
PHYSICAL REVIEW RESEARCH 4, 013135 (2022)

Spin susceptibility for orbital-singlet Cooper pair in the three-dimensional Sr2RuO4 superconductor
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We study the spin susceptibility of the orbital-singlet pairings, including the spin-triplet/orbital-singlet/s-wave
Eg representation proposed by Suh et al. [H. G. Suh et al., Phys. Rev. Research 2, 032023(R) (2020)], for a three-
orbital model of superconducting Sr2RuO4 in three dimensions. For the pseudospin-singlet states represented in
the band basis, the spin susceptibility decreases when reducing the temperature, irrespective of the direction
of the applied magnetic fields, even if they are spin-triplet/orbital-singlet pairings in the spin-orbital space.
However, because the pseudospin-triplet d-vector in the band basis is not completely aligned in the xy-plane
(along z-axis) owing to the strong atomic spin-orbit coupling, the spin susceptibility for spin-singlet/orbital-
singlet/odd-parity pairings is reduced around 5–10 percent with the decrease of the temperature along the
z (x) axis. We can determine the symmetry of the pseudospin structure of the Cooper pair by the temperature
dependence of the spin susceptibility measured by nuclear magnetic resonance experiments. Our obtained results
serve as a guide to determine the pairing symmetry of Sr2RuO4.
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I. INTRODUCTION

Pairing symmetry in the Sr2RuO4 (SRO) superconduc-
tor (SC) [1–3] has been an unresolved issue in condensed
matter physics. Based on the previous various experiments,
e.g., polarized neutron scatterings [4], half-quantum vor-
tices [5,6], charge transport properties in junctions [7–14],
and the nuclear-magnetic-resonance (NMR) measurements
[15], spin-triplet/chiral p-wave pairing with time-reversal
symmetry (TRS) breaking [(px + ipy)-wave pairing] [16]
has been believed to be the most promising one. In ad-
dition, theoretical studies also supported the realization of
spin-triplet/p-wave pairing [17–30]. However, recent NMR
experiments that solved the heating issues of the sample in
the actual measurement process reported the reduction of the
spin susceptibility with the in-plane magnetic field [31–33]
below Tc. These experiments seem to be inconsistent with
spin-triplet/chiral p-wave where the d-vector is aligned along
the c-axis of SRO [34].

Experimental signatures of a two-component supercon-
ducting order parameter in SRO were observed in ultrasound
and thermodynamics experiments [35–37]. Several theoreti-
cal studies focused on the two-component order parameter
with TRS breaking: the accidentally degenerate pairing
[(s′ + dx2−y2 -wave [38], dx2−y2 + igxy(x2−y2 ))-wave [39–42],
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and (s + idxy)-wave [43,44], and the interorbital dzx + idyz-
like spin-triplet/orbital-singlet/s-wave Eg pairing [45] with
the Bogoliubov Fermi surface [46,47]. In the last case, the
presence of the t2g-orbital degrees of freedom and strong
atomic spin-orbit coupling in SRO [45,48–50] can gener-
ate the orbital-singlet state. The pairing mechanism of the
spin-triplet/orbital-singlet/s-wave pairing is due to the at-
tractive channel U ′ − J < 0 with the interorbital repulsive
interaction U ′ and the renormalized Hund’s coupling J
[45,48]. In addition, the recent experiment under hydrostatic
pressure and disorder indicated the dzx + idyz-wave state [51].

To determine the spin structure of the Cooper pair, the
temperature dependence of the spin susceptibility in the NMR
experiments gives us the important information [15,31–33]. In
the theoretical approaches in SRO, spin susceptibility was cal-
culated in the spin-triplet/orbital-singlet/s-wave pairing with
the d-vector along the z-axis as a function of the temperature
[52] and under the uniaxial strain [53] in the two-dimensional
multiorbital SRO model. Since there are three t2g-orbitals near
the Fermi level in SRO, it is necessary to study the temper-
ature dependence of the spin susceptibility for the possible
orbital-singlet Cooper pair, taking into account the orbital
nature. Then we must adopt the “three-dimensional” SRO
Hamiltonian to investigate the orbital-singlet dzx + idyz-like
pair potential [45].

In this paper, we calculate the temperature dependence
of the spin susceptibility below the critical temperature
Tc for orbital-singlet pairings in the three-dimensional
SRO model by choosing the possible irreducible represen-
tations. We focus on the spin-triplet/orbital-singlet/s-wave
and spin-singlet/orbital-singlet/odd-parity pairings stemming
from the multiorbital and strong atomic spin-orbit coupling.

2643-1564/2022/4(1)/013135(11) 013135-1 Published by the American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.013135&domain=pdf&date_stamp=2022-02-18
https://doi.org/10.1103/PhysRevResearch.2.032023
https://doi.org/10.1103/PhysRevResearch.4.013135
https://creativecommons.org/licenses/by/4.0/


YURI FUKAYA et al. PHYSICAL REVIEW RESEARCH 4, 013135 (2022)

In the first case, the pseudospin-singlet pairing is realized
in the band basis, then the resulting spin susceptibility is
reduced with the decrease of temperature irrespective of the
direction of the magnetic field for all possible irreducible
representations. In the second case, the spin susceptibility
changes around 5% (10%) by the temperature along the x (z)
axis because the pseudospin-triplet d-vector in the band basis
is not perfectly aligned in the xy-plane (z-axis) away from
the xy-symmetric plane owing to the strong atomic spin-orbit
coupling. We conclude that the recently observed spin suscep-
tibility of NMR experiments in SRO [31–33] can be explained
by the spin-triplet/orbital-singlet/s-wave Eg representation.

II. MODEL HAMILTONIAN AND FORMULATION

In this section, we show the model Hamiltonian and the
formulation to calculate the spin susceptibility in SRO. SRO
has the I4/mmm tetragonal space group with the point group
D4h [2]. The conduction bands of SRO mainly consist of
t2g-orbitals [dyz, dzx, and dxy] in the Ru ions. The Hamiltonian
in SRO is written as

Ĥ =
∑

k

Ĉ†
k Ĥ (k)Ĉk, (1)

where Ĉ†
k = [c†

yz,↑k, c†
zx,↑k, c†

xy,↑k, c†
yz,↓k, c†

zx,↓k, c†
xy,↓k] is the

creation operator of electrons in t2g-orbitals. For Ĥ in
Eq. (1), we adopt the three-dimensional Hamiltonian in
Refs. [43,45,49,54–58]

Ĥ (k) =
∑
l, j

hl j (k)�̂l ⊗ σ̂ j, (2)

where �̂l=0∼8 are the Gell-Mann matrices as shown in
Appendix A and σ̂ j=0,x,y,z are the Pauli ones in the spin space.
[The explicit form of hl j (k) is given in Appendix A.]

In the superconducting state, the Bogoliubov–de Gennes
(BdG) Hamiltonian is given by

ĤBdG(k) =
(

Ĥ (k) �̂(k)
�̂†(k) −Ĥ∗(−k)

)
, (3)

with the pair potential (energy gap function) �̂(k). Here, we
consider the pair potential by the symmetry of the Cooper pair.
The present model Hamiltonian has the parity dependence in
k and spin-orbital degrees of freedom. Then the pair potential
can classify the four types of Cooper pair that satisfy the
Fermi-Dirac statistics: spin-singlet/orbital-triplet/even-parity
(STE), spin-triplet/orbital-triplet/odd-parity (TTO), spin-
triplet/orbital-singlet/even-parity (TSE), and spin-
singlet/orbital-singlet/odd-parity (SSO). In our study, we
focus on the orbital-singlet pair potentials, i.e., TSE and SSO.
Note that we do not consider the odd-frequency pairing in
the pair potential because we do not adopt the retardation
effect in the attractive channel [59–63]. For TSE states, we
assume the “isotropic” pairing and the energy gap function
is independent of k. The TSE states are described by the
spin-triplet potentials [45,48,49,58]

�̂ = �(T )[L̂i ⊗ σ̂ j]iσ̂y, (4)

with i, j = x, y, z and the t2g-orbital anglar momentum opera-
tors projected onto L = 2 in the [dyz, dzx, dxy] basis

L̂x =
⎛
⎝0 0 0

0 0 i
0 −i 0

⎞
⎠, L̂y =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠,

L̂z =
⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠,

respectively. Here, we define the indices of L̂i and σ̂ j in Eq. (4)
as [i, j]. �(T ) is the pair potential at the temperature T and
it has the Bardeen-Cooper-Schrieffer (BCS)-like temperature
dependence

�(T ) = αc�0 tanh

[
1.74

√
Tc − T

T

]
, (5)

�0 = 3.53

2
Tc, (6)

with the critical temperature Tc. We choose αc so that the
maximal quasiparticle energy gap amplitude becomes �0, and
its value is given in Appendix C (Table II). Likewise, for SSO
pairings, we consider the spin-singlet pair potentials

�̂(k) = �(T )[L̂i ⊗ σ̂0 sin k j=x,ya]iσ̂y, (7)

�̂(k) = �(T )

[
L̂i ⊗ σ̂0 sin

k j=zc

2

]
iσ̂y, (8)

with the lattice constants [a, a, c] and the definition of the
indices L̂i and k j=x,y,z as [i, j]. Table I shows the classification
of orbital-singlet pair potentials. We obtain 14 orbital-singlet
pair potentials for both TSE and SSO states in the point group
D4h. Only interorbital Eg and Eu representations can break the
TRS among the orbital-singlet pairings in Table I. The TRS
broken pairings for TSE Eg {[z, x], [z, y]} and {[x, z], [y, z]}
representations are written by the linear combination

�̂ = �(T )[L̂z ⊗ (σ̂x + iσ̂y)]iσ̂y, (9)

�̂ = �(T )[(L̂x + iL̂y) ⊗ σ̂z]iσ̂y, (10)

respectively. Likewise, the time-reversal broken pairings for
SSO Eu {[z, x], [z, y]} and {[x, z], [y, z]} representations are
given by

�̂(k) = �(T )[L̂z ⊗ σ̂0(sin kxa + i sin kya)]iσ̂y, (11)

�̂(k) = �(T )

[
(L̂x + iL̂y) ⊗ σ̂0 sin

kzc

2

]
iσ̂y. (12)

Spin susceptibility χi(T ) along the i = x, y, z axis at tem-
perature T is given by the Kubo formula [64–66]

χi(T ) = T
∫

BZ
dk

∑
iεn

Tr[ŝiĝ(k, iεn)ŝiĝ(k, iεn)] (13)

=
∫

BZ
dk

∑
α,β

〈α|ŝi|β〉〈β|ŝi|α〉

× T
∑
iεn

Gα (k, iεn)Gβ (k, iεn)e+iεn0, (14)
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TABLE I. Classification of the orbital-singlet pairings in the point group D4h [45]. Spin-triplet/orbital-singlet/even-parity (TSE) pairing
�̂ = �(T )[L̂i ⊗ σ̂ j]iσ̂y is described by the d-vector. Spin-singlet/orbital-singlet/odd-parity (SSO) pairing is expressed by the spin-singlet pair
potential �̂(k) = �(T )[L̂i ⊗ σ̂0 sin k j]iσ̂y for [i, j] (i, j = x, y, z). Here [i, j] means the indices of L̂i and σ̂ j in TSE pairing, and L̂i and k j in
SSO, respectively. We focus on the even-frequency pair potential in this table.

Irreducible rep. State pair potential [i, j] Gap structure

A1g TSE [y, y] + [x, x] Fully gapped
A1g TSE [z, z] Fully gapped
A2g TSE [y, x] − [x, y] Gapless
B1g TSE [y, y] − [x, x] Line node in the diagonal direction
B2g TSE [y, x] + [x, y] Line node in the x and y directions
Eg TSE {[z, x], [z, y]} Bogoliubov Fermi surface in kz = 0, 2π planes
Eg TSE {[x, z], [y, z]} Bogoliubov Fermi surface in kz = 0, 2π planes [45]
A1u SSO [y, y] + [x, x] Fully gapped
A1u SSO [z, z] Line node in kz = 0, 2π planes
A2u SSO [y, x] − [x, y] Line node in the x and y directions
B1u SSO [y, y] − [x, x] Fully gapped
B2u SSO [y, x] + [x, y] Line node in the x and y directions
Eu SSO {[z, x], [z, y]} Bogoliubov Fermi surface in zx and yz planes
Eu SSO {[x, z], [y, z]} Bogoliubov Fermi surface in kz = 0, 2π planes

ĝ(k, iεn) = 1

iεn − ĤBdG(k)
, (15)

ĤBdG(k)|α〉 = Eα (k)|α〉, (16)

where ŝi=x,y,z are the spin angular momentum operators
expanded in particle-hole space, iεn = i(2n + 1)πT is the
fermionic Matsubara frequency, Eα(β )(k) is the Bogoliubov
energy band, and |α(β )〉 is the eigenstate corresponding to the
Bogoliubov energy band Eα(β )(k) with the band indices α, β.
Here ĝ(k, iεn) stands for the matrix of the Green’s function
in the spin-orbital basis and Gα (k, iεn) denotes the Green’s
function defined by

Gα (k, iεn) = 1

iεn − Eα (k)
. (17)

Here we adopt the formulation

T
∑
iεn

Gα (k, iεn)Gβ (k, iεn)e+iεn0

=
⎧⎨
⎩

− 1
4T

[
1 − tanh2 Eα (k)

2T

]
, Eα (k) = Eβ (k),

− tanh Eα (k)
2T −tanh

Eβ (k)

2T
2[Eα (k)−Eβ (k)] , Eα (k) 
= Eβ (k),

(18)

to sum up the Matsubara frequency from −∞ to ∞ analyt-
ically. Although the Fermi surface along the z-axis is almost
cylindrical [45] and the t2g-orbital characters at the Fermi level
are nearly independent of kz [see also Appendix B (Fig. 3)],
we need the integration of kz for all representations in the
actual calculation.

III. RESULTS AND DISCUSSION

We show the temperature dependence of the calculated
spin susceptibility below the critical temperature Tc for the
orbital-singlet pairings in the three-dimensional SRO model.
Figure 1 shows the temperature dependence of the spin sus-
ceptibility χi=x,z(T ) normalized by χi(Tc) where the direction
of the applied field is along the x-axis for Figs. 1(a), 1(c), 1(e),

1(g), and 1(i), and the z-axis for Figs. 1(b), 1(d), 1(f), 1(h), and
1(j). The spin susceptibility along the y-direction is the same
as that along the x-axis due to the fourfold rotational symme-
try in the xy-plane. In Fig. 1, the pair potentials used in the
calculation are interorbital TSE A1g [Figs. 1(a) and 1(b)], A2g

[Figs. 1(c) and 1(d)], B1g [Figs. 1(e) and 1(f)], B2g [Figs. 1(g)
and 1(h)], and Eg [Figs. 1(i) and 1(j)] representations. The
calculation result for intraorbital spin-singlet s-wave state
(BCS state) is also shown for reference in Fig. 1 (black dotted
line). Note that TSE Eg {[x, z], [y, z]} representation with TRS
breaking is one of the promising candidates of pairing symme-
try in SRO and the resulting energy spectrum has the Bogoli-
ubov Fermi surface in the xy-plane [45]. It is also noted that
nonzero atomic spin-orbit coupling needs to open the energy
gap. For the TSE state in Fig. 1, spin susceptibility decreases
as temperature decreases for any irreducible representation
in Table. I for both the x- and z-directed applied magnetic
fields. In addition, as the quasiparticle energy spectrum in
interorbital pairings does not open the energy gap �(T ) on
the Fermi surface, even if �(T ) is modified by αc in the BdG
Hamiltonian, the function of the spin susceptibility χi(T ) for
interorbital pairings is convex upwards, not downwards.

On the other hand, for the interorbital SSO pairings as
shown in Fig. 2, the temperature dependence of the spin
susceptibility is sensitive to the direction of the applied mag-
netic field. In the case of A1u [y, y] + [x, x] [red solid line in
Figs. 2(a) and 3(b)], A2u [Figs. 2(c) and 2(d)], B1u [Figs. 2(e)
and 2(f)], B2u[Figs. 2(g) and 2(h)], and Eu {[x, z], [y, z]} [red
solid line in Figs. 2(i) and 2(j)], the spin susceptibility de-
creases ∼50% when the direction of the field is in the in-plane,
and ∼5% along z-axis, as shown in Fig. 2. In contrast, spin
susceptibility for SSO A1u [z, z] [blue dotted line in Figs. 2(a)
and 2(b)] and Eu {[z, x], [z, y]} [blue dotted line in Figs. 2(i)
and 2(j)] representations decreases for the magnetic field in
the z-direction, as well as ∼10% along the x-axis at low
temperature. These results contradict naive understanding for
the single-band results where spin susceptibility decreases for
any direction of the field in a spin-singlet pairing or along the
direction parallel to the d-vector of the pair potential.
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FIG. 1. Spin susceptibility χi=x,z(T ) for intraorbital spin-singlet s-wave (black dotted line) and spin-triplet/orbital-singlet/s-wave (TSE)
pairings normalized by χi(Tc ) along the (a), (c), (e), (g), and (i) x and (b), (d), (f), (h), and (j) z directions as a function of the temperature.
As shown in Table. I, we choose the pair potential as (a,b) TSE A1g [y, y] + [x, x] (red solid line) and [z, z] (blue dotted line), (c,d) A2g, (e,f)
B1g, (g,h) B2g, and Eg {[z, x], [z, y]} (red solid line) and {[x, z], [y, z]} (blue dotted line) states, respectively. Here we do not plot χy(T )/χy(Tc )
because spin susceptibility along the y direction χy(T ) is the same as that along the x axis χx (T ) in the presence of the fourfold rotational
symmetry in the xy plane.

To resolve this, we focus on the pseudospin state in the
band basis and parity dependence for each orbital-singlet
pair potential. In principle, when the spin-singlet/even-parity
pairing is realized in the single orbital model, spin suscep-
tibility goes to zero at T = 0 irrespective of the direction
of the magnetic field. In the spin-triplet/odd-parity pairing,
the spin susceptibility is reduced below Tc if the d-vector is
parallel to the magnetic field. However, when the d-vector is
perpendicular to the magnetic field, spin susceptibility does
not change with the temperature. It implies that we can de-
termine the spin structure by the temperature dependence
of the spin susceptibility in the single-orbital model. In the
present study, spin susceptibility for TSE (SSO) pairings is
reduced independently of the direction of the applied mag-
netic fields (has the anisotropic behavior for the directions).
For TSE pairings, the temperature dependence shown in Fig. 1
is caused by the pseudospin-singlet state in the band basis,
despite the spin-triplet pairing in the spin-orbital space. We
note that spin susceptibility does not go to zero at T = 0 due
to the Van-Vleck paramagnetism in the presence of the atomic

spin-orbit coupling. In SSO pairings as shown in Fig. 2, we
can adopt the d-vector that describes the pseudospin-triplet
state. As shown in Fig. 2, the spin susceptibility decreases
5–10% along the direction where there is no reduction in
the single-orbital model. In the present study, this pseudospin
d-vector is not perfectly aligned in the xy-plane or along the
z-axis away from the xy-symmetric plane owing to the strong
atomic spin-orbit coupling. Since the pseudospin d-vector is
almost in-plane in the SSO A1u [y, y] + [x, x], A2u, B1u, B2u,
and Eu {[x, z], [y, z]} representations, the spin susceptibility
changes around 5% along the z-axis. For the A1u [z, z] and
Eu {[z, x], [z, y]} representations, the pseudospin d-vector is
out-of-plane and it is not parallel to the z-axis. Thus, spin
susceptibility in the A1u [z, z] and Eu {[z, x], [z, y]} pairings is
reduced ∼10% by in-plane applied magnetic field at low tem-
perature. These behaviors also occur even in the intraorbital
spin-triplet/odd-parity and the interorbital TTO pairings. We
show the spin susceptibility for the intraorbital chiral p-wave
pairing in Appendix F, on behalf of all spin-triplet/odd-parity
states. The spin susceptibility along the z-direction does not
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FIG. 2. Spin susceptibility χi=x,z(T ) for spin-singlet/orbital-singlet/odd-parity (SSO) pairings normalized by χi(Tc ) along the (a), (c), (e),
(g), and (i) x and (b), (d), (f), (h), and (j) z axes as a function of the temperature. As shown in Table I, we select the pair potential as (a,b) SSO
A1u [y, y] + [x, x] (red solid line) and [z, z] (blue dotted line), (c,d) A2u, (e,f) B1g, (g,h) B2u, and (i,j) Eu {[z, x], [z, y]} (blue dotted line) and
{[x, z], [y, z]} (red solid) states, respectively. Schematic illustration of (k) in-plane and (l) out-of-plane pseudospin d-vectors in the band basis
at kz = 0, 2π . Black line means the Fermi line. Away from the xy-symmetric plane, pseudospin d-vector is not aligned in xy-plane and along
the z-axis, respectively.

become zero owing to the strong atomic spin-orbit coupling
in the interorbital A1u [z, z] and Eu {[z, x], [z, y]} states.

Here, we point out the relation between spin suscepti-
bility and pseudospin/parity state. The behavior with the
temperature in TSE (SSO) pairings is similar to that in spin-
singlet/even-parity (spin-triplet/odd-parity). We can mention
that the symmetry of the parity coincides with the temperature
dependence of the spin susceptibility for the orbital-singlet
pair potential. Therefore, in multiorbital SCs with strong
atomic spin-orbit coupling, the temperature dependence of
the spin susceptibility for the orbital-singlet Cooper pair is
determined by the pseudospin/parity state in the band basis.
For this perspective, we can mention that spin susceptibility
for orbital-singlet pairings with different momentum depen-
dence, e.g., TSE d and SSO f -wave, behaves qualitatively
the same as that for s and p-wave cases in the present
study, respectively. We note that these kinds of temperature
dependence for the orbital-singlet pairings in the present
study are the same as a theoretical research of the spin
susceptibility in the superconducting topological insulator
CuxBi2Se3 [66].

IV. SUMMARY AND CONCLUSION

We studied the temperature dependence of the spin suscep-
tibility below Tc for the orbital-singlet Cooper pair in SRO.
The pseudospin state in the band basis is determined by the
parity of the pair potential. In other words, the pseudospin-
singlet (triplet) state is realized in the case of even (odd) parity
pairing. If we consider orbital-singlet pairing, pseudospin-
singlet (triplet) state means spin-triplet (singlet) pairing. Thus,
the spin susceptibility for the spin-triplet/orbital-singlet/
s-wave pairings decreases with the temperature, indepen-
dently of the direction of the applied magnetic fields.
In the spin-singlet/orbital-singlet/odd-parity pairings, the
spin susceptibility decreases around 5% (10%) along the
z (x) axis for A1u [y, y] + [x, x], A2u, B1u, B2u, and
Eu {[x, z], [y, z]} (A1u [z, z], and Eu {[z, x], [z, y]}) represen-
tations at low temperature. It is caused by the pseudospin
d-vector that is not completely aligned in the xy-plane (along
the z-direction) away from the xy-symmetric plane due to
the strong atomic spin-orbit coupling. This behavior is rel-
evant to the effect of the atomic spin-orbit coupling, not
the orbital nature in the superconducting state. Here the
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quantitative of the spin susceptibility strongly depends on
the length of the atomic spin-orbit coupling, as the im-
portance of the strong spin-orbit coupling in SRO was
pointed out [56,57]. Based of the present study, the recent
NMR experiments [31–33] indicate not the spin-singlet pair-
ing, but the pseudospin-singlet/even-parity one in SRO. At
least since the spin-triplet/orbital-singlet/s-wave pairings are
pseudospin-singlet states, they do not contradict the recent
NMR experiments [31–33]. Likewise, the spin susceptibility
for accidentally degenerate intraorbital spin-singlet pairings
[38–44], that behaves the same as that for the intraorbital
spin-singlet cases, is also consistent with these NMR exper-
iments. To elucidate the pairing symmetry of the spin-degree
of freedom of the present spin-triplet/orbital-singlet/even-
parity and spin-singlet/orbital-singlet/odd-parity pairings,
charge transport in SC/ferromagnet junctions with a well-
oriented interface is highly desired [67,68] because tun-
neling spectroscopy via Andreev bound states plays an
important role in the determination of the unconventional
superconductors [69,70].
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APPENDIX A: MODEL HAMILTONIAN OF
THREE-DIMENSIONAL Sr2RuO4 IN THE NORMAL STATE

In Appendix A, we describe the three-dimensional
Hamiltonian of Sr2RuO4 (SRO) in the normal state in
Refs. [43,45,49,56–58]. Gell-Mann matrices �̂l=0∼8 are
defined by

�̂0 =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, �̂1 =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠,

�̂2 =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, �̂3 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠,

�̂4 =
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠, �̂5 =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠,

�̂6 =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, �̂7 =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠,

�̂8 = 1√
3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠,

in the [dyz, dzx, dxy] basis. We note that the Gell-Mann
matrices �̂l=4,5,6 correspond to the t2g-orbital angular momen-
tum operators

L̂x = −�̂6, L̂y = �̂5, L̂z = −�̂4,

respectively. The matrix elements hl j (k) are given by

h00(k) = 1

3
[ξyz(k) + ξzx(k) + ξxy(k)], (A1)

h70(k) = 1

2
[ξyz(k) − ξzx(k)], (A2)

h80(k) = 1

2
√

3
[ξyz(k) + ξzx(k) − 2ξxy(k)]; (A3)

with intraorbital hopping terms

h10(k) = g(k), (A4)

h20(k) = 8t (zx,xy)
z sin

kzc

2
sin

kxa

2
cos

kya

2
, (A5)

h30(k) = 8t (zx,xy)
z sin

kzc

2
cos

kxa

2
sin

kya

2
; (A6)

with interorbital hopping

h43(k) = −λz, (A7)

h52(k) = −h61(k) = λxy; (A8)

with isotropic atomic spin-orbit coupling λz = λxy = λSO; and

h52(k) = h61(k) = 2λSOC
5261[cos kxa − cos kya], (A9)

h51(k) = −h62(k) = 4λSOC
5162 sin kxa sin kya, (A10)

h41(k) = 8λSOC
12z sin

kzc

2
sin

kxa

2
cos

kya

2
, (A11)

h42(k) = 8λSOC
12z sin

kzc

2
cos

kxa

2
sin

kya

2
, (A12)

h63(k) = −8λSOC
56z sin

kzc

2
sin

kxa

2
cos

kya

2
, (A13)

h53(k) = 8λSOC
56z sin

kzc

2
cos

kxa

2
sin

kya

2
, (A14)

with k-dependent spin-orbit coupling, respectively. Here,
ξyz,zx,xy(k) and g(k) are described by

ξyz(k) = −μz + 2t (z,z)
y cos kxa + 2t (z,z)

x cos kya

+ 8t (z,z)
z cos

kxa

2
cos

kya

2
cos

kzc

2

+ 4t (z,z)
xy cos kxa cos kya (A15)

+ 2t (z,z)
yy cos 2kxa + 2t (z,z)

xx cos 2ky

+ 4t (z,z)
xyy cos 2kxa cos kya + 4t (z,z)

xxy cos 2kya cos kxa

+ 2t (z,z)
zz (cos kza − 1), (A16)

ξzx(k) = −μz + 2t (z,z)
x cos kxa + 2t (z,z)

y cos kya

+ 8t (z,z)
z cos

kxa

2
cos

kya

2
cos

kzc

2

+ 4t (z,z)
xy cos kxa cos kya
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TABLE II. Parameters in three-dimensional Sr2RuO4 model in Ref. [45]. We set all values in meV.

t (z,z)
x = −362.4 t (z,z)

y = −134 t (xy,xy)
x = −262.4 t (z,z)

xy = −44.01 t (z,z)
xx = −1.021 t (z,z)

yy = −5.727 t (xy,xy)
xy = −43.73

t (xy,xy)
xx = 34.23 t z

xy = 16.25 t (z,z)
xxy = −13.93 t (z,z)

xyy = −7.52 t (xy,xy)
xxy = 8.069 t z

xxy = 3.94 λSO = 57.39
μz = 438.5 μxy = 218.6 t (z,z)

z = −0.0228 t (xy,xy)
z = 1.811 t z

z = 9.975 t (zx,xy)
z = 8.304 t (z,z)

zz = 2.522
t (xy,xy)
zz = −3.159 λSOC

56z = −1.247 λSOC
12z = −3.576 λSOC

5162 = −1.008 λSOC
5261 = 0.3779

+ 2t (z,z)
xx cos 2kxa + 2t (z,z)

yy cos 2kya

+ 4t (z,z)
xxy cos 2kxa cos kya + 4t (z,z)

xyy cos 2kya cos kxa

+ 2t (z,z)
zz (cos kzc − 1), (A17)

ξxy(k) = −μxy + 2t (xy,xy)
x (cos kxa + cos kya)

+ 8t (xy,xy)
z cos

kxa

2
cos

kya

2
cos

kzc

2

+ 4t (xy,xy)
xy cos kxa cos kya

+ 2t (xy,xy)
xx (cos 2kxa + cos 2kya)

+ 4t (xy,xy)
xxy (cos 2kxa cos kya + cos 2kya cos kxa)

+ 2t (xy,xy)
zz (cos kzc − 1), (A18)

g(k) = 8t z
z sin

kxa

2
sin

kya

2
cos

kzc

2
− 4t z

xy sin kxa sin kya

− 4t z
xxy(sin 2kxa sin kya + sin 2kya sin kxa). (A19)

We set the parameters as shown in Table II [45] and fix Tc =
1.0 × 10−4t with |t (xy,xy)

x | = t .

APPENDIX B: ORBITAL CHARACTERS AT THE FERMI
LEVEL IN THREE-DIMENSIONAL Sr2RuO4 MODEL

Next, we confirm the orbital characters in the normal
state at the Fermi level in the three-orbital SRO model in

FIG. 3. t2g-orbital characters in the normal state at the Fermi level
in (a) kz = 0, (b) kz = π/2, (c) kz = π , and (d) kz = 2π planes.

Refs. [45,57]. Here, we consider the density of states for each
t2g-orbital on the Ferimi surface

Nα (k, EF) = − 1

π
Im[Gα↑,α↑(k, EF + iδ)

+ Gα↓,α↓(k, EF + iδ)], (B1)

Ĝ(k, EF) = 1

EF + iδ − Ĥ (k)
, (B2)

with the diagonal elements of the retarded Green’s function in
the normal state Gα↑,α↑(k, EF + iδ) and Gα↓,α↓(k, EF + iδ),
t2g-orbital indices α = yz, zx, xy, the Fermi energy EF, and
the infinitesimal value δ. In Figs. 3(a), 3(b), and 3(c), we
plot the orbital characters at the Fermi level in Fig. 3(a)
kz = 0, Fig. 3(b) kz = π/2, Fig. 3(c) kz = π , and the Fig. 3(d)
kz = 2π planes by calculating the density of states for each
t2g-orbital in the normal state. Since the Fermi surface is cylin-
drical along the kz-direction, t2g-orbital characters are almost
independent of kz.

APPENDIX C: SETTING OF VALUE αc

Third, we summarize the constant value αc for each en-
ergy band. In SRO, the energy dispersion is described by the
lowest-energy band α, γ , and the highest one β. We set the

FIG. 4. Gap structure of the orbital-singlet Eg {[x, z], [y, z]} pair-
ing in Eq. (10) at the Fermi level at (a) kz = 0, (b) kz = π/2,
(c) kz = π , and (d) kz = 2π . We set the temperature at T = 0. Color
bar indicates the gap amplitude normalized by �0.
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TABLE III. �eff/�0 for each energy band. We choose the maximum value of �eff/�0 as αc = �0/�eff . For the interorbital A2g

representation, the gapless state appears.

Irreducible rep. State gap function α-band γ -band β-band

A1g TSE [y, y] + [x, x] 0.167 1.01 1.27
A1g TSE [z, z] 0.904 0.751 0.314
A2g TSE [y, x] − [x, y] 8.65 × 10−3 4.69 × 10−2 4.11 × 10−2

B1g TSE [y, y] − [x, x] 0.227 1.00 0.745
B2g TSE [y, x] + [x, y] 0.221 0.329 7.28 × 10−2

Eg TSE {[z, x], [z, y]} 0.404 0.457 4.00 × 10−2

Eg TSE {[x, z], [y, z]} 0.163 0.314 0.235
A1u SSO [y, y] + [x, x] 0.213 0.672 0.850
A1u SSO [z, z] 0.949 0.795 0.265
A2u SSO [y, x] − [x, y] 9.36 × 10−2 1.00 1.00
B1u SSO [y, y] − [x, x] 0.172 0.832 0.912
B2u SSO [y, x] + [x, y] 0.194 0.967 0.964
Eu SSO {[z, x], [z, y]} 1.13 1.07 0.428
Eu SSO {[x, z], [y, z]} 0.144 0.960 0.748

constant value αc as

αc = �0

�eff
, (C1)

where �eff is the magnitude of the actual maximum gap am-
plitude when we set �0 in the gap function. Table III shows
the value of �eff/�0 for each energy band, α, γ , and β. Since
we obtain the maximum gap amplitude by the magnitude of
the actual opening energy gap in experiments, we modify the
gap amplitude �(T ) by using αc. We choose the maximum
value of �eff/�0 as αc = �0/�eff for each irreducible repre-
sentation.

APPENDIX D: GAP STRUCTURE OF ORBITAL-SINGLET
Eg PAIRING {[x, z], [y, z]} ON THE FERMI SURFACE

In Appendix D, we confirm the gap structure in interor-
bital Eg {[x, z], [y, z]} pairing on the Fermi surface. Here, we
choose the pair potential as Eq. (10). Figure 4 shows the
eigenvalues of the BdG Hamiltonian at the Fermi level at
kz = 0 [Fig. 4(a)], kz = π/2 [Fig. 4(b)], kz = π [Fig. 4(c)],
and kz = 2π [Fig. 4(d)]. In our calculation, since we select
the lower critical temperature Tc/t = 1.0 × 10−4, we do not
obtain the same gap structure in Ref. [45].

APPENDIX E: SPIN SUSCEPTIBILITY FOR
INTERORBITAL SPIN-SINGLET/ORBITAL-TRIPLET

PAIRINGS

In Appendix E, we investigate the spin susceptibility
for interorbital spin-singlet/orbital-triplet/s-wave (STE) pair-
ings. The interorbital STE state appears for B2g and Eg

representations in Ref. [45]. Figure 5 plots the spin sus-
ceptibility χi=x,z(T ) as a function of the temperature along
the x [Figs. 5(a) and 5(c)] and z-directions [Figs. 5(b) and
5(d)] for STE B2g [Figs. 5(a) and 5(c)] and Eg representa-
tions [Figs. 5(b) and 5(d)]. As well as spin-triplet/orbital-
singlet/s-wave pairings, the spin susceptibility for interorbital
spin-singlet/orbital-triplet/s-wave pairings decreases with the
temperature, independently of the axis of the applied magnetic
field, owing to the pseudospin-singlet state in the band basis.

APPENDIX F: SPIN SUSCEPTIBILITY FOR
INTRAORBITAL CHIRAL p-WAVE PAIRING

Finally, we calculate the spin susceptibility for the
intrarorbital chiral p-wave pairing, on behalf of all spin-
triplet/odd-parity states. The chiral p-wave state in the present
study is given by

�̂(k) = �(T )L̂0 ⊗ σ̂z[sin kx + i sin ky]iσ̂y, (F1)

with the unit matrix in t2g-orbital space L̂0.
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 0  0.5  1
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/
x(
T c

)

T/Tc

intraorbital s-wave
B2g rep. interorbital orbital-triplet

 0
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z(
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/
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/
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Eg rep. interorbital orbital-triplet
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 1
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/
z(
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)
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FIG. 5. Spin susceptibility χi=x,z(T ) for interorbital STE (a,b) B2g and (c,d) Eg pairings normalized by χi(Tc ) along the (a,c) x and (b,d)
z-directions as a function of the temperature.
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FIG. 6. Spin susceptibility for the intraorbital chiral p-wave pairing at (a) nonzero λSO and (d) λSO/t = 0, normalized by χi(Tc ) along the
x (red solid line) and z directions (blue dotted line) as a function of the temperature. kz-resolved spin susceptibility χi=x,z(T ) for the intraorbital
chiral p-wave pairing at (b,c) nonzero λSO and (e,f) λSO/t = 0. We fix kz as (b,e) kz = 0 and (c,f) kz = 1.2π . We set the value of nonzero λSO

as shown in Table II.

Figure 6 plots the spin susceptibility χi=x,z(T ) for the in-
traorbital chiral p-wave state as a function of the temperature
at nonzero λSO in Table II [Figs. 6(a) to 6(c)] and λSO/t = 0
[Figs. 6(d) to 6(f)]. It includes the kz-resolved spin susceptibil-
ity χ ′

i=x,z(T, kz ) at kz = 0 [Figs. 6(b) and 6(e)] and kz = 1.2π

[Figs. 6(c) and 6(f)]. Here, the spin susceptibility χi=x,z(T ) is
described by

χi(T ) ∼
∫ 2π

−2π

χ ′
i(T, kz )dkz. (F2)

The spin susceptibility at nonzero atomic spin-orbit coupling
λSO decreases around 5% along x-direction at low temperature
as shown in Fig. 6(a). To analyze this behavior, we resolve
the spin susceptibility for kz. Then we select kz = 0 and
kz = 1.2π . Because the. kz-resolved spin susceptibility along
the x-axis changes remarkably when kz is larger than π , we
choose kz = 1.2π in Fig. 6. At kz = 0, the kz-resolved spin
susceptibility does not change along the x-direction as shown
in Fig. 6(b). As kz = 0 (kz = 2π ) is on the symmetric line (the

edge of the Brillouin zone), the pseudospin d-vector should be
aligned along the x-axis in the intraorbital chiral p-wave pair-
ing. However, the kz-resolved spin susceptibility at kz = 1.2π

decreases around 10% along the x-axis as shown in Fig. 6(c).
Thus, the spin susceptibility is reduced along the x-direction
by the components away from the xy-symmetric plane.

To unveil the role of the atomic spin-orbit coupling λSO, we
also study the spin susceptibility at λSO/t = 0. At λSO/t = 0,
the spin susceptibility does not decrease along x-direction in
Fig. 6(d). Since the pseudospin d-vector for the chiral p-wave
pairing is completely aligned along the z-axis for all kz, the
kz-resolved spin susceptibility at both kz = 0 and 1.2π does
not change along the x-axis as shown in Figs. 6(e) and 6(f).

In conclusion, at the nonzero atomic spin-orbit coupling
λSO, when we can define the pseudospin d-vector, the spin
susceptibility is reduced around 5%–10% along the axis
where there is no reduction in the single-orbital model. It oc-
curs by the pseudospin d-vector that is not completely aligned
in the xy-plane or z-direction away from the xy-symmetric
plane in the presence of the strong atomic spin-orbit
coupling λSO.
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