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Abstract

The past decades have witnessed an explosion of interest in topological
materials, and a lot of mathematical concepts have been introduced in con-
densed matter physics. Among them, the bulk-boundary correspondence is
the central topic in topological physics, which has inspired researchers to fo-
cus on boundary physics. Recently, the concepts of topological phases have
been extended to non-Hermitian Hamiltonians, whose eigenvalues can be
complex. Besides the topology, non-Hermiticity can also cause a boundary
phenomenon called the non-Hermitian skin effect, which is an extreme sen-
sitivity of the spectrum to the boundary condition. In this article, we review
developments in non-Hermitian topological physics by focusing mainly on
the boundary problem. As well as the competition between non-Hermitian
and topological boundary phenomena, we discuss the topological nature
inherent in non-Hermiticity itself.
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1. INTRODUCTION

Recently, the topological properties of lattice systems have attracted broad interest in condensed
matter physics. One of the major concepts in topological physics is the bulk-boundary correspon-
dence in topological phases (1, 2), which states that the topological invariant constructed from the
bulk states counts the number of robust gapless boundary states (3). In this context, topological
phenomena also have aspects as boundary phenomena.

Dynamical properties of open systems offer other major perspectives in recent condensed mat-
ter physics. While the Hamiltonian represented by a Hermitian matrix is the central object of
interest in isolated equilibrium systems, non-Hermitian matrices, whose spectra can be com-
plex, play important roles in various open systems. Although the absence of Hermiticity brings
about troublesome properties that defy the common sense of condensed matter physicists, it leads
to new and deeper physics as well. In recent years, a lot of concepts in spectral theory (4) and
non-Hermitian physics (5–9) have been introduced in condensed matter physics (10).

In this article, we review the topological physics in non-Hermitian lattice systems by focusing
mainly on the boundary phenomena. The concept of topological phases was generalized to non-
Hermitian systems in References 11–15. In particular, Reference 13 provided bulk topological
numbers in various non-Hermitian systems and showed the validity of the bulk-boundary corre-
spondence in the presence of a class of symmetries.However, it was pointed out later that a general
non-Hermitian system without such symmetries may exhibit other boundary phenomena specific
to non-Hermitian systems (16, 17), called non-Hermitian skin effects (16). The new effects local-
ize bulk modes on boundaries and obscure the bulk-boundary correspondence.We first review the
competition between the bulk-boundary correspondence and the non-Hermitian skin effects, but
our focus is notmerely on the competition between the two different phenomena.Remarkably, the
latter non-Hermitian boundary physics is also closely related to topological physics. In the main
part of this review, we introduce the mathematics of non-Hermitian matrices and discuss recent
developments in the field of non-Hermitian phenomena whose origin is non-Hermitian topology.

2. REVIEW OF NON-HERMITIAN SKIN EFFECT

2.1. Example and Definition of Non-Hermitian Skin Effect

In conventional solid-state physics, boundary insensitivity of bulk quantities plays important roles
because one can freely choose a convenient boundary condition. In particular, the periodic bound-
ary condition (PBC), together with translation invariance in solids, enables us to introduce band
theory based on the momentum-space picture.

In non-Hermitian physics, however, the boundary condition can drastically affect bulk
properties. Such a boundary sensitivity is best represented by the spectral properties of the
Hatano–Nelson model (without disorder), which is a non-Hermitian tight-binding Hamiltonian
defined on a one-dimensional lattice (18–20):

ĤHN =
∑
i

[
(t + g)c†i+1ci + (t − g)c†i ci+1

]
, 1.

where i is the site index; c† and c are the bosonic or fermionic creation and annihilation opera-
tors, respectively; and t ∈ R and g ∈ R represent the Hermitian symmetric and non-Hermitian
asymmetric hopping terms, respectively. We express the Hamiltonian in the equivalent matrix
representation henceforth:

HHN :=


0 t − g 0 · · ·

t + g 0 t − g · · ·
0 t + g 0 · · ·
...

...
...

...

. 2.
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Under the PBC ([HHN]1,N/N, 1 = t± g),we obtain the complex energy spectrum of theHamiltonian
by using the Fourier transform: Ek = (t + g)eik + (t − g)e−ik, where k = 2π j/L ( j = 0, 1, . . . , L −
1) with L being the number of sites. For tg ̸= 0, the PBC spectrum is on an ellipse in the complex
plane. Under the open boundary condition (OBC), by contrast, the eigenspectrum is completely
different: Using the imaginary gauge transformation,1 one can map the OBC Hamiltonian to a
Hermitian Hamiltonian without asymmetry (18, 19):

H (sim)
HN := V −1

r HHNVr

=


0

√
t2 − g2 · · ·√

t2 − g2 0 · · ·
...

...
...

, 3.

where [Vr]i, j = riδij with r = √
t + g/t − g, and we have assumed t > g > 0 for simplicity. Because

this is a similarity transformation, preserving the eigenspectrum of a finite-dimensional matrix,
the OBC spectrum of the Hatano–Nelson model is given by that of the Hermitian matrix H (sim)

HN .
Thus, the OBC spectrum is on a line on the real axis of the complex plane, which is very different
from the PBC one on an ellipse (Figure 1a). The corresponding OBC eigenstates, which are
obtained from those of H (sim)

HN by the similarity transformation Vr, are exponentially localized at a
boundary, in contrast to the extended PBC eigenstates.

Recently, such extreme sensitivities of eigenspectra and eigenstates against the boundary con-
dition have been extensively studied as the non-Hermitian skin effect, named by Yao & Wang
(16). In their work, this terminology was used in the situation where “all the eigenstates of an
open chain are found to be localized near the boundary” (16).

In this article, we adopt a broader definition of the non-Hermitian skin effect. We focus on
the boundary-localized modes whose origin is non-Hermiticity. Unlike eigenstates of Hermitian
Hamiltonians, the Hermitian conjugate of a right eigenstate (ket eigenvector) is not always a left
eigenstate (bra eigenvector) in the presence of non-Hermiticity.2 To emphasize the difference, we
adopt the following notation:

H |E⟩ = E|E⟩, ⟨⟨E|H = E⟨⟨E|. 4.

We call a mode |E⟩ a non-Hermitian skin mode if its spatial distribution is different from that
of the left counterpart |E⟩⟩. Typically, we are interested in skin modes localized at one boundary
whose left counterparts are localized at the other boundary (Figure 1b). Such a situation is realized
in the case of the Hatano–Nelson model under the OBC. In the following, we define the non-
Hermitian skin effect by the presence of non-Hermitian skin modes. As we see throughout this
review, the presence of skin modes is equivalent to the extreme sensitivity of the non-Hermitian
energy spectrum to the boundary condition.

In the first half of this article, we focus on conventional skin effects with O(L) skin modes,3

which are found in one-dimensional systems with discrete translation invariance (except for the
ends). In the presence of the conventional skin effect, the OBC bulk spectrum is determined by

1This term was named after the fact that this transformation can be interpreted as a gauge transformation
with an imaginary phase θ : c j → eiθ jc j , c†j → e−iθ jc†j .
2More precisely, this is a property of nonnormal matrices discussed in Section 3.
3We count the number of modes by distinguishing algebraic degeneracy (multiplicity) for an eigenvalue E
defined as the number of times λ=E appears as a root of det(H − λ). For example, there is only one eigenvector
for Equation 1 with t= g because of the nondiagonalizability. In this case, the number of skin modes is counted
as L, whereas the geometric degeneracy (multiplicity) defined as the dimension of the eigenspace is one.
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Figure 1

(a) The PBC and OBC eigenspectra of the Hatano–Nelson model (t = 1, g = 0.5). (b) Eigenstates of a Hermitian edge state (left) and a
non-Hermitian skin mode (right). (c) BZ and GBZ for PBC and OBC spectra. We use E(β) = β2 − iβ + iβ−1 − β−2 (4, 21). (d) The
OBC spectrum (absolute value) of the non-Hermitian Su–Schrieffer–Heeger model as a function of model parameter. The OBC and
PBC gap-closing points are indicated by arrows. The emergence of topological zero modes (red) under the OBC cannot be predicted by
the PBC information. Panel d adapted from Reference 16; copyright 2018 American Physical Society. Abbreviations: GBZ, generalized
Brillouin zone; OBC, open boundary condition; PBC, periodic boundary condition.

the non-Bloch band theory (16, 17, 22–27). In conventional band theory, the bulk spectrum, or
the energy dispersion, is given as a function of crystal momentum k [or the exponential factor of
a Bloch wave function eik, i.e., E(eik)]. However, the non-Bloch band theory provides the OBC
bulk spectrum as an analytic continuation E(eik) → E(β), where β is a complex parameter on a
closed curve in the complex plane, called the generalized Brillouin zone (GBZ). In the absence
of the non-Hermitian skin effect, the GBZ reproduces the unit circle of the Brillouin zone (BZ),
whereas in the case of the Hatano–Nelson model, it is given by a circle with radius r−1. In general,
the GBZ can be a complicated curve (Figure 1c) and is determined with the help of numerical
calculations, as discussed in References 244 and 26.

2.2. Bulk-Edge Correspondence Under Non-Hermitian Skin Effect

The non-Hermitian skin effect obscures the bulk-boundary correspondence (16, 17, 23, 28–30).
More precisely, even when the PBC spectrum is gapless, and thus one cannot define the bulk
topological invariant in the PBC, the bulk OBC spectrum can be gapped due to the skin effect.
As a result, the topological phase diagram under the OBC is generally different from that under
the PBC. In Figure 1d, the OBC spectrum of a non-Hermitian extension of the Su–Schrieffer–
Heeger model (31) with asymmetric hopping (28) is plotted as a function of a model parameter

4The factors eik(β) in our notation correspond to the factors e−ik(β−1) in Reference 24.
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(16). This figure shows that the topological phase transition with the appearance of topological
zero modes occurs at a point that is different from the gap-closing points under the PBC.

At first sight, this phenomenon suggests a breakdown of the bulk-boundary correspondence.
However, even in such a case, one can recover the bulk-boundary correspondence once one in-
troduces a proper topological invariant via the OBC bulk spectral information. For example, the
topological invariant for the non-Hermitian Su–Schrieffer–Heeger model is given by a winding
number defined in terms of the GBZ (16) in the OBC, instead of the conventional BZ in the
PBC. To treat more generic cases including higher-dimensional systems and disordered ones,
Reference 32 proposed to use real-space topological invariants in the OBC, which enables us to
characterize the bulk-boundary correspondence in terms of the explicit right and left eigenstates of
the OBC Hamiltonian. These studies indicate that the bulk-boundary correspondence should be
defined for the bulk and boundary modes under the common boundary condition. In the absence
of the non-Hermitian skin effect, however, the topological invariant under theOBC coincides with
that under the PBC. In this sense, the success of predictions by the PBC information in Hermitian
topological physics is due to not only the bulk-boundary correspondence but also the boundary
insensitivity, which is a special property of the systems without skin modes. Such a conventional
bulk-boundary correspondence also holds in non-Hermitian systems without skin effects. Actu-
ally, when a class of symmetries may prohibit the skin effects (33), the topological invariant under
the PBC succeeds in the prediction of the boundary modes in the OBC (13). One can also obtain
the conventional bulk-boundary correspondence for the bosonic Bogoliubov–de Gennes Hamil-
tonian (34–38), whose energy spectrum is given by the eigenspectrum of a non-Hermitian matrix
with pseudo-Hermiticity and particle–hole symmetry (33, 39).5 It should be noted here that one
needs to generalize the topological invariants properly so as to be consistent with non-Hermiticity
(13, 15, 38, 41) even without the skin effects.

In this section, we have seen the competition between two different boundary phenomena: the
bulk-boundary correspondence and the non-Hermitian skin effect. Actually, the non-Hermitian
skin effect itself is also a kind of topological phenomenon, as we discuss in the following sections.

3. CONVENTIONAL SKIN EFFECT AS NON-HERMITIAN
TOPOLOGICAL PHENOMENON

In this section, we review the topological nature of the conventional non-Hermitian skin effect
(42, 43). In particular, we focus on the fact that the conventional non-Hermitian skin effect and
the bulk-boundary correspondence in a class-AIII one-dimensional topological insulator share the
same mathematical origin.

3.1. Winding Number as an Indicator for Conventional Skin Effect

As we mentioned, the OBC spectrum is given by a function of β on the GBZ determined by
the non-Bloch band theory. Unfortunately, the shape of the GBZ is not a simple function of the
model parameter in general, and the spectral behavior is unclear without the help of numerical
calculations. Nevertheless, the presence or absence of the non-Hermitian skin effect is easily
determined by the non-Hermitian topology, i.e., the winding numberW ∈ Z of the PBC spectral
curve in the complex plane. Several observations about this correspondence were indicated in
References 44–46, and related theorems were proven in References 42 and 43. In the following,we
focus on the theorem in Reference 42. Suppose that the system is described by a one-dimensional

5For more details, see Reference 40 for a review of topological magnons.

www.annualreviews.org • Non-Hermitian Topological Phenomena 87

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

02
3.

14
:8

3-
10

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

13
0.

54
.1

30
.2

52
 o

n 
12

/1
7/

23
. S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d 
us

e.
 



CO14CH05_Sato ARjats.cls February 17, 2023 9:1

Figure 2

(a) Schematic picture of the PBC, SIBC, and OBC spectra in the presence of non-Hermitian skin effect. The disk with the dotted
boundary is the SIBC spectrum under an imaginary gauge transformation Vr. (b) Relationship between non-Hermitian topology and
Hermitian topology. Abbreviations: OBC, open boundary condition; PBC, periodic boundary condition; SIBC, semi-infinite boundary
condition.

translation-invariant non-Hermitian tight-binding model H with finite-range hopping and
without symmetry. Then, the following theorem holds in the infinite-volume limit (42)6:

Theorem: The OBC bulk spectrum cannot have a nontrivial winding number. Conse-
quently, the PBC spectral curve with a nontrivial winding number implies that the OBC
bulk spectral curve is different from the PBC one, or equivalently, the conventional skin
effect inevitably occurs.

We here describe a strategy for the proof. Because there is no simple formula for calculating
the OBC spectrum, it is difficult to compare the OBC spectrum to the PBC one directly.Thus, the
proof of this theorem is divided into two parts: (a) the comparison between the PBC and
the semi-infinite boundary condition (SIBC), and (b) that between the SIBC and the OBC. Here,
“semi-infinite” means that there is only one boundary in the one-dimensional lattice. In step (a),
we use the index theorem of spectral theory (4, 47) to relate the SIBC spectrum with the PBC
one. According to the index theorem, the SIBC spectrum is given by a PBC curve together with
all the points enclosed by the PBC curve with a nonzero winding number7 (Figure 2a). Here, the
winding number around a point E ∈ C is defined as

W(E ) :=
∫ 2π

0

dk
2π i

d
dk

log det [H (k) − E] , 5.

where H(k) is the Bloch Hamiltonian of H under the PBC. Corresponding to a point E inside the
PBC curve, the right (left) eigenstate is given by an exponentially localized boundary state for a
negative (positive) winding number. In step (b), we begin with the following inclusion:

σOBC(H ) ⊂ σSIBC(H ), 6.

6For a rigorous definition of the infinite-volume limit, see Reference 47.
7In this proof, we focus only on the continuous spectrum and ignore isolated points. In physics, such points
are nothing but edge modes such as the topological zero modes. For Toeplitz matrices, which correspond to
cases without internal degrees of freedom in the unit cell, the statement here does not suffer from this subtlety.
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where σ denotes the spectrum. Besides an exact justification, it is intuitively natural because the
OBC is given by a combination of the SIBC and an additional boundary condition at the other
boundary. Once we admit this inclusion, we obtain another inclusion by applying the imaginary
gauge transformation (Equation 3), which is a kind of similarity transformation, to the Hamilto-
nian. The crucial point is that a similarity transformation changes the SIBC spectrum due to the
infinite-dimensional nature of the matrix8 (Figure 2a), though it does not change the OBC spec-
trum defined by the infinite-volume limit of the spectrum of a finite-dimensional matrix.Thus, the
original OBC spectrum is included in the transformed SIBC spectrum. Because one can consider
such an inclusion for an arbitrary imaginary gauge transformation Vr, we obtain

σOBC (H ) ⊂
∩

r∈(0,∞)

σSIBC
(
V −1
r HVr

)
. 7.

Now we are in a position to prove the theorem. If the PBC spectrum has a nontrivial winding,
one can find an SIBC mode with energy E ∈ C just inside the PBC curve, which is exponentially
localized at the boundary. This boundary mode is mapped to a plane wave via the imaginary gauge
transformation Vr with an appropriate r, and E is on the edge of σSIBC

(
V −1
r HVr

)
, or equivalently,

the PBC spectrum ofV −1
r HVr . Thus, the intersection σSIBC(H ) ∩ σSIBC

(
V −1
r HVr

)
is smaller than

the original SIBC spectrum σ SIBC(H). This procedure can be repeated unless the right-hand side
of the inclusion (Equation 7) becomes a curve without winding, which implies that the OBC
spectrum cannot have a nonzero winding (Figure 2a).

3.2. The Bulk-Boundary Correspondence

The above consideration also clarifies how the conventional bulk-boundary correspondence
breaks in the presence of the non-Hermitian skin effect. To see this, let us consider a non-
Hermitian lattice system with the bulk band spectrum forming spectral islands in the complex
energy plane.When the spectral islands are separated from each other, we say that the system has
line gaps (33; see Section 5), and each island may support a topological number (13, 15, 33, 48).
Then, the bulk-boundary correspondence holds if one considers spectral islands in the OBC: If a
spectral island in theOBChas a nonzero topological number,we have a corresponding topological
boundary state.

In the presence of the non-Hermitian skin effect, the spectral islands in the OBC are differ-
ent from those in the PBC. Therefore, the conventional bulk-boundary correspondence, which
relates a topological number in the PBC to a boundary state, does not always hold. However, the
breakdown has limitations. By the argument in the previous section, the bulk OBC spectrum is
always inside the PBC one, and thus each bulk spectral island in the OBC is also inside a spec-
tral island in the PBC. Thus, if the system has a line gap in the PBC, it also has a line gap in
the OBC. Because spectral islands in the PBC can be smoothly deformed into those in the OBC
without closing line gaps, this means that the topological numbers of the spectral islands coincide
between the PBC and the OBC under the same situation. Therefore, once one has a well-defined
topological number in the PBC, which is always true in the situation above, the corresponding
topological number in the OBC takes the same value, and thus the conventional bulk boundary
correspondence holds. Note that the PBC islands should merge before the gap closing (namely,
a collision of spectral islands) in the OBC, and thus the topological number in the PBC becomes

8Under the imaginary gauge transformation, the boundary of the SIBC spectrum is changed because the
corresponding PBCHamiltonian is also changed. The change of the PBC curve can be treated by introducing
a Bloch Hamiltonian for complex momenta,H(k − i log r) (45).
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ill-defined near a topological phase transition in the OBC. The breakdown of the conventional
bulk-boundary correspondence occurs in this situation.

3.3. Correspondence Between Skin Mode and Topological Exact Zero Mode

Thus far, we have related the conventional skin effect with a nontrivial winding number of the
PBC spectrum. Actually, the same winding number characterizes the topological boundary zero
modes of a Hermitian topological insulator. The key idea is to introduce the doubled Hermitian
Hamiltonian, which is also a tool for topological classifications of Floquet Hamiltonians (49) and
non-Hermitian Hamiltonians without boundaries (33, 44):

H̃E :=
[

0 H − E
H† − E∗ 0

]
, 8.

where E ∈ C is a reference point. Owing to the artificial doubling process, an additional chiral
symmetry (CS) is imposed on the doubled Hermitian Hamiltonian as a constraint:

0H̃E0
−1 = −H̃E with 0 =

[
1 0
0 −1

]
. 9.

In the Altland–Zirnbauer (AZ) classification (50), the symmetry class with one CS is called class
AIII, and the topological classification of insulators (gapped9 phases) is given by Z. Actually, the
integer topological invariant is nothing but the winding number of the PBC spectral curve of H
around the reference point E (given in Equation 5). Thus, the same winding number characterizes
both a class-AIII topological insulator and a conventional skin effect. In other words, the conven-
tional skin effect gives one physical interpretation of a non-Hermitian topological classification
(44, 51) in a special case (see Section 5 for details). Remarkably, in this correspondence, one can
relate the Hatano–Nelson model, which is the simplest model of the conventional skin effect, to
the Su–Schrieffer–Heeger model (31), which is the simplest model of one-dimensional class-AIII
topological insulators.

Furthermore, the skin mode is not unrelated to the bulk-boundary correspondence.To see this,
we begin with the SIBC. If E � σ SIBC(H)�σ PBC(H) andW(E) < 0 for the PBC curve, one can find
a boundary-localized right eigenstate |E⟩ of H. By using |E⟩, one can construct a boundary zero
mode of H̃E with negative chirality:

H̃E

[
0

|E⟩

]
= 0, 0

[
0

|E⟩

]
= −

[
0

|E⟩

]
. 10.

This is nothing but a topological boundary zero mode of a class-AIII topological insulator. Simi-
larly, for a positive winding number, one can assign a topological boundary zeromode with positive
chirality,

H̃E

[
|E⟩⟩
0

]
= 0, 0

[
|E⟩⟩
0

]
=
[
|E⟩⟩
0

]
, 11.

where |·⟩⟩ denotes the Hermitian conjugate of the left eigenstate (see Equation 4).
Basically, the same thing holds for the non-Hermitian skin modes under the OBC, but there

are several significant differences from the SIBC case. One thing is that both the right and left
eigenstates localized at the opposite boundaries can be defined at the same time, owing to the

9The gapped nature of H̃E is defined by det H̃E (k) ̸= 0, or equivalently, det [H (k) − E] ̸= 0.
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additional boundary. Correspondingly, the topological zero modes with opposite chirality ap-
pear at the opposite boundary of the doubled Hermitian system. The more crucial difference
is a subtle mismatch in the correspondence. Although H̃E corresponds to a topological insulator
for any E in a two-dimensional region on the complex plane σ SIBC(H)�σ PBC(H), σOBC(H) is given
by a one-dimensional complex curve. Under the OBC with finite L, two topological boundary
modes with opposite chirality, localized at the opposite sides, usually have a finite overlap, and the
true eigenstates are their superpositions with small but finite energy that becomes zero only for
L → ∞. Such topological modes are called quasi-zero modes, and the correspondence between
a Hermitian eigenstate and a non-Hermitian eigenstate does not exactly hold. In contrast, the
topological boundary modes with exact zero energy have correspondence with the skin modes
(Figure 2b), as in the case of the SIBC.This is the origin of the subtle mismatch mentioned above.

3.4. Correspondence Between Pseudospectrum and Topological
Quasi-Zero Mode

The remaining question is what the non-Hermitian counterpart of the topological quasi-zero
energy of H̃E in the correspondence is. The answer is ϵ-pseudospectrum σ ϵ(H) (52; Figure 2b),
which is defined by the set of spectra of perturbed matrices10 H + η with ||η|| < ϵ, where ||·|| is
the matrix two-norm or the largest singular value (4). Although the ϵ-pseudospectrum of a normal
matrix ([H,H†] = 0) such as a Hermitian matrix is just given by the ϵ-neighborhood of the exact
spectrum, that of a nonnormal matrix ([H,H†] ̸= 0) can be much larger than the ϵ-neighborhood.
In the present case, the following holds11 (4, 44, 52):

lim
ϵ→0

lim
L→∞

σϵ (H
(L)
OBC ) = σSIBC(H ), 12.

whereH (L)
OBC is the size-LOBCHamiltonian.Roughly speaking, the SIBC eigenstates approximate

the states that correspond to the pseudospectrum,mentioned as quasieigenstate12 in Reference 44.
Reference 52 showed the correspondence between topological quasi-zeromodes withO(ϵ ) energy
and ϵ-pseudospectrum. Thus, the pseudospectrum with infinitesimally small ϵ compensates for
the subtle mismatch between the two-dimensional region with nontrivial topology and the OBC
spectral curve in the complex plane. Note that the origin of the drastic difference between the
OBC spectrum and pseudospectrum is the nonlocal perturbations that connect the ends of the
open chain. In other words, the OBC spectrum is unstable against such nonlocal perturbations,13

whereas it is robust against local perturbations. By using the correspondence between Hermitian
and non-Hermitian topology, one can relate this behavior to the following fact: The topological
zero modes of a topological insulator are easily gapped out by connecting edges, whereas they are
robust against the symmetry-preserving local perturbations.

3.5. The Bauer–Fike Theorem and the Skin Effect

For a nonzero value of ϵ and a finite L, we have a useful bound for perturbations called the Bauer–
Fike theorem (53). When H is diagonalizable, the theorem implies the following (4):

σϵ (H ) ⊆ σ (H ) +1ϵκ (V ), 13.

10In numerical calculations, another equivalent definition σϵ (H ) = {z ∈ C | ||(z−H )−1|| > ϵ−1} is useful (4).
11The opposite limit corresponds to the OBC spectrum: limL→∞ limϵ→0 σϵ [H

(L)
OBC] = σOBC(H ).

12Related to this terminology, one can also describe the ϵ-pseudospectrum by another equivalent definition
σϵ (H ) = {z ∈ C | ||(z−H )v|| < ϵ for some unit vector v}, where ||·|| is the vector norm.
13Related to this mathematics, it is known that a numerical diagonalization of the nonnormal matrices is
sensitive to a rounding error because it can behave as a nonlocal perturbation (4).
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with 1δ = {z ∈ C : |z| < δ} and κ(V) = ∥V∥·∥V−1∥ ≥ 1, where V is a matrix diagonalizing H,
V−1HV= diag(E1,E2, . . .). The condition number κ(V) measures the nonnormality ofH and gives
a bound for perturbed spectrum: If H is normal so V is unitary, it takes the minimal value κ(V) =
1, so the perturbed spectrum stays in the ϵ-neighborhood of the exact spectrum. By contrast, if
H is nonnormal, it allows a larger perturbation of the spectrum.With biorthogonal right and left
eigenstates |En⟩ and |En⟩⟩ of H, we have V = (|E1⟩, |E2⟩, . . .) and V−1 = (⟨⟨E1|, ⟨⟨E2|, . . .)t. Because
the matrix two-norm satisfies ∥A∥ ≥

√
tr(A†A)/

√
L for an L × L matrix A (54), κ(V) has a lower

bound as

κ (V ) ≥
√∑

i

⟨Ei|Ei⟩
∑
j

⟨⟨Ei|Ei⟩⟩/L =
√∑

i

⟨Ei|Ei⟩
∑
j

⟨⟨Ei|Ei⟩⟩/
∑
k

⟨⟨Ek|Ek⟩. 14.

Therefore, κ(V) can be huge if the skin effect occurs, where the right eigenstate |Ei⟩ and left
one |Ei⟩⟩ are localized on an opposite boundary. The extreme sensitivity of the spectrum against
perturbations, which is the suggested bound ϵκ(V) in Equation 13, opens a possible application of
the skin effect to highly accurate sensors (55).

For a larger ϵ, a variant of the Bauer–Fike theorem (4),

σϵ (H ) ⊆ σ (H ) +1ϵ+dep(H ), 15.

with dep(H ) = √
tr(H†H ) −∑

i |Ei|2 gives a more severe bound for perturbations. The quantity
dep(H) is called departure of normality (56), and also measures the nonnormality of H. The skin
effect results in a large difference between dep(H) in the OBC and that in the PBC, and thus the
difference also characterizes the skin effect (Y. Nakai, N. Okuma, M. Sato, in preparation).

We also note that the pseudospectrum plays an important role in non-Hermitian dynamics.
This point is discussed in Section 7.

4. SYMMETRY-PROTECTED SKIN EFFECTS UNDER
TIME-REVERSAL SYMMETRY

So far, we have shown that the PBC curve with a nontrivial winding number indicates the non-
Hermitian skin effect. Then a natural question arises: Are all the non-Hermitian skin effects
characterized by nonzero winding numbers? The answer is no.

In modern physics, the quantum Hall effect is regarded as an example of broader concepts:
topological insulator (1, 2) or symmetry-protected topological phase (57). Similarly, the conven-
tional skin effect can be regarded as an example of a broader concept: symmetry-protected skin
effects in general dimensions. In this section, we consider one- and two-dimensional skin effects
protected by a non-Hermitian time-reversal symmetry (TRS). Instead of the Z winding number,
they are characterized by the Z2 topological invariant.

4.1. Time-Reversal Symmetry in Non-Hermitian Systems

For non-Hermitian Hamiltonian matrices, there are more types of symmetries than there are
for Hermitian ones (33, 58). Among them, we focus on extensions of TRS. For a Hermitian
Hamiltonian H, the TRS is defined as an antiunitary symmetry:

TH∗T−1 = H , 16.

where T is taken as a unitary matrix. Corresponding to the integer/half-integer spin of a particle,
TT∗ = ±1 are assigned. One natural extension to non-Hermitian cases is the complex-conjugate-
type TRS defined by the same Equation 16. Because the transpose is not equivalent to the
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complex conjugation under non-Hermiticity, one can also consider another extension, namely,
the transpose-type TRS (33, 58):

THTT−1 = H. 17.

Depending on the situation, both TRSs may be physically relevant. For example, the transpose-
type TRS appears as a natural TRS of non-Hermitian Hamiltonians defined by the one-particle
Green’s function (59) or that of the quadratic Lindbladian (60).

4.2. Z2 Skin Effect in One Dimension

In the previous section,we introduced the doubledHermitianHamiltonian H̃E (see Equation 8) to
show the correspondence between a conventional skin effect and a class-AIII topological insulator.
In the presence of the transpose-type TRS, one can also define H̃E for arbitrary E ∈ C because the
addition of terms proportional to the identity matrix does not break the relation (Equation 17).
For the cases with TT∗ = −1, H̃E has a Hermitian TRS, an artificial CS, and their combination,
namely, the particle–hole symmetry (PHS):

TRS : T̃ H̃∗
ET̃

−1 = H̃E , T̃ T̃ ∗ = −1, T̃ :=
[
0 T
T 0

]
,

PHS : C̃H̃∗
EC̃

−1 = −H̃E , C̃C̃∗ = 1, C̃ :=
[
0 −T
T 0

]
,

CS : 0̃H̃E 0̃
−1 = −H̃E , 0̃2 = 1, 0̃ :=

[
1 0
0 −1

]
. 18.

In the AZ classification (50), the set of these symmetries corresponds to the symmetry class DIII.
In one dimension, a class-DIII gapped Hermitian Hamiltonian (or the original non-Hermitian
Hamiltonian) is classified by a Z2 topological invariant ν(E) � {0, 1} (33),

(−1)ν(E ) := sgn
{
Pf [(H (π ) − E )T ]
Pf [(H (0) − E )T ]

× exp
[
−1
2

∫ k=π

k=0
d log det [(H (k) − E )T ]

]}
, 19.

whereH(k) is again the Bloch Hamiltonian for the non-Hermitian Hamiltonian.Under the OBC,
the nontrivial phase (ν = 1) describes a topological superconductor with a Kramers doublet of
Majorana fermions (61). If the energy of the OBC boundary modes are exactly zero, one can
relate the Majorana boundary states to eigenstates of H as in the case of the conventional skin
effect (Figure 3): [

0
|E⟩

]
,

[
T |E⟩∗

0

]
,

[
0

T |E⟩⟩∗

]
,

[
|E⟩⟩
0

]
. 20.

The former/latter two modes form a Majorana doublet. Because the former and the latter pairs
are localized at the opposite side, |E⟩ (T|E⟩⟩∗) and |E⟩⟩ (T|E⟩∗) are the right and left eigenstates
of H localized at the different side, respectively. Thus, the right eigenstates |E⟩ and T|E⟩⟩∗ satisfy
the definition of skin modes and are localized at the different sides. In terms of the transpose-
type TRS, they are in the relationship of the non-Hermitian Kramers pair (33, 62). To emphasize
the difference from the conventional skin effect, we call this localization phenomenon the Z2

skin effect. Note that the conventional winding number under the PBC cannot have a nontrivial
winding number in the presence of the transpose-typeTRSwithTT∗ = −1 because of theKramers
degeneracy.
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Figure 3

Relationship between Z2 topological superconductors and Z2 skin effects in one and two dimensions. The spectra and weight functions
are adopted from Reference 42; copyright 2020 American Physical Society. Abbreviations: OBC, open boundary condition; PBC,
periodic boundary condition.
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In the following, we construct an explicit model of the Z2 skin effect. Let us mimic the first
example of the Z2 topological insulator protected by the TRS, called the Kane–Mele model (63).
This model was constructed by a stack of quantum anomalousHall insulators with opposite Chern
numbers. In the absence of spin–orbit interactions, the Kane–Mele model is block diagonalized
into spin sectors and is characterized by the integer spin Chern number. In the presence of the
spin–orbit interaction that couples the spin sectors, the nontrivial phase is characterized by a Z2

topological invariant instead of the ill-defined spin Chern number. Similarly, we begin with the
stack of the Hatano–Nelson model (Equation 1) with opposite winding numbersW = ±1 (64):

HZ (k) =
[
HHN (k) 0

0 HHN (−k)

]
= 2t cos k σ0 + 2ig sin k σz, 21.

where the sigma variables represent the Pauli matrix of spin. Instead of the full Hamiltonian, we
have specified the model by the Bloch Hamiltonian. In this basis, the transpose-type TRS with
TT∗ = −1 for a Bloch Hamiltonian H(k) is given by

THT (−k)T−1 = H (k), 22.

where T = iσ y. Thus,HZ(k) hosts the transpose-type TRS, and the total winding number (Equa-
tion 5) cannot be nontrivial. However, the block Hamiltonians in the spin sectors are given by
the Hatano–Nelson models with opposite asymmetric hopping terms, which show the skin effects
characterized by the opposite winding numbers for tg ̸= 0. This is an example of the skin effect
protected by transpose-type symmetry. Instead of the total winding number, the integer “spin”
winding number characterizes this skin effect.

Next, we add a spin–orbit interaction 1 ≥ 0 that connects the spin sectors (42):

HZ2 (k) =
[
HHN (k) 21 sin k
21 sin k HHN (−k)

]
= 2t cos k+ 21 (sin k) σx + 2ig (sin k) σz. 23.

Because the spin-rotational symmetry is completely broken, the winding number in each spin
sector cannot be defined for nonzero 1. Even for this case, we can still define the Z2 invariant
(Equation 19) because of the presence of TRS (Equation 22). The PBC spectrum is given by
two bands E± (k) = 2t cos k± 2i

√
g2 −12 sin k, both of which describe an ellipse in the complex

plane for |g| > 1 and t ̸= 0 (42). Correspondingly, the Z2 invariant (Equation 19) is not trivial
for this parameter region, which should lead to the non-Hermitian skin effect. The numerical
diagonalization for a finite size (L = 100) shows the presence of skin effect with Kramers pairs
localized at the opposite sides (Figure 3). This is an example of symmetry-protected skin effects
characterized by a Z2 topological invariant (Equation 19).

We here give several remarks about the symmetry-protected skin effects. First, the symmetry-
protected nature appears as an instability of the skin effect against symmetry-breaking
perturbations (δh ̸= 0 in Figure 3). In the infinite-volume limit, this instability is understood
by the failure of the standard non-Bloch band theory under some symmetry protection (64). In
the presence of the symmetry that block-diagonalizesH(k) such as Equation 21, the corresponding
OBC spectrum is determined not by the non-Bloch band theory for the total Hamiltonian but by
that for each block. Under symmetry-breaking terms that connect the blocks, however, the OBC
spectrum is determined by the non-Bloch band theory for the total Hamiltonian. Remarkably, the
latter spectrum for an infinitesimally small perturbation can be different from the former spec-
trum. For example, the OBC spectrum of Equation 21 under an infinitesimally small transverse
magnetic field becomes identical to that of the PBC (64). In the case of the transpose-type TRS
without spin-rotational symmetry, a similar discussion can be applied by introducing a modified
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non-Bloch band theory with a Kramers doublet (27). In the language of a doubled Hermitian
Hamiltonian, this phenomenon is understood by the fact that the exact zero modes acquire the
finite gap under a symmetry-breaking term, which destroys the correspondence between the skin
modes and the exact zero modes mentioned above.14

Second, the Z2 nature is checked by a stack of two copies of the system with the skin effect
whose topological number is unity.The skin effect in such a stack is fragile even against symmetry-
preserving terms (ν = 0 in Figure 3). This behavior can be understood by the fact that a skin mode
of oneKramers doublet localized at the left side can bemixedwith a skinmode of the other doublet
localized at the right side.

These are the basic properties of symmetry-protected skin effects in one spatial dimension.One
can apply a similar consideration based on the doubled Hermitian Hamiltonian to higher dimen-
sions. However, more careful discussion about the boundary condition is needed to characterize
a higher-dimensional non-Hermitian skin effect.

4.3. Z2 Skin Effect in Two Dimensions

We consider two-dimensional non-Hermitian Hamiltonians with the transpose-type TRS with
TT∗ = −1. Again, a doubled Hermitian Hamiltonian H̃E describes class-DIII superconductors
and is classified by a Z2 invariant under the PBC (33):

(−1)ν(E ) :=
∏

X=I,II

sgn
[
Pf {[H (kX+ ) − E]T }
Pf {[H (kX− ) − E]T }

× exp

(
−1
2

∫ k=kX+

k=kX−
d log det {[H (k) − E]T }

)]
,

where k is a two-dimensional momentum, and (kI+, kI−) and (kII+, kII−) are two pairs of time-
reversal-invariant momenta. For the nontrivial phase ν(E) = 1, topological boundary modes
are given by helical Majorana edge modes (61). If there exist exact zero modes, they are given
by the same expression as Equation 20. Unlike one dimension, however, the exact zero modes
cannot be found under the full OBC, i.e., the OBC in both the x and y directions. This is be-
cause a topological gapless mode at the closed boundary of a higher-dimensional topological
insulator/superconductor effectively feels the curvature of the boundary, and the “zero” modes
inevitably have finite energy on the order of 1/L (65–67). Correspondingly, the Z2 skin effect
does not occur for this boundary condition. To observe a two-dimensional Z2 skin effect, one
should choose boundary conditions that allow the exact topological boundary zero modes of H̃E .
At least two boundary conditions for this purpose are known for higher-dimensional topological
insulators/superconductors: (a) the OBC in one direction and the PBC in the other direction, and
(b) the full OBC with topological defects (61).

In the following, we describe the properties of the two-dimensional Z2 skin effect by using
the massless Dirac Hamiltonian coupled to valley-dependent dissipation characterized by 0 ∈ R
(42):

H (k) = (sin kxσx + sin kyσy ) + i0(cos kx + cos ky ). 24.

14In a finite system, the threshold of the perturbation strength for the instability is exponentially small with
respect to the system size. In terms of the correspondence between the Hermitian and non-Hermitian topol-
ogy, this threshold corresponds to the amount of perturbation that changes the energies of boundary modes
significantly.
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For nonzero0, the set {E ∈ C | ν(E ) = 1} occupies a two-dimensional region of the complex plane.
The complex spectrum of this system is shown in Figure 3 for various boundary conditions (42).
In case (a), the OBC is imposed in the y direction. In case (b), the topological defect is given by a π
flux (or a half flux quantum) at the central unit cell. In contrast to the full PBC and full OBC, there
exist skin modes for both cases. Remarkably, only O(L) modes of total O(L2 ) modes show the Z2

skin effect in which the spectrum has no winding, and they are separated from the other modes
surrounding them. In case (a), O(L) skin modes are also interpreted as the one-dimensional Z2

skin modes of a one-dimensional Hamiltonian H(kx) at the time-reversal-symmetric points kx =
0, π , whereH(kx) is the Fourier transform ofH in the x direction. The skin modes are localized at
the boundaries in the y direction. InD-dimensional topological insulators/superconductors under
the boundary condition (a), only O(1) modes of the total O(Ld−1 ) modes of the surface Dirac
Hamiltonian correspond to the exact zero modes. Thus,D-dimensional skin effect has only O(L)
skin modes.15 In case (b),O(L) skin modes are localized at the boundary and the topological defect.
In contrast to the other skin effects, this case shows a non-Hermitian localization in the radial
direction (Figure 3). Note that this two-dimensional localization purely originates from the non-
Hermiticity, whereas the higher-order skin effect in Section 6.2 is reduced to the combination of
Hermitian and non-Hermitian localizations.

5. PHYSICAL INTERPRETATION OF NON-HERMITIAN
TOPOLOGICAL CLASSIFICATION

Wehere review several topics related to non-Hermitian topological classification. In particular, the
anomaly interpretation provides another insight into symmetry-protected skin effects in addition
to the topological aspects discussed above.

5.1. Review of Non-Hermitian Topological Classification

In Hermitian physics, a standard classification of noninteracting topological insulators/
superconductors is given by the K-theoretical classification of amomentum-resolvedHamiltonian
matrix H (k) (69–72), where k is a momentum on a sphere or a torus. In this field, the ten-fold AZ
class (50), in which each class is specified by the combination of TRS, PHS, and CS, is regarded
as the most fundamental symmetry class (for example, see Equation 18). The gapped nature of
insulators/superconductors is captured by the condition detH (k) ̸= 0, which means the absence
of zero energy in the bulk spectrum.Gong et al. adopted the same condition for a non-Hermitian
H (k) as the definition of a non-Hermitian gapped phase (44). This type of complex energy gap
was named point gap in Reference 33 (Figure 4a). The authors showed that the topological clas-
sification of point-gapped phases is given by the K-theoretical classification of the corresponding
doubled Hermitian Hamiltonian,

H̃ (k) :=
[

0 H (k)
H†(k) 0

]
, 25.

by noticing the equivalence between detH (k) ̸= 0 and det H̃ (k) ̸= 0. After this study, Refer-
ences 33 and 75 applied this classification scheme to the 38-fold Bernard–LeClair class, which
was originally introduced to describe non-Hermitian random matrices (58). Reference 33 pro-
posed another non-Hermitian gapped structure named the real/imaginary line-gapped phase
(Figure 4a). In this scheme, the gapped phase is defined as a spectral structure whose

15The Hamiltonian (Equation 24) with 0 = 1 has O(L)-fold algebraic degeneracy at E = ±i, which are
exceptional points (see Section 5.4). Three-dimensional cases were investigated in Reference 68.
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Figure 4

(a) Definitions of non-Hermitian gapped spectra (blue). A point/line-gapped spectrum does not contain red
point/line. (b) Correspondence between class-A point-gap topology and chiral edge mode at the boundary of
the quantum Hall effect. (c) Exceptional point (EP) and its characterization by point and line gap. Panel b
adapted from Reference 73; copyright 2019 American Physical Society. Panel c adapted from Reference 74;
copyright 2019 American Physical Society.
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real/imaginary parts are nonzero. Furthermore, the concept of the line gap has been generalized
to situations in which several spectral islands exist in the complex energy plane (48).

Next, we consider physical interpretations of the non-Hermitian gapped phases. In the case
of the Hermitian classification, the nontrivial phase of the classification corresponds to a topo-
logical insulator/superconductor, in which the bulk nontrivial topology indicates the presence
of topological gapless boundary modes. Actually, the real/imaginary line-gapped phases can be
adiabatically connected to Hermitian/anti-Hermitian gapped Hamiltonians without breaking the
fundamental symmetries and closing the line gap (10, 13, 33). Thus, the nontrivial topology in a
line-gapped phase is essentially the same as that in a Hermitian gapped phase and indicates the
bulk-boundary correspondence with a certain modification (see Sections 2.2 and 3.2). In contrast,
it is not easy to say something about the point-gapped phases because the nontrivial topology
indicates the bulk-boundary correspondence of the doubled Hermitian Hamiltonian H̃ , not of
the original Hamiltonian H. To the best of the authors’ knowledge, there is no unified physical
interpretation for the point-gapped phases.16 In the following, we give several interpretations for
limited cases.

5.2. Classification of Non-Hermitian Skin Effects

The symmetry-protected skin effects give one physical interpretation of the point-gap topological
classification for classes without symmetry or with only transpose-type TRS (TT∗ = ±1; 42, 76). In
these three classes, also called class A, AI†, and AII† (33), the addition of arbitrary reference energy
E ∈ C toH does not break the given symmetry, allowing us to construct symmetry-protected skin
effects discussed above (76). The classification of skin effects for these three classes is highlighted
in red inTable 1. The above discussion does not mean that symmetry-protected skin effects occur
only in these three classes, because the topological invariants of the three classes can be nonzero
in other classes.

5.3. Non-Hermitian Topology and Quantum Anomaly

5.3.1. Anomaly interpretation for AZ† symmetry. As we noted in Section 4.1, there are two
types of non-Hermitian TRS, i.e., complex-conjugate-type and transpose-type TRS. Similarly,

Table 1 Point-gap topological classification in AZ† classa (33)

AZ† T C 0 0 1 2 3 4 5 6 7
A 0 0 0 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0
AI† 1 0 0 0 0 0 2Z 0 Z2 Z2 Z
BDI† 1 1 1 Z 0 0 0 2Z 0 Z2 Z2

D† 0 1 0 Z2 Z 0 0 0 2Z 0 Z2

DIII† −1 1 1 Z2 Z2 Z 0 0 0 2Z 0
AII† −1 0 0 0 Z2 Z2 Z 0 0 0 2Z
CII† −1 −1 1 2Z 0 Z2 Z2 Z 0 0 0
C† 0 −1 0 0 2Z 0 Z2 Z2 Z 0 0
CI† 1 −1 1 0 0 2Z 0 Z2 Z2 Z 0

aThe red-colored entries can also be regarded as the skin-effect classification.

16There are even cases in which the point-gap topological invariant is reminiscent of a line-gap topological
invariant, whose origin is essentially Hermitian topology (42).
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one can define complex-conjugate-type and transpose-type PHS.The ten-fold AZ class is defined
by the combination of complex-conjugate-type TRS and transpose-type PHS, while the ten-fold
AZ† class17 is defined by the combination of transpose-type TRS and complex-conjugate-type
PHS.

As far as the AZ† class is concerned, one can give a physical interpretation of the non-Hermitian
topological classification, in the absence of boundaries. Lee et al. (73) pointed out that a point-gap
topological invariant of the PBC curve in the class s† � AZ† counts the number of anomalous
gapless modes whose imaginary parts are large enough. Here, the anomalous gapless modes
in D dimensions are the gapless modes that cannot appear on the bulk of a lattice due to the
quantum anomaly but can appear on a D-dimensional boundary of a (D + 1)-dimensional Her-
mitian topological insulator/superconductor in the corresponding Hermitian class s � AZ. In
linear dynamics described by a non-Hermitian Hamiltonian, the eigenvalues with large imag-
inary parts are relevant to the long-time dynamics. In this sense, the dynamics described by a
point-gap nontrivial Hamiltonian are governed by the anomalous gapless modes in the long-time
limit. For example, the chiral modes, which appear on the edge of a quantum Hall insulator, de-
scribe the relevant modes in long-time dynamics of one-dimensional class-A nontrivial systems
(Figure 4b). More precise formulas are summarized as the extended Nielsen–Ninomiya theorem
in Reference 77.

5.3.2. Anomaly interpretation of non-Hermitian skin effects. In classes A, AI†, and AII†,
the symmetry-protected skin effects give the physical interpretation of nontrivial non-Hermitian
topology under the OBC,whereas the anomalous gapless modes do so under the PBC.These facts
indicate the presence of the anomaly interpretation of the symmetry-protected skin effects. In the
anomaly interpretation, the skin effects are related to fermion production caused by the quantum
anomaly (76). For example, a conventional skin effect is related to a charge accumulation at the
boundary caused by a chiral current.The anomaly interpretation also gives an intuitive reason why
higher-dimensional skin effects occur in the presence of the topological defect. In quantum field
theory, the combination of the quantum anomaly and the topological defect causes the fermion
production at the topological defect. The most famous example is the Rubakov–Callan effect (or
monopole catalysis), which was originally introduced as the mechanism for proton decay in an
SU(5) grand unified theory (78, 79). The corresponding skin effect is realized in a class-A three-
dimensional Weyl Hamiltonian with valley-dependent dissipation in the presence of a magnetic
monopole (76). The chiral magnetic skin effect in Reference 77 can be related to a typical fermion
production mechanism called the chiral magnetic effect (80).

5.4. Non-Hermitian Topology and Degeneracy Points

In the Hermitian topological classification, gapless structures in momentum space such as Dirac
and Weyl point/line nodes are also of great interest (81–90). In a D-dimensional parameter
space, a robust d-dimensional symmetry-protected gapless structure is characterized by a topo-
logical gapped structure on a (D − d)-dimensional sphere surrounding the gapless structure.
On the basis of similar topological classification on sphere, Reference 74 gave point-gap and
line-gap topological classifications around the exceptional points,18 at which the parameterized
non-Hermitian Hamiltonian is not diagonalizable (91–93; see Figure 4c). According to Ref-
erence 74, the point/line gap is open/closed around an exceptional point. This statement is

17In this review, we call the combination of two-fold complex AZ class (33) and eight-fold real AZ† class (33)
the ten-fold AZ† class.
18Note that nontrivial classifications do not always ensure the existence of exceptional points.
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based on the observation that exceptional points are connected via a line-gapless structure called
the bulk Fermi arc (94–96; see Figure 4c). Such topological classifications describe symmetry-
protected exceptional structures with various dimensionality such as exceptional points and rings
(15, 94–108).

6. SKIN EFFECTS IN VARIOUS SITUATIONS

6.1. Skin Effects Without Asymmetric Hopping

Non-Hermitian skin effects are experimentally relevant in classical systems (109–112). Although
the implementation of asymmetric hopping is not easy in quantum systems, this does not for-
bid the quantum implementation because non-Hermitian skin effects only require the spectral
topology. Namely, on-site dissipation can also induce non-Hermitian skin effects, as emphasized
in Reference 113. In fact, the non-Hermitian skin effect in the discrete-time nonunitary quantum
walk was experimentally realized by mode-selective loss (114). For an intuitive understanding, let
us consider a one-dimensional two-band Hermitian Hamiltonian H (k) = d (k) · σ, where d ∈ R3,
and σ values are the Pauli matrices that represent “spin” degrees of freedom. The dispersion
is given by E±(k) = ±|d (k)|, and the spin direction of each eigenstate is parallel/antiparallel to
d (k).Undermomentum-independent spin-dependent non-Hermiticity, each band effectively feels
momentum-dependent dissipation (76). For d (k) that realizes the PBC curve with a nontrivial
winding number, one can realize the conventional skin effect by the combination of the spin-
momentum locked band structure and the on-site non-Hermiticity (Figure 5a).This construction
is analogous to an implementation of a topological superconductor in which the p-wave pairing
is effectively realized by the combination of the spin-momentum-locked band structure and the
s-wave pairing (115–118). One can also use the combination of topological boundary states and
boundary-dependent dissipation as a source of non-Hermitian skin effects (76). For example, let us
consider a thin film of a three-dimensional topological insulator. The low-energy effective model
of this system is given by two two-dimensional Dirac cones with opposite chiralities at the top
and the bottom surfaces. By setting a surface-dependent dissipation, one can realize the effective
valley-dependent dissipation that leads to the two-dimensional Z2 skin effect (Figure 5b).

6.2. Skin Effects in Higher Dimensions

In the previous sections, we discussedD-dimensional skin effects whose origin is aD-dimensional
topology. In addition to such intrinsic D-dimensional skin effects, one can also consider the D-
dimensional skin effect whose origin is a (d < D)-dimensional topology. For example, under the
OBC in the x direction and PBC in the other direction, theHamiltonian is block diagonalized into
the Bloch Hamiltonian H (k⊥ ∈ RD−1 ), which can be regarded as a one-dimensional system. For
each k⊥, one can define a conventional non-Hermitian skin effect whose origin is the spectral
winding. In this context, Reference 112 theoretically and experimentally discussed a relation-
ship between the emergence of exceptional points and a skin effect in a two-dimensional Dirac
system.

Another remarkable direction is the corner skin modes at a higher-dimensional lattice, which
are realized as the combination of Hermitian and non-Hermitian localizations. Reference 119
proposed the hybrid higher-order skin-topological mode as the combination of Hermitian topo-
logical gapless state and the non-Hermitian skin effect, and Reference 120 experimentally realized
it on electric circuits. References 121–123 investigated higher-order skin effects whose doubled
Hermitian Hamiltonians are higher-order topological insulators19 (124–127). In addition to these

19These skin modes are related to Hermitian edge states of semimetals such as graphene. In this sense,
Hermitian and non-Hermitian localizations coexist.
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Figure 5

Skin effects without momentum-dependent dissipation. (a) One-dimensional skin effect in spin-momentum-
locked bands of the Hamiltonian H(k) = sin kσ z + (1−cos k)σ x. A spin-dependent momentum-independent
dissipation ig(−1 + σ z) effectively behaves as momentum-dependent dissipation. The model parameters are
L = 100 and g = 0.1. (b) Two-dimensional Z2 skin effect realized on the surface of a three-dimensional
topological insulator H (k) = ∑3

i=1 sin kiγi + (m+∑3
i=1 cos ki )γ0, where γ s are the Gamma matrices

satisfying {γ µ, γ ν } = δµν . The constant dissipation −ig is introduced at the bottom surface, and the π flux
goes through the center. The system size is 20 × 20 × 6,m = −2, and g = 0.4.

studies, higher-order localizations have been studied in various contexts.20 For example, the com-
binations of non-Hermitian skin effect and higher-order topological modes have been investigated
both theoretically (128–131) and experimentally (132, 133).

7. NON-HERMITIAN DYNAMICS AND SPECTRAL TOPOLOGY

Before closing, we relate the spectral topology of non-Hermitian tight-binding models to
non-Hermitian dynamics. Let us consider the non-Hermitian Schrödinger equation with a
non-Hermitian Hamiltonian H:

i
∂

∂t
|ψ (t )⟩ = H |ψ (t )⟩, 26.

20Correspondingly, the terminology “higher-order skin effects” is often used in various situations.

102 Okuma • Sato

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

02
3.

14
:8

3-
10

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

13
0.

54
.1

30
.2

52
 o

n 
12

/1
7/

23
. S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d 
us

e.
 



CO14CH05_Sato ARjats.cls February 17, 2023 9:1

where |ψ(t)⟩ is a wave function whose norm depends on time. In open quantum systems, this
equation describes various situations, such as the Lindblad equation (134) written in a quadratic
form of field operators (135, 136) and the continuous Lindblad dynamics without quantum jumps
(137). In classical systems, this equation has been investigated in various fields, including fluid
mechanics (4) and network science (138). IfH is a normal matrix ([H,H†]= 0), the dynamics of the
norm is always governed by the imaginary part of the spectrum. If not ([H,H†] ̸= 0), however, the
relaxation dynamics is more nontrivial. Remarkably, the right eigenstates of a nonnormal matrix
do not span the whole Hilbert space. If the initial state is in or close to the subspace spanned by
the right eigenstates, the nonnormal dynamics is not different from the normal dynamics. For
more general initial states, however, there is a transient time (0 < t < ∞) for the state to have a
large overlap with that subspace, and the transient dynamics is governed by the pseudospectrum
discussed in Section 3.4, instead of the spectrum. In the long-time limit (t → ∞), nonnormal
dynamics is governed by the spectrum, as in the case of a normal matrix.Due to the pseudospectral
nature, amplification in transient time is allowed even if the largest imaginary part of the spectrum
is negative.

Physically, the transient time depends on the speed of propagating information, or the Lieb–
Robinson bounds (44). In a one-dimensional system with the non-Hermitian skin effect, the
transient time is given by the time for the information to propagate from one end to the other
end, which is proportional to the system size (44). The corresponding quasi-eigenvalue is in theϵ-pseudospectrum with ϵ that is exponentially small with respect to the system size (44). In the
correspondence between non-Hermitian and Hermitian topology, the pseudospectrum under
the non-Hermitian skin effect is related to the quasi-zero modes of a topological insulator (52), as
emphasized in Section 3.4. In this sense, the transient dynamics under the non-Hermitian skin ef-
fect is related to the quasi-zeromodes of aHermitian topological insulator.For general nonnormal
matrices, the transient time can be roughly estimated by the nonnormal energy-time uncertainty
relation defined for a pseudospectrum (139).

Which is physically more important, the spectrum or the pseudospectrum? The answer de-
pends on the situation. If one is interested in the stability/instability under linear fluctuations, the
stability/instability is judged by the negativity/positivity of the largest imaginary part of the spec-
trum. If nonlinearity is not negligible, however, the combination of transient amplification and
nonlinearity can lead to instability even if the largest imaginary part of the spectrum is negative
(4). In addition to classical systems (4, 138), the mathematics of stability/instability is relevant in
quantum systems described by the bosonic Bogoliubov–de Gennes equation (140–144). In ad-
dition to the stability analysis, the relaxation process to the nonequilibrium steady state in the
Lindblad equation is related to nonnormality. Several studies pointed out that the relaxation time
is not always described by the spectral gap (52, 145, 146). In our view, the origin of the mismatch
is nothing but the pseudospectral nature of nonnormal matrices.

Although the above discussion is limited to the Schrödinger dynamics, we note that non-
Hermitian spectral phenomena can appear inmore generic situations. For example,Reference 120
detected the skin corner modes with a small imaginary part in electric circuits in which the rel-
evant eigenvalues are not given by the largest imaginary part but by the smallest absolute value.
We hope that this review inspires readers to consider applications of non-Hermitian matrices to
condensed matter physics.
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