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Realization of photon correlations beyond the linear
optics limit
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Linear optical transformations of multiple single-photon inputs are fundamental for the development of pho-
tonic quantum technologies. Various nonclassical correlations can already be observed directly in states gen-
erated using only single-photon inputs and linear optics transformations. However, some quantum correlations
require additional operations, and states that exhibit such correlations are classified as non-Fock states. Here, we
demonstrate the generation of a two-photon three-mode non-Fock state that exhibits conditional quantum co-
herences that can only be achieved by non-Fock states. We determine the fidelity of the non-Fock state based on
experimentally observed conditional visibilities that characterize the state and compare the result to the fidelity
bounds for different classes of Fock and non-Fock states. Our experimental verification of the non-Fock charac-
ter of the state provides insights into the technological requirements needed to achieve nonclassical correla-
tions in multiphoton quantum optics.
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INTRODUCTION
Photonics is a promising platform for realizing quantum technolo-
gies due to the high robustness to decoherence and the ease of
precise control of photonic quantum states using conventional
optical components (1, 2). The combination of single-photon
inputs with linear optics transformations has been a workhorse
for exploring quantum information science, such as quantum com-
puting (3–10), quantum communication (11–14), and quantum
metrology (15, 16). A representative example is the boson sampling
scheme (8–10), where multiple indistinguishable single-photon
states experience complicated multiphoton interferences in a
linear optical network, demonstrating distinct quantum advantages
because the photon number distribution in the output state cannot
be effectively simulated by classical computers (17).

However, it is important to note that the combination of single-
photon inputs and unitary transformations realized by a linear
optical network is not sufficient to generate any arbitrary
quantum state of multiple photons in multiple optical modes (18,
19). Single-photon inputs into a linear optical network can only
generate states in which each mode has a fixed photon number
when an optimal set of orthogonal optical modes is used to
define the Fock basis.We refer to these states as Fock states in amul-
tiphoton multimode context. States with a fixed total photon
number that cannot be represented by multimode Fock states are
classified as non-Fock states. These definitions provide a distinction
between Fock states and non-Fock states that does not depend on a
specific mode decomposition, indicating that non-Fock states have
characteristic statistical properties that are invariant under linear
optics transformations.

Recently, non-Fock states have attracted increasing attention
because many of the most useful multiphoton multimode states
are non-Fock states, including such well-known examples as

polarization-entangled Bell states (20), N00N states with photon
numbers N larger than three (15), and multimode N00N states
(21). Lemr and Fiuraśěk (18) reported a theoretical protocol to
prepare an arbitrary state of two photons in several spatial modes
using pairs of photons, linear optical elements, and single-photon
detectors or postselection. Migdał et al. (22) studied the classifica-
tion of the multiphoton multimode states that are invariant under
linear optics transformations. Recently, Sperling et al. (23) theoret-
ically identified multiphoton states which are entangled for arbi-
trary mode decompositions, a concept closely related to non-Fock
states. In these previous theoretical works, however, the possible ex-
perimental criteria for the characterization of non-Fock states were
not considered in any detail.

Here, we demonstrate an experimental criterion for the success-
ful generation and verification of a non-Fock state in a photonic
quantum circuit. The criterion is based on the observation that,
in non-Fock states, the quantum coherences of photons can
depend strongly on the modes in which other photons are detected.
We refer to this characteristic property associated with non-Fock
states as conditional quantum coherence. In the case of a two-
photon three-mode state, maximal conditional quantum coherence
is obtained when the detection of a photon in any of the three
modes ensures with certainty that the other photon will be found
in an equal superposition of the remaining two modes. The state
that achieves this maximal conditional quantum coherence is a
non-Fock state. It is impossible to achieve maximal conditional
quantum coherence with Fock states or with mixtures of Fock
states. A state exhibitingmaximal conditional coherence is therefore
a non-Fock state characterized by an experimentally observable
nonclassical correlation. To evaluate the necessary resources of
quantum state generation, we distinguish four classes of multipho-
ton multimode states—single-mode Fock states (SMFSs) where
multiple photons are all found in the same mode for a specific
mode decomposition; multimode Fock states (MMFSs) where
each mode of a specific mode decomposition contains a precisely
defined number of photons; non-Fock states generated by attenua-
tion of a Fock state (NF-AFS), which is a non-Fock state realized by
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detecting vacuum states in the outputs of a linear optics transforma-
tion; and intrinsic non-Fock states (iNFSs), which require coherent
photon subtraction when generated from Fock-state inputs. The ob-
servation of maximal conditional quantum coherence ensures that
the state is an iNFS requiring the full set of resources in its genera-
tion. The other classes of multiphoton multimode states only
achieve lower levels of conditional coherence, and these levels of
conditional coherence can be expressed in terms of the fidelity of
the iNFS that achieves maximal conditional coherence.

We experimentally demonstrate the generation of an iNFS with
maximal conditional coherence for a two-photon three-mode state,
evaluating its fidelity on the basis of the experimental observation of
conditional visibilities between the modes. The generation of an
iNFS from Fock-state inputs always requires the postselection of a
photon detection event, previously applied to the generation of a
three-photon two-mode non-Fock state (24). Here, we intend to
generate a two-photon three-mode state to achieve conditional co-
herence, a property that can only be defined in at least three modes.
For the generation of the two-photon three-mode non-Fock state,
we first prepared a three-photon six-mode Fock state and then per-
formed a coherent single-photon subtraction realized by a three-
mode discrete Fourier transform (DFT) linear optic circuit. The
challenge of realizing this setup is stabilizing the optical phases in
both the state preparation and the verification of the conditional
quantum coherence. We overcame this difficulty by adopting a spe-
cially designed double-DFT circuit combining a displaced Sagnac
architecture with a special hybrid beam splitter (BS) (HBS). As a
result, we were able to observe a high average of 92 ± 2% for the
conditional visibility and found that the fidelity of the state with
maximal conditional coherence was 0.92 ± 0.03, which is larger
than the upper bound that can be achieved by NF-AFS (lower
bound of iNFS verification) with a statistical certainty of 3 SDs.
We believe that these theoretical and experimental results provide
an alternative tool for identifying and controlling nonclassical cor-
relations in multiphoton multimode systems, paving the way for ap-
plications of iNFS in photonic quantum technologies.

RESULTS
Classification of multiphoton states
It is difficult to distinguish Fock states from non-Fock states because
a Fock state must be defined in a specific mode decomposition. This
mode decomposition represents the resources used in the genera-
tion of the multiphoton state, as illustrated in Fig. 1. The photon
numbers detected in another mode decomposition b̂i will always
fluctuate, whether or not the state is a Fock state. In general, a
Fock state is a state with a well-defined photon number in each
mode âi, where âi is the annihilation operator of that specific
mode decomposition. Although this definition of a Fock state as a
state without photon number fluctuations can be confirmed exper-
imentally when the modes âi are known, it is important to keep in
mind that a Fock state is still a Fock state, even if it is expressed or
detected in different modes b̂i.

Fock states can be classified into SMFSs and MMFSs according
to the number of modes with nonzero photon number. When all
photons are in the same mode, as shown in Fig. 1A, the SMFS

can be expressed as

jSMFSi ¼
1
ffiffiffiffiffi
N!
p ðâyi Þ

N
jvaci ð1Þ

where N is the total number of photons in the SMFS. Any state
written in this manner is an SMFS. For consistency, mixed states
that can be written as mixtures of SMFS with different unknown
mode decompositions should also be considered SMFS. Note that
this would include multiphoton states from thermal light sources,
indicating that SMFS represents the classical limit of multiphoton
states. On the other hand, MMFSs are Fock states with photons in
more than one mode as shown in Fig. 1B. In the Fock basis, these
states can be written as

jMMFSi ¼
YM� 1

i¼0

1
ffiffiffiffiffiffi
ni!
p ðâyi Þ

ni
jvaci ð2Þ

where M is the number of optical modes and ni is the number of
photons in each mode. Note that at least two of the values ni need
to be nonzero for the state to qualify as an MMFS rather than an
SMFS. In contrast to SMFS, MMFS can describe genuine multipho-
ton interference effects such as the Hong-Ou-Mandel effect (25)
and nonclassical correlations between entangled photons (15, 26).

If it is fundamentally impossible to find a mode decomposition
with a well-defined photon number in eachmode, the state has to be
classified as a non-Fock state. As a logical consequence of this def-
inition, non-Fock states cannot be generated from Fock states using
only linear optics (18). It is possible to classify non-Fock states based
on the type of additional operation that is needed to generate them.
In general, these operations can always be described by postselected
photon detection (18, 27–29). The simplest operation is the detec-
tion of a vacuum output in a mode composed of a superposition of
other modes. This operation does not change the total photon
number but does eliminate one or more modes from the creation
operators of the photons, allowing photons to occupy nonorthogo-
nal modes. We classify states that can be generated by this kind of
attenuation process by vacuum detection as NF-AFSs. This class of
states can be expressed in the form

jNF-AFSi ¼
1
ffiffiffiffiffiffiffi
N γ

q
YM� 1

i¼0
ðγ̂âyi γ̂

yÞ
ni
jvaci ð3Þ

where γ̂ represents the removal of themodes detected in the vacuum
from the creation operators âyi . For themodes b̂

y

i used in the vacuum

subtraction, γ̂b̂
y

i γ̂
y ¼ 0 for all modes that are detected in vacuum

state while γ̂b̂
y

i γ̂
y ¼ b̂

y

i for all modes that remain. γ̂âyi γ̂
y can therefore

be solved by transforming âyi into the modes b̂
y

i and transforming

back into âyi after the removal of the specific selection of b̂
y

i . The
result is that the creation operators γ̂âyi γ̂

y now represent nonorthog-
onal modes. The experimental procedure is illustrated in Fig. 1C.

Not all non-Fock states can be classified as NF-AFS because not
all states can be represented in the form given by Eq. 3, with the only
difference betweenNF-AFS andMMFS being the use of nonorthog-
onal modes for the creation operators. All non-Fock states that
cannot be classified as NF-AFS will be classified as iNFS, as depicted
in Fig. 1D. For an N-photon iNFS, there is no possible way of
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representing the state by the application of exactly N creation oper-
ators to the vacuum. An iNFS can only be expressed in terms of a
genuine superposition of different creation operator products.

Fidelity bounds for conditional coherence
A good strategy for the verification of an iNFS is to consider the
states conditioned by photon detection in only one of the M avail-
able modes. Because iNFS do not prefer a specific mode basis, they
can exhibit correlations between nonorthogonal modes that are
never found in Fock states. Here, we consider the case of conditional
coherences, where the detection of photons in one mode conditions
a maximally coherent superposition between the remaining modes.
Conditional coherences thus maximize correlations between the
initial mode structure and superposition modes, demonstrating
the absence of a preferred mode basis. In principle, this method
can be used for any number of photons, but it should be noted
that the precise definition of detected photon numbers and their
conditional coherences is not uniquely defined when more than
two photons are involved. In the case of two photons, the detection
of the first photon always conditions a well-defined single-photon
coherence for the remaining photon. For a three-mode state, the de-
tection of a photon in one mode results in maximal coherence
between the remaining two modes for the second photon. This
maximal conditional coherence state (MCCS) is given by

jψCCi ¼ ðj110iþ j101iþ j011iÞ=
ffiffiffi
3
p

ð4Þ

It is easy to see that the detection of one photon inmodem results in
maximal coherence between the other two modes, with a phase dif-
ference of zero between the modes. This conditional coherence
ensures that the state cannot be a Fock state, because each condi-
tional coherence corresponds to a different mode decomposition.

A formal analysis of the non-Fock character of two-photon states
is possible by transforming the state into its biphoton basis. The bi-
photon basis is a special case of the more general characterization of
bosonic two-particle entanglement (30–32). It is always possible to
express a two-photon M-mode state in terms of components with
both photons in the same mode. This corresponds to a Schmidt de-
composition of the two-photon state when the two photons are

expressed as distinguishable particles with bosonic symmetry. The
biphoton basis is therefore uniquely defined for each two-photon
state (see Materials and Methods). The biphoton decomposition
of the MCCS is given by

Û jψCCi ¼ ð2 j200iþ j020iþ j002iÞ=
ffiffiffi
6
p

ð5Þ

where Û represents the necessary transformation of the basis
modes. Note that the specific form of Û is not relevant for the def-
inition of fidelity bounds, because it is not used in the experimental
evaluation of the state. It is easy to see that theMCCS is not an SMFS
because the biphoton decomposition of an SMFS has only a single
nonzero term (rank 1). From this observation, we can find the
maximal MCCS fidelity that can be achieved by an SMFS. The bi-
photon decomposition itself can be interpreted as a superposition
of different SMFS, so the maximal fidelity is achieved by the SMFS
with the highest contribution in the biphoton decomposition. In
Eq. 5, this is the contribution from ∣200⟩. The maximal MCCS fi-
delity achieved by an SMFS is therefore equal to the probability of
finding the |200⟩ component in the MCCS

FðSMFSÞ � jh200 j Û jψCCij
2
¼ 2=3 ð6Þ

Any state with an MCCS fidelity greater than 2/3 is definitely not
an SMFS.

Next, we consider the maximal fidelity of an MMFS. A two-
photon MMFS is represented by two photons in orthogonal
modes, so the biphoton decomposition of any two-photon MMFS
has a rank of two with exactly absolute values for its two coefficients.
The maximal overlap with theMCCS can therefore be determined by

jhψCC jMMFSij2 �
1
2
jh200 j Û jψCCi þ h020 j Û jψCCij

2
ð7Þ

and the maximal MCCS fidelity for an MMFS is

FðMMFSÞ � 3=4 ð8Þ

The biphoton decomposition also allows a simple determination of
the maximal fidelity achieved by an NF-AFS. Because an NF-AFS can
be generated by vacuum detection, we only need to consider the
effects of vacuumdetection on the coefficients of the biphoton expan-
sion. It is obvious that the rank of the biphoton state cannot be in-
creased because vacuum subtraction cannot transfer the photons into
entirely new modes. However, it is possible to change the amplitudes
of the biphoton expansion to precisely match the amplitudes of the
MCCS. Therefore, the maximal overlap is found to be

jhψCC jNF-AFSij2 � jh200 j Û jψCCij
2
þ jh020 j Û jψCCij

2
ð9Þ

and the maximal MCCS fidelity for an NF-AFS is

FðNF-AFSÞ � 5=6 ð10Þ

A fidelity greater than 5/6 for the MCCS indicates the generation of
an iNFS, with the MCCS itself representing the ideal iNFS. These
results confirm that the conditional coherence of the three-mode
MCCS is a nonclassical correlation that is characteristic of iNFS.

It may be worth noting that the biphoton decomposition can also
be applied to states with conditional coherences in more than three
modes. However, there is a wider variety of possibilities because it is
not necessary to use all M(M − 1)/2 distributions of two photons
among the M modes when defining the state. It is not very difficult

Fig. 1. Schematic representation of different classes of states based on their
generation by linear optics and postselection. U and U0 represent linear optics
transformations of the modes. ∣vac⟩ represents vacuum detection, and ∣1⟩ repre-
sents single-photon detection. (A) Generation of an SMFS. (B) Generation of an
MMFS. (C) Generation of an NF-AFS. (D) Generation of an iNFS by coherent
photon subtraction.
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to identify MCCSs that are iNFSs for all M > 3, although it may be
interesting to identify specific topologies that maximize the non-
Fock character of their conditional coherence. Next, we consider
the experimental evaluation of the MCCS fidelity, based on the
photon detection statistics associated with conditional coherence.

Evaluation of fidelity of states with maximal conditional
coherence
In principle, there is an infinite number of ways to evaluate the fi-
delity of a given quantum state experimentally. However, we focus
on the characteristic feature of the intended state represented by the
conditional coherences. A conditional coherence can be evaluated

by detecting a photon in one of the three modes and subsequently
detecting the other photon in a superposition of the remaining two
modes. This procedure corresponds to the detection of a state |Ci⟩,
where i is the mode index of the mode in which the initial photon is
detected. The three possible measurement states can be represented
by

jC0i ¼ ðj110iþ j101iÞ=
ffiffiffiffi
2;

p

jC1i ¼ ðj110iþ j011iÞ=
ffiffiffiffi
2;

p

jC2i ¼ ðj101iþ j011iÞ=
ffiffiffi
2
p

ð11Þ

Fig. 2. Experimental setup. (A) Schematic setup for preparing a two-photon three-mode iNFS with single-ancilla photon subtraction. The three-photon six-mode Fock
state is prepared (yellow) by three BSs. A photon is then sent to system A, while the other photons are directed to system B. In system A (red), the DFT optical circuit
performs a projection measurement by detecting a single photon at output port A00. With a successful projection measurement, system B (blue) deterministically pre-
pares the target state. (B) Schematic setup for evaluating conditional quantum coherence of measurement state ∣C0⟩. To implement single-photon detection at B0, the
conditional quantum interference between B1 and B2 is observed in BS4. (C) Experimental setup of photonic quantum circuit for both generation and verification of iNFS.
BBO, beta-barium borate; BPF, band-pass filter (780 ± 1 nm); SPCM, single-photon counting module; PBS, polarizing beam splitter; LCVR, liquid crystal variable retarder;
POL, polarizer; PS, phase shifter. The modes A0, A1, and A2 depicted in (A) and (B) are encoded onto the horizontal polarization of the modes In0, In1, and In2, respec-
tively. Similarly, modes B0, B1, and B2 are encoded onto the vertical polarization of the modes In0, In1, and In2, respectively. The LCVRs change the phase shift of ϕ in (B)
before the DFT optical circuit. POL0, POL1, and POL2 enable selection of the combination of detected systems after the DFT optical circuit.
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The conditional coherence of the state can be evaluated by obtaining
the measurement probabilities of these three measurement out-
comes. For an arbitrary input state ρ̂

PðCiÞ ¼ hCi j ρ̂ jCii ð12Þ

Quantum mechanics limits the sum of the three probabilities P(Ci)
to the maximal eigenvalue of the operator given by the sum of the
three projectors onto the states ∣Ci⟩

PðC0Þ þ PðC1Þ þ PðC2Þ � 2 ð13Þ

The state that achieves the bound of 2 is the MCCS. The fidelity of
the MCCS for an arbitrary input state ρ̂ is defined as

FEXP ¼ hψCC j ρ̂ jψCCi ð14Þ

This projection onto ∣ψCC⟩ can now be expressed in terms of con-
ditional coherence and photon number distributions. The result
reads

FEXP ¼
2
3 ½PðC0Þ þ PðC1Þ þ PðC2Þ�

� 1
3 ½Pð110Þ þ Pð101Þ þ Pð011Þ� ð15Þ

It is easy to confirm that the states ∣Ci⟩ have anMCCS fidelity of 2/3
each, satisfying the bound for SMFS although they are actually
MMFSs. A genuine quantum coherence is necessary to obtain a
maximal conditional coherence as expressed by MCCS in Eq. 4. Ex-
perimentally, it is possible to obtain the probabilities P(Ci) from the
probabilities of the photon number distributions P(110), P(101),
and P(011) and the conditional visibilities Vi observed when a
photon is detected in mode i {e.g., P(C0) = [P(110) + P(101)](1 +
V0)/2}. Therefore, Eq. 15 can be experimentally determined by the
photon number distribution and the conditional visibilities

FEXP ¼
1þV0þV1

3 Pð110Þ þ 1þV0þV2
3 Pð101Þ

þ 1þV1þV2
3 Pð011Þ

ð16Þ

Experimental demonstration
Figure 2A shows the schematic setup for generating ψCC. Three
single-photon inputs are injected into three BSs. The three-
photon six-mode Fock state at the output of the three BSs can be

written as

jΦiAB ¼ ðj0iA0j1iB0 þ j1iA0j0iB0Þ=
ffiffiffi
2
p

� ðj0iA1j1iB1 þ j1iA1j0iB1Þ=
ffiffiffi
2
p

� ðj0iA2j1iB2 þ j1iA2j0iB2Þ=
ffiffiffi
2
p

ð17Þ

where A0, A1, and A2 denote the input modes of system A, and B0,
B1, and B2 denote the input modes of system B, as shown in Fig. 2A.
In system A, the three-mode DFT optical circuit (33, 34) and
photon-counting detectors implement coherent single-photon sub-
traction on the generated three-photon six-mode state of Eq. 17.
The DFT optical circuit described in Fig. 2A consists of two ba-
lanced BSs (R = 1/2), an unbalanced BS (R = 1/3), and a phase
shifter. Note that A and A0 represent respectively the input mode
and output mode of the DFT optical circuit in Fig. 2A. When a
single photon is detected at the output mode A00 and, simultane-
ously, no photons are detected at other modes (A01 and A02), the
corresponding projection measurement reads

j100iA0 ¼ ðj100iA þ j010iA þ j001iAÞ=
ffiffiffi
3
p

ð18Þ

where A: = A0A1A2 and A0: = A00A01A02. The success of the pro-
jection measurement in system A heralds the preparation of MCCS
in system B

jψCCiB ¼ A0 h100 jΦiAB=Tr½A0 h100 jΦiAB� ð19Þ

where B: = B0B1B2 and Tr[A0⟨100|Φ⟩AB] is the heralding probabil-
ity. In this setup, P(110), P(101), and P(011) can be obtained by
counting the output photon number at modes B0, B1, and B2
under the condition of detection of the heralding signal.

Figure 2B shows the schematic setup for observing the condi-
tional quantum coherence of the MCCS by detecting a single
photon at mode B0. When a single photon is detected at mode
B0, the generated state becomes

B0h1 jψCCi ¼ ðj10iB1B2 þ j01iB1B2Þ=
ffiffiffi
3
p

ð20Þ

This measurement corresponds to the evaluation of P(C0) because
the modes B1 and B2 in Eq. 20 are equally superposed with the de-
tection of a single photon at mode B0. The modes B1 and B2 are
combined at BS4, which has a reflectance of 1/2, and then the inter-
ference fringe is observed by modulating the phase ϕ. Other condi-
tional quantum coherences of C1 and C2 can be evaluated with a
similar way of changing the mode to detect a single photon in
system B.

Figure 2C shows the experimental setup. Three single-photon
inputs are prepared through spontaneous parametric down-conver-
sion (SPDC) (see Materials and Methods). One of the four photons
is used for the trigger for the preparation of three single-photon
inputs. The three photons are sent to systems A and B. Systems A
and B are encoded onto the polarization degree of freedom of
photons. By changing the angles of half wave plates (HWP1 to
HWP6), we can realize two configurations; one of them is for mea-
suring the photon number distributions corresponding to Fig. 2A,
and the other is for measuring the conditional quantum coherence
corresponding to Fig. 2B (see Materials and Methods). For the DFT
optical circuit, we adopted a displaced Sagnac architecture (15, 35,
34) to achieve high phase stability, using an HBS comprising an un-
balanced BS and a mirror.

The measurement results for photon number distributions are
shown in Fig. 3. The red square boxes represent experimental

Fig. 3. Photon number statics in systemB. The dashed line represents the ideally
expected probability of the target state. The red rectangular box shows the mea-
sured probability. Error bars represent 1 SD, estimated from Poissonian statistics of
obtained coincidence counts.
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values from four-photon coincidence counts in 8 hours. We ob-
tained P(110), P(101), and P(011) results that were similar to each
other. The detected biphoton bunching states [P(200), P(020), and
P(002)] are caused by more than three-pair generations from
photon sources but were obtained as low counts. Note that P(200)
is much larger than P(020) and P(002) because the photon from In0
is directly paired with the trigger photon of the photon sources.
From the observed photon number distribution, we calculated the

mean statistical fidelity Fs ¼
P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pexpi � pthi
q

between all six experi-
mental pexp and theoretical pth probability distributions (6). The
mean statistical fidelity is 0.986 ± 0.017.

The observed conditional quantum interferences are shown in
Fig. 4 (A to C). Interference fringes of all the conditional states
can be clearly observed by modulating the phase using liquid
crystal variable retarders (LCVRs). We analyzed the interference
fringes using maximal likelihood estimation (36) and determined
the conditional visibilities to be V0 = 97 ± 2%, V1 = 93 ± 3%, and
V2 = 88(3,4)%. The values in parentheses correspond to the lower
and upper boundaries of the SD from the likelihood function. It is
worth noting that the visibility associated with (∣C1⟩, ∣C2⟩) is rela-
tively lower than that of ∣C0⟩ because of the largemultiphoton effect
for ∣200⟩ observed in Fig. 3.

The state fidelity of the generated MCCS can be calculated from
Eq. 16. We obtained an experimental value of FEXP = 0.92 ± 0.03,
which is greater than 5/6 of the lower bound of iNFS verification
with a statistical significance of 3 SDs. As a result, we have success-
fully demonstrated that the generated state is an iNFS.

DISCUSSION
We have demonstrated an experimental criterion for verifying a
non-Fock state generated from a photonic quantum circuit and
Fock state inputs. We focused on the two-photon three-mode
non-Fock state showing maximal conditional coherence. The
target state always reaches maximal coherence between two arbi-
trary modes after detecting a single photon at a third mode. To
clarify various hierarchies of conditional coherence, we suggested
four classifications of multiphoton multimode states based on the
necessary quantum operations required to generate a state: SMFS,
MMFS, NF-AFS, and iNFS. Experimentally, the MCCS is generated
through a coherent single-photon subtraction from a three-photon
six-mode Fock state with an extremely stable interferometer. The
experimental fidelity was calculated by combining data from the

photon number statistics of output modes and the visibilities of
conditional quantum interference. We achieved a high average con-
ditional visibility of 92 ± 2%. A fidelity of 0.92 ± 0.03 was obtained,
which clearly exceeds the lower bound for demonstrating an iNFS
with a statistical certainty of 3 SDs, clearly showing that the gener-
ated two-photon state is an iNFS. In our proof-of-principle exper-
iment, we used a three-photon interferometer using bulk optics.
However, our scheme reported here can be applied to photonic net-
works based on waveguide architectures (37–39). We believe the ex-
perimental criterion for verifying iNFS using conditional quantum
coherence will be a useful tool in such systems.

It is important to improve our understanding of the possible role
that nonclassical multiphoton correlations can play in efficient
large-scale quantum information processing. If we rely only on
the multiphoton correlations implemented by photonic qubits,
then we underuse the much larger optical Hilbert space realized
by all possible multiphoton multimode states. We therefore
believe that the present approach is an important step toward the
realization of more efficient quantum information processing
using photons.

MATERIALS AND METHODS
Photon sources
As shown in the top diagram in Fig. 2C, a femtosecond-pulsed laser
(Tsunami with second-harmonic generation, Spectra Physics, rep-
etition rate of 82 MHz and a central wavelength of 390 nm) propa-
gates through a 1.6-mm-thick type I beta-barium borate (BBO)
crystal and is then reflected by the concave mirror. Subsequently,
the femtosecond-pulsed laser traverses back through the BBO
crystal. As a result, two pairs of photons are generated and directed
into narrow band-pass filters (center wavelength of 780 nm, full
width at half maximum of 2 nm) and collected into polarization-
maintaining fibers. To suppress the occurrence of more than
three pairs, the photon conversion efficiency of SPDC is set to
0.01 per pulse.

Details of photon number distributions measurement
The bottom diagram in Fig. 2C shows that a horizontal photon
(system A) is directed toward the DFT optical circuit and vertical
photons (system B) are directly sent to single-photon detectors
(SPCM-AQR, Excelitas Technologies) Out3, Out4, and Out5 for
HWP1, HWP3, and HWP5 angles at 22.5°. HWP2, HWP4, and

Fig. 4. Interference fringes caused by the conditional quantum interference. (A) Measurement state ∣C0⟩, (B) Measurement state ∣C1⟩, and (C) Measurement state
∣C2⟩. Note that error bars represent 1 SD, estimated from Poissonian statistics of obtained coincidence counts.
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HWP6 are set to 0° to detect horizontal photons at Out0, Out1, and
Out2. The optical axes of POL0, POL1, and POL2 are set to be par-
allel to horizontal polarization. Fiber BSs are used to distinguish the
photon number resolution up to two. The photon number distribu-
tions at Out3, Out4, and Out5 are recorded whenever a trigger
signal from the photon sources and a heralding signal of single-
photon measurement at Out0, Out1, and Out2 simultaneously
arrive. All coincidence patterns are recorded by a time-to-digital
converter (DPC230, Becker & Hickl GmbH).

Details of conditional quantum coherence observation
To observe the conditional quantum coherence, we used a part of
the DFT optical circuit as a Mach-Zehnder interferometer for
system B. For instance, when measuring the interference fringe of
P (C0), the photons from In1 and In2 are directed into the DFT
optical circuit while the vertically polarized photon from In0 is di-
rectly sent to Out3. For this, the angles of HWP1, HWP4, and
HWP6 are set to 22.5° and the angles of HWP2, HWP3, and
HWP5 are set at 0°. For measuring atA00 in Fig. 2B, the horizontally
polarized component of the photon is detected at Out0 by setting
the optical axis of POL0 to be paralleled to horizontal polarization.
The modes In1 and In2 are combined at BS and thus interference
occurs between vertically polarized components when a single
photon is detected at Out3, which corresponds to the interference
at BS4 shown in Fig. 2B. The interference signal is then detected at
Out2 after transmitting to HBS. Similarly, the measurements state
of ∣C1⟩ and ∣C2⟩ can be determined by changing the angles of
HWP1 to HWP6. Note that although quantum interference of
∣C1⟩ and ∣C2⟩ occurs at the unbalanced BS, the actual transmittance
is 1

3 ¼
1
2�

2
3

� �
and is the same as a reflectance ratio of 1/3 because the

mode of B1 or B2 passes through the balanced BS before arriving at
the unbalanced BS. Phase modulation is performed by the LCVRs,
which canmodulate only the phase of the vertical polarization while
maintaining the phase of the horizontal polarization. Last, we mea-
sured fourfold coincidence events between the heralding signal and
detection signals at Out0, Out2, and Out3/Out4/Out5 with an ac-
cumulation time of 2 hours at each point.

Derivation of the biphoton expansion of a two-
photon state
Any two-photon M-mode state can be written as

jψBi ¼
XM� 1

i¼0

XM� 1

j¼0

1
ffiffiffi
2
p Aijâ

y
i â
y
j jvaci ð21Þ

where Aij = Aji describes a symmetric matrix with the norm
X

i;j
jAijj

2
¼ 1 ð22Þ

A linear transformation of the basis modes âi transforms the matrix
accordingly. Because all complex symmetric matrices can be diago-
nalized by unitary transformations, there exists a mode decomposi-
tion with

jψBi ¼
XM� 1

i¼0

1
ffiffiffi
2
p cib̂

y

i b̂
y

i jvaci ð23Þ

where the modes b̂i are the biphoton modes of the state. Note that
the unitary transformation of the modes must be distinguished

from the unitary transformation Û of the multiphoton Hilbert
space. The coefficients ci are the eigenvalues of the matrix Aij.
Because the phases of each mode b̂i can be adjusted, only the abso-
lute values of the coefficients mi matter. The biphoton decomposi-
tion is then given by

Û jψBi ¼ jc0jj200. . .iþ jc0jj020. . .i þ . . . ð24Þ

where the coefficients ∣ci∣ can be arranged so that they run from the
highest absolute value to the lowest absolute value. For the MCCS
∣ψCC⟩, the matrix elements are Aij ¼ 1=

ffiffiffi
6
p

for i ≠ j and Aii = 0.
Therefore, the eigenvalues are 2=

ffiffiffi
6
p

; � 1=
ffiffiffi
6
p

; � 1=
ffiffiffi
6
p

. The bipho-
ton expansion is therefore given by Eq. 5.
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