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RENGE infers gene regulatory networks using
time-series single-cell RNA-seq data with CRISPR
perturbations
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Single-cell RNA-seq analysis coupled with CRISPR-based perturbation has enabled the

inference of gene regulatory networks with causal relationships. However, a snapshot of

single-cell CRISPR data may not lead to an accurate inference, since a gene knockout can

influence multi-layered downstream over time. Here, we developed RENGE, a computational

method that infers gene regulatory networks using a time-series single-cell CRISPR dataset.

RENGE models the propagation process of the effects elicited by a gene knockout on its

regulatory network. It can distinguish between direct and indirect regulations, which allows

for the inference of regulations by genes that are not knocked out. RENGE therefore out-

performs current methods in the accuracy of inferring gene regulatory networks. When used

on a dataset we derived from human-induced pluripotent stem cells, RENGE yielded a net-

work consistent with multiple databases and literature. Accurate inference of gene regulatory

networks by RENGE would enable the identification of key factors for various biological

systems.
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Understanding gene regulation is crucial for our compre-
hension of biological processes. As information on gene
regulation has accumulated, it has become clear that the

regulatory relationships between genes constitute complex sys-
tems, designated gene regulatory networks (GRNs)1,2. Hence,
elucidating the structures of GRNs is expected to provide insights
into system dynamics including the identification of key genes
that control the behavior of the entire system3–5.

GRNs have been inferred using a variety of methods6,7, which
are categorised into three groups based on data used. The first
group utilizes the binding of transcription factors (TFs) to DNA.
This method assesses the regulatory relationships between genes
via the binding of TFs to regulatory regions on the genome, which
can be inferred using the TF binding motifs, or detected directly
with ChIP-seq8. However, binding does not necessarily indicate
regulation, and assessing the binding of numerous genes via
ChIP-seq is a laborious undertaking. The second group uses co-
expression relationships of genes under unperturbed conditions.
The generation of large-scale gene expression data has spurred
the development of numerous methods to infer GRNs by
examining the relationships between individual gene expression.
For example, GENIE39 is a leading method in this field and
boasts outstanding performance in the DREAM benchmark10

and in the analysis of GRN inference from scRNA-seq data11.
Although co-expressed genes can be estimated based on obser-
vational expression data with no genetic perturbation, it is gen-
erally difficult to infer causality, or regulation, between genes
based solely on these data.

The third group relates to changes in gene expression upon
genetic perturbation. The most reliable way to infer a causal
relationship between genes would be to examine the changes in
expression resulting from perturbed gene expression12. In parti-
cular, the recently developed single-cell CRISPR (scCRISPR)
analysis13–15 and associated computational tools, including
MIMOSCA13 and scMAGeCK16, have made it possible to infer
regulatory relationships between genes by measuring changes in
expression resulting from the knockout (KO), or knockdown, of a
relatively large number of genes.

These analysis methods use expression data collected from a
given snapshot following gene KO to infer the regulatory effects
elicited by the KO gene on other genes. Hence, via detection of
expression changes following KO, these methods can effectively
detect causal relationships; however, these methods are limited
by their measurement of only gene expression snapshots
(Fig. 1a). In particular, these methods are limited in their ability
to distinguish between direct and indirect regulation. That is,
when a gene is knocked out, changes in expression may occur in
the genes directly regulated by the KO gene as well as those
further downstream. Thus, existing methods cannot effectively
determine whether the expression changes are due to direct
regulation from the KO gene or indirect regulation via other
genes. Additionally, these methods only infer regulation caused
by KO genes, without accounting for the potential regulation
elicited by genes that were not knocked out (non-KO genes). As
such, all genes in the focal system must be knocked out to
obtain a complete GRN.

Here, we address these shortcomings by integrating time-series
scCRISPR analysis and a newly developed computational method
for GRN inference. Given that the sequential changes in expres-
sion occurring after gene KO should reflect gene regulatory
relationships, we propose the measurement of gene expression at
multiple time points to distinguish early and late changes
occurring after gene KO with the CRISPR system (Fig. 1b). To
take full advantage of such dataset, we developed RENGE
(REgulatory Network inference using GEne perturbation data), a
computational method to infer GRNs from time-series expression

data after gene KO (Fig. 1c). More specifically, RENGE models
the process through which the KO effects are propagated on the
network. Moreover, it can distinguish direct and indirect reg-
ulation more accurately than existing methods and infer regula-
tion by non-KO genes.

Using data generated by the GRN-based simulator dyngen and
scCRISPR data of human induced pluripotent stem cells
(hiPSCs), we show that RENGE outperforms the existing meth-
ods in its ability to infer GRNs. We then use the GRN of hiPSCs
inferred by RENGE to predict gene pairs that function as a
protein complex, which are further validated using multiple
databases. These analyses suggest a previously unknown key
factor for pluripotency maintenance, namely, a PRDM14 and
RUNX1T1 complex. Finally, we demonstrate that RENGE can
utilize the inferred GRN to predict changes in the expression of
other genes after the KO of any gene in the network.

Results
Algorithm overview. We have developed the RENGE method to
infer GRNs from time-series scCRISPR analysis data (Fig. 1c).
Suppose we have expression data Eg,t of each gene in a cell
observed at time t after knocking out a gene g in the cell. RENGE
regresses the expression Eg,t of each gene at each time t following
the decrease Xg in KO gene g expression. Consider the effects of a
gene KO in a cell as it spreads stepwise in the GRN. Here, if the
effect of a change in the expression of gene j is propagated to gene
i via a path containing k− 1 intermediate genes, we consider the
effect to be due to k-th order regulation. The gene expression
E0
g;K 0 , where the effect up to K 0-th order regulation from the KO

gene g appears, can be modeled as follows:

E0
g;K 0 ¼ ∑

K 0

k0¼1
Ak0Xg þ bK 0 ; ð1Þ

where E0
g;K 0 is the G-dimensional expression vector, A is the G ×G

matrix representing the GRN, and each element {A}i,j (i ≠ j)
represents the strength of regulation from gene j to gene i, where
G is the number of genes. Only when i= j, does {A}i,j represent
multiple effects including degradation and self-regulation. For
more details, see Supplementary Note 1. Xg is the G-dimensional
vector representing the decrease in KO gene g expression, and bK 0

is the G-dimensional expression vector corresponding to the wild
type. ∑K 0

k0¼1 A
k0Xg represents the expression change from the wild

type due to gene KO. Since the KO gene g is no longer regulated
by other genes, the row for the KO gene g in A is set to 0 (see
Methods for more detail). If we are given the gene expression
E0
g;K 0 ðK 0 ¼ 1; ¼ ;max K 0Þ, in which the effects of different

maximum order K 0 of regulation appear, we can infer the GRN A
by fitting the model (1) to the data.

However, the longest path length of regulatory interactions that
have occurred, K 0, is usually unknown at the measurement time t
of gene expression. To address this, RENGE introduces the term
w(t, k, g) that expresses the strength of the effect of the k-th order
regulation from the KO gene g at measurement time t. Estimating
w(t, k, g) from the data enables the estimation of A even when the
maximum order of regulation is unknown at each measurement
time t. Finally, the RENGE model equation is as follows:

Eg;t ¼ ∑
K

k¼1
wðt; k; gÞAkXg þ bt : ð2Þ

Given the time-series expression data with the different KO
genes g, RENGE estimates A so that the model fits the entire
expression data set. Note that RENGE cannot infer self-regulation
as the diagonal elements of A do not necessarily represent only
self-regulation. The p-value for each element of the parameter A
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representing the network is calculated using the bootstrap
method. RENGE represents the direct regulation from gene j to
gene i by element {A}i,j, and A2,A3,⋯ ,AK capture the
expression changes due to the indirect effects of higher-order
regulation. Since higher-order regulation includes regulation by
genes that were not knocked out, regulation by these non-KO
genes can also be inferred.

Benchmark using simulated data. Time-series expression data
after gene KO was used, thus information on gene regulation is
included in both KO gene information (which gene was knocked
out) and temporal information (what temporal expression
changes occurred as a result). We compared RENGE with state-
of-the-art methods (GENIE3, dynGENIE3, BINGO, MIMOSCA,
scMAGeCK-LR/RRA) that also utilize this type of information. A
comparison of the features for each method is presented in
Fig. 1d. The proposed method, RENGE, makes full use of the

KO-gene and temporal information and can infer signed reg-
ulation (i.e., distinguish positive and negative regulation),
including that by non-KO genes.

To compare these methods, we generated time-series scRNA-
seq data after gene KO based on more than 600 GRNs using
dyngen17, which is a simulator of gene expression dynamics based
on a regulatory network (see Methods for more detail). Network
inference was then performed using each method. Agreement
with the ground-truth network was evaluated using the area
under the precision-recall curve (AUPRC) divided by that of a
random predictor (AUPRC ratio). The AUPRC was calculated
without self-regulation. First, we evaluated whether RENGE could
correctly infer the presence or absence of regulation, ignoring the
sign. We calculated the AUPRC ratio changing the ratio of the
KO genes, which is the number of KO genes divided by the total
number of genes in the network. Figure 2a, b, shows the
log2ðAUPRC ratio Þ averaged between GRNs for each backbone
structure used to generate each GRN.

Fig. 1 Overview of RENGE. a The use of snapshot expression data alone after gene X is knocked out makes it difficult to distinguish direct and indirect
regulations. Blue nodes : genes with expression changes due to the KO. b Using time-series expression data after KO, in principle, can enable differentiation
of direct and indirect regulations and infer regulation by non-KO genes. c RENGE infers a signed GRN from the time-series expression data after gene KO,
obtained by scCRISPR analysis, by modeling the process in which the effects of the gene KO propagate on the network. X denotes the decrease in
expression of the target gene due to KO (orange node), AX denotes the expression change due to direct regulation from the KO gene, and A2X denotes the
expression change due to indirect regulation via another gene from the KO gene. w(t, k, g) denotes the magnitude of the effect of the k-th order regulation
from the KO gene g at time t. d Comparison of methods on different features.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05594-4 ARTICLE

COMMUNICATIONS BIOLOGY |          (2023) 6:1290 | https://doi.org/10.1038/s42003-023-05594-4 |www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


The average AUPRC ratio for RENGE exceeded those of
existing methods at various KO gene ratios (Fig. 2a, b). This trend
was observed especially for regulation by non-KO genes. The
greater the KO gene ratio, the higher the AUPRC ratio for
regulation by non-KO genes, suggesting that knocking out more
genes will provide more information on gene regulation. The
results for GRNs for each of the three backbones are shown in
Supplementary Figs. 1–3. Though RENGE showed superior
performance on average, the performance of RENGE depended
on the backbone used, which may be due to the complexity of the
GRN. Next, we evaluated whether positive and negative
regulations were correctly inferred. In inferring positive and
negative regulation by KO genes, RENGE showed the competitive
performance with the existing methods, respectively (Fig. 2c, e).
In inferring positive and negative regulation by the non-KO
genes, RENGE showed a higher AUPRC ratio than a random
predictor (Fig. 2d, f). Of note, MIMOSCA and scMAGeCK-LR/
RRA do not infer regulation by non-KO genes.

scCRISPR analysis of hiPSCs. To apply RENGE to an actual
time-series scRNA-seq dataset, a scCRISPR experiment was
performed that focused on the pluripotency network in human

iPSCs. It is well established that the core regulatory network that
maintains pluripotency is composed of POU5F1, SOX2,
NANOG, and PRDM1418,19. Assuming that approximately
5000 single cells can be captured in each sample, and to obtain
approximately 100 cells per guide RNA (gRNA) via scRNA-seq,
we limited the number of gRNAs to be analyzed in each
experiment to 50 gRNAs. With two gRNAs per gene, a library can
include 25 genes. We therefore selected 23 genes (TFs) that are
thought to be involved in hiPSC pluripotency18–20 and four
control gRNAs (two AAVS1-targeting and two non-cutter
gRNAs) to construct a gRNA library (Supplementary Table 1).
To capture the time-series expression changes, samples were
collected on days 2, 3, 4, and 5 after transduction and scRNA-seq
analysis was performed (Fig. 3a). The number of gRNAs detected
in each single cell was high on day 2, compared to the rest of the
time points, which may have been caused by the proviral BFP
expression from the provirus had not yet been saturated, resulting
in cells with multi-copy proviral integrations being over-
represented in the BFP+ fraction on day 2 (Supplementary
Fig. 4). Although the number of cells assigned to each gRNA
varied (Supplementary Fig. 5), an average coverage of 75 cells/
gRNA was achieved, where cells bearing a single gRNA were
counted. We then performed uniform manifold approximation

Fig. 2 Benchmark results when using the simulated data set. Horizontal axis: ratio of KO genes in the GRNs. log2ðAUPRC ratio Þ were averaged between
three backbones. a Regulation by KO genes. b Regulation by non-KO genes. c Positive regulation by KO genes. d Positive regulation by non-KO genes.
e Negative regulation by KO genes. f Negative regulation by non-KO genes. Error bars represent mean ± standard deviation.
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and projection (UMAP) on the cells with a single gRNA and
observed a clear separation between the control cells and those
with gRNAs targeting POU5F1, SOX2, NANOG, PRDM14, and
RUNX1T1 (Fig. 3b, c). Principal Component Analysis (PCA) of the
control cells and POU5F1 KO cells revealed that the KO influence
on the transcriptome expanded over time (Fig. 3d, e). In each
cluster on the UMAP plot, knownmarkers are selectively expressed
including UTF1 (pluripotency marker) in control cells, SIX6
(neural marker) in POU5F1 KO cells, TBXT (axial mesoderm
marker) in SOX2 KO cells, and CST1 (definitive endoderm mar-
ker), FOXA2 and EOMES (mesoendoderm markers) in PRDM14
KO and RUNX1T1 KO cells (Fig. 3f, Supplementary Fig. 6). These
results indicate that the time-series scCRISPR analysis sufficiently
detects changes in gene expression after gene KO.

Inferring network for pluripotency in human iPSCs. Using the
time-series scCRISPR analysis data for the hiPSCs, the seven
methods were employed to infer the GRNs of 103 TFs, com-
prising the 23 KO genes and the top 80 TFs with the largest

expression changes due to gene KO. The expression changes were
calculated using the coefficient matrix β obtained by applying
MIMOSCA. We constructed a subnetwork using ChIP-seq data
of 19 genes in human pluripotent stem cells that were available in
the ChIP-Atlas database8 (Supplementary Table 3), and assumed
the subnetwork as a ground truth. The correctness of the part of
inferred 103-gene networks was evaluated based on their agree-
ment with the corresponding ground-truth subnetwork, which is
represented by the AUPRC ratio. The ChIP-seq data contained
the score (�10 ´ log10ðMACS2 q-valueÞ) to represent the sig-
nificance of the TF binding to DNA; only bindings with a score
higher than the threshold (ChIP threshold) were considered as
regulatory in the ground-truth network. Therefore, the ground-
truth network changes depending on the ChIP threshold. That is,
the higher the ChIP threshold, the more reliable the regulations in
the obtained network. The AUPRC ratio was calculated as a
function of the ChIP threshold. For most thresholds and reg-
ulations by the KO and non-KO genes, RENGE had the highest
AUPRC ratios among the methods used (Fig. 4a, b). For RENGE,
the AUPRC ratio increased as the ChIP threshold increased for

Fig. 3 Time-series scCRISPR analysis of human iPS cells. a Experimental design. scRNA-seq was performed on cells sampled 2, 3, 4, and 5 days after
transduction by lentiviruses containing a gRNA vector. b, c UMAP plot for cells bearing a single gRNA. d, e PCA plot for cells bearing the gRNA of the
control or POU5F1. Colors indicate the sampling day of the cells (b, d) or the target gene of a gRNA detected in a cell (c, e). f Marker expression including
UTF1 (pluripotency marker), SIX6 (neural markers), TBXT (axial mesoderm marker), and CST1 (definitive endoderm marker).
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regulation by KO genes and non-KO genes, while for BINGO,
GENIE3, and dynGENIE3, the AUPRC ratio decreased when the
ChIP threshold was high for regulation by non-KO genes. These
results imply a higher correlation than compared methods
between the q-values of the regulations inferred by RENGE and
those of the ChIP-seq data. We then calculated the correlation
coefficients for the confidence level of the regulation calculated by
each method and the ChIP-seq (�10 ´ log10ðMACS2 q-valueÞ)
(Supplementary Table 4). The confidence of regulation inferred
by RENGE was expressed as �log10ðq -value Þ. Indeed, for reg-
ulation by non-KO genes, the correlation coefficient for RENGE
(0.290) was much higher than those for other methods; however,
that for KO gene regulation was highest for GENIE3 (0.390)
followed by RENGE (0.292). These results suggest that RENGE
can infer more reliable regulations than the other methods, par-
ticularly for non-KO genes.

Thus far, we have regarded the binding of TFs to DNA
detected by ChIP-seq as representing ground-truth regulation.

However, considering that TF binding may not necessarily mean
regulation, i.e., false negatives in a GRN inferred by RENGE can
be acceptable, we also compared the methods focusing only on
the proportion of the inferred regulations that were supported by
TF binding, i.e., precision. The ground-truth network was
constructed with a ChIP threshold= 300. Consistent with the
previous analysis, RENGE showed higher precision than the other
methods, particularly in regulation by non-KO genes (Fig. 4c, d).

The details of the inferred regulations by each method were
then examined by comparing them with the ground-truth
network with a ChIP threshold= 300. For each method, 237
inferred regulations, which is the number of regulations in the
ground-truth network, were extracted in order of confidence
score and classified as follows. An inferred regulation from gene j
to gene i was classified as direct when the shortest path length (k)
from gene j to gene i in the ground-truth network was 1, and
indirect when k > 1. If there is no path from gene j to gene i in the
ground-truth network, the inferred regulation is classified as no

Fig. 4 Benchmark results for the hiPSC data. a AUPRC ratios for regulation by KO genes. Horizontal axis: threshold of the confidence level
(�10 ´ log10ðMACS2 q-valueÞ) for the TF binding in ChIP-seq data. b AUPRC ratios for regulation by non-KO genes. c, d Precision comparison of the
methods. Horizontal axis: number of inferred regulations corresponding to a threshold of a significance score such as p-value. c Regulations by KO genes.
d Regulations by non-KO genes. e Schematic diagram showing the direct, indirect, and no path regulations. Solid black arrows: regulation of the ground-
truth network. If these regulations are inferred, they are called direct. If the dashed arrows are inferred, they are called indirect regulation via the
k− 1 (k≥ 2) genes. If the gray arrow is inferred, it is called no path, which represents regulation that is neither direct nor indirect. f Classification of
regulations inferred by each method. The ground-truth network was constructed with ChIP threshold= 300.
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path (Fig. 4e). RENGE had the highest percentage (43%) of direct
regulation and the lowest (23%) of no path regulation (Fig. 4f).
Meanwhile, dynGENIE3 and BINGO had a high percentage of no
path regulation, likely because they did not fully utilize the
information on the KO genes, but rather primarily inferred
regulation based on temporal changes in expression. In GENIE3,
scMAGeCK-LR/RRA, and MIMOSCA, the percentage of no path
regulation was low, while that of indirect regulation was high.
Hence, these methods may not effectively distinguish between
direct and indirect regulation as they do not incorporate temporal
information.

Features of pluripotency network inferred by RENGE. We
focused on the regulations with an FDR < 0.01 that were inferred
by RENGE (Fig. 5a). The number of positive and negative reg-
ulations from each gene are shown in decreasing order in Fig. 5b.
The top 20 genes out of 103 genes (19%) ordered by the number
of out-edges are associated with 51% of the regulations detected,
suggesting that these genes are important for maintaining plur-
ipotency. These 20 genes were extracted and shown in Fig. 5c, and
included pluripotency factors, such as POU5F1, NANOG, SOX2,
and PRDM14. We also investigated the structure of the subnet-
work comprising these 20 genes (Fig. 5d). The pluripotency fac-
tors form a positive feedback loop, which is considered important
for the maintenance of pluripotency18,19. Moreover, negative
regulations from the pluripotency factors to CHD7 and CTNNB1
were detected, which were also supported by ChIP-seq data. The
expression of these genes is reportedly important for cell
differentiation21,22. Collectively, these findings imply that the
pluripotency factors may suppress differentiation by directly
inhibiting the expression of the differentiation-related genes.
Although the pluripotency factors also positively regulate UTF1,
but the regulation from UTF1 to the pluripotency factors was
only weakly suggested by RENGE (Fig. 5e, f), which is consistent
with reports that have indicated that UTF1 expression can serve
as a marker of pluripotency, however, is not responsible for
maintaining pluripotency23. Thus, the structure of the inferred
network, including the sign of each regulation, is considered
reliable, based on comparison with the known characteristics of
pluripotency gene regulations.

From the inferred GRN, we found that certain gene pairs have
a similar set of target genes (Supplementary Fig. 7), which may
form a protein complex in transcriptional regulation. We
validated this hypothesis using the protein-protein interaction
data obtained from the STRING database24 and protein complex
data obtained from the CORUM3.0 database25. To quantify the
similarity of the target genes between a gene pair, we calculated
the regulatory correlations between each gene pair as a
correlation between the regulatory coefficients of the genes. The
gene pairs with large positive regulatory correlations (i.e. the same
target genes regulated in the same direction) determined by
RENGE tended to have high STRING scores and be included in
the CORUM complex (Fig. 6a). We also calculated regulatory
correlation using the other GRN inference methods (Supplemen-
tary Figs. 8, 9); those calculated using GENIE3 also showed the
differences between all gene pairs and gene pairs in the CORUM
complex or with a high STRING score, however, one calculated
using dynGENIE3 and BINGO showed no clear difference
between the groups (Supplementary Fig. 8). Although limited to
the gene pairs among the KO genes, MIMOSCA and
scMAGeCK-LR also showed a clear difference (Supplementary
Fig. 9). These results suggest that regulatory correlations may
reflect protein complex formation even if the regulatory
correlations are calculated without distinguishing direct and
indirect regulation.

We focused on the gene pairs with positive STRING scores that
also had high regulatory correlations, which may function as a
complex (Fig. 6b). It has been suggested that the chromatin
remodeler CHD7 and the DNA topoisomerase TOP1 (correla-
tion= 0.90) can physically interact and are involved in the
transcription of long genes in the neuron26. Though the
distribution of the co-target gene length regulated by both
CHD7 and TOP1 was similar to that of all genes in the GRN, the
co-target genes included JARID2 (Supplementary Fig. 10). This
276 kb gene is expressed in neurons and its mutations and
deletions cause neurodevelopmental syndrome27. Regarding the
pluripotency core factor POU5F1 and histone lysine demethylase
JMJD1C (correlation= 0.83), it is suggested that POU5F1 recruits
JMJD1C near POU5F1 target genes and prevents DNA methyla-
tion by DMNT3A through histone demethylation by JMJD1C28.
For CTNNB1 and JADE1 (correlation=−0.91), it is known that
JADE1 binds to, and ubiquitinates, CTNNB129, which is
consistent with a negative regulatory correlation (Fig. 6c).
Meanwhile, the regulatory correlation between PRDM14 and
RUNX1T1 (0.92) was the highest of any gene pair (Fig. 6b). In
mice, PRDM14 and RUNX1T1 have been suggested to form a
complex by shotgun liquid chromatography-tandem mass
spectrometry (LC-MS/MS)30. Thus, the PRDM14 and RUNX1T1
complex may be a key factor in the maintenance of pluripotency
(Fig. 6c).

When gene pairs with large absolute values for the regulatory
correlations function as complexes, we expect that their
genomic binding positions may be co-localized. To test this
hypothesis, we obtained colocalization data for TF binding
from the ChIP-Atlas for each of the 19 genes with available
ChIP-seq data in pluripotent stem cells. There was a weak
but statistically significant correlation (correlation= 0.28,
p-value < 0.0005) between the absolute regulatory correlation
of a gene pair and the co-localization score of the genomic
binding position of the pair (Fig. 6d). The top 3 gene pairs with
the highest colocalization score were (NANOG, POU5F1),
(NANOG, CHD7), and (NANOG, SOX2). (NANOG, POU5F1)
and (NANOG, SOX2) also showed relatively high STRING
scores. NANOG, POU5F1, and SOX2 are the core pluripotency
factors and are known to function together18,19. NANOG and
CHD7 are reported to co-bind enhancers and have the opposite
effect on the expression of target genes in mice31. Note,
however, that large absolute regulatory correlation and STRING
scores do not necessarily indicate colocalization of genomic
binding positions. Indeed, there are cases where a pair of genes
regulates common targets via mechanisms independent of
genome co-binding. For example, CTNNB1 and JADE1 have a
large absolute regulatory correlation due to ubiquitination.
Thus, the signed regulatory network inferred by RENGE can be
used to estimate the interactions of multiple genes in
transcriptional regulation.

Prediction of expression changes induced by gene knockout.
Based on the GRN inferred using RENGE, we then examined
whether RENGE could predict changes in the expression of
each gene after knocking out any gene in the GRN. A total of
103 genes with 80 non-KO genes and 23 KO genes constituted
the node set for the focal system. To this end, we split the hiPSC
data into training data and test data. The test data comprised
expression data after one of the 23 KO genes was knocked out,
while the training data comprised expression data for the other
KO genes. The RENGE model was trained using the training
data and we examined whether the RENGE model could predict
the expression changes in the test data. For instance, the
RENGE model trained without the NANOG KO data was able
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to accurately predict (correlation= 0.70, p-value < 10−15)
changes in the expression of the other 102 genes in the network
on day 5 after NANOG KO (Supplementary Fig. 11a). Overall,
RENGE could predict the expression changes with an average
correlation coefficient of approximately 0.3 (Supplementary
Fig. 11b). The correlation coefficients for each KO gene and

each day are shown in Supplementary Table 5. On day 2, the
correlation coefficients were higher overall, suggesting that
changes in the expression of genes directly regulated by the KO
genes, which already occurred on day 2, were easier to predict,
while changes in downstream gene expression, which occurred
later, were harder to predict.

Fig. 5 hiPSC regulatory network inferred by RENGE. a GRN of hiPSCs. Regulation was detected with FDR < 0.01. Only the edges of the top 35% absolute
regulatory coefficients and the nodes with at least one edge are shown (474 edges and 95 nodes). Red arrows: positive regulation, blue arrows: negative
regulation. Arrow thickness indicates the magnitude of the regulatory coefficient. Pink nodes: KO genes. b Number of positive and negative regulations
from each gene. c The top 20 genes with the highest out-degree extracted from (b). The genes with asterisks indicate KO genes. d GRN of the top 20
genes with the highest out-degree. Only the edges of the top 20% absolute regulatory coefficients are shown. Solid arrows: regulations supported by ChIP-
seq data (�10 ´ log10ðMACS2 q-valueÞ> 50) obtained from ChIP-Atlas, and dotted arrows: regulations not supported. e The subnetwork at the center of
the GRN in (d). All edges with FDR < 0.01 are shown. f Weighted out-degree of each gene in the GRN in (e). Weighted out-degree was calculated as the
sum of absolute regulatory coefficients from each gene.
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Discussion
Although many studies have previously inferred GRNs from
expression changes following gene KOs, most have done so by
using snapshots of these changes9,32. Moreover, while scCRISPR
analysis has enabled the exhaustive KO of genes and measure-
ment of outcomes using scRNA-seq, to date, it is primarily
employed to obtain a snapshot of gene expression after
KO13,15,16. As such, GRN inference methods based on these
snapshot data fail to effectively infer direct causality as influence
of KO expands to genes that are not directly regulated by KO
genes. Meanwhile, RENGE is a GRN inference method that
overcomes this limitation by using temporal changes in gene
expression following KO, while also effectively inferring regula-
tion by non-KO genes.

The performance of RENGE was validated using simulated
data and hiPSC data, both of which highlighted its ability to infer
networks more accurately than existing methods. In fact, the
pluripotency gene regulatory network inferred by RENGE from
the transcriptome data obtained by a single experiment had a
high level of consistency with various findings revealed by the
actual data that had been accumulated over many years. However,
the inferred network also identified a PRDM14 and RUNX1T1
complex as a previously unknown key factor for pluripotency
maintenance.

Nevertheless, certain precautions should be considered when
using RENGE based on the implicit assumptions of the model.

First, RENGE assumes that each gene regulates its target gene
independently. Therefore, the cooperative effects between multi-
ple regulator genes cannot be considered. Second, the analysis in
this study only dealt with expression data from cells with a single
gene knocked out. However, scCRISPR analysis also provides
expression data for cells in which multiple genes are simulta-
neously knocked out. Data from multiple KOs may be utilized to
model the cooperative effects of multiple regulators. Third, the
RENGE model also assumes that the time evolution of gene
expression is discrete and simultaneous in all genes, thus, reg-
ulations that are extremely fast or slow compared to others may
not be appropriately inferred. Hence, the sampling interval of the
cells is also important; if the time evolution of gene expression in
a real system is notably faster than the sampling rate, a portion of
the direct regulations may be overlooked. Therefore, it is desirable
to sample cells in a manner that ensures that the time evolution of
the focal system progresses only one or two steps with every
sampling interval. In addition, we note that the computational
time and memory usage for RENGE may vary with the size of
GRN and the dataset used. A comprehensive benchmarking
analysis to quantify these dependencies has not been performed
in this study, and it is possible that for certain datasets, RENGE
may require more computational time compared to the existing
methods.

Since RENGE can predict the changes in gene expression
induced by a gene KO, it could be used for step-by-step

Fig. 6 Relationship between regulatory correlations and protein complex formation. Regulatory correlations are calculated as correlations between the
regulatory-coefficient vectors for each gene pair in the network. A positive regulatory correlation indicates that the same genes are regulated in the same
direction by the pair, while a negative regulatory correlation indicates that the same genes are regulated in the opposite direction. a Distribution of the
regulatory correlations among all possible gene pairs versus those in the genes in protein complexes obtained from CORUM3.0 versus those among gene
pairs with a high STRING score. The STRING score represents the confidence level of the protein-protein interactions. b Top 10 gene pairs with the highest
absolute regulatory correlation among gene pairs with a positive STRING score. c Examples of gene pairs with large negative and positive regulatory
correlations. d Relationship between regulatory correlations and colocalization scores of TF binding. Colocalization was calculated from ChIP-seq data in
pluripotent stem cells by the ChIP-Atlas. Colors indicate STRING scores. Gene names for the top 3 pairs with the highest colocalization score are shown.
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determination of a GRN by repeating perturbation experiments
and network inference by RENGE. That is, first, a perturbation
experiment will be performed. Second, a network will be inferred
by RENGE. Third, based on the inferred network, the genes to be
knocked out in the next experiment will be determined to more
accurately elucidate the GRN. For example, if a gene KO is pre-
dicted to have a large influence on other genes by RENGE, then it
may be the next to be knocked out in subsequent experiments.

Using GRN more accurately inferred by RENGE, it may be
possible to identify the genes responsible for governing the system
dynamics. For example, a set (feedback vertex set; FVS) of genes
determined solely from the structure of the GRN, was proven to
be a set of key factors that could be used to observe/control the
dynamics of the entire system33,34. In fact, it has been reported
that by experimentally manipulating six factors included in the
FVS, identified from the GRN structure of ascidians, each of the
seven tissues (epidermis, brain, nerve cord, muscle, notochord,
mesenchyme, and endoderm) can be specifically induced5,35.
Similarly, it may be possible to discover TFs that are important
for inducing hiPSC differentiation based on the GRN inferred by
RENGE. Additional possible future extensions for RENGE are
discussed in Supplementary Note 2.

Methods
Cell culture. Human iPSC line, OILG-3, was obtained from the
Wellcome Sanger Institute and cultured in StemFlex medium
(Thermo Fisher) on Vitronectin (Thermo Fisher)-coated culture
dishes. Cells were detached using TrypLE (Thermo Fisher) and
re-seeded at 4 × 104 cells per well into 6-well plates for routine
maintenance. For the first 24 h after passaging, cells were treated
with 10 μM Y-27632 (Wako). SpCas9-expressing OILG cells were
generated as previously described36.

gRNA cloning, lentiviral transduction, and single-cell RNA-
seq. Selected gRNAs (Supplementary Table 1) were cloned into
pKLV2-U6gRNA5(BbsI)-PGKpuroBFP-W. Lentivirus was pro-
duced individually by transfecting 293FT cells together with
lentiviral packaging plasmids, psPAX2 and pMD2.G using
LipofectamineLTX37. The resulting viral supernatants were then
pooled in an equal volume ratio. OILG-Cas9 (1.5–6 × 105) cells
were transduced with the pooled lentivirus at 8–9% transduction
efficiency and maintained until harvesting without passaging. On
days 2, 3, 4, and 5 after transduction, 8 × 104 BFP+ cells were
collected using an MA900 cell sorter (Sony), then resuspended at
1 × 106 cells/mL in 0.05% BSA in PBS. These cells were then
subjected to 5’ scRNA-seq library preparation using a Chromium
Next GEM Single Cell 5’ Library & Gel Bead Kit following the
manufacturers’ protocol with minor modifications to simulta-
neously capture guide RNA molecules. Briefly, a spike-in oligo
(5’-AAGCAGTGGTATCAACGCAGAGTACCAAGTTGATAA
CGGACTAGCC-3’) was added to the reverse transcription
reaction. The ‘small DNA’ fraction isolated after cDNA clean-up
was then used to generate a gRNA sequencing library with the
primers listed in Supplementary Table 2. PCR was performed
using 2 × KAPA Hi-Fi Master Mix with the following program:
95∘C for 3 min, 12 cycles of 98 °C for 15 sec and 65 °C for 10 sec,
followed by 72 °C for 1 min. The resulting gene expression
libraries and gRNA libraries were pooled at a molecular ratio of
7:1 and sequenced using NovaSeq with 26 cycles for read 1, 91
cycles for read 2, and 8 cycles for the sample index.

Alignment, gRNA assignment, filtering, and normalization. A
digital expression matrix with gRNA assignment was obtained
using the CRISPR Guide Capture Analysis pipeline of Cell Ranger
5.0.0 (10x Genomics). The generated expression matrix was

processed using Seurat (version 4.0.3)38. Single cells were filtered
to leave cells with > 200 and < 10000 expressed genes and < 20%
reads from mitochondrial genes. The expressions were normal-
ized using the sctransform method of Seurat. Only cells bearing a
single gRNA were used for downstream analysis.

Modeling expression dynamics following gene knockout. We
investigated GRNs whose nodes were TFs only. Below, we adopt a
1-origin indexing system for all vectors and matrices. Consider a
model that represents the propagation of the KO effect from the
KO gene g on the GRN. Let G denote the number of genes
included in the GRN. The G-dimensional gene expression vector
E0
g;K 0 of a cell including the up to K 0-th order regulatory effect

from the KO gene g is modeled as follows:

E0
g;K 0 ¼ ∑

K 0

k0¼1
Mg � A

� �k0

Xg þ bK 0 ; ð3Þ

where Xg is a G-dimensional vector of which gth component is
the expression change of gene g due to its KO, and the other
components are zero. When the cell is the wild type, i.e. no gene
is knocked out (g= 0), X0 is a zero vector. bK 0 is the G-dimen-
sional expression vector corresponding to the wild type. A is a
G ×G matrix and Ai,j (i ≠ j) represents the strength of regulation
from gene j to i; that is, the change in gene i expression due to a
unit amount change in gene j expression. Ai,j (i= j) represents
effects such as degradation and self-regulation (Supplementary
Note 1).⊙ denotes an element-wise product. Eq. (3) is an
extension of Eq. (1) with a mask matrix Mg representing that the
KO gene g is no longer regulated by other genes:

fMggi;j ¼
0 ði ¼ gÞ
1 ði≠ gÞ:

�
ð4Þ

Thus, ∑K 0
k0¼1 ðMg � AÞk0Xg represents the expression change from

the wild type due to gene KO.
From the scCRISPR analysis, we obtained the G-dimensional

gene expression vector Ec,t in cell c sampled at time t and G-
dimensional vector Xc,t representing the decrease in expression of
the KO gene in the cell (t= 1,⋯ , T, c= 1,⋯ , Ct). Here, T is the
number of time points, and Ct is the number of cells sampled at
time t. Note that here, in contrast to Eq. (2) in the Results section,
the subscript of E have been changed from g, t to c, t. The KO
gene in cell c sampled at time t is identified by the presence of
gRNA and denoted by gc,t. The calculation of Xc,t from gc,t will be
explained in a later section.

Suppose we have the gene expression data
E0
g;K 0 ðK 0 ¼ 1; � � � ;max K 0Þ, in which the effects of different

maximum orders of K 0 regulation appear, we can infer the GRN
A by fitting Eq. (3) to the data. However, it is impossible to
synchronize the sampling time t of the cells and the time at which
the effects appear for up to the K 0-th order of regulation from the
KO gene. Hence, the maximum order of regulation from the KO
gene in the cells at sampling time t is unknown. Thus, RENGE
estimates the value from the data. By introducing a term
w(t, k, gc,t) representing the strength of the effect of the k-th
order of regulation at time t when the gene gc,t is knocked out, we
can express Eq. (3) as follows:

Ec;t ¼ ∑
K

k¼1
wðt; k; gc;tÞðMc;t � AÞkXc;t þ bt ð5Þ

wðt; k; gc;tÞ ¼
1

1þ exp�ðαgc;tþβt�γkÞ ; ð6Þ

where w(t, k, gc,t) is assumed to be monotonically increasing with
respect to t and monotonically decreasing with respect to k, thus,
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as time progresses, the effects of higher-order regulation become
more apparent. αgc;t ; β; γ are the parameters to be estimated,

and β ≥ 0, γ ≥ 0. The parameter αgc;t represents the time required

for the effect of the KO of gene gc,t to appear and is assumed to
differ with each KO gene. β is related to a rate constant at which
the regulation step progresses with respect to time t, and γ is a
parameter representing the degree of decrease in the effect of
higher-order regulation. Mc,t is obtained by replacing the
subscripts of the mask matrix in Eq. (4) with the relation
g= gc,t. The parameters to estimate are
A; bt ðt ¼ 1; � � � ;TÞ; αgc;t ðgc;t ¼ 1; � � � ;GkoÞ; β; γ, where Gko is

the number of KO genes.

Parameter estimation. The parameters are estimated by mini-
mizing the following objective function:

L ¼ ∑
T

t¼1
∑
Ct

c¼1
mc;t � Ec;t� ∑

K

k¼1
wðt; k; gc;tÞðMc;t � AÞkXc;t þ bt

� �� �����
����
2

2

þ λ1 ∑
G

i;j¼1
Af gi;j

			 			þ λ2 ∑
K

k¼1
∑
G

i;j¼1
Ak


 �2

i;j;

ð7Þ

where {A}i,j denotes the i, j element of the matrix A,⊙ denotes the
element-wise product, and mc,t is the mask vector for cell c at
time t:

fmc;tgi ¼
0 ði ¼ gc;tÞ
1 ði≠ gc;tÞ

(
: ð8Þ

The first term in Eq. (7) is the squared error between the
predictions of the model and the data. mc,t is used to ignore the
squared error of KO gene gc,t expression in cell c at time t because
mRNA of KO gene gc,t may still be expressed even when the
functional protein is lost when using the CRISPR system. The last
two terms in Eq. (7) are the L1 and L2 regularization terms of the
parameter A, respectively. To suppress the magnitude of each
element of not only A but also Ak (k ≥ 2), an L2 regularization
term was added for Ak (k= 1,⋯ K). Note that the L1
regularization term was only added for A and not for Ak (k ≥ 2)
because A represents a GRN and thus is expected to be sparse, but
Ak (k ≥ 2) is not necessarily sparse. The objective function is
minimized using the L-BFGS-B method implemented in
scipy.minimize. K, λ1, λ2 are hyperparameters that are set to
values that minimize cross-validation loss using Bayesian
optimization with Optuna39.

Calculation of Xc,t. One of the RENGE inputs, Xc,t, is a G-
dimensional vector representing the decrease in expression of the
target gene due to its KO in cell c at time t. Here, we assumed that
when the target gene is entirely knocked out, the gene expression
is decreased to zero. That is, the decrease in expression equals the
average expression in control cells. However, in scCRISPR ana-
lysis, the target gene is not necessarily knocked out even in cells
where the corresponding gRNA is detected. It is therefore
necessary to distinguish between cells in which the transcriptome
is affected by the KO and cells in which the KO fails and thus the
transcriptome is not affected. RENGE uses the concept of per-
turbation probability, defined as the probability that gRNA
detected in a cell has an effect on the transcriptome. RENGE
calculates the perturbation probability pc (c= 1,⋯ , C) for each
cell c in the same way as MIMOSCA13, where C is the total
number of cells.

Xc,t is defined as the decreased expression of the KO gene gc,t
multiplied by pc:

Xc;t;i ¼
�pc � 1

Cctrl
t

∑
Cctrl
t

j¼1
Ectrl
j;t;i ði ¼ gc;tÞ

0 ði≠ gc;tÞ;

8><
>: ð9Þ

where Cctrl
t is the number of control cells at time t and Ectrl

j;t;i is the
expression of gene i in control cell j at time t.

p-value calculation using the bootstrap method. RENGE cal-
culates the p-value for each element of the matrix A, which
indicates the strength of regulation, using the bootstrap method
as follows. Let the data set be denoted by D ¼ S4

t¼1ðXt ;EtÞ. The
bootstrap data set D1,⋯ ,DN is created by sampling cells with
replacement, keeping the number of cells for each KO gene at
each time point (N= 30 by default). For each Dl (l= 1,⋯ ,N),
apply RENGE and estimate Al. Given Al (l= 1,⋯ ,N), calculate
the sample variance Var({A}i,j) (i, j= 1,⋯ ,G) of {A}i,j. Assum-
ing the null distribution of {A}i,j is N ð0;VarðfAgi;jÞÞ, RENGE
calculates the p-value pi,j of {A}i,j as follows:

pi;j ¼
2 1� Φ�1
� ðfAgi;j=VarðfAgi;jÞÞ ðfAgi;j ≥ 0Þ
2 Φ�1
� ðfAgi;j=VarðfAgi;jÞÞ ðfAgi;j < 0Þ;

(
ð10Þ

where Φ is the cumulative distribution function of the standard
normal distribution. The q-value is then calculated using the
Benjamini-Hochberg procedure to control for multiple hypoth-
esis testing. Since RENGE cannot infer self-regulation, all
downstream analyses, including method comparison and network
analysis, were performed by excluding self-regulation.

Other GRN inference methods. The following existing methods
were compared with RENGE: GENIE39, dynGENIE340,
BINGO32, MIMOSCA13, and scMAGeCK16. GENIE3 predicts
the expression of a gene from that of other genes using a tree-
based ensemble. The importance of one gene for the prediction of
another indicates the strength of the interaction between the
genes. Although it exhibited superior performance in the
benchmark of GRN inference from scRNA-seq data11, GENIE3
cannot handle information on KO genes or time series data. In
this study, one cell was treated as one sample, and time infor-
mation was ignored. In each cell, the expression of the target KO
gene was set to 0 regardless of its measured mRNA expression.

dynGENIE3 is a modified version of GENIE3 that is
appropriate for time-series data; however, it cannot handle KO
gene information. In this study, at each time point, the expression
of each cell for each KO gene was averaged to produce a time
series data set of (number of KO genes +1). In each time-series
data set, the expression of the KO gene was set to 0.

BINGO is a method used to infer GRNs from time-series
expression data by modeling gene expression dynamics with
stochastic differential equations involving nonlinear gene-gene
interactions. It can also handle KO information. BINGO takes
two types of input data, time-series expression data (as data.ts)
and KO gene data (as data.ko). The time-series data was
constructed in the same way as for dynGENIE3, and KO gene
data was constructed based on gRNA assignment.

MIMOSCA was developed for scCRISPR-screening data, and
performs a linear regression of expression data using the gRNA
detected in each cell and other information as covariates. This
method can handle the index of the time point from which each
cell is derived as a covariate, but not the time-series information.
In this study, we used MIMOSCA by setting gRNA and the index
of timepoint as covariates.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05594-4 ARTICLE

COMMUNICATIONS BIOLOGY |          (2023) 6:1290 | https://doi.org/10.1038/s42003-023-05594-4 |www.nature.com/commsbio 11

www.nature.com/commsbio
www.nature.com/commsbio


scMAGeCK includes scMAGeCK-LR and scMAGeCK-RRA,
both GRN inference methods for the scCRISPR-screening data.
scMAGeCK-LR performs linear regression similar to MIMOSCA.
scMAGeCK-RRA uses Robust Rank Aggregation (RRA) to detect
genes with expression changes in each KO. However, it cannot
handle time information, so we applied scMAGeCK by ignoring
the time information of each cell.

Recently, SCEPTRE41 and Normalisr42 were shown to improve
the inference of associations between perturbations and gene
expression in scCRISPR analysis. However, since these methods
were developed for the high multiplicity-of-infection (MOI)
scCRISPR analysis data, they were not examined in this study,
which used low MOI data.

Methods comparison using dyngen. To benchmark the methods,
simulated data were generated using dyngen, a GRN-based simu-
lator of scRNA-seq data. A total of 750 GRNs, consisting of 100
genes, were generated by setting num_tfs= 100. In detail, 250
GRNs were generated for each of the three backbones (linear,
converging, and bifurcating conversing) defined in dyngen. We
used the backbones with only one steady state because they are
cases similar to the real data of hiPS cells we obtained in this study.

The ground-truth GRNs were used for the simulation by
dyngen. Initially, the simulation was run without KO for
simtime_from_backbone(backbone) time to obtain a steady state
for each backbone. Subsequently, a gene was knocked out, and the
simulation was run for 100 steps from the steady state. After the
KO, a total of 100 cells were sampled at four time points in
regular intervals. The parameter values used in dyngen are
presented in Supplementary Table 6.

We ran the simulation knocking out each of the 100 genes in
each GRN and obtained expression data of 100 genes sampled
from 100 cells under 100 KOs. Note that here we performed a
single-gene KO multiple times. For each GRN, the expression
data subset was constructed by extracting the cells corresponding
to the KO genes included in the randomly selected setM of genes.
For each backbone, the 250 GRNs were divided into 5 sets, each
of which included 50 GRNs. GRNs in each set have a different
size M (∣M∣= 20, 40, 60, 80, 100). The ratio of KO genes for each
data set is jMj

100. We found that in some GRNs of bifurcating
converging backbone, single-gene KO does not cause substantial
expression variation, possibly due to the GRN structure
(Supplementary Fig. 3). The amount of expression variation
caused by single-gene KO (MIMOSCA score) was calculated
using the G ×Gko matrix β calculated by MIMOSCA as follows:

MIMOSCA score ¼
∑i;jjfβgi;jj

Gko
: ð11Þ

Since RENGE assumes that single-gene KO causes a substantial
amount of expression variation, we excluded GRNs with
MIMOSCA_score < 2. Consequently, we used 248 GRNs for
linear backbones, 233 GRNs for converging backbones, and 133
GRNs for bifurcating converging backbones, resulting in a total of
614 GRNs. To normalize the count data generated by dyngen and
stabilize variance, we applied sctransform of Seurat38. The
resulting data were used to infer GRNs by each method. The
results for all the 750 GRNs are shown in Supplementary Fig. 2.

To evaluate the agreement between the inferred GRN and the
ground-truth GRN, we first calculated the agreement of the
presence and absence of regulation using the AUPRC ratio, while
ignoring the sign of the regulation. AUPRC is a common metric
that measures the agreement between the inferred and ground-
truth GRNs. The AUPRC ratio is the AUPRC divided by that of a
random predictor, and it was averaged for all GRNs and M KO
gene sets for each KO gene ratio. The AUPRC ratio for each of

the positive and negative regulations was then calculated as
follows: for positive regulations the confidence level of regulation
was set to 0 if it was negative, and only positive regulations were
considered; negative regulation was similarly calculated.

Methods comparison using hiPSC data. We selected the genes
to be included in the GRN of hiPSCs as follows. Let βd2 be the
coefficient matrix obtained by applying MIMOSCA to the day 2
cell population. fβd2gi;j represents the expression variation of gene
i when gene j is knocked out. The expression variation score vi of
gene i was defined as vi ¼ ∑jjfβd2gi;jj, and the top 80 non-KO
genes with large vi were selected. A total of 103 genes with 80
non-KO genes and 23 KO genes constituted the node set for the
focal system in this study.

The ChIP-Atlas, a database for ChIP-seq data, was used to
validate the GRN inferred from the hiPSC data. ChIP-seq data for
19 genes from human pluripotent stem cells was obtained. We
used cell types included in the cell-type class “Pluripotent stem
cell” defined in the ChIP-Atlas that did not contain “derived” in
the cell type name. Note that the data labeled as ChIP-seq data for
RUNX1T1 in ChIP-Atlas was excluded because it was actually
ChIP-seq data for RUNX1-ETO. The 19 genes with ChIP-seq
data consisted of 9 KO genes and 10 non-KO genes (Supple-
mentary Table 3). The confidence level for the binding of a TF to
DNA is expressed as �10 ´ log10 ðMACS2 q-valueÞ. If the
confidence level of the binding of gene j to gene i in the region
of TSS ± 10kb was higher than the predetermined ChIP threshold,
we assumed that regulation occurred from gene j to gene i. This
means that the ground-truth network depends on the ChIP
threshold; the higher the ChIP threshold, the more reliable the
regulations in the ground-truth network. We calculated the
AUPRC ratio for the ground-truth GRNs of various confidence
levels changing the ChIP threshold from 0 to the maximum
confidence value in the data.

The rank correlation coefficient between the confidence level of
each regulation was calculated using each method and the
confidence level of the ChIP-seq data
(�10 ´ log10 ðMACS2 q-valueÞ). For RENGE, MIMOSCA, and
scMAGeCK, we used �log10ðq -value Þ as the confidence level,
and for GENIE3, dynGENIE3, and BINGO, we used the output
value of each tool itself (confidence values or weights).

We examined the details of the inferred regulations for each
method by comparing it with the ground-truth network with the
ChIP threshold= 300. There were 237 regulations, the same
number that was observed in the ground-truth network, that were
extracted for the GRNs inferred by each method, in order of
confidence score of the regulation. These regulations were
classified as follows. Suppose the regulation from gene j to gene
i was inferred. If the length k of the shortest path from gene j to
gene i in the ground-truth network was 1, it was classified as
direct; while if k > 1, it was classified as indirect. If there was no
path from gene j to gene i, it was classified as no path.

Analysis of network. Having inferred the GRN of 103 genes by
RENGE, we focused on regulation with FDR < 0.01 and calculated
the out-degree for each gene which is shown in Fig. 5b. Using this
GRN, we validated our hypothesis that gene pairs with a similar
set of target genes are likely to form a protein complex. Using the
regulatory coefficient matrix A estimated by RENGE, the reg-
ulatory correlation coefficients were calculated for all gene pairs
in the network as follows:

R ¼ fcorspðA:;i;A:;jÞj1≤ i; j≤Gg; ð12Þ
where A:,i denotes the i-th column of A and corsp(x, y) denotes the
Spearman’s rank correlation coefficient between x and y. If
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corsp(A:,i,A:,j) is close to 1, gene i and gene j regulate the same
genes in the same direction, and if close to -1, they regulate the
same genes in the opposite direction.

We compared the regulatory correlation with the protein
complex data from the three databases. First, curated complexes
were obtained from the CORUM3.0 database. We used all
complexes in which at least 66% of their component genes were
included in the 103 genes in the GRN15. When a gene pair was
included in the same complex, the gene pair was assigned to be in
the CORUM complex. Second, protein-protein interaction scores
were obtained from the v11.5 of STRING (9606.protein.physi-
cal.links.v11.5.txt.gz). The protein-protein interaction scores for
gene i and gene j are denoted as PPIi,j. Among the gene pairs in R,
those with PPIi,j= 0 were assigned “STRING score low,” and
those with the top 10% of PPIi,j among gene pairs with PPIi,j > 0
were assigned “STRING score high”. Third, colocalization scores
for the DNA binding of TFs were obtained from the ChIP-Atlas,
using data for the cell type class of pluripotent stem cells.

Predicting expression changes following a gene knockout. Let
DS ¼

S4
t¼1ðXS;t ;ES;tÞ be a data set containing control cells and cells

in which genes in the gene set S are knocked out, and
O= {1,⋯ , 23} be the indices of the genes knocked out in the
hiPSC data. We trained the RENGE model using the dataset DO⧹{j}
excluding cells in which the gene j (j= 1,⋯ , 23) was knocked out.
The trained RENGEmodel was then used to predict the expression
changes of the other genes when gene j was knocked out. We
calculated the Pearson correlation coefficient between the predicted
and measured expression changes for the gene j KO using D{j}.

Statistics and reproducibility. All the underlying statistical
details were provided earlier in the Methods section.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The scCRISPR analysis data of hiPSCs were deposited into the Gene Expression
Omnibus (GEO) database under the accession number GSE213069 and are available at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE213069. The plasmids
generated in this study were deposited with Addgene under the ID numbers found in
Supplementary Data 1. The source data for the graphs in the main figures are available as
Supplementary Data 2. Supplementary Tables 1 and 2 are also available as
Supplementary Data 1 in an Excel file.

Code availability
The python implementation of RENGE is available at https://github.com/masastat/
RENGE. The version of the code described in this paper was deposited in Zenodo43.
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