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Anxiety disorders (ADs) are the most common form of mental disorder that affects millions of individuals worldwide. Although
physiological studies have revealed the neural circuits related to AD symptoms, how AD-associated genes are spatiotemporally
expressed in the human brain still remains unclear. In this study, we integrated genome-wide association studies of four human AD
subtypes—generalized anxiety disorder, social anxiety disorder, panic disorder, and obsessive-compulsive disorder—with spatial
gene expression patterns. Our investigation uncovered a novel division among AD-associated genes, marked by significant and
distinct expression enrichments in the cerebral nuclei, limbic, and midbrain regions. Each gene cluster was associated with specific
anxiety-related behaviors, signaling pathways, region-specific gene networks, and cell types. Notably, we observed a significant
negative correlation in the temporal expression patterns of these gene clusters during various developmental stages. Moreover, the
specific brain regions enriched in each gene group aligned with neural circuits previously associated with negative decision-making
and anxious temperament. These results suggest that the two distinct gene clusters may underlie separate neural systems involved
in anxiety. As a result, our findings bridge the gap between genes and neural circuitry, shedding light on the mechanisms
underlying AD-associated behaviors.
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INTRODUCTION
Anxiety disorders (ADs) are the ninth most prevalent health-
related cause of disability [1, 2], affecting 3.8% (285 million) of the
global population [3]. ADs exhibit moderate heritability (32–67%)
and substantial familial aggregation, with the first-degree relatives
of AD-affected probands highly likely to develop a range of AD
subtypes [4]. This suggests that there is a genetic basis for the
clinical diagnosis of the different AD subtypes. AD subtypes have
48–68% comorbidity [5], suggesting that they share genetic risk
factors. The genetic underpinnings of ADs have been previously
examined using targeted gene sequencing and genome-wide
association studies (GWAS), which identified mutations in (or in
the vicinity of) several genes and captured multiple aspects of
anxiety critical in understanding its etiology [6]. RGS2, PKP1,
TMEM132D, and BDKRB2 were linked to diagnosis of panic
disorder (guided by the Diagnostic and Statistical Manual of
Mental Disorders or DSM), THBS2 to generalized anxiety disorder
and GLRB to agoraphobia. SLC6A4, COMT, HTR1B, and HTR2A
were linked to responses to drug/psychotherapy, PDE4B, NTRK2
and NPSR1 to DSM-guided binary diagnosis of anxiety and/or
composite anxiety measures, CRHR1 to neuroticism (AD-asso-
ciated personality trait) and NPY to neural activation patterns in
response to anxiety-inducing stimuli [7, 8]. Although these genes
have been linked to AD, if and how they contribute to AD remains
unclear.
Physiological studies employing functional magnetic resonance

imaging (fMRI) and positron emission tomography (PET) impli-
cated a specific frontal-limbic-midbrain circuit in AD symptoms

[9, 10]. Similarly, microstimulation studies in rhesus macaques
suggested specific neural circuits causally involved in AD
symptoms [11, 12]. Although these physiological studies have
been able to associate specific neural circuits with AD symptoms,
whether the spatial distribution of AD-associated genes converge
on these same circuits remains unclear from previous analyses of
AD genetic data [13–15]. The spatial distribution of gene
expression in the brain can be correlated with functional
connectivity between its various regions [16–21], and examining
the regional expression patterns of disease-associated genes can
help identify the brain structures and the molecular mechanisms
underlying neuropsychiatric disorders [22, 23]. We thus hypothe-
sized that the regional specificities of AD-associated genes could
correspond to the functional organization of the AD neurocircuitry
implicated by physiological experiments.
To address this, we integrated more than 200 AD-associated

genes from GWAS across 4 subtypes of ADs and mapped this
information onto microarray-based, spatiotemporal transcriptomic
data extracted from over 200 brain structures of normal human
brains available from the Allen Brain Atlas [24]. Taking our
integrated approach, we show that AD-associated genes can be
split into two clusters showing distinct spatial expression profiles
in cerebral nuclei, the limbic system and the midbrain. These
clusters, likely underlying distinct neural systems of anxiety, were
involved in specific behaviors, signaling pathways, region-specific
gene networks and cell types, and exhibited negatively correlated
temporal expression patterns. The spatial distribution patterns of
these gene clusters corresponded to the AD-associated
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neurocircuitry identified in physiological experiments, thereby
bridging the genes-to-neural circuitry gap linked to AD-associated
behavior.

RESULTS
Determination of AD-associated genes across 4 AD subtypes
To examine the spatial distribution of gene expression in the
brain, we took a systematic approach to analyze the expression of
AD-associated genes in the human brain (Fig. 1). Two-hundred
forty genes harboring mutations associated with four AD
subtypes, namely, generalized anxiety disorder (GAD), social
anxiety disorder (SAD), panic disorder (PD) and obsessive-
compulsive disorder (OCD), were collected from the GWAS catalog
[25] and the DisGeNET database [26] (Supplementary Fig. 1 and
Supplementary Table 1). The genes compiled from the GWAS
catalog were found within 50 kb upstream or downstream of the
SNPs associated with the AD subtypes. Genes harboring SNPs
originally listed in the GWAS catalog, GWAS DB [27] and the
BEFREE database [28] were compiled from DisGeNET, with gene-
disease association (GDA) score ≥ 0.01 to ensure that at least one
publication supported the GDA. Overall, we attempted to capture
the full spectrum of AD genetic architecture to identify AD-specific
regions (Supplementary Note 1).

High expression of AD-associated genes in cerebral nuclei,
midbrain, and limbic regions
To confirm that the 240 AD-associated genes were selectively
expressed in the nervous system, we compared our dataset with
nine other organ systems (see Methods) using two independent
datasets from GTEx [29] (Supplementary Fig. 2a) and the Human
Protein Atlas (Supplementary Fig. 2b) [30]. Our analysis revealed
that the AD-associated genes were tissue-specific (Supplementary
Note 2).
Although AD-specific transcriptomic datasets are available, they

have limited overlap with one another and are from disparate

sources, such as post-mortem human brain tissues, blood samples
and pharmacogenomic animal models [15, 31–34]. Therefore, we
examined the spatial expression patterns of the 240 AD-associated
genes using the adult brain microarray data available from the
Allen Brain Atlas (see Methods) [24], as seen in previous studies of
neuropsychiatric and neurological disorders [35–39]. Normalized
microarray data of 29,130 genes from 3702 dissected brain
samples of six healthy donors were analyzed. We categorized
these samples into three tiers according to the hierarchical
classification of brain structures in the Allen Brain Atlas neuroana-
tomical ontology [24]. Based on these tiers, 232 samples were
collected from tier 3 structures, which spanned 13 tier 1 structures,
i.e., cerebellum, cerebral nuclei, diencephalon, frontal lobe, insular
cortex, limbic lobe, medulla oblongata, midbrain, occipital lobe,
parietal lobe, pons, temporal lobe and white matter. The
intermediary tier 2 grouped tier 3 structures into anatomically
distinct subdivisions within tier 1 structures (e.g., cerebral nuclei,
amygdala and anterior amygdaloid area are tier 1, 2, and
3 structures, respectively). We sought to pinpoint the regions
showing high expression of AD-associated genes. To accomplish
this, we compiled a list of genes showing higher expression in each
of the 232 regions relative to others (as per computations
described by Rouillard et al. [40]), and checked their distribution
among the AD-associated genes using hypergeometric test
(p < 0.05 after Benjamini-Hochberg (BH) correction was considered
significant). We then identified the major areas in which AD-
associated genes clustered, by mapping the enriched tier
3 structures in each AD subtype to their parent tier 1 structures.
This revealed that AD-associated genes were enriched in a larger
number of tier 3 structures that mapped to the cerebral nuclei,
midbrain and the limbic system, compared to other tier 1 structures
(Table 1), making them the most represented areas among ADs.
This remained true both when GAD, SAD, PD and OCD-associated
genes were considered as independent gene sets (Table 1a) as well
as when combined into a single gene set (Table 1b). Hence, our
subsequent analysis focused on cerebral nuclei, midbrain and

Fig. 1 Methodology to understand the neurobiological implica-
tions of AD-associated genes. a Genes associated with four AD
subtypes were collected from two repositories that contain data on
disease-gene associations. Next, b Human Adult Microarray Data
from Allen Brain Atlas was used to systematically examine the
expression patterns of the AD-associated genes across 232 brain
regions belonging to 13 major structures in the human brain. The
major structures in which the AD-associated genes agglomerated
were pinpointed and c hierarchical clustering was performed based
on their expression profiles in these structures to isolate spatially
distinct gene clusters. d The biological attributes of these specific
gene clusters with characteristic expression profiles were identified.

Table 1. Major areas enriched among AD-associated genes.

Level 1 brain structure Number of tier 3 brain structures
showing significant association

a b

Cerebellum 0/38 0/38

Cerebral nuclei 14/21 7/21

Diencephalon 6/35 2/35

Frontal lobe 1/28 1/28

Insular cortex 0/2 0/2

Limbic system 8/16 4/16

Medulla oblongata 3/14 1/14

Midbrain 10/17 3/17

Occipital lobe 1/13 1/13

Parietal lobe 2/14 1/14

Pons 7/14 3/14

Temporal lobe 0/17 0/17

White matter 0/2 0/2

The number of tier 3 structures in each of the thirteen tier 1 structures that
show a statistically significant enrichment of (a) individual AD-associated
gene sets (i.e., by considering OCD, PD, GAD, and SAD associated gene sets
separately) and (b) a single AD-associated gene set (i.e., combining OCD,
PD, GAD, and SAD associated gene sets) at p < 0.05, after correction for
multiple hypotheses using the Benjamini–Hochberg method. The number
of enriched tier 3 structures has been shown in each cell, in comparison
with the total number of tier 3 structures mapped to the specific tier
1 structure.
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limbic regions, since AD-associated genes were selectively
expressed predominantly in these areas.
We sought to examine the relationships between different AD

subtypes using two approaches. First, we assessed the gene
overlaps between AD subtypes using a hypergeometric test, and
found significant overlaps between GAD, PD, and OCD (Supple-
mentary Fig. 3a). However, differences in gene set sizes of the AD
subtypes (ranging from 9 genes for SAD to 147 for OCD) could
have affected the significance of these overlaps, and produced
unexpected results such as the overlap between SAD and OCD,
rather than with PD, contrary to clinical observations [41].
Therefore, in an alternative approach, we analyzed the correlation
between the expression profiles of subtype-associated genes to
identify the connections between the subtypes. The analysis
revealed an expected positive, albeit moderate, correlation
between PD and SAD (Supplementary Fig. 3b). It also revealed
positive correlations of these subtypes with OCD, indicating that
they possibly share a genetic basis despite the lack of a direct
clinical correspondence (Supplementary Fig. 3b). Most impor-
tantly, GAD showed negative correlations with OCD and SAD,
signifying the presence of distinct gene groups with unique
expression patterns specific to individual AD subtypes.

Bifurcation of AD-associated genes based on differential
expression in cerebral nuclei, midbrain and limbic regions
Next, we sought to further clarify the spatial expression patterns of
AD-associated genes. To address this, we hierarchically clustered
the expression profiles of 139 AD-associated genes in cerebral
nuclei, midbrain, and limbic regions. A matrix containing the
expression values (log2-transformed probe intensities) of the
genes in tier 3 structures was used for performing hierarchical
clustering using Morpheus [42]. Pairwise distances and closely
linked clusters in the data matrix were calculated using Pearson
correlation and the average linkage method, respectively. The
heat map (Fig. 2a) showed the relative differences in the log2-
transformed probe intensities of AD-associated genes across
various brain structures. Interestingly, two immediately identifi-
able gene clusters showing distinct spatial expression profiles
emerged (Fig. 2a). The first cluster, which we named as ‘spatial
cluster 1’, contained 52 genes highly expressed in limbic areas and
specific cerebral nuclei (Fig. 2a). The second cluster labeled as
‘spatial cluster 2’ contained 87 genes showing lower expression in
the limbic system and higher expression in the midbrain and
specific cerebral nuclei (Fig. 2a). Quantification of expression levels
between the two clusters in these regions showed that spatial
cluster 1 exhibited higher mean expression in limbic samples than
midbrain samples (Fig. 2b). Conversely, spatial cluster 2 showed
higher mean expression in midbrain samples than limbic samples
(Fig. 2b), albeit in a statistically non-significant manner, possibly
due to the larger variance in expression (Fig. 2c). Comparison
across the two clusters showed that spatial cluster 1 showed
higher mean expression than spatial cluster 2 in limbic (Fig. 2d)
and cerebral nuclei samples (Fig. 2f). In short, AD-associated genes
bifurcated into limbic-associated spatial cluster 1 and midbrain-
biased spatial cluster 2, suggesting that potentially distinct neural
systems underlie anxiety. Note that we refer to spatial cluster 2 as
“midbrain-biased”, since the expression trend is consistently in
favor of the midbrain but not statistically significant.
Next, we sought to interpret the complex expression patterns of

the two spatial clusters shown in Fig. 2a. To address this, we asked
whether a large number of genes in a particular spatial cluster was
significantly biased toward high expression in any of the 232 tier 3
structures and computed this probability using a hypergeometric
test (p-value threshold set at <0.05 after BH correction). This
helped us pinpoint the specific regions associated with spatial
cluster 1 and spatial cluster 2 (Fig. 3). We found that specific
cerebral nuclei were preferentially/exclusively enriched in either
spatial cluster 1 or spatial cluster 2 (Fig. 3a). Furthermore, we

observed the exclusive enrichment of spatial cluster 1 and spatial
cluster 2 genes in limbic (Fig. 3b) and midbrain areas (Fig. 3c),
respectively. Figure 3d, e shows the enriched areas highlighted on
Nissl-stained images. These enrichments were derived using the
hypergeometric model, which evaluates the frequency of genes
with high expression in specific brain structures within the spatial
clusters, compared to their expected distribution among brain-
expressed genes. To validate these findings using an approach
that directly considers the raw expression values of the AD genes
in conjunction with their numerical overrepresentation in specific
regions, we employed gene set enrichment analysis (GSEA) [43].
First, we ranked genes by their expression levels in cerebral nuclei,
limbic, and midbrain regions and computed enrichment scores
(ESs), which indicated the degree to which highly expressed gene
sets in specific brain structures were overrepresented at either end
of the ranked gene list (corresponding to GSEA 1 and GSEA 2). We
then permuted the GSEA cluster labels, recomputed ESs to create
a null distribution for ESs, and calculated nominal p-values relative
to this null distribution. These p-values were corrected for false
discovery rate (FDR) to produce q-values, which were used to
assess the statistical significance of the regional specificities. GSEA
1 and GSEA 2 exhibited enrichment for subsets of the regions
enriched in spatial cluster 1 and spatial cluster 2, respectively
(Supplementary Fig. 4), except for globus pallidus. Nevertheless,
the globus pallidus is closely associated with the cerebral nuclei
identified in spatial cluster 1 by the original analysis (Fig. 3a). This
refined region list obtained with GSEA confirmed the ability of
hierarchical clustering to derive two different AD gene sets with
distinct spatial expression patterns.

Recapitulation of the spatial clusters using AD genes
supported by transcriptomic evidence
The 240 genes considered in our study as AD-associated were
selected due to their genomic proximity to AD-associated genetic
variants. Pinpointing the specific genes affected by the variants is
challenging without additional evidence confirming the impact of
the variant on gene expression or the dysregulation of the gene in
AD patients. To address this, first, we examined whether any of
these 240 AD-related genes showed altered expression patterns
associated with their respective variants. We utilized the FIVEx
database [44], which provides the summary statistics for expres-
sion quantitative trait loci (eQTL) associations of specific SNPs and
potential eGenes within 1 MB of the SNPs from various sources,
including BrainSeq [45], GTEx [46], and ROSMAP [47]. We applied a
threshold of p < 0.05 to identify statistically significant SNP-gene
associations across the whole brain or specific brain structures.
Additionally, we examined whether any of the 240 genes
exhibited differential expression (DE) in blood samples or post-
mortem brain structures of AD patients using the BaseSpace
correlation engine [48]. Only two AD datasets were available, one
with the expression profiles of (dorsolateral) prefrontal cortex
samples of OCD patients versus healthy controls (GSE60190 [49])
and the other with the blood expression profiles of GAD patients
(GAD score 7 ≥ 5) versus normal subjects (GAD score 7 < 2)
(GSE61672 [31]). Genes with a fold change >1.2 or < 1

1:2 were
considered significantly overexpressed or underexpressed, respec-
tively, at p < 0.05.
We found that the expression of 52 genes were significantly

modulated by their corresponding SNPs (Supplementary Data File
1), whereas 29 genes were differentially expressed in OCD patients
(Supplementary Data File 2). In addition, 24 genes had both
supporting eQTL and differential expression evidence. Altogether,
43.75% (105 genes) of the 240 genes in the proximity of AD-
associated variants had supporting transcriptomic evidence. The
expression profiles of 92 of these 105 genes were available in
Allen Brain Atlas. Hierarchical clustering revealed the bifurcation of
these 92 genes into two clusters, eQTL-DE 1 and eQTL-DE 2
(Supplementary Fig. 5a). These clusters not only respectively
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overlapped with spatial cluster 1 and spatial cluster 2 (Supple-
mentary Fig. 5b), but also recapitulated their regional specificities
(Supplementary Fig. 5c–e). The regions derived from this analysis
are subsets of the regions identified for spatial clusters 1 and 2 in
the original analysis (Fig. 3), with the exception of the lateral
nucleus. The striking overlap between the eQTL-DE clusters and
the spatial clusters clearly indicates the presence of two distinct
AD gene clusters with differential spatial expression profiles.

Validation of spatial clusters from AD-associated genes using
independent datasets and methods
Next, we examined whether we can recapitulate the two distinct
groups of AD genes even if we use independent datasets distinct
from the Allen Brain Atlas microarray data. We thus utilized the

RNA-sequencing datasets from BrainSpan Atlas [50] and GTEx [29],
containing Reads Per Kilobase Million (RPKM) and aggregate
median Transcripts Per Million (TPM) values, respectively. Inter-
estingly, the hierarchical clustering of these two datasets also
yielded two gene clusters. The derived gene clusters significantly
overlapped with the original spatial clusters 1 and 2. Specifically,
hierarchical clustering of the expression profiles of 134 (out of the
240) AD genes from BrainSpan Atlas across 26 brain structures
revealed BrainSpan 1 and BrainSpan 2 (Supplementary Fig. 6a),
each respectively demonstrating significant overlaps with spatial
cluster 1 and spatial cluster 2 (Supplementary Fig. 6b). Similarly,
clustering 171 AD genes from GTEx across 13 brain structures
revealed GTEx 1 and GTEx 2 (Supplementary Fig. 7a), each
displaying statistically significant overlaps with spatial cluster 1

Fig. 2 AD-associated genes bifurcated into two clusters based on differential expression patterns in the limbic and midbrain regions.
a The figure shows the dichotomized expression of 139 AD-associated genes across 374 cerebral nuclei, 397 limbic system and 182 midbrain
samples in the Human Adult Microarray Data (Allen Brain Atlas). Relative gene expression of each of the genes across the 953 brain sections
was hierarchically clustered by computing pairwise distances between the data points (log2-transformed probe intensities) using Pearson
correlation and identifying closely linked clusters using the average linkage method. The clustered heat map was generated using the
Morpheus software. The box plots show the differences in the log2-transformed average expression values of genes in b Spatial cluster 1 and
c Spatial cluster 2 across cerebral nuclei, limbic system and midbrain samples. In d–f, the box plots show the differences in d limbic system,
e midbrain and f cerebral nuclei samples between spatial cluster 1 and spatial cluster 2. The statistical significance of the difference between
the means of the box plots derived from the Mann–Whitney U test has also been shown. *, ** and *** indicate p < 0.5, <0.01 and <0.001,
respectively. In each box plot, the central line indicates the median, the bottom and top edges of the box indicate the interquartile range and
the whiskers represent the maximum and minimum data points. The means of untransformed probe intensities have been shown at the
bottom in b–f.
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Fig. 3 Spatial cluster 1 and spatial cluster 2 showed differential enrichment patterns in specific regions. The figure shows the enrichment
of spatial cluster 1 and spatial cluster 2 for genes showing relatively higher expression in a cerebral nuclei samples, b limbic systems samples
and cmidbrain samples, compared to other regions. The dotted black line in a–c indicates the cut-off value for –log10(p-value) after correction
for multiple hypotheses using the Benjamini-Hochberg method (p < 0.05, log10(p-value) > 1.30103). d, e show the specific areas in which
spatial cluster 1 and cluster 2 genes are highly expressed, highlighted against the background of Nissl-stained images, namely, the specific
d limbic areas and cerebral nuclei in which spatial cluster 1 genes are highly expressed, and e cerebral nuclei and the midbrain areas in which
spatial cluster 2 genes are highly expressed. f Dichotomized expression of 139 AD-associated genes across the enriched regions shown in a–c.
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and spatial cluster 2 (Supplementary Fig. 7b). On the other hand,
we could not derive any regional specificities for the BrainSpan
and GTEx clusters because they lacked the spatial resolution of the
microarray data and did not include samples from the specific
structures we had originally identified.
Next, we analyzed the spatial expression profiles of the AD-

associated genes using alternative independent methods –
namely, principal component analysis (PCA), t-distributed stochas-
tic neighbor embedding (t-SNE) [51] and k-means clustering [52] –
to determine the validity of the spatial clusters retrieved using

hierarchical clustering (see Methods). PCA recapitulated the two
spatial clusters along PC1 (which captured the maximum variance
in expression) (Fig. 4a). Approximately 54% of the spatial cluster 1
genes were found in quadrant I (p= 1.89E-10) of the PC score plot
(Fig. 4a). On the other hand, spatial cluster 2 genes were
segregated into two quadrants; 23% of the spatial cluster 2 genes
were found in quadrant III (p= 1.04E-07) and ~15% were found in
quadrant IV (p= 0.036) (Fig. 4a). In order to pinpoint the specific
samples that strongly contributed to the grouping patterns of the
genes as seen in the score plot (Fig. 4a), we examined their

Fig. 4 Independent clustering and dimensionality reduction methods recapitulated the spatial clusters. a PCA was performed with the
probe intensities of the AD-associated genes in cerebral nuclei, limbic system and midbrain samples in the Human Adult Microarray Dataset
(Allen Brain Atlas). The probe intensities were log2-transformed and a data matrix with brain regions (rows) and AD-associated genes
(columns) was constructed. Unit variance scaling was applied across this matrix. Singular value decomposition with imputation was used to
extract the PCs. Component scores (n= 139) corresponding to PC1 and PC2 explaining 89% and 3% of the total variance were plotted along X
and Y axes, respectively. b t-SNE plot constructed based on the gene expression of 139 AD-associated genes in cerebral nuclei, limbic system
and midbrain samples (metric= 1 – Pearson Correlation Coefficient, epsilon= 10 and perplexity= 30), color-coded based on their
membership in spatial cluster 1 (yellow) and spatial cluster 2 (green) derived from hierarchical clustering shown in Fig. 1a. In a and b, the p-
values of enrichment of the genes in each quadrant for spatial cluster 1 and spatial cluster 2 computed using hypergeometric test have been
shown. The p-values have been corrected for multiple hypotheses using the Benjamini–Hochberg method. c On the vertical axis on the right
side, the clusters of AD-associated genes derived from the k-means method (metric= 1 – Pearson Correlation Coefficient, number of
clusters= 2 and maximum number of iterations= 1000) have been color-coded based on their membership in spatial cluster 1 (dark brown)
and spatial cluster 2 (light brown) shown on the left side.
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loadings on PC1 and PC2 (Supplementary Note 3). This supported
the association of limbic samples with spatial cluster 1 (Supple-
mentary Fig. 8a), midbrain samples with spatial cluster 2
(Supplementary Fig. 8b) and specific cerebral nuclei samples with
both spatial clusters 1 and 2 (Supplementary Fig. 8c). Additionally,
the tier 3 regional specificities shown by the spatial clusters (Fig. 3)
were recapitulated by the PCA quadrants I, III and IV (Supplemen-
tary Fig. 9 and Supplementary Note 4).
Using t-SNE, we found that ~70% of the spatial cluster 1 genes

localized to quadrant IV. Spatial cluster 2 genes were segregated
into two quadrants; 39% of the spatial cluster 2 genes were found
in quadrant II and 29% were found in quadrant I (Fig. 4b). 94% of
the spatial cluster 1 genes occurred in k-means cluster 1 and 87%
of the spatial cluster 2 genes occurred in k-means cluster 2
(Fig. 4c). Hence, both t-SNE and k-means clustering recapitulated
the two spatial clusters derived from hierarchical clustering.

Behavioral traits, signaling pathways, cell types and gene
networks associated with the spatial clusters
In order to understand the functional implications of these spatial
clusters, we examined their enrichment among genes (a)
associated with specific GWAS traits, (b) involved in specific
synaptic signaling pathways using Gene Ontology (GO) biological
process annotations and (c) that serve as markers for various brain
cell types.
The spatial clusters were significantly enriched (at BH-corrected

p < 0.05) for 30 out of the 1737 traits found in the GWAS catalog
(Fig. 5a). Next, we determined the loadings of the –log10(p-values)
associated with these traits on the two clusters, which were
separated using PCA (Fig. 5b). This showed that only 5 out of the

30 traits were influential in bifurcating the two gene clusters
(Fig. 5b). OCD and major depressive disorder loaded positively on
spatial cluster 1, while obsessive compulsive (OC) ‘symptoms’, PD
and restless legs syndrome loaded positively on spatial cluster 2
(Fig. 5b). These associations were further supported by the
enrichment ratios shown by the AD subtype-specific genes in our
study, though they were statistically not significant (Supplemen-
tary Fig. 10). See Supplementary Discussion for possible explana-
tions regarding the loading of OC symptoms and OCD (as a
categorical disorder) on distinct spatial clusters.
On examining the GO biological processes [53] enriched in the

spatial clusters, using a hypergeometric test (BH-corrected
p < 0.05), we found that spatial cluster 1 was exclusively enriched
for genes involved in the glutamate (Glu) receptor signaling
pathway (Fig. 6a). Four Glu receptors were responsible for this
enrichment (GRIA3, GRIN2B, GRIK2, and GRM7). Spatial cluster 2
was exclusively enriched for genes involved in dopaminergic (DA)
synaptic transmission (Fig. 6a), specifically, two receptors (DRD2
and ADORA2A) and two transporter genes (SLC6A2 and SLC6A4).
Although the serotonin (5-HT) receptor signaling pathway was
enriched in both the spatial clusters, it showed a higher
enrichment in spatial cluster 2 (Fig. 6a). Different subsets of 5-HT
receptors contributed to this enrichment, namely, HTR1B, HTR3C,
HTR3D and HTR3E for spatial cluster 2 and HTR1A, HTR2A and
HTR3B for spatial cluster 1. The enrichment of the spatial clusters
for specific synaptic signaling pathways was also validated using
PCA (Supplementary Fig. 11 and Supplementary Note 5). Further
analysis confirmed that the Glu and DA/5-HT dichotomy was
indeed the factor that influenced the separation of the limbic-
associated and midbrain-biased spatial clusters 1 and 2

Fig. 5 Separation of the spatial clusters were influenced by specific GWAS traits. a The figure shows the enrichment of spatial cluster 1 and
spatial cluster 2 for genes associated with GWAS traits (in terms of –log10(p-values)). The dotted black line indicates the cut-off value for
–log10(p-value), i.e., 1.30103, after correction for multiple hypotheses using the Benjamini-Hochberg method. P-values from the enrichment
analysis were transformed to –log10(p-values), which were then assembled into a data matrix containing the traits as rows and the spatial
clusters as columns. Unit variance scaling was applied across this matrix. Single value decomposition (SVD) with imputation was used to
extract the principal components (PCs). b Component scores (black dots) of spatial cluster 1 and spatial cluster 2 corresponding to PC1 and
PC2 explaining 100% and 0% of the total variance were plotted along X and Y axes, respectively. Component loadings (red dots) of 5
dimensions, i.e., traits, contributing to PC1 and PC2 were plotted along X and Y axes, respectively.
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(Supplementary Fig. 12 and Supplementary Note 5). Upon re-
inspection of spatial cluster 2, we identified two sub-clusters that
showed differential enrichment in 5-HT and DA systems and
varied expression correlations in the midbrain raphe nuclei, basal
forebrain and basal ganglia (Supplementary Fig. 13 and Supple-
mentary Note 6).
Hence, we concluded that the spatial clusters not only displayed

spatial variations but also had associations with distinct signaling
pathways. This led us to suspect that the AD genes formed

co-expression networks with specific functional affiliations within
distinct brain regions. Through a co-expression network analysis,
using the Cytoscape Expression Correlation plugin [54], of the AD
genes based on their expression profiles in cerebral nuclei, the
limbic system and the midbrain, we identified two networks, one
comprising 92 genes (Supplementary Fig. 14a) and the other 16
genes (Supplementary Fig. 15a). These networks exhibited
pairwise gene correlations of r > 0.5, where r is Pearson correlation
coefficient. The 92-genes network displayed a statistically

Fig. 6 Spatial clusters showed enrichment in specific synaptic signaling pathways and contained region-specific gene networks and
pathway interactions. a The figure shows the enrichment of spatial cluster 1 and spatial cluster 2 for genes involved in synaptic signaling
pathways (in terms of –log10(p-values). The dotted black line indicates the cut-off value for –log10(p-value), i.e., 1.30103, after correction for
multiple hypotheses using the Benjamini–Hochberg method. The gene networks enriched with genes present in spatial cluster 1 and spatial
cluster 2 have been shown in b and c, respectively. Network nodes represent proteins and edges represent protein-protein associations
ranging from joint contribution to shared functions to direct physical interactions retrieved from the STRING database. As shown in the
legend, the colors of the edges denote the various types of associations. –log10(p-values) of enrichment of the gene networks for high
expression in specific regions have been shown in b and c. The dotted red line indicates the cut-off value for –log10(p-value), i.e., 1.30103, after
correction for multiple hypotheses using the Benjamini–Hochberg method. The enriched regions have been highlighted on Nissl-stained
images extracted from the reference atlas provided by the Allen Brain Institute. Using ReactomeFiViz, we isolated the functional interactions
that exist in the spatial cluster 1-enriched gene network shown in d. This functional interaction network can be seen in e, in which→ indicates
‘activation’, -| indicates ‘inhibition’ and – indicates ‘part of the same complex/physical association’ and dashed line indicates predicted protein-
protein interaction. In f, the enrichment of this functional interaction network for specific Reactome pathways has been shown in terms of
–log10(p-values). The specific proteins and functional interactions in e that are responsible for the pathway enrichments shown in f have been
enclosed in boxes with colored borders in g and connected to the relevant pathways in f using colored dashed lines. Functional interaction
networks and pathways for the spatial cluster 2-enriched gene network have been illustrated in h–k.
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significant overlap (p= 2.21E-04) exclusively with spatial cluster 1,
with ~47% (43 genes) belonging to spatial cluster 1. This network
was expressed in some of the structures enriched in spatial cluster
1, such as the caudate nucleus head and tail (Supplementary Fig.
14b). Despite its broader involvement in various biological
processes compared to spatial cluster 1, the 92-genes network
showed a statistically significant signal for the Glu signaling
pathway (Supplementary Fig. 14c). In contrast, all genes in the 16-
genes network were associated with spatial cluster 2 (p= 1.02E-
03). This network exhibited enrichment in midbrain structures,
which were also enriched in spatial cluster 2, such as the
cuneiform nucleus (Supplementary Fig. 15b). Additionally, in line
with the enrichment of the 5-HT signaling pathway in spatial
cluster 2, the 16-genes network showed enrichment solely in this
pathway (Supplementary Fig. 15c). In summary, we showed that
the regions enriched in the 92-genes network and the 16-genes
network were subsets of the regions originally identified in spatial
cluster 1 and spatial cluster 2, respectively. This confirmed that the
genes within these spatial clusters indeed form co-expression
networks in specific brain regions. Moreover, the enrichment of
Glu and 5-HT pathways in spatial cluster 1 and spatial cluster 2 was
also replicated by the two gene networks.
Interestingly, we also observed a large number of biophysical

interactions among the proteins encoded by spatial clusters 1 and
2, indicating their potential functional cohesiveness (Supplemen-
tary Fig. 16 and Supplementary Note 7). The network of protein-
protein interactions (PPIs) or the ‘protein interactome’ can be
studied to determine higher-order relationships such as the
pathway interactions that exist among disease-associated genes
[55–57]. Therefore, we (i) generated the network of the proteins
encoded by AD-associated genes using the STRING database [58],
(ii) isolated densely connected regions (referred to as ‘sub-
networks’ henceforth) in this network potentially involved in
specific cellular functions using the Markov Clustering (MCL)
algorithm and (iii) retrieved pathway interactions (using the
Cytoscape plugin ReactomeFiViz [59]) from these sub-networks in
which two proteins participate in the same reaction as compo-
nents of a protein complex, or as an input, catalyst, activator or
inhibitor (see Methods).
The interaction network contained the proteins encoded by 93

AD-associated genes interconnected via 380 functional associations,
including those based on gene co-expression (224/380 associations),
sequence homology (22/380 associations), shared chromosomal
neighborhood (8/380 associations), phylogenetic co-occurrence (2/
380) and experimentally determined PPIs (124/380 associations)
(Supplementary Fig. 17). We obtained 23 sub-networks after
applying MCL (inflation parameter= 3) to this network.
Spatial cluster 1 was significantly enriched for only 2 of these

sub-networks, out of which only one was enriched for a specific
function, computed based on GO biological processes, namely,
Glu receptor signaling pathway (FDR-corrected p= 1.61E-05). This
sub-network (Fig. 6b) contained 6 genes, which included 4 Glu
receptors (GRIA3, GRIK2, GRIN2B, and GRM7) and one Glu
transporter (SLC1A1). Additionally, this sub-network showed high
expression in the hippocampal formation (Fig. 6b). Spatial cluster 2
was significantly enriched for only 2 sub-networks (Fig. 6c), one of
which was enriched for cytokine secretion (p= 0.01; the genes
responsible include PTPN22, TNF and GRN) and another for 5-HT
and melatonin biosynthesis (p= 4.65E-03). The 5-HT synthesis
sub-network (Fig. 6c) contained 6 genes, which included 2
enzymes responsible for 5-HT production (TPH1 and TPH2) and
one 5-HT transporter (SLC6A4). This sub-network was highly
expressed in the midbrain and pons regions (Fig. 6c).
We found that 6 proteins in the spatial cluster 1-associated sub-

network (Fig. 6d) could be interlinked via 10 functional interac-
tions, by adding 3 ‘linker’ proteins to facilitate network identifica-
tion (Fig. 6e). Four of these proteins were involved in pathway
interactions mediated by 3 ionotropic Glu receptors (NMDA, AMPA

and kainite receptors) (Fig. 6f, g and Supplementary Note 8). In the
spatial cluster 2-associated sub-network (Fig. 6h), 6 proteins could
be interlinked via 14 functional interactions, by adding 7 linker
proteins (Fig. 6i). Three of these proteins were involved in
metabolic pathways of amine-derived hormones, including two
that participate in 5-HT and melatonin biosynthesis (TPH1and
TPH2) (Fig. 6j, k and Supplementary Note 8). We noted that the 6
genes in the sub-network were confined to the 5-HT-enriched
sub-cluster 2a (Supplementary Fig. 13 and Supplementary Note 6).
The transporter genes were co-expressed with the corresponding
receptors or synthetic enzymes as expected, supporting the
validity of the spatial cluster-enriched sub-networks (Supplemen-
tary Fig. 18 and Supplementary Note 9). Three genes interacting
with anxiolytic drugs were found in the two sub-networks
(Supplementary Fig. 19 and Supplementary Note 10).
We detected two clusters upon the hierarchical clustering of

148 AD-associated genes based on their cell-specificity scores –
pre-computed as detailed by Birnbaum et al. [60] and available
from the PsychENCODE (Human Brain Evolution) portal (http://
www.evolution.psychencode.org/) — in 29 transcriptionally dis-
tinct cell types of the human dorsolateral prefrontal cortex (single-
nucleus sequencing data) [61]. At the level of cell types, we noted
that cluster 1 significantly overlapped with spatial cluster 1 and
contained several genes showing high specificity scores in
excitatory and inhibitory cells. In contrast, cluster 2 showed a
significant overlap with spatial cluster 2 and high specificity scores
in astrocytes and microglia (Supplementary Fig. 20). An indepen-
dent dataset with fewer cell types corroborated these results
(Supplementary Fig. 21 and Supplementary Note 11).
Together, this analysis confirmed that the two spatial clusters

were associated with distinct behavioral traits, signaling pathways
and cell types, and contained functionally cohesive, region-
specific and clinically actionable gene networks and pathway
interactions, providing a mechanistic basis for their further
examination.

Temporal expression patterns of AD-associated genes
ADs are often characterized as neurodevelopmental disorders
since they collectively have earlier onset ages (compared to other
neuropsychiatric disorders) [62]. As the age onset varies between
the different subtypes, this suggests that temporal regulation of
developmental programs may determine the expression of
anxiety symptoms at different ages [63]. Furthermore, shared
genetic risk factors between AD subtypes and the high co-
morbidity of AD subtypes across the lifespan indicate that these
developmental programs may be genetically determined [63].
Thus, we hypothesized that the expression patterns of AD-
associated genes in specific developmental stages could provide
clues on the developmental trajectory of AD symptoms. We
examined the expression patterns of 139 AD-associated genes
throughout the course of brain development using the develop-
mental transcriptome data available in the BrainSpan Atlas [50].
The data was partitioned into ten developmental stages (Fig. 7a):
early, early-mid, late-mid and late prenatal stages, early and late
infancy, early and late childhood, and adolescence and adulthood
stages (see Methods).
Hierarchical clustering revealed four temporal clusters (I-IV) of

AD-associated genes showing distinct temporal expression
patterns (Fig. 7a); their regional specificities can be seen in
Supplementary Fig. 22. Housekeeping genes (detected in all the
tissues at transcripts per million ≥1, as per Human Protein Atlas)
constituted 26% of temporal cluster 1 (15 out of a total of 58
genes in the cluster), 35% of II (8/23), 48% of III (11/23) and 39% of
IV (13/33). However, their distribution in the temporal clusters was
as expected by random chance from hypergeometric distribution
(i.e., BH-corrected p > 0.05). Temporal cluster I contained 58 genes
and was enriched for high expression during late infancy (10
months-1 year; p= 0.032) and adulthood (21 years-40 years;
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p= 0.032) phases, whereas temporal cluster III contained 23 genes
and was enriched for high expression during the late prenatal
stage (25–37 pcw; p= 0.03) and early childhood (2–4 years;
p= 0.03) (Fig. 7b). Temporal cluster 1 showed enrichment for
spatial cluster 1 (p-value= 0.029) and temporal cluster 2 for spatial
cluster 2 (p= 6.6E-03) (Fig. 7c). Therefore, genes in temporal
clusters I and III intersected with specific developmental stages
and spatial clusters (Supplementary Fig. 23) and we identified the
top-20 pathways that were enriched among these genes
(Supplementary Fig. 24).
We noted that the enrichment ratios of the two spatial clusters

among genes highly expressed during specific stages were highly

negatively correlated (R=−1; p < 1E-05) (Fig. 7d). Further, to
determine whether specific genes were prominently expressed in
a particular brain region during specific developmental stages, we
obtained temporal expression profiles from the BrainSpan Atlas
for 24 genes belonging to spatial cluster 1 (Supplementary Fig.
25a). These genes exhibited high expression in hippocampal
regions, including CA1-CA4, the dentate gyrus, and the subiculum
(based on microarray data). Hippocampal regions were selected
due to their consistent association with spatial cluster 1. Across
the ten developmental stages, we observed a strong positive
correlation between the average expression values of the subset
of spatial cluster 1 genes highly expressed in the hippocampus

Fig. 7 Spatial clusters showed negatively correlated temporal expression patterns. a Four temporally distinct clusters (labeled from I-IV on
the horizontal axis at the bottom) were isolated from AD-associated genes by performing hierarchical clustering on expression data
partitioned into ten developmental stages as shown on the vertical axis. Housekeeping genes have been shown in brown font. Clustering was
performed on log2-transformed Reads Per Kilobase Million (RPKM) values using the hierarchical clustering method with average linkage. The
dendrograms were derived from the clustering analysis based on computation of Pearson correlation coefficients between the data points.
The clustered heat map was created using the Morpheus software. pcw: post-conceptional week. b The temporal identities of the clusters I-IV
were characterized using their enrichment ratios among genes highly expressed in each of the ten developmental stages. c The association of
the spatial clusters with the temporal clusters was ascertained by computing the enrichment ratios of the genes belonging to the temporal
clusters I-IV in spatial cluster 1 and spatial cluster 2. In b and c, *, **, and *** indicate p < 0.5, < 0.01 and < 0.001 after multiple test adjustment
using the Benjamini–Hochberg method. The dotted black line indicates the cut-off value for enrichment ratio, i.e., 1. The correlation of the
enrichment ratios of d spatial cluster 1 with spatial cluster 2, e spatial cluster 1 with OCD- and PD-associated genes and f spatial cluster 2 with
OCD- and PD-associated genes was compared among genes highly expressed in the ten different developmental stages (shown on the
horizontal axis). Pearson correlation coefficient (r) was used to examine the similarities and differences in the temporal identities of these
groups of genes.
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and the average expression values of all spatial cluster 1 genes in
all the BrainSpan regions (Supplementary Fig. 25b). From this, we
confirmed that the hippocampal spatial cluster 1 genes recapitu-
lated the overarching temporal pattern of spatial cluster 1,
characterized by peak expression in late infancy, a rise from late
childhood to adulthood, and notable drops during late prenatal
and early childhood stages.
To elucidate the temporal patterns of AD subtypes, we

examined the enrichment ratios of the genes associated with
the four AD subtypes in various developmental stages. Notably,
only OCD- and PD-associated genes—which were instrumental in
segregating the two spatial clusters (Fig. 5b)—showed significant
patterns. The enrichment ratios of OCD-associated genes in
specific stages showed a moderate positive correlation with that
of spatial cluster 1 (R=+0.65, p= 0.041) (Fig. 7e), and the ratios of
PD-associated genes showed a strong positive correlation with
that of spatial cluster 2 (R=+0.8, p= 5.23E-03) (Fig. 7f).
Conversely, PD-associated showed a strong negative correlation
with spatial cluster 1 (R=−0.8, p= 5.23E-03) (Fig. 7e) and OCD-
associated genes showed a moderate negative correlation with
spatial cluster 2 (R=−0.65, p= 0.041) (Fig. 7f). Overall, we
concluded that the two spatial clusters have two distinct and
negatively correlated temporal identities with twin peaks at
specific developmental stages, which were shared with specific
AD subtypes.

Trifurcation of the AD gene set upon inclusion of PTSD-
associated genes
Finally, we examined whether the two spatial clusters we obtained
with AD-associated genes were also relevant for disorders not
classically defined as ADs, but possibly sharing a common
background with ADs and having a genetic basis.
In DSM-5, post-traumatic stress disorder (PTSD) was not

included in the category of ADs, and was instead classified under
the category of trauma- and stressor-related disorders, due to its
behavioral phenotypes that were incongruent with the broader
AD symptoms [64]. However, recognizing the centrality of AD
traits such as fear and avoidance to PTSD development and
treatment [65], we identified 141 PTSD-associated genes from the
GWAS catalog and DisGeNET (Supplementary Table 2) and re-
performed the spatial clustering analyses. Twenty-four of these
genes overlapped with our original AD gene set. The expression
profiles of 71 of the remaining 117 unique PTSD-associated genes
were available for the analysis. Cerebral nuclei, the midbrain, and
the limbic system remained the predominant tier 1 structures,
whether considering PTSD-associated genes alongside other AD-
associated genes or as an independent gene set (Supplementary
Table 3). Hierarchical clustering of the spatial profiles of all the AD
genes, including those associated with PTSD, identified three
spatial clusters A–C (Supplementary Fig. 26a). Spatial cluster A
exhibited higher expression in limbic system samples compared
to midbrain samples (Supplementary Fig. 26b, f). In contrast,
spatial clusters B and C showed higher midbrain (than limbic)
expression, albeit in a non-significant manner (Supplementary Fig.
26c, d), with C showing higher midbrain expression compared to B
(Supplementary Fig. 26g). The three clusters showed enrichment
for specific tier 3 cerebral nuclei (Supplementary Fig. 27a). Spatial
cluster A showed exclusive enrichment for limbic structures
(Supplementary Fig. 27b), while spatial clusters B and C showed
enrichment for different subsets of midbrain structures (Supple-
mentary Fig. 27c).
Notably, spatial cluster A exclusively overlapped with the limbic-

associated spatial cluster 1 identified in the original AD gene set,
while spatial clusters B and C overlapped with the original
midbrain-biased spatial cluster 2, suggesting its division into two
clusters with the inclusion of PTSD genes (Supplementary Fig.
28a). Unlike our analyses using the original AD gene set, this
division helped us obtain statistically significant enrichments for

disorder-specific genes in the clusters, specifically, SAD- and PTSD-
associated genes in spatial cluster B (Supplementary Fig. 28b). This
spatial cluster also showed enrichment for the central nucleus of
the amygdala, a region implicated in the etiology of both
disorders (Supplementary Fig. 27a) [66–69].
In summary, by adding genes associated with PTSD, which has a

well-established genetic basis supported by GWA studies, to the
initial AD gene set, we were able to strikingly separate the original
spatial cluster 2 into two clusters (spatial cluster B and spatial
cluster C). The regions enriched in these two clusters were distinct
subsets of the midbrain structures enriched in spatial cluster 2.
Moreover, spatial cluster B displayed clear enrichment signals for
PTSD and SAD genes.

DISCUSSION
Despite the discovery of neural circuits functionally associated
with ADs through physiological experiments, whether AD-
associated genes show corresponding spatial distribution patterns
remains unexplored. Since previous attempts have used genetic
data from GWAS of only a single AD subtype [13] and rodent
models [14, 15], which have neither the genes nor brain regions to
recapitulate human AD [70, 71], it has not been possible to identify
the regional specificities associated with ADs within the human
brain. Here, we systematically examined the spatial expression
patterns of genes identified to be associated with four AD
subtypes through GWAS and determined that the cerebral nuclei,
midbrain and limbic system regions showed enrichment for AD-
associated genes, irrespective of AD subtypes (Tables 1a, b). To the
best of our knowledge, our study is the first to demonstrate the
preferential bias in the expression patterns of AD-associated genes
to the specific structures in these regions previously linked to the
anxiety state in physiological studies (Fig. 3a–c). Hence, our study
establishes a clear relationship between AD-associated genes
identified in GWA and targeted sequencing studies and regional
specificities discovered through PET and microstimulation studies.
Furthermore, we uncovered a previously unreported bifurcation

among AD-associated genes based on their differential expression
in the cerebral nuclei, limbic and midbrain regions, and identified
the neural circuits, signaling pathways, cell types and temporal
patterns underlying these gene clusters. The AD-associated genes
split into the limbic-associated spatial cluster 1 and the midbrain-
biased spatial cluster 2, each affiliated with specific cerebral nuclei
(Fig. 2a), which was confirmed through three additional methods
(Fig. 4) and two independent datasets (Supplementary Figs. 6 and
7). Previous studies have implicated these specific structures
enriched in the spatial clusters (Fig. 3) in the regulation of negative
decision-making and anxious temperament in rhesus monkeys.
Interestingly, these behaviors correspond to state and trait anxiety
states in humans.
In macaque studies of trait anxiety using PET, metabolism in the

hippocampus, the central nucleus of the amygdala, the bed
nucleus of the stria terminalis (or BNST), and periaqueductal gray
(or central gray substance) were found to predict individual
differences in anxious temperament [9, 10]. Genes in the spatial
clusters were enriched for these same regions, exhibiting a clear
correspondence with the physiological experiments. The recapi-
tulation of these regions, even when the AD gene set is
constrained to include only those supported by evidence from
eQTL and differential gene expression studies (Supplementary Fig.
5), strongly indicates the existence of two different sets of AD
genes with distinct spatial expression profiles. Specifically, we
found that the expression of AD-associated genes was enriched in
areas located close to the BNST (septal nuclei), the hippocampal
system (parahippocampal gyrus), and periaqueductal gray (raphe
nuclei, inferior colliculus, cuneiform nucleus and interstitial
nucleus of Cajal). In the studies of state anxiety, microstimulation
of multiple brain regions such as the caudal orbital frontal cortex,
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insula, and subgenual anterior cingulate cortex, and the striatum
(caudate nucleus, putamen, and nucleus accumbens) [11, 12]
induced pessimistic bias in conflict decision-making. These
findings suggest the causal involvement of these regions in state
anxiety. These areas send projections to the ventral tegmental
area, suggesting that regulating the dopaminergic system could
be the key feature of the neural circuits involved in state anxiety
[72, 73]. Our analysis showed that the expression of AD-associated
genes was enriched in these and the adjacent regions. Altogether,
the AD-associated genes converged on specific neural systems
linked to AD subtypes (Supplementary Discussion), and regulating
multiple aspects of state and trait anxiety, namely, sensitivity to
threat stimuli (extended amygdala) [74], threat-related behavioral
inhibition (septohippocampal system) [75], reinforcement con-
tingencies [76] and motivational conflicts [77] (the striatum) and
stress-induced defensive responses (periaqueductal gray) [78]. Our
findings also suggest that the neural systems underlying the
spatial clusters were distinct. Hence, these gene clusters, when
perturbed, may elicit different behavioral phenotypes and affect
distinct signaling pathways, gene networks, and cell types, which
we examined through enrichment analyses.
Inspection of PC loadings of the two clusters revealed that at

the level of behavioral phenotypes, the separation of spatial
cluster 1 and spatial cluster 2 was respectively influenced by OCD
and PD genes identified in GWA studies (Fig. 5b). Additionally, the
two spatial clusters showed distinct, albeit statistically non-
significant, patterns of enrichment ratios for AD subtype-specific
genes (Supplementary Fig. 10). However, when we added PTSD
genes to our original AD gene set, we could clearly detect
statistically significant enrichment signals for PTSD and SAD genes
in spatial cluster B, a subset of spatial cluster 2 (Supplementary Fig.
28b). Altogether, these findings suggest that the two spatial
clusters were associated with different symptom profiles repre-
sented by the AD subtypes (Supplementary Discussion).
We gained some insights into the relationships between the

different AD subtypes using co-expression analysis of AD subtype-
specific genes in cerebral nuclei, limbic, and midbrain regions
(Supplementary Fig. 3b). We found that all AD subtypes displayed
moderate correlations, with variations in the direction of correla-
tion. First, PD and SAD genes exhibited moderate positive
correlation, possibly reflecting their clinical comorbidity, as seen
in situational panic attacks in SAD patients [79]. However, SAD
genes were also moderately correlated with OCD genes, possibly
underlying shared traits such as interpersonal sensitivity and
obsessive doubts [80], despite the lack of a direct clinical
correspondence. Second, GAD genes showed moderate negative
correlation with OCD genes and SAD genes and moderate positive
correlation with PD genes (Supplementary Fig. 3b). These patterns
aligned with the enrichment ratios of AD subtype-specific genes in
the two spatial clusters (Supplementary Fig. 10a). GAD had a
higher enrichment ratio in the midbrain-biased spatial cluster 2,
similar to PD, possibly due to their clinical comorbidity, as
evidenced by catastrophic cognition-induced panic attacks in GAD
[81]. In contrast, OCD genes had a higher enrichment ratio in
spatial cluster 1, distinct from the pattern of GAD. These results
suggest that the clinical differences between GAD and OCD,
rooted in their respective associations with obsessional thoughts
and perseverative worry [82], may be linked to anti-correlated
regional expression patterns. SAD was mainly enriched in spatial
cluster 2, similar to GAD, but lacked any association with spatial
cluster 1, establishing a distinct enrichment pattern from GAD. In
summary, GAD, OCD, and SAD symptoms likely involve distinct
gene groups with unique expression patterns.
Additionally, the two spatial clusters were associated with

distinct signaling pathways, suggesting a dichotomy in the
neurophysiology of the AD symptoms regulated by them. Spatial
cluster 1 was involved in Glu receptor signaling pathway, and
spatial cluster 2 in 5-HT and DAergic signaling (Fig. 6a). Supporting

the regional (Fig. 3b) and AD subtype specificities (Supplementary
Fig. 10a) of spatial cluster 1, Glu signaling is predominantly seen in
hippocampal regions and the surrounding medial temporal cortex
[83], and Gluergic modulation has been implicated in OCD
pathogenesis [84]. On the other hand, 5-HT production is confined
to the midbrain raphe nuclei [85] and the ventral tegmental area is
a hub for DA production [86], both midbrain areas associated with
spatial cluster 2 (Fig. 3c). 5-HT and DA play important roles in AD
subtypes affiliated with spatial cluster 2. In PD patients, 5-HT
agonists induced anxiogenic responses, whereas selective 5-HT
reuptake inhibitors showed therapeutic benefits [87].
Our findings indicate that the spatial clusters contain function-

ally compact, regionally specific, and druggable gene modules
belonging to neuronal signaling pathways. They could operate at
the mechanistic level to regulate AD symptoms. We noted that the
high interconnectivity of the proteins encoded by the spatial
cluster genes (Supplementary Fig. 16) could be correlated with
functional cohesiveness, as shown by the network medicine
paradigm [88]. This led us to examine a network in which AD-
associated genes were interlinked (Supplementary Fig. 17) based
on functional associations and physical interactions (of the
proteins encoded by AD genes). Notably, we could independently
isolate sub-networks enriched with the spatial clusters from this
AD gene network. These sub-networks showed the regional and
pathway specificities of the spatial clusters (Fig. 6b–k) and
contained genes interacting with anxiolytic drugs (Supplementary
Fig. 19); additional findings indicate that the druggable AD gene
space remains unexplored (see Supplementary Discussion).
Our results suggest that specific cell types were affiliated with

the spatial clusters and could be selectively vulnerable to AD-
associated gene perturbations. However, further investigations
with more neuronal cell types are required to ascertain these
findings. Nevertheless, spatial cluster 1 overlapped with a gene
cluster enriched for excitatory cell markers (Supplementary Fig.
20), which was expected based on the association of Glu signaling
with spatial cluster 1, and spatial cluster 2 with astrocytes and
microglia, cell types that secrete inflammatory cytokines (Supple-
mentary Fig. 20). The latter corroborated the enrichment of
cytokine secretion, a process influencing the severity of anxiety
symptoms [89], in spatial cluster 2-enriched sub-network (Fig. 6c),
warranting further investigations on the role of inflammatory
processes in AD etiology.
Our genetic data integrated across the AD subtypes did not

corroborate the onset ages reported in other studies (14.5–15.5
years) [90]. Instead, the enrichment ratios of the four temporally
distinct clusters of AD-associated genes (Fig. 7a) either peaked
progressively across several stages (temporal clusters II and IV) or
peaked in two specific stages (temporal clusters I and III) (Fig. 7b).
These patterns corresponded respectively to waterfall and twin-
peak modes, previously reported for genes differentially expressed
during neocortical development [91]. Interestingly, the spatial
clusters showed enrichment for temporal clusters with twin-peaks
(Fig. 7c), indicating that AD mechanisms were likely to be
regulated in two critical life stages, perhaps as proposed in the
dual hit hypothesis for schizophrenia [92]. AD-associated muta-
tions may perturb the temporal pattern of genes whose
expression peak in specific developmental stages (e.g., late
infancy in spatial cluster 1 and late prenatal stage in spatial
cluster 2). This, in turn, could affect the developmental fates of the
signaling systems and neural circuitry regulated by these genes in
later stages (e.g., adulthood in spatial cluster 1 and early childhood
in spatial cluster 2). However, a more complex framework is
needed to explain AD pathogenesis, since regions critical to ADs
such as the amygdala and the hippocampus retain their
neuroplasticity and could be perturbed even in adulthood [93, 94].
The two spatial clusters, perhaps, regulate the development of

the associated AD phenotypes in distinct time windows, as
indicated by the negative correlation of their enrichment ratios in
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different life stages (Fig. 7d). The genetic architectures of OCD and
PD could determine their onset and progression, likely regulated
by spatial cluster 1 (Fig. 7e) and spatial cluster 2 genes (Fig. 7f)
respectively (with which they show positive correlation). There-
fore, critical junctures in development could be exploited for
therapeutic interventions.
Altogether, we comprehensively characterized the functional

underpinnings of the spatial clusters. However, our study has
several limitations (Supplementary Discussion), which should be
addressed in future works. In sum, we identified two spatially,
functionally and temporally distinct clusters of AD-associated
genes underlying distinct neural systems operating in the cerebral
nuclei, limbic and midbrain regions. These gene clusters will likely
guide future studies on the etiological aspects of ADs.

METHODS
Compilation of AD-associated genes
Two-hundred forty genes, including 26 genes associated with GAD, 9 with
SAD, 92 with PD and 147 with OCD, were collected from the GWAS catalog
[25] and the DisGeNET database (Supplementary Fig. 1 and Supplementary
Table 1) [26]. The genes compiled from the GWAS catalog were found
within 50 kb upstream or downstream of the AD subtype-associated SNPs.
The genes deposited in the GWAS catalog, GWAS DB [27] and the BEFREE
database [28] were compiled from the DisGeNET database (GDA was set at
≥0.01 to ensure that at least one publication has linked the gene in
question with the disease). Note that association of a gene with a disease
does not imply causality in most cases, and may only indicate an
association with disease susceptibility or an endophenotype. A hypergeo-
metric test was used to calculate the statistical significance of the pairwise
overlaps between the gene sets associated with specific AD subtypes.

Organ systems enrichment analysis
The enrichment of the AD-associated genes for genes expressed in specific
tissues was computed using RNA-sequencing data from GTEx [29] and
Human Protein Atlas [30]. From GTEx, the genes showing high/moderate
expression (TPM ≥ 9) in the RNA-sequencing data of 52 postnatal human
tissues were included, provided that they were not housekeeping genes,
i.e., genes detected in all the tissues with TPM ≥ 1. From the Human Protein
Atlas, genes showing tissue-enriched/tissue-enhanced/group-enriched
expression in 35 tissues were considered. Tissue-enriched genes showed
at least 5-folds higher mRNA levels in a particular tissue compared to all
the other tissues. Group-enriched genes showed at least 5-folds higher
mRNA levels in a group of 2–7 tissues and tissue-enhanced genes showed
at least 5-folds higher mRNA levels in a particular tissue compared to
average levels in all tissues. The enrichment of the AD-associated genes in
various tissues were examined using a hypergeometric test, and the BH
method for multiple hypotheses correction was applied to the obtained p-
values. The threshold for statistical significance was set at p < 0.05.

Brain region enrichment analysis
We examined the spatial expression patterns of the 240 AD-associated
genes using the adult microarray data available in the Allen Brain Atlas
[24]. Normalized microarray data was available for 29,130 genes from the
brains of six healthy donors (IDs 9861, 10021, 12876, 14380, 15496 and
15697), each dissected into 363–946 samples—yielding a total of
3702 samples—from 13 areas in the brain, namely, cerebellum, cerebral
nuclei, diencephalon, frontal lobe, insular cortex, limbic lobe, medulla
oblongata, midbrain, occipital lobe, parietal lobe, pons, temporal lobe and
white matter. Note that (a) the probes matching multiple genes were
excluded, (b) if the same gene has been detected by multiple probes, the
expression levels were averaged across the probes, and (c) 232 brain
regions (414 when the samples from the left and right hemispheres are
treated separately) were clustered into 13 brain areas (and the ventricles)
based on the structured vocabulary used in Allen Brain Atlas to classify
them. For the purpose of our study, we labeled these 13 brain areas as ‘tier
1 structures’ and the 232 sampled areas as ‘tier 3 structures’, and added an
intermediary ‘tier 2’ to cluster the tier 3 structures into major subdivisions
within the tier 1 structures. We sought to pinpoint the tier 3 structures that
showed high expression of the AD-associated genes, and then map these
structures to their parent tier 1 structures. We compiled a list of genes
highly expressed in each of the 232 tier 3 structures relative to others, as

described by Rouillard et al. [40], in the form of a gene matrix transposed
(GMT) file. This GMT file was uploaded as a custom database to WebGestalt
[95] for performing an over-representation analysis (ORA) with the AD-
associated genes. Statistical significance of the overlaps between the list of
AD-associated genes and the genes highly expressed in a specific tier
3 structure was computed based on hypergeometric distribution. In this
method, p-value is computed from the probability of k successes in n
draws (without replacement) from a finite population of size N containing
exactly K objects with an interesting feature.

P X ¼ kð Þ ¼
K
k

� �
N�K
n�k

� �

N
n

� �

Population size N= Number of genes expressed in the human brain
Number of successes in the population K=Number of genes highly

expressed in a specific tier 3 structure
Sample size n= Number of AD-associated genes
Number of successes in the sample k= K ∩ n
The p-values derived from ORA were corrected for multiple hypothesis

using the BH method. In this method, the hypergeometric p-values are
sorted from small to large, and multiplied by the total number of tests and
then divided by its rank order. P < 0.05 after BH correction was considered
to be statistically significant.

Hierarchical clustering of spatial expression profiles and cell-
specificity scores
To identify clusters of AD-associated genes having distinct spatial
expression profiles in the cerebral nuclei, limbic and midbrain regions,
we examined the adult microarray data in Allen Brain Atlas [24]. Log2
transformation was performed on all the probe intensity values to reduce
the influence of extreme values. Expression data for 139 out of the 240 AD-
associated genes were available in the dataset, i.e., for 17 out of the 26
GAD-associated genes, 7 out of the 9 SAD-associated genes, 60 out of the
92 PD-associated genes and 79 out of the 147 OCD-associated genes.
Hierarchical clustering was performed on a data matrix containing the
log2(probe intensity) values of 139 AD-associated genes in 374 cerebral
nuclei, 397 limbic system and 182 midbrain samples using the Morpheus
software [42]. Pairwise distances in the data matrix were calculated using
Pearson correlation and closely linked clusters were identified using the
average linkage method. The enrichment for tier 3 structures in the
clusters of AD-associated genes derived from this analysis was examined
using a hypergeometric test. The obtained p-values were corrected for
multiple hypotheses using the BH method and the p-value threshold after
correction was set at <0.05. The Mann–Whitney U test was used to
compare the average probe intensities of the two spatial clusters across
cerebral nuclei, limbic and midbrain regions. We additionally sought to
examine the grouping of AD-associated genes based on their affiliation
with various brain cell types. Hierarchical clustering was performed using
the cell type specificity scores of 139 AD-associated genes in 29 distinct
cell types of the human dorsolateral prefrontal cortex available in
PsychENCODE [61]. Pearson correlation was used as the distance metric
and the average linkage method was used to identify gene clusters.

PCA, t-SNE and k-means clustering of spatial expression
profiles
Following the established approach to reduce the influence of extreme
values on the PCs [96], the probe intensity values were log2-transformed
and assembled into a data matrix containing 139 AD-associated genes
(rows), and 374 cerebral nuclei, 397 limbic system and 182 midbrain
samples (columns), which was used as input for PCA, performed using the
web-based tool Clustvis [97]. The data matrix was pre-processed to include
only those rows and columns that contained less than 70% missing values.
The log2(probe intensity) values in the matrix were centered using the unit
variance scaling method, in which the values are divided by standard
deviation so that each row or column has a variance of one; this ensures
that they assume equal importance while finding the components. The
method called singular value decomposition (SVD) with imputation was
used to extract principal components. In this method, missing values are
predicted and iteratively filled using neighboring values during SVD
computation, until the estimates of missing values converge. The number
of PCs computed was equal to the number of column dimensions in the
data matrix, i.e., the number of brain samples in our case. PCA essentially
transformed our original variables (log2probe intensity) into uncorrelated
variables or PCs. These PCs were ranked in the descending order of the
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percentage of total variance explained by them. The positions of each
observation (denoting a specific gene) in the PC plot are called component
scores and are calculated as linear combinations of the original variables
(expression of the gene in specific cerebral nuclei/midbrain/limbic
samples) and the corresponding weights aij (also known as loading
values). For example, the score for the rth sample on the kth principal
component is calculated as

Yrk ¼ a1kxr1 þ a2kxr2 þ ¼þ apkxrp

The importance of each sample is reflected by the magnitude of their
corresponding loading values on the principal components (PC1 and PC2),
and these values were used to identify the samples that were most
influential in separating the AD gene clusters. The t-SNE plot was
constructed based on the expression of 139 AD-associated genes in
cerebral nuclei, limbic system and midbrain samples using the following
parameters: distance metric= 1—Pearson Correlation Coefficient, epsi-
lon= 10 and perplexity= 30. K-means clustering was performed on the
same dataset using the following parameters: distance metric= 1—
Pearson Correlation Coefficient, number of clusters= 2 and maximum
number of iterations= 1000.

Enrichment of GWAS traits, GO biological process and cell
type markers in spatial clusters
The enrichment of the spatial clusters for the genes associated with
different GWAS traits and specific biological processes (Gene Ontology
[98]) was computed using WebGestalt [95]. WebGestalt computes the
distribution of genes belonging to a particular functional category in the
input list and compares it with the background distribution of genes
belonging to this functional category among all the genes that belong to
any functional category in the database selected by the user. Statistical
significance of functional category enrichment is computed using a
hypergeometric test and corrected using the BH method for multiple test
adjustment. Annotations with BH-corrected p < 0.05 were considered
significant. The –log10(p-values) obtained from the enrichment analysis
with GWAS traits were used as inputs for PCA (as seen in previous studies
[99, 100], which was performed to identify the traits that were influential in
separating the two spatial clusters. To examine the enrichment of the
spatial clusters in specific cell types, we compiled the lists of marker genes
that are specifically expressed in neuronal and non-neuronal cell
populations of the prefrontal cortex from a study by Lake et al. [101],
namely, 79 genes in astrocytes, 157 genes in excitatory cells, 303 genes in
inhibitory cells, 44 genes in microglial cells, 103 genes in oligodendrocytes
and 52 genes in oligodendrocyte precursor cells (OPCs). Only those genes
with log2(fold change) ≥1 in a given cell type compared to all the other cell
types were considered to be cell-specific.

Network analysis of AD genes
STRING is a repository of known and computationally predicted ‘functional
associations’ defined as productive functional relationships between two
proteins that contribute to the same biological process [58]. These
associations are (a) compiled from primary repositories such as DIP,
BioGRID, HPRD, IntAct, MINT and PDB that contain experimentally
validated interactions, (b) inferred from pathway information available in
expert-curated databases (KEGG) and statistical/semantic connections of
proteins available in biomedical literature (MEDLINE), and (c) predicted
based on co-expression patterns, genomic information and interactions
known in multiple organisms. We first used the STRING database to
compare the number of edges (denoting functional associations)
interconnecting the genes in each of the spatial clusters with the number
of edges in a randomly selected gene set of the same size and degree
distribution. Then, we used STRING to construct a functional network of
AD-associated genes containing 93 AD genes and 380 functional
associations among them. The majority of the functional associations
were based on gene co-expression (59%) and experimentally determined
PPIs (33%), and the less prevalent ones were based on sequence homology
(6%), shared chromosomal neighborhood (2%) and phylogenetic co-
occurrence (0.5%). STRING uses the unsupervised algorithm MCL to
generate a weighted correlation network based on evidence scores of the
functional associations between the genes. The structural organization of
the network is then identified by simulating stochastic flows in it. In order
to retrieve a substantial number of densely interconnected sub-networks
of AD genes, we applied MCL to the AD gene network with the inflation
parameter (which influences the granularity of the sub-networks) set at 3.

We obtained 23 densely interconnected sub-networks, out of which 8 had
3 or more genes. ReactomeFIViz, a Cytoscape plugin, was used to extract
the known pathway interactions between the genes in the spatial-enriched
sub-networks extracted using MCL [59]. Cytoscape was used to visualize
the networks [54].

Hierarchical clustering of temporal expression profiles
To identify gene clusters with distinct temporal expression profiles from
the AD-associated genes, we examined the developmental transcrip-
tome RNA-sequencing data available in the BrainSpan Atlas [50]. It
contained a total of 524 samples from 31 temporal points spanning ten
developmental stages: early prenatal (8–12 pcw): 75 samples, early mid-
prenatal (13–17 pcw): 97 samples, late-mid prenatal (19–24 pcw):
43 samples, late prenatal (25–37 pcw): 22 samples, early infancy (4 mos):
33 samples, late infancy (10 mos-1 yr): 26 samples, early childhood
(2–4 yrs): 44 samples, late childhood (8–11 yrs): 41 samples, adolescence
(13–19 yrs): 50 samples and adulthood (21–40 yrs): 93 samples. The
sample sizes, when used with the BH method for FDR correction, are
adequate to minimize false positives. This method effectively controls
FDR, which represents the expected proportion of false positives among
all positives that reject the null hypothesis. The BH method also
produces a stronger correlation between raw and FDR-adjusted p-
values compared to other multiple hypotheses correction methods,
indicating its higher reliability [102].
Average RPKM values were calculated for multiple brain samples

dissected during each of the ten developmental stages. Log2
transformation was performed on all the average RPKM values to
reduce the influence of extreme values. Note that unexpressed genes
showing RPKM= 0 were treated as n/a. The temporal profiles of 139 AD-
associated genes across the temporal points partitioned into ten
developmental stages were processed into a data matrix of genes
versus temporal points. Hierarchical clustering was performed on
log2RPKM values in this matrix using the Morpheus software [42].
Pairwise distances in the data matrix were calculated using Pearson
correlation and closely linked clusters were identified using the average
linkage method. We compiled lists of genes showing relatively higher
expression in specific developmental stages compared to others
(computations described in Rouillard et al. [40]), and checked their
enrichment in each of the clusters derived from this analysis to
characterize their temporal profiles. We used Pearson correlation (R) to
examine the correlation of the enrichment ratios of the spatial clusters
and OCD-/PD-associated genes in a pairwise manner.

DATA AVAILABILITY
The AD-associated genes analyzed in this study have been made available as
Supplementary Table 1.
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