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In living cells, chemical reactions are connected by sharing their products and substrates,
and form complex systems, i.e. chemical reaction network. One of the largest missions in
modern biology is to understand behaviors of such systems logically based on informa-
tion of network structures. However, there are series of obstacles to study dynamical
behaviors of complex network systems in biology. For example, network structure does
not provide sufficient information to determine details of the dynamical behaviors. In this
review, I will introduce a novel mathematical theory, structural sensitivity analysis, by
which the responses of reaction systems upon the changes in enzyme activities/amounts
are determined from network structure alone. The patterns of responses exhibit charac-
teristic features, localization and hierarchy, depending on the topology of the network.
The theory also shows that ranges of enzymatic regulations are governed by a mathemat-
ical law characterized by local topology of substructures. These findings imply that the
network topology is one of the origins of biological robustness.

Introduction
The biological functions of a cell arise from a large set of chemical reactions. In the living cell the
reactions define an inter-connected large system, where products of one reaction act as substrates of
other reactions. The relationship between chemicals and reactions are represented by chemical reac-
tion networks, where a node represents a species of chemicals and a reaction arrow represents a state-
transition of chemicals.
It is widely believed that the dynamics of chemicals based on such complex networks are the origin

of biological functions. One of the largest missions in modern biology is to obtain logical understand-
ing of the behaviors of systems based on experimentally identified networks. On the other hand, in
contrast with the rapid increase in information of network structures, we have a limited understanding
of dynamical behaviors of network systems. There are a variety of obstacles impeding attempts to
study the behaviors of biological systems based on the reaction networks.
One of the difficulties is the observation of dynamic processes. It is still difficult to observe the

dynamics of the chemicals with sufficient time resolution. Most of the data obtained by present
experimental methods are snapshots of molecular concentrations rather than time tracks. The second
problem is the reliability of the reaction network itself. At present the information of network struc-
tures are possibly incomplete in many studies of biological systems because of the complexity. The
problem is fundamental because we can never exclude the possibility that unknown reactions may
take an important role in the focal phenomena.
The third and largest problem is that the information on the network structure alone is not suffi-

cient to determine the resulting dynamics. The reaction edges only provide qualitative information on
state-transition between chemical species in the system. They lack essential quantitative details like the
reaction functions, parameter values of reaction rates, and initial states. A typical approach to the diffi-
culty is modeling: developing mathematical models for a given network under assumptions of func-
tions, parameters and initial conditions, and trying to reproduce the observed behaviors. Such
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numerical simulations therefore rely on many unverified assumptions as to the reaction functions and their
dozens or hundreds of unknown parameters. In general, numerical parameter identification does not seem to
be a viable option given the lack of highly-sampled time series data collected in most biological experiments.
In this review, we introduce a new mathematical approach to determine the behavior of complex chemical

reaction networks structurally. Although total and detailed dynamical behaviors cannot be determined solely
from network structure, important aspects of dynamical behaviors can be determined from network structure
alone. Our focal property here is the responses of the systems to the changes in enzyme activities in the system,
i.e. how reaction systems are regulated by the modulation of enzymatic activities. By the method ‘structural sen-
sitivity analysis’, the qualitative change in the concentration of chemicals in the system is determined from
information on the reaction network, only, without any assumptions on either the specific functions modeling
the reactions, or their reaction parameters. We will show that (1) nonzero responses of the system are localized
in finite regions in networks, and show characteristic patterns [1,2]. We also show that (2) a general law, which
we call ‘law of localization’, directly governs the patterns of nonzero responses. Any substructure satisfying an
equation: (#. chemical sp.)− (#. reactions) + (#. cycles) = 0, where the right-hand-side is an analog of Euler
characteristic, is a buffering structure, i.e. any perturbation of reactions inside the substructure does not change
concentrations and fluxes outside the structure [3,4].

Chemical reaction networks
The biological function of cells is fundamentally originated from the chemical reactions of biomolecules in a
cell. Many types of chemical reactions work in the cell, and are connected to form a chained network. For
example, Figure 1 shows the central metabolic pathway, which is a universally observed in various biological
species from bacteria to humans. In this pathway, sugar (glucose) is decomposed into smaller organic sub-
stances, and chemical energy is extracted as ATP in the process. The rate of such biochemical reactions is con-
trolled by reaction-specific organic catalysts known as enzymes. It is known that many chemical reactions
working in a living cell are linked in a chain in a way that shares a substrate and a product to form a huge
network. It is thought that the physiological functions of cells emerge from the dynamics of this entire system.
In addition, it is thought that the physiological function is controlled via changes in the amount or activity of
the enzymes.
Information on chemical reactions in living organisms is collected and organized in large-scale databases,

and complex networks such as those shown in Figure 1 can be seen in various biological studies. These net-
works are naturally constructed in the process that the identified reactions are connected by sharing the sub-
strate and the product. However, in contrast with the amount of information on reactions, we have surprisingly
limited understanding about the dynamics of chemical reaction network. Also, our current collection of knowl-
edge may not be incomplete.
One experimental approach to understand the behavior of reaction systems is sensitivity: perturbing the

system experimentally and measuring the response. In particular, the enzymes catalyzing each reaction in the
network are perturbed via knockdown or overexpression, and changes in the concentration of chemical sub-
stances are measured as the response. A method of measuring many metabolites in the system at once using
mass spectrometry has been actively used since the 2000s, and is called metabolome analysis. These experi-
ments are not just performed to measure responses to perturbations. They can also be understood as pseudo-
control experiments in which changes in the activity of enzymes which control physiological functions in
organisms are induced artificially.
Determining fluxes of reactions in a system is a little more technical compared with measuring the concen-

tration of chemicals. Metabolic flux analysis is a method to estimate the fluxes of reactions from the changes of
patterns of labeled chemicals [6]. One or more substrates labeled by radioisotope are introduced into cells, con-
centrations of labeled chemicals are measured after some time by mass spectrometry or nuclear magnetic res-
onance. From the distribution of labeled chemicals, fluxes of reactions in focal system are estimated.
On the other hand, interpretation of the results obtained from these perturbation experiments is extremely

difficult as well. For example, there is a pioneering study in which various enzymes were knocked down to the
central metabolic pathway of E. coli and metabolome analysis was performed for each [5]. In this study, in
many knockdown experiments, only a few metabolites increased or decreased in concentration, and most meta-
bolites showed no significant change. Even when changes are observed, the response patterns are controversial.
Based on these results, Ishii et al. considered the possibility of the existence of unknown bypass reactions not
described in the database. We need a criterion to discuss the results of perturbation experiments based on solid
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logic rather than intuition. In the following, we introduce a theoretical method to determine the response of a
system to a change in the activity or quantity of an enzyme only from the network structure.

Dynamics of chemical reaction networks
The theory of the dynamics of chemical reaction systems has a long history, yet the fundamental idea is simple.
Accordingly, the change in the concentration of each substance in the system over time is determined by the
difference in inflow and outflow caused by reactions.
For example, in the reaction system shown in Figure 2a, the concentration of molecule A increases with the

reaction rate of reaction 1 and decreases with the reaction rate of reaction 2. For each molecule, the change in
concentration over time is related with the difference in the reaction rates by the differential equation system:

duA
dt

¼ r1 � r2 (1a)

duB
dt

¼ r2 � r3 (1b)

Figure 1. Reaction network of the central metabolic pathway of bacteria (Escherichia coli).

Includes 28 chemicals and 46 chemical reactions. Arrows indicate changes in substances due to chemical reactions. The

numbers attached to the arrows indicate the chemical reaction, and the character strings at both ends of the arrow indicate the

metabolites. The colors correspond to Figure 6. ([3], modified from [5]).
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Here, um � (m ¼ A, B) is the concentration of the chemical in the system, and rj � (j ¼ 1, 2, 3) is the reaction
rate of each reaction. Eq. (1) can alternatively be expressed as follows:

d
dt

uA
uB

� �
¼ 1 �1 0

0 1 �1

� � r1
r2
r3

0
@

1
A (2)

The dynamics of a chemical reaction system then can generally be described as follows:

d
dt

u1

..

.

uM

0
B@

1
CA ¼

n11 � � � n1J

..

. ..
.

nM1 � � � nMJ

0
B@

1
CA

r1

..

.

rJ

0
B@

1
CA (3)

Here, (u1, � � � , uM)T are the concentration vectors of chemicals in the system, and (r1, � � � , rJ)T are the reaction
rate vectors. n ¼ (nmj) is termed the stoichiometric matrix. Each row and column of the stoichiometric matrix
corresponds to a substance and a reaction, respectively. Each element nmj of this matrix indicate increases or
decreases of molecule m resulting from a reaction j occurring once. n is determined from the structure of the
reaction network. The reaction rate function rj is commonly modeled using the mass reaction kinetics
r2 ¼ k2uA or the Hill function r2 ¼ k2unA=(K

n þ unA).

(a) (b)

(c)

Figure 2. Sensitivity analysis of a small reaction network.

(a) Example of a chemical reaction system. A and B represent the chemicals, whereas 1,2, and 3 represent the reactions.

(b) Examples of perturbations and responses to chemical reaction systems. Red arrowheads indicate reactions with increasing

reaction parameter. Red circles (dotted lines) indicate decrease in molecular concentrations. Black circles and black arrows

indicate no change in the steady state in response to perturbation. (c) Dynamics of molecular concentrations and reaction

rates. The red arrowhead indicates the time point at which the perturbation was applied.
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Although not discussed in detail here, there is an idea to facilitate mathematical analysis by assuming a form
of mass action in the reaction rate function [7,8]. Some mathematical conclusions on dynamics based on
models using mass action kinetics are summarized in [9]. For example, it is proved that the concentrations of
chemicals remain nonnegative for nonnegative initial concentrations as long as the solution exists. Feinberg
and his colleagues, proved that, in a strongly connected chemical reaction network, 0 value of an index called
‘Deficiency’, which is defined solely from the structure of a network, is a sufficient condition for the existence
of a unique steady state solution [10–13].

Structural sensitivity analysis
Let us focus on the steady state of the reaction system defined in Eq. (3). The assumption of a steady state is
because in general, the rates of chemical reactions are much higher than those rates of expression of genes
encoding enzymes. I introduce a method to determine the steady state response to the change in each enzyme
from network structure [1–4]. Analyses to determine the response to a perturbation are called sensitivity ana-
lysis in general.
There are some studies to analyze sensitivity of chemical reaction networks. Kacser and Burns [14] and

Heinrich and Rapoport [15] independently proposed a mathematical idea, which has been called ‘metabolic
control analysis’ later [16,17]. The analysis provides a mathematical framework to determine the sensitivity of a
single pathway of chemical reactions and of some cases of branched system. The metabolic control analysis has
been applied to some examples of small chemical reaction networks. I will introduce a different and simpler
mathematical framework to study the sensitivity by a function-free approach, which enables to relate the struc-
ture of the network and the sensitivity responses of the system directly.
The method introduced here is called ‘structural sensitivity analysis’ since it is based on network structure

alone. Note that although the expression ‘perturbation of the enzyme’ is used here, sensitivity to any constant
that affects the reaction rate can be given by the same formula. We do not assume a specific functional form
for the reaction rate function rj. We assume only two trivial facts: (1) Concentration dependence: the rate of
each reaction depends on the concentration of the substrate or the regulating molecule, (2) Reaction para-
meters: each reaction rate has a constant that corresponds to the activity or amount of enzyme. For (1), the
concentration of the substrate molecule is naturally contained in the arguments of the reaction rate function,
but it is also known that molecules other than the substrate may regulate the enzyme activity, as it is called
allosteric regulation. In the following, if allosteric regulation exists, it is explicitly annotated on the network
structure. In both cases, the dependences are expressed by non-zero partial derivative @rj=@um of reaction rate
rj with respect to the concentration of each molecule, um.
Here, we present only the method and results of the structural sensitivity analysis (See Appendix A for the

derivation of the method). The following two-step calculation allows us to determine any molecular concentra-
tion and reaction rate responses to the perturbation of any reaction parameters in the system at once. In the
following, we consider the case where there is no conserved quantity in the system. This corresponds to the
case where the stoichiometric matrix is full rank (rank(n) ¼ M) (Appendix A). First, a matrix is constructed
from the chemical reaction network:

A :¼

@r1
@u1

� � � @r1
@uM

..

. ..
.

@rJ
@u1

� � � @rJ
@uM

�����������
�c1 � � � �cN

0
BBBBB@

1
CCCCCA: (4)

The left part @rj=@um of matrix A is the partial derivative of the reaction rate rj with respect to the chemical
concentrations um, and the right part cn is the basis vector of the null space of the stoichiometric matrix n
(ker(n) ¼ {c [ RJ jnc ¼ 0}). Each row of matrix A corresponds to each reaction ( j ¼ 1, � � � , J) and the first
half of the column corresponds to each molecular species (m ¼ 1, � � � , M). In the second half of the columns
of matrix A, �cn is arranged in each column (n ¼ 1, � � � , N). Note that N is the dimension of null space v. (If
there is no conserved quantity, then J ¼ M þ N .) Each component @rj=@um of the left part shows the depend-
ence of each reaction on each molecule, and is zero where reaction j is independent of molecule m. If a reaction
j depends on a molecule m (e.g. it is the substrate or the regulator of the reaction), it then obtains a non-zero
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value. Nonzero component of the left part is explicitly denoted below with r jm(¼ @rj=@um). The right part cn,
i.e. the basis vector in the null space of matrix n, corresponds to the flow path in the steady state determined
from the network.
For example, for the reaction system shown in Figure 2a (Eq. (2)), stoichiometric matrix n is full rank

(rank(n) ¼ 2), dim(ker(n)) ¼ 3� rank(n) ¼ 1, and matrix A is given by:

A ¼
0 0 �1
r2A 0 �1
0 r3B �1

0
@

1
A: (5)

Next, the inverse of matrix A is calculated. Then, the change in the concentration of each molecule (or change
in the rate of each reaction) when a perturbation is given to the parameter of each reaction is given as each
component of the inverse matrix:

S ;

d1u1 � � � dJu1

..

. ..
.

d1uM � � � dJuM

d1m
1 � � � dJm

1

..

. ..
.

d1m
N � � � dJm

N

0
BBBBBBBBB@

1
CCCCCCCCCA

/�A�1: (6)

Here djum indicates the change in the concentration of molecule m upon perturbation of the parameter of reac-
tion j. djmn denotes the change in steady flow cn upon perturbation of the parameter of reaction j. The change
in the reaction rate vector r upon perturbation of the parameter of reaction j is also given as:

djr ¼
XN
n¼1

djm
ncn: (7)

Here, zero or nonzero of each component of sensitivity matrix S is determined from the distribution of zero
(and nonzero) components of matrix A. As stated above, the distribution of the zero components of matrix A
is determined solely from the structure of the reaction network. Thus, the response of the system to perturba-
tions of reaction constants, i.e. the presence or absence of changes in the concentration of each molecule or the
rate of each reaction, can be determined from the network structure alone. Furthermore, by assuming that each
reaction rate is a monotonically increasing or decreasing function of the concentration of each molecule, the
sign of the change, i.e. increase or decrease in concentration or rate, can also be determined from the network
structure alone in many cases.
For the dynamics defined in Eq. (2) (Matrix A in (5)), the sensitivity matrix S is given by:

S ¼
1=r2A �1=r2A 0
1=r3B 0 �1=r3B
1 0 0

0
@

1
A: (8)

Here, each column refers to each of perturbed reaction parameters (from 1 to 3), and row 1, 2, and 3 represent
the response of A, B, and the steady flow, respectively.
Figure 2b illustrates the case when parameter k2 of reaction 2 is increased. This perturbation corresponds to

an experiment in which the activity or expression level of the enzyme catalyzing reaction 2 is increased. One
might expect an increase in the concentration of the product molecule B and an increase in the rate of the per-
turbed reaction. However, the conclusions of the structural sensitivity analysis are different. As shown in
column 2 of (8), the only response to the increase in the enzyme activity of reaction 2 is decrease in molecule
A. Neither the concentration of B nor any of the three reaction rates at steady state change in response to the
perturbation.
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The theory does not depend on the shape of the reaction rate function, but when an increasing function of
substrate is chosen for the reaction rates and the dynamics are calculated, the behavior shown in Figure 2b is
observed. Immediately after increasing the enzyme activity, the reaction rate r2 and the concentration uB of the
downstream molecule increase, but this is only temporary. Reaction rate r2 quickly decreases to its pre-
perturbation level, whereas the concentration of substrate, uA decreases. At the steady state, only the concentration
of substrate A is observed to change in response to perturbation. Qualitatively the same behavior is observed
regardless of the form of reaction rate function rj (as long as it monotonically increases with respect to substrate
concentration). We may interpret that the change in the reaction parameter is compensated by the change in the
concentration of the substrate molecule, and the substrates and reaction rates downstream do not change at all.
Let us give another example: For the chemical reaction system shown in Figure 3, the dynamics of the con-

centrations of A, B, and C are given by the differential equation system:

d
dt

uA
uB
uC

0
@

1
A ¼

1 �1 1 0 0
0 1 �1 �1 0
0 0 0 1 �1

0
@

1
A

r1
r2
r�2

r3
r4

0
BBBB@

1
CCCCA: (9)

Note that stoichiometric matrix n is full rank, rank(n) ¼ 3 and dim(ker(n)) ¼ 5� rank(n) ¼ 2 so ker (n)
has two basis vectors. Matrix A is given by:

A ¼

0 0 0 �1 0
r2A 0 0 �1 �1
0 r�2B 0 0 �1
0 r3B 0 �1 0
0 0 r4C �1 0

0
BBBB@

1
CCCCA: (10)

Figure 3. Example of chemical reaction system.

(0) A–C denote three speciess of chemicals in the system, 1,2–2,3,4 denote reactions, and the arrows denote state changes

due to these reactions. (1–4) Response patterns to the increase in each reaction parameter in the chemical reaction system

shown in (0). The results of structural sensitivity analysis (11) are graphically represented. The red arrowhead shows a

perturbed reaction. Red letters indicate changes in molecular concentration. Red upper and lower cases denote increase and

decrease in concentration, respectively. Red arrows indicate changes in reaction rate. Red bold and dotted arrows denote

increase and decrease in reaction rate, respectively. Black letters and black arrows indicate unchanged concentrations of

molecules and reactions, respectively.
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Here, each row corresponds to each reaction (1, 2, � 2, 3, 4), and each column corresponds to chemical A,
B, C or to basis vectors of ker(n). r jm’s are nonzero components of the partial derivative of the reaction rate rj
with respect to the chemical concentrations um. For example, r2A in (2, 1) indicates that the rate of reaction 2
depends on the concentration of A. The two basis vectors correspond to the pathways that run through reac-
tions 1, 2, 3, 4 from inflow to outflow (column 4) and to the pathways of the cycle in the system consisting
of reactions 2 and �2 (column 5).
Sensitivity matrix S in this case is given by:

S ¼

r�2B þ r3B
r2Ar3B

� 1
r2A

1
r2A

� r�2B

r2Ar3B
0

1
r3B

0 0 � 1
r3B

0

1
r4C

0 0 0 � 1
r4C

1 0 0 0 0

r�2B

r3B
0 1 � r�2B

r3B
0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

: (11)

The responses of the system to the increase in the parameter of each reaction are obtained using (11) as follows
(Figure 3):
Reaction 1: The concentrations of A, B, and C increase. The fluxes of the pathways through the system and

the cycle pathway consisting of reactions 2 and �2 increase.
Reaction 2: The concentration of A decreases. The concentrations of the other molecules are unchanged.

Fluxes of all reactions are unchanged.
Reaction �2: The concentration of A increases, whereas those of the other molecules remain unchanged.

The fluxes of the cycle pathway consisting of reactions 2 and �2 increases.
Reaction 3: The concentrations of A and B decrease, whereas that of C does not change. The flux of the cycle

pathway consisting of reactions 2 and �2 increases.
Reaction 4: The concentration of C decreases, whereas those of the other molecules remain unchanged.

Fluxes of all reactions are unchanged.
Note that perturbation responses of reactions 2 and �2 are asymmetrical, and that the effect of perturbation

of reaction 3 is transmitted two steps upstream. Thus, characteristic response patterns are observed depending
on the topology of the network and the perturbed reactions.

Application (1): plant metabolism
Below, we will introduce an example of applying structural sensitivity analysis to an actual biological system.
Ferjani et al. found that their mutants had metabolic abnormalities [18]. In other words, the sucrose produc-
tion is significantly reduced in the early development of the mutant plants. Sucrose is an important sugar mol-
ecule used for transport between tissues in plants. On the other hand, it was revealed that this mutant loses the
function of H+-pyrophosphatase, an enzyme that degrades pyrophosphate (PPi). PPi is naturally formed by the
hydrolysis of ATP into AMP in many biological processes in cells, and the accumulation of them to toxic levels
disrupts several common biosynthetic pathways and is lethal. Figure 4a shows the pathway by which sucrose is
synthesized from fructose in early plant development. Pyrophosphate is synthesized as a by-product of two
reversible reactions on this pathway. Based on these findings, the following story was initially envisioned. In
individuals in which the pyrophosphate degrading enzyme is disrupted, the concentration of pyrophosphate
would increase, which would make slowing down of the forward direction of the two reversible reactions on
the sucrose synthesis pathway. Therefore, the rate of sucrose synthesis downstream of the pathway may
decrease. At first glance, this story sounds reasonable.
To verify this story, Ferjani et al. applied structural sensitivity analysis to the sucrose synthesis pathway in

plants. Figure 4a shows the change in concentration (increase/decrease/no change) as a result of disruption of
PPi-degrading enzymes (pyrophosphatase). Contrary to expectations, disruption of pyrophosphatase does not
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result in a decrease in sucrose. Certainly, the concentration of pyrophosphate increases by the destruction of
pyrophosphatase. At the same time, the concentration of the four sugars upstream in the pathway increases,
and the concentration of UDP-glucose, which is the product of the reaction releasing pyrophosphate, decreases.
So far, the story is true. However, the concentration of sucrose-6P, product of complex formation of
fructose-6P and UDP-glucose, does not change. The concentration of sucrose downstream of sucrose-6P is also
unchanged. So far as using the reaction network shown in Figure 4a, this result is always true without depend-
ing on the choice of reaction rate function or reaction parameters. On the other hand, in actual plants, a
decrease in sucrose concentration has certainly been observed in mutants of pyrophosphatase. This means that
the network structure in Figure 4a must be reconsidered and revised.
The dotted arrow in Figure 4a is an example of a modification of the network. A network with the additional

reaction was assumed, and the response to the destruction of pyrophosphatase was calculated using the
network. In this case, the response of the concentration of each sugar is exactly the same as before the addition
was applied. This modification cannot explain the observed phenomenon. There are many other possible modi-
fications. Ferjani et al. added each of reactions to the network, and analyzed the response to pyrophosphatase
disruption in these modified networks. These results are summarized in Figure 4b.
The majority of the added reactions do not alter the response of the system to pyrophosphatase disruption.

Only the networks modified to include any of the four reactions shown in blue show the observed behavior,
namely the decrease in sucrose to the destruction of pyrophosphatase. On the other hand, the addition of the
reaction shown in red causes the opposite behavior to the observation, that is, sucrose concentration rather
increases by the destruction of pyrophosphatase.
From these results, Ferjani et al. predict that one of the reactions shown in blue exists and the reaction

shown in red does not exist in the actual plant metabolism system. This prediction was later confirmed experi-
mentally. In other words, it was confirmed by experimental measurement that the concentration of the pro-
ducts of the reaction shown in blue changed. Thus, by combining the structural sensitivity analysis with the

(a) (b)

Figure 4. Structural sensitivity analysis of the plant metabolism system.

(a) Metabolic pathway for sucrose synthesis from fructose in early plant development. Molecules that are supposed to be

abundant in the cytoplasm, such as phosphate groups, are not described. The change in the concentration of each metabolite

when the PPi-degrading enzyme was knocked down was determined by structural sensitivity analysis and shown by the color

of each molecule [18]. Red: increase, blue: decrease, gray: no change. The dotted arrow indicates an example of modification

of the newly added reaction. Adding this reaction does not change the qualitative response to PPi-degrading enzyme

perturbations. (b) The effect on the sucrose response when various reactions are added to the plant metabolic pathway given

in Figure 4a. Green: The addition of these reactions does not alter the sucrose concentration response to the disruption of

PPi-degrading enzyme. An arrow with arrowheads at both ends means that the result does not depend on the reaction

direction or whether it is reversible reaction or not. Blue: When any of these four reactions is added, the sucrose concentration

decreases by the destruction of PPi-degrading enzyme. Red: When this reaction is added, the sucrose concentration rather

increases with the destruction of PPi degrading enzyme.

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND). 1273

Biochemical Journal (2022) 479 1265–1283
https://doi.org/10.1042/BCJ20210545

D
ow

nloaded from
 http://portlandpress.com

/biochem
j/article-pdf/479/11/1265/933808/bcj-2021-0545c.pdf by guest on 04 January 2024

https://creativecommons.org/licenses/by-nc-nd/4.0/


knowledge of the network and the observed behavior, it is possible to predict existence of an unknown reaction
specifically on a network system.

Law of localization
In the previous sections, we showed that the qualitative response (increase, decrease, or no change) of the
chemical reaction system to the enzyme perturbation is determined from the structure of the network alone. In
each example, the effects of perturbations on the reaction parameters are confined in a finite range of the
system in steady state, i.e. the influence of perturbations is restricted in some chemicals and some reactions on
the networks. From these results, we can say that the common intuitive argument that ‘upstream perturbations
affect downstream’ is not correct.
This kind of behavior is indeed universally observed as previously reported in reaction networks [19] and

regulatory networks [20]. That is, the effect of perturbations on the reaction parameter is often confined to a
limited part of the reaction network. There is a clear boundary on the network between the range affected by
perturbations and that unaffected. Okada and Mochizuki discovered the mathematical law behind this phenom-
enon that in fact governs the behavior of reaction systems [3,4].
Let us first select a substructure from the reaction network arbitrarily, i.e. we choose a subset of chemicals

and a subset of reactions under the condition that (i) the reactions dependent on chemicals in the chemical
subset must be included in the reaction subset. This condition is called ‘output complete’. After satisfying this
condition, another reaction may be added to the subset. Note that an output complete substructure includes all
of emanating arrows from the selected chemicals, but may not include the substrate (or regulator) chemicals of
the selected reactions. The second condition is that (ii) the number of chemical species, the number of reaction
types, and the number of cycles in the substructure satisfy the following equation: (number of chemical
species) − (number of reactions) + (number of cycles) = 0. A substructure satisfying both (1) and (2) is then
called ‘buffering structure’. The buffering structure presents the following properties:
Theorem (Law of Localization)

A perturbation given to a reaction parameter inside a buffering structure affect only the steady state of
chemical concentrations and reaction rates inside the buffering structure. The steady state of chemical
concentrations and reaction rates outside the buffering structure is completely unaffected by the pertur-
bations inside the buffering structure.

The proof is obtained only from the distribution of the zero components of the matrix A (See Appendix B
for details).
The example in Figure 5a is the simplest buffering structure. The structure containing one molecule and one

reaction emanating from the molecule satisfies the condition of the buffering structure (1� 1þ 0 ¼ 0). In
general, if there is only one reaction arrow emanating from a molecule, any perturbation applied to the reaction
will affect only the substrate molecule. Figure 5b shows the case of the plant metabolism system. PPi is drawn
in two places, but since they are the same molecule, the number of molecules inside the red frame is 6. Before
the modification (without including the green reaction), the number of reactions is 11 as the reversible reaction
counts one forward and one backward. There are five reversible reactions in the red frame conforming small
cycles. The structure in the red frame satisfies the conditions of the buffering structure (6� 11þ 5 ¼ 0). In
other words, although we discussed the effect of perturbation to PPi-degrading enzymes in Section 5, not only
that, but also the perturbation to any of the reaction parameters in the red frame in Figure 5b has no effect on
the concentration of sucrose-6P or sucrose.
In Figure 4b, various network modifications were made, but most of them did not alter the sucrose response

at all. This can be understood as follows. In Figure 5b, adding the reaction shown in green increases the
number of reactions by one. However, at the same time, a new cycle structure is also created through the add-
ition of the green reaction. Therefore, the value of the conditional expression remains 0 (¼ 6� 12þ 6), and
the buffering structure does not change.
There were only five network modifications in which the perturbation of PPi-degrading enzyme affected the

concentration of sucrose (Figure 4b). All of these were additions of reactions emanating outward from the
molecules inside the buffering structure shown in Figure 5b. According to the condition of buffering structure,
we see that only the addition of this kind of reaction is able to break the condition. In other words, the five
reactions described in Figure 4b are all of possible modifications that alter the sucrose response, i.e. they are
not only sufficient but also necessary conditions for altering sucrose response.
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Note the fact that any substructure satisfies the conditions for a buffering structure alone creates a localized
response to perturbations. Properties of no change to enzyme fluctuations, in other words robustness, may
arise simply from the condition of numbers of objects in subnetworks without intentionally creating a system.
Okada and Mochizuki created a network randomly to see how often buffering structures would be formed [4],
and found that buffering structures appear frequently in random networks.

Application (2): central metabolic pathway
Okada and Mochizuki analyzed responses of central metabolic pathway of E. coli (Figure 1) to perturbations of
reaction parameters systematically [3]. Nonzero responses of the concentrations of chemicals to the perturba-
tions of each reaction parameter in the system are summarized in Figure 6. The figure shows the localized and
hierarchical property in the response patterns. When, for example, any one of the six reactions in the yellow
box is perturbed, only three molecules in the yellow box respond. Similarly, when reaction 7 (shown in red) is
perturbed, four molecules in the red and yellow boxes respond; whereas when reaction 40 (shown in orange) is
perturbed, four molecules in the orange and yellow boxes respond. When the reaction shown in blue is per-
turbed, there are 11 cases where only one molecule responds, and in other cases all blue molecules respond.
When the reaction shown in green is perturbed, green, yellow, red, orange, and blue molecules respond. Thus,
not only are the responses to perturbations of various reactions respectively localized, the response ranges show
inclusion relations with each other. Hence, perturbation responses in a reaction network are localized and
hierarchical.
The hierarchy of responses patterns to perturbations observed in the central metabolic pathway of E. coli can

be understood as the nest of buffering structures. This network has 17 buffering structures nested between one
another. In Figure 6, a buffering structure corresponds to chemicals and reactions shown in each box and in
the boxes followed by the downward arrows.
The nest of buffering structures may have functional and evolutionary significances. The function of the buf-

fering structure is analogically understood with a fire wall. It is a mechanism that keeps the influence of fluctua-
tions occurring inside from being transmitted outside. In other words, the central metabolic pathway of E. coli
has 17 nested firewall-like structures that absorb given fluctuations inside and prevent transmission of them to

(a) (b)

Figure 5. Examples of buffering structures.

(a) Corresponds to Figure 2b and Figure 4a. The crosses indicate perturbations upon the parameters on the reactions. Note

that in (b), the PPi drawn in two places are the same molecule. Without depending on the presence or absence of the reaction

shown in green, the index value of the condition of buffering structure remains 0.
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the outside. The characteristic property of the system creates strong homeostasis or robustness outside against
changes in enzyme amount and activity inside.
The following hypotheses may be possible to understand the biological significance of the mechanism to

create external homeostasis in the central metabolic pathway in E. coli. The central metabolic pathway is a
circuit in which chemical energy is extracted from nutrients (sugars) taken from the outside of a cell, and the
activities or amounts of enzymes in the circuit have to be regulated always according to the nutritional environ-
ment. On the other hand, there are multiple circuits that are indispensable for maintaining cell functions, such
as amino acid synthesis pathways and lipid synthesis pathways, connecting to the central metabolic pathway.
Physiological problems will arise, if the regulation of enzyme activity in the central metabolic pathway influ-
ences the pathways for maintaining cell functions. For this reason, buffering structures may exist in the central
metabolic pathway. The whole chemical reaction network contains multiple pathways with different physio-
logical functions, which are inter-connected via reactions. Many other buffering structures may thus be used in
various parts of chemical reaction networks to achieve functional independence (modularity) between con-
nected pathways.

Discussion
In this review, I introduced a new mathematical analysis for a chemical reaction network, structural sensitivity
analysis. By the analysis, responses of chemical concentrations and reaction rates in a reaction system to a per-
turbation of reaction parameter is determined from the network structure alone. I also introduced the principle
of law of localization and the concept of buffering structure that has special significance for the range of influ-
ence of parameter change on the network.
We expect that the structural sensitivity analysis will be used as a tool to promote the researches of exchan-

ging theoretical predictions and experimental verifications in life sciences. For example, we may calculate the
sensitivity of a reaction system by the structural sensitivity analysis based on a network information on a data-
base. At the same time, we may measure the response of the system by giving perturbations upon enzymes in
the system experimentally. If there exists any disagreement between theoretical predictions and experimental
measurements, it directly indicates the existence of inconsistencies between the database and the real network.
As the theory is model-free, we do not have to consider the possibility of inappropriate choices of reaction
functions or parameter values.
After finding inconsistencies between the database and the real network, the theory is also used to find can-

didates of unknown reactions or regulations in the networks. For example, we may calculate the sensitivity for
hypothetical modifications which introduce, or omit, some reactions or regulations, and may then compare
with experimental results. If such modifications considerably enhance agreement with experimental results,
then we may expect the modified network to actually represent the real systems. The theory may be useful also
to guide experimental design for small molecule treatment. For example, we may select potential drug targets
in the metabolic system by the theory. The candidate targets may be further experimentally validated and lead
to potential treatments.

Figure 6. The perturbation response network of the E. coli central metabolic pathway obtained from the analysis.

The numbers at the bottom of each box indicate the reaction parameters that were perturbed. The chemical name in each box

and in all boxes followed by an arrow extending downward indicates the chemicals whose concentration changes in response

to a given perturbation. Colors correspond to those in Figure 1 [3].
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A buffering structure is a substructure that absorbs effects of inside fluctuations and prevent these influences
from being transmitted to the outside under the steady state condition. The law of localization may denote a
fundamental principle for creating homeostasis and adaptation in living systems. One of the characteristics
behaviors of life is called adaptation: a system may temporarily respond to changes in the environment such as
light and nutrition, but return to the original state eventually. Most of earlier studies on adaptation have
assumed that negative feedback acts from downstream to upstream in the signal pathway to understood the
transient response. The law of localization implies that even without this kind of active regulation, adaptation
can still occur if some part of the network structure satisfies certain topological conditions.
The law of localization also implies that the extent of enzymatic control is determined solely by the local

structure of the network. This may then be used as a guideline to identify huge systems in step-by-step manner
from a small substructure to the whole networks. We search for a candidate buffering structure based on the
information in the database. Next, we measure the response of the system by giving a perturbation to this can-
didate structure experimentally. If, contrary to the expectation, the perturbation influences the outside of the
candidate buffering structure, it indicates that some inconsistency should exist inside (or immediately near) the
candidate structure, because the condition of buffering structure depends only on the local structure. Then we
search for unknown reactions or regulations inside this structure by some experimental methods, and update
the network structure using the newly-obtained information. By repeating this process of prediction and verifi-
cation multiple times, the correct network structure can be determined in a stepwise manner from a small
structure to a large structure.
Similarly, depending on the aim of study, it may also be possible to use the network structure as a guide to

determine the scope of systems of interest in advance. For example, if the control of biological functions by
enzymes is being studied, the focus should be on the smallest buffering structure that contains the enzymatic
reaction of interest, since if the network structure is correct, it is mathematically guaranteed that the effects of
fluctuations will not transmitted outside the identified buffering structure.
The recent progresses in the structural theory show that the buffering structures govern not only the sensitiv-

ity but also bifurcation property of the reaction systems [21,22]. Discontinuous transition of behavior of a
system induced by a continuous change in parameters are called bifurcation, and have been studied well in the
field of dynamical systems theory. Analytical study of bifurcation behaviors of a large system is usually very dif-
ficult, and numerical analysis needs a large computational load. Okada et al. showed that bifurcation behaviors
in a complex network can be studied by decomposing it into smaller subnetworks based on a topological con-
dition on networks [21,22]. For each subnetwork, the condition for bifurcation occurrence and chemicals exhi-
biting bifurcation behaviors are determined on the network. In other words, a steady state bifurcation may take
place modularly in a reaction system, and the extent of the bifurcation behaviors are determined by the buffer-
ing structure.
Since the methodology presented here is based on only network information without any assumptions on

the model, it may have a strong application potential to assist experimental biology studies. A large effort is
paid on research to understand dynamics of network systems in life sciences. Using structure sensitivity ana-
lysis, we will be able to understand the properties of living systems by linking them to the network structure.

Appendix A: Mathematics of structural sensitivity analysis
In a chemical reaction system, the time variation of the concentration of a substance is generally expressed in
form of a differential equations system as follows:

dum
dt

¼
XJ
j¼1

nmjrj(kj; u): (A:1)

Here um (m ¼ 1, � � � , M) is the concentration of molecular species Um (m ¼ 1, � � � , M) in system. rj(kj; u) is
the reaction rate of reaction j ( j ¼ 1, � � � , J) which is depending on reaction parameter kj and u. From the reac-
tion equation for reaction j:

j:
XM
m¼1

yjmUm !
XM
m¼1

�yjmUm (A:2)
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nmj is defined using the stoichiometric coefficient of the reaction as follows:

nmj :¼ �yjm � yjm:

M � J matrix n ¼ (nmj) is termed a stoichiometric matrix. A stoichiometric matrix is usually expressed using
integer components.
In the following, we consider a case where the dimension of the left null space of n

(ker(nT) ¼ {d [ RMjdTn ¼ 0}) is zero, dim(ker(nT)) ¼ 0, i.e. there is no d [ RM satisfying dTn ¼ 0 except
for the zero vector. Here, using rank(n) ¼ M � dim(ker(nT)) ¼ J � dim(ker(n)), n is full rank
(rank(n) ¼ M � J). This corresponds to the case where there is no conserved quantity in the dynamical
system. If d is not a zero vector, we multiply both sides of the system of differential equations by dT from the
left to obtain:

dT
d
dt

u ¼ dTnr ¼ 0 (A:3)

from which we determine dTu ¼ PM
m¼1

dmum is the quantity conserved in the dynamics.

Reaction rate rj is a function of the concentration of the substrate and the regulating molecule. However, the
specific form of the rate function is unknown. Each reaction rate rj also has a parameter kj corresponding to
the activity or amount of the respective enzyme.
Let us consider a steady state of this system (A.1). In steady state (r̂, û), total inflow and total outflow is

equivalent for each m, and we have:

XJ
j¼1

nmjr̂j(kj; û) ¼ 0, m ¼ 1, � � � , M: (A:4)

Here, from the requirement that there exists a steady state reaction rate r that is not a zero vector,
dim(ker(n)) . 0 holds for null space of n ¼ (nmj) (right null space, ker(n) ¼ {c [ RJ jnc ¼ 0}). The steady
state reaction rate vectors r̂ ¼ (̂r1, � � � , r̂J )T is expressed using:

r̂ ¼
XN
n¼1

mncn (A:5)

Here, cn( n ¼ 1, � � � , N) is the basis vector of the null space of the stoichiometric matrix. Since the rank of stoi-
chiometric matrix n is M, the dimension of the right null space is N ¼ dim(ker(nT)) ¼ J �M. Basis vector cn

corresponds to the path of the steady flow determined from the network structure. The basis vector cn can also
be interpreted as the cycle created by the reaction pathway on the network, or the pathway connecting the
inflow to the outflow of the system. The definition of a cycle here is different from that in graph theory: a cycle
consists of only reactions (edges) and does not include vertices. It is also permissible to follow the reaction
arrows in reverse, since the components of cn can be negative. The path from the inflow to the outflow of a
system can also be said to be a cycle in a broad sense by assuming a path through a hypothetical state outside
the system (the inflow and outflow of the entire system correspond to the outflow and inflow from the outside
state, respectively).
As can be seen from (A.4), the steady state solution cannot be determined unless rj is given specifically.

However, even without determining a specific steady state solution, if we assume the existence of a steady state
solution, it is possible to determine how the steady state solution varies with respect to the change in enzyme
activity k j� (k j� ! k j� þ dk j�) from the network structure alone [1–4]. Assume that the steady state holds both
before and after change in enzyme activity k j� . The change in reaction rate, d j�rj in response to change in
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activity (k j� ! k j� þ dk j�) is given in the following form using the total derivative:

d j�rj ¼
@rj
@k j�

þ
XM
m¼1

@rj
@um

@um
@k j�

" #
dk j� ( j, j� ¼ 1, � � � , J): (A:6)

Note that reaction rate rj(kj; u) is a function of the reaction parameter kj and molecular concentrations u, and
u may depend on k j� . Below, all partial derivatives are evaluated at the steady state.
(A.6) implies that d j�rj is decomposed into a direct response to a change in k j� (first term), and an indirect

response via a change in concentration um (second term). @rj=@k j� is positive only when j ¼ j�, and is zero
when j = j�. On the other hand, from (A.5), the change in the reaction rate can be expressed as

d j�rj ¼
PN
n¼1

d j�m
ncnj . Here, d j�m

n is the change in mn due to the change in enzymatic activity (k j� ! k j� þ dk j�).

Hence, we obtain:

@rj
@k j�

dk j� þ
XM
m¼1

@rj
@um

@um
@k j�

dk j� ¼
XN
n¼1

d j�m
ncnj ( j, j� ¼ 1, � � � , J): (A:7)

By a simple transformation, we have:

XM
m¼1

r jmd j�um �
XN
n¼1

d j�m
ncnj ¼ � @rj

@k j�
dk j� ( j, j� ¼ 1, � � � , J): (A:8)

Here, we set r jm :¼ @rj
@um

and d j�um :¼ @um
@k j�

dk j� . For an easier understanding, we show another form of
Equation (A.8):

r j1 � � � r jm � � � r jM
� �

d j�u1

..

.

d j�um

..

.

d j�uM

0
BBBBBBB@

1
CCCCCCCA

þ �c1j � � � �cnj � � � �cNj
� �

d j�m
1

..

.

d j�m
n

..

.

d j�m
N

0
BBBBBBB@

1
CCCCCCCA

¼ � @rj
@k j�

dk j� ( j ¼ j�)

0 ( j = j�)

8<
: ( j, j� ¼ 1, � � � , J): (A:9)

From (A.8) (or (A.9)) by taking j in row and j� in column, we have:

r11 � � � r1M

..

. ..
.

rJ1 � � � rJM

�������
�c11 � � � �cN1

..

. ..
.

�c1J � � � �cNJ

0
B@

1
CA

d1u1 � � � dJu1

..

. ..
.

d1uM � � � dJuM

d1m
1 � � � dJm

1

..

. ..
.

d1m
N � � � dJm

N

0
BBBBBBBBB@

1
CCCCCCCCCA

¼ �

@r1
@k1

dk1 0

. .
.

0
@rJ
@kJ

dkJ

0
BBBBB@

1
CCCCCA: (A:10)

Let A :¼ (r jmj � cn) be the first matrix on the left-hand side of Equation (A.10). The right-hand side is a diag-
onal matrix, where only the diagonal components ( j ¼ j�) take nonzero value. Since we are only interested in
the qualitative response here, the right-hand side can be taken as an identity matrix. Assuming that A has an
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inverse matrix, we obtain:

S ;

d1u1 � � � dJu1

..

. ..
.

d1uM � � � dJuM

d1m
1 � � � dJm

1

..

. ..
.

d1m
N � � � dJm

N

0
BBBBBBBBB@

1
CCCCCCCCCA

/�A�1: (A:11)

In Equation (A.11), each column identifies perturbed reaction parameter ( j� ¼ 1, � � � , J) and each row identify
molecular species (m ¼ 1, � � � , M) or basis vector (n ¼ 1, � � � , N) of n. Each component of S shows the
response of concentration um of each molecule m (or that of steady flow mn of cycle n) to the change in
enzyme activity k j� of reaction j�. Equation (A.11) gives the response to an increase in the activity (e.g. overex-
pression) of each enzyme. If one is interested in the response to a decrease in activity (e.g. knockdown), the
minus sign on the right-hand side should be simply removed.
The above explanation shows the steps of derivation of the formula. To analyze the perturbation responses

from the network structure in practice, one of the following criteria is used depending on the case.

(1) Determining the presence or absence of a response, i.e. zero or nonzero of d j�um or d j�m
n.

Zero or non-zero of each component of the matrix A is determined solely from the structure of the reaction
network, i.e. stoichiometric matrix and dependence of reaction rate functions. That is, r jm is constitutively zero
when reaction j does not depend on the molecular species m, and nonzero when it does (unless special values
of concentrations are chosen). The components of cn are also determined from the stoichiometric matrix. In
other words, the distribution of the zero (nonzero) components of matrix A reflects the structure of the reac-
tion network. The presence or absence of change in each concentration or each reaction rate to perturbation of
each reaction parameter, that is, zero or nonzero of each component in the matrix S is determined only from
the distribution of the zero component (non-zero component) in the matrix A. That are determined only from
the structure of the reaction network.
The Equation (A.7) uses the partial derivative, it appears to hold only when the change dk j� in enzymatic

activity k j� is small. However, the constitutive zero components of matrix A is determined from the network
structure alone, and does not depend on constant k or the concentration u. Thus, the pattern of responses cal-
culated by A�1 (the distribution of zero components in matrix S) will be always the same, even after repeated
application of the change in k j� , (k j� ! k j� þ dk j�). In other words, the result does not change, even if the
change dk j� in parameter is large.

(2) Determining the direction of the response, i.e. sign of d j�um or d j�m
n.

Suppose we want to determine not only the presence or absence of a response, but also direction of responses
(whether the concentration or reaction rate increases or decreases). In this case, we need to assume that the
reaction rates rj are monotonic functions of the concentration of the influencing molecular species. For
example, assume that it is an increasing function of substrate molecules and an increasing (positive regulation)
or decreasing (negative regulation) function of regulator molecules. As a result, r jm is determined to be zero,
positive, or negative. The matrix A with sign information in addition to zero or nonzero information of each
component is given. Then we calculate inverse of the matrix A to determine the sign of d j�um and d j�m

n.
Empirically, unless the structure of the network is too complex, it is possible to determine the sign of the
response uniquely in many cases. When networks are complicated, though zero or nonzero of components are
always determined uniquely, it may happen that the signs of nonzero components are not uniquely decided.
This is because the components in the inverse matrix contain multiple r jm’s and their signs may be different.
In this case, the signs of the responses can be determined again by giving the relative magnitudes of some r jm’s
contained in the components.
As mentioned at the beginning, we have assumed that the dimension of the left null space of n is 0, that is,

there is no conserved quantity in the system. If there are conserved quantities in the system, the basis vectors
(l ¼ 1, � � � , L) (l ¼ 1, � � � , L) of the left null space ker(nT) ¼ {d [ RMjdTn ¼ 0} (here L ¼ dim(ker(nT)) of

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND).1280

Biochemical Journal (2022) 479 1265–1283
https://doi.org/10.1042/BCJ20210545

D
ow

nloaded from
 http://portlandpress.com

/biochem
j/article-pdf/479/11/1265/933808/bcj-2021-0545c.pdf by guest on 04 January 2024

https://creativecommons.org/licenses/by-nc-nd/4.0/


stoichiometric matrix n can be used to construct the extended matrix A:

A :¼

r11 � � � r1M

..

. ..
.

rJ1 � � � rJM

��������c1 � � � �cN

�(d1)
T

..

.

�(dL)
T

�������
0 � � � 0

..

. ..
.

0 � � � 0

0
BBBBBBBBB@

1
CCCCCCCCCA
: (A:12)

By calculating the inverse of this matrix A, the response to perturbation is determined:

S ;

d1u1 � � � dJu1

..

. ..
.

d1uM � � � dJuM

�������
dJþ1u1 � � � dJþLu1

..

. ..
.

dJþ1uM � � � dJþLuM

d1m
1 � � � dJm

1

..

. ..
.

d1m
N � � � dJm

N

�������
dJþ1m

1 � � � dJþLm
1

..

. ..
.

dJþ1m
N � � � dJþLm

N

0
BBBBBBBBB@

1
CCCCCCCCCA

/�A�1: (A:13)

Here, dJþlum is the change in the steady state concentration of molecule m when the conserved quantityPM
m0¼1

dlm0um0 ¼ Tl (determined from the initial value) corresponding to the lth basis vector dl of the left null

space of n is perturbed, and dJþlm
nis the change in the steady state flow along the basis vector cn in the null

space of n when Tl is perturbed. For details of the analysis, see [4].

Appendix B: Law of localization
For the chemical reaction system and the A matrix discussed in the Appendix A, the Law of Localization and
the buffering structure are given as follows [3,4].
Definition (Buffering structure)
Consider an arbitrary subgraph G ¼ (M�, J�) on a chemical reaction network. Here, M� is a subset of mole-

cules and J� is a subset of reactions. For the null space of the stoichiometric matrix v, let N�(J�) be the set of
linearly independent basis vectors such that the components are zero except for the reactions contained in J�.
Here we introduce the following index:

x(G) ; jM�j � jJ�j þ jN�(J�)j: (B:1)

Subgraph G is called a ‘buffering structure’ when G satisfies the following conditions:

(i) (All reactions dependent on molecules in M�) # J�

(ii) x(G) ¼ 0

Note 1: Condition (i) implies that, when considering subgraphs, ‘Once a subset M� of molecules is determined,
all reactions that use them as substrates or regulators are included in the subset J� of reactions’. After satisfying
this condition, arbitrary reactions may be added to J�.
Note 2: jN�(J�)j is the number of linearly independent basis vectors contained in J� within null space n, i.e.

the number of independent cycles consisting only of reactions contained in J�. Thus, x(G) indicates ‘(number
of molecular species) − (number of reactions) + (number of cycles).’ Since it corresponds to the alternating sum
of the number of zero-, one-, and two-dimensional structures in the subgraph G, it is strongly related to the
Euler characteristic. Note that the value of x(G) is generally negative or zero when the matrix A is regular.
Theorem (Law of Localization)
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Consider a steady state of a chemical reaction system. When a reaction parameter in a buffering structure is
changed, the steady-state concentration of molecules outside the buffering structure and the steady-state rate of
reactions outside the buffering structure do not change. In other words, the response of the system remains
inside the buffering structure.

Proof
When a buffering structure exists in a chemical reaction system, by exchanging rows and columns of matrix

A, we can set a block upper triangular matrix such that:

A ¼ AG �
0 A�G

� �
: (B:2)

Here, AG is a square submatrix of size jJ�j � (jM�j þ jN�(J�)j), where jJ�j ¼ jM�j þ jN�(J�)j. Each row of AG

corresponds to a reaction in J�, each column corresponds to a molecular species in M�, or to a basis vector of
ker(n) in N�(J�). AG and A�G are not zero matrices, and when A is regular, they are also invertible. 0 is a sub-
matrix of size (jJj � jJ�j)� (jM�j þ jN�(J�)j) such that all components are zero. From the distribution of the
zero components in the matrix, the inverse matrix has the same distribution of zero components, i.e.

S/�A�1 ¼
A�1
G �
0 A�1

�G

 !
: (B:3)

Again, 0 is a submatrix of size (jJj � jM�j � jN�(J�)j)� jJ�j such that the components are all zero. Each com-
ponent of 0 indicates the change in concentration of an external molecule (m � M�), or the change in an
external steady-state flow n � N�(J�) when a reaction parameter inside the buffering structure j� [ J� is per-
turbed. Thus, when a chemical reaction system contains a buffering structure, the responses to a perturbation
of a reaction parameter inside the buffering structure remain inside the buffering structure. (End of proof)
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