 

Theorem A.5. The following holds true for N > 0: 

H 

5 ( K ( Z N 

, 2) ; Z ) = 

{ 

Z N 

( N odd ) 
Z 2 N 

( N even ) 
. 

Proof . The univ ersal coef ficient theorem gi ves 

H 

4 ( K ( Z N 

, 2) ; Z 2 ) ∼= 

Tor ( H 

5 ( K ( Z N 

, 2) ; Z ) , Z 2 ) . 

Suppose that N is even, so that N = 2 

f q with f positive and q odd. Applying the universal coefficient
theorem to the results of H 

n ( K ( Z q , 2) ; Z ) so far, we find: 

n = 0 n = 1 n = 2 n = 3 n = 4 

H 

n ( K ( Z q , 2) ; Z 2 ) Z 2 0 0 0 0 
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Applying the Künneth formula to K ( Z N 

, 2) = K ( Z 2 f , 2) × K ( Z q , 2) , we have 

H 

4 ( K ( Z N 

, 2) ; Z 2 ) = H 

4 ( K ( Z 2 f , 2) , Z 2 ) , 

which is Z 2 by Proposition A.4. Thus, we conclude H 

5 ( K ( Z N 

, 2) ; Z ) = Z 2 N 

. �

We remark that H 

5 ( K ( Z N 

, 2) ; Z ) ∼= 

H 

4 ( K ( Z N 

, 2) ; R / Z ) can be identified with the group of
quadratic functions [ 105 ]. 

Corollary A.6. The following holds true for N > 0: 

H 

6 ( K ( Z N 

, 2) ; Z ) = 

{ 

0 ( N odd ) 
Z 2 ( N even ) 

. 

Proof. Let us see the spectral sequence: 

q = 5 0 0 0 0 0 0 0 

q = 4 Z N 

0 Z N 

Z N 

q = 3 0 0 0 0 0 0 0 

q = 2 Z N 

0 Z N 

Z N 

q = 1 0 0 0 0 0 0 0 

q = 0 Z 0 0 Z N 

0 

E 

p,q 
2 p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 

For E 

6 , 0 
∞ 

to be killed, the homomorphism d 3 : E 

3 , 2 
3 → E 

6 , 0 
3 must be surjective. Also, since 0 =

E 

3 , 2 
∞ 

= E 

3 , 2 
4 , we have an exact sequence 

E 

0 , 4 
3 

d 3 → E 

3 , 2 
3 

d 3 → E 

6 , 0 
3 . 

Putting these results together, we have 

E 

6 , 0 
2 = E 

6 , 0 
3 

∼= 

E 

3 , 2 
3 / Ker [ d 3 : E 

3 , 2 
3 → E 

6 , 0 
3 ] 

= E 

3 , 2 
3 / Im [ d 3 : E 

0 , 4 
3 → E 

3 , 2 
3 ] . 

As can be seen, if N is odd, then d 3 : E 

0 , 4 
3 → E 

3 , 2 
3 is bijective, so that E 

6 , 0 
2 = 0 . If N is even, then

the image of d 3 is 2 Z N 

⊂ Z N 

, so that E 

6 , 0 
2 = Z N 

/ 2 Z N 

= Z 2 . �
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