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A B S T R A C T

Fires following earthquakes have significant impact on urban communities in earthquake-prone
countries with wooden buildings, in addition to the main earthquake hazard of ground shaking.
Regional-scale post-earthquake fire risk assessments are important for developing effective risk
reduction strategies. Such risk assessments require the consideration of epistemic uncertainty,
that is, uncertainty caused by lack of knowledge concerning the best models, in addition to
aleatoric uncertainty. This study focused on epistemic uncertainty in post-earthquake fire igni-
tion estimations, and incorporated it into risk assessments by using alternative empirical ignition
models. The key objectives of this study were as follows: (1) correlating the probability of igni-
tion per person to the ground motion intensity based on data for different past large earthquakes
in Japan; (2) investigating the impact of using ignition models calibrated on different earthquake
events in risk assessments through a realistic case study considering possible large earthquakes. A
hierarchical Bayesian Poisson regression analysis revealed that the empirical relationship be-
tween the ignition probability and ground motion intensity greatly varies across six major large
earthquakes in Japan from 1995 to 2022. Particularly, the effects of ignition prevention measures
that have been widely implemented in households since the 1995 Kobe earthquake were inferred
from much smaller ignition probabilities in approximately the last 10 years. The effects of this
high epistemic uncertainty manifested as the large variability of the loss exceedance curve for a
portfolio of buildings. These results indicate that the new ignition models can help to foster risk-
informed decision-making under epistemic uncertainty.

1. Introduction
Fires following earthquakes are a type of cascading earthquake hazard, and can cause catastrophic damage to urban environ-

ments, particularly in areas with densely constructed wooden buildings in earthquake-prone countries [1]. Historical large earth-
quakes have triggered simultaneous outbreaks of multiple fires in urban areas, resulting in conflagrations by overwhelming firefight-
ing capabilities. The fires following the 1923 Kanto earthquake, which struck the Tokyo–Yokohama metropolitan area, Japan, on Sep-
tember 1 (11:58 a.m. local time) with a magnitude of 7.9, are the most notable post-earthquake fire event in history owing to the ex-
tremely large fire damage to buildings and loss of life [2]. In Tokyo, the capital city of Japan, 98 fires started simultaneously at differ-
ent locations after the earthquake, and eventually destroyed an area of approximately 34.7 km2, including over 210,000 buildings,
and killed over 58,000 people [2]. Numerous fire ignitions occurred because the earthquake struck approximately at noon, when nu-
merous open flames were being used for cooking [2]. Additionally, the fires spread easily to adjacent buildings because numerous
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wooden buildings were densely built in the city, and a strong wind with a speed of approximately 10 m/s was blowing from the begin-
ning of the event until the next morning [2]. Such low urban fire resistance and bad weather conditions, combined with simultaneous
multiple ignitions, enhanced the fire development.

In the last 100 years following the 1923 Kanto earthquake, various measures have been taken in Japan to enhance the urban fire
resistance and fire service strength. These include the formation of firebreaks with roads and fire-resistant buildings to prevent fire
from spreading, zoning to regulate the structure of buildings in designated areas, improvement of areas with closely spaced wooden
buildings, promotion of fire-resistant buildings and wooden buildings with fire protection for exterior walls, openings, and roofs, and
improvement of fire stations, pump trucks, and water sources [3]. These efforts contributed to the development of modern Japanese
society, wherein urban conflagrations are rare events. Nevertheless, the 1995 Kobe earthquake, which struck Kobe, Japan, and its sur-
rounding area with a magnitude of 7.3, triggered 269 fires, resulting in the burning of over 7000 buildings [4]. This earthquake high-
lights that post-earthquake fire risk still exists in Japan. Therefore, Japan places strong emphasis on understanding the risk of post-
earthquake fires to develop effective policies and strategies for risk reduction, similar to other earthquake-prone countries [5–12] and
particularly countries with many wooden buildings, such as the United States and New Zealand.

Because various post-earthquake fire scenarios are probable owing to uncertainties, such as the number and location of ignitions
and the wind velocity and direction, post-earthquake fire risk assessments typically adopt probabilistic approaches to incorporate this
aleatoric uncertainty [5,13–17]. Particularly, historical post-earthquake ignition rate data have been analyzed to randomly generate
multiple simultaneous ignitions for future earthquake events, as reviewed in Ref. [5]. This ignition model enables probabilistic loss
estimations using fire spread and suppression models [13], where the randomly sampled time sequences of weather parameter values
from observation data are occasionally used [16,17]. Such probabilistic assessments considering aleatoric uncertainty provide a bet-
ter foundation for fire risk reduction planning compared with deterministic assessments, which are limited to specific scenarios, such
as the worst-case scenario, and cannot provide information on the variability of fire losses and frequency. However, the incorporation
of epistemic uncertainty, that is, uncertainty caused by lack of knowledge concerning the best model, is also important in risk assess-
ments, because risk assessments vary greatly depending on the model used [18,19]. For example, in probabilistic seismic hazard and
risk assessments, epistemic uncertainty is typically considered using logic tree approaches, where several alternative models are set as
branches for hazard/risk components, such as the earthquake rate models, ground motion prediction equations, and seismic fragility
functions, and weights are assigned to each alternative model [20–25]. Specifically, epistemic uncertainty is considered by evaluating
a group of weight-assigned hazard/risk curves based on several alternative model combinations.

Similar to seismic hazard and risk assessments, post-earthquake fire risk assessments comprise several components, such as the ig-
nition and fire spread models, and must therefore consider epistemic uncertainty as long as there are alternative models for such com-
ponents. Particularly, the uncertainty of ignition models, which are linked to fire spread models to numerically simulate the develop-
ment of simultaneous fires in urban areas, can be notable, because numerous ignition models have been proposed since 2000 [26–35]
(earlier models are summarized in Ref. [5]). With the exceptions of fault-tree ignition models [26,30], all available ignition models
are regression models, which typically correlate the probability of ignition per floor area or person to the ground motion intensity,
based on data for past large earthquakes. This empirical relationship may greatly vary among earthquake events because ignition
mechanisms are affected by societal changes such as built environment and lifestyle changes. As an example, most ignitions following
the 1923 Kanto earthquake resulted from cooking appliances using open flames [2], such as the kamado and shichirin, while the 1995
Kobe earthquake caused ignitions related to electrical appliances, gas appliances, and oil heaters [36]. Since the 1995 Kobe earth-
quake, several large earthquakes, such as the 2011 Tohoku and 2016 Kumamoto earthquakes, have also caused numerous ignitions,
similar to the 1923 Kanto and 1995 Kobe earthquakes. Moreover, prevention measures for ignitions resulting from gas appliances and
oil heaters have been widely implemented in households. Specifically, automatic gas shut-off devices, which sense shaking and imme-
diately cut off gas flow, are now built into almost all the household gas meters in Japan. Similarly, seismically sensitive oil heaters
equipped with automatic turn-off devices are now common in Japan. This widespread implementation can change the occurrence
probability of post-earthquake fires.

Therefore, this study investigated post-earthquake fire ignition model uncertainty, and incorporated it into post-earthquake fire
risk assessment. Although many areas around the world are prone to post-earthquake fires, this study focused on Japan without con-
sidering other countries, because country-specific conditions exist. Specifically, an empirical study specific to Japan was undertaken.
Nevertheless, the methodology adopted in this study is applicable to other countries and may enable comparison among countries.
The main objectives of this study were as follows: (1) investigate the variability of the empirical relationship between the probability
of ignition per person and ground motion intensity among past large earthquakes (i.e., investigate the inter-event variability of empir-
ical ignition models); (2) investigate the impact of using ignition models calibrated on different earthquake events on post-earthquake
fire risk estimates for possible large earthquakes. Fig. 1 illustrates the technical flow diagram of the process used in this study to
achieve the above-mentioned objectives. First, this study focused on six major large earthquakes that occurred in Japan from 1995 to
2022, developed post-earthquake fire ignition datasets, and conducted Poisson regressions using a hierarchical Bayesian modeling ap-
proach, which can analyze group differences in regressions. Then, the ignition model uncertainty was considered using a logic tree,
that is, the developed empirical ignition models were incorporated as alternative models with equal weights into a multi-hazard risk
assessment framework for ground shaking and post-earthquake fires [17]. Finally, this study conducted a realistic case study for Ky-
oto, Japan, which is a historical city with densely constructed wooden buildings, and evaluated a group of weight-assigned loss ex-
ceedance curves at the regional scale. Notably, the case study focused on direct economic losses for a building portfolio, but did not
consider indirect economic losses and losses of human life, because the adopted framework is not capable of evaluating such losses.
However, the loss of life can be evaluated by linking the framework to urban post-earthquake fire evacuation models [37].
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Fig. 1. Technical flow diagram of process used to investigate post-earthquake fire ignition model uncertainty and incorporate it into risk assessments.

The rest of this paper is organized as follows. Section 2 defines the post-earthquake fires of interest, presents the data and formula-
tion of the empirical ignition models, and discusses the regression analysis results. Section 3 presents the shaking–fire multi-hazard
risk assessment through a case study, and discusses the impact of the ignition model uncertainty. Finally, Section 4 presents the con-
clusions drawn from this study and discusses the scope of future work.

2. Empirical modeling of post-earthquake fire ignition
The post-earthquake fires of interest are defined as building fires that occur up to 72 h after a large earthquake as a consequence of

ground shaking, such as fires caused by damage to, moving of, and overturning of goods and equipment, and by electrical power
restorations. Therefore, despite their post-earthquake occurrence, fires that are strongly related to human factors rather than ground
shaking, such as fires caused by candles providing light inside buildings during a blackout, are not included in the post-earthquake
fire definition of this study.

In this study, empirical post-earthquake fire ignition modeling correlates the number of ignition incidents following a large earth-
quake to the ground motion intensity and the exposed population using a Poisson distribution, similar to previous studies [34,38].
Specifically, the ignition probability per person is modeled as a function of the ground motion intensity. The reasons for this are as fol-
lows: (1) the number of people living in an area represents human activity levels, which are related to the probability of fire occur-
rence; (2) spatial demographic data are generally available. Although the type of human activity in the area is not considered, the
number of people living in the area is occasionally used to capture the macroscopic characteristics of post-earthquake fire ignitions
[34,39]. Alternatively, a building-floor-area-based modeling approach may be more appropriate; however, little information is avail-
able on nationwide spatiotemporal floor area distributions.

This Poisson regression ignition modeling requires dividing the ground motion intensity into bins, and counting the number of ig-
nition incidents and exposed population corresponding to each bin. Three types of ground motion intensity measures are considered
to determine which intensity measure is the most effective in improving the predictions. These intensity measures are the peak
ground acceleration (PGA), peak ground velocity (PGV), and Japan Meteorological Agency seismic intensity (JMA intensity). In this
study, the PGA and PGV are measured in cm/s2 and cm/s units, respectively, while the JMA intensity, which is typically calculated
from three-component acceleration waveforms by applying specific filters, does not have a physical unit. The JMA intensity is divided
into intensity unit intervals of 0.4, while the PGA and PGV are divided such that they approximately correspond to the JMA intensity
bins with consideration of their empirical relationships with the JMA intensity [40].

A hierarchical Bayesian approach was adopted to estimate the model parameters using data obtained from different earthquake
events. Specifically, the objective was to investigate how the empirical relationship between the ignition probability and ground mo-
tion intensity varies across different earthquake events. The approach can handle data wherein observations are grouped by one or
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more categorical variables. Each model parameter is treated as a random variable for which a probability distribution represents the
degrees of belief in the values, and its prior distribution is updated using data based on Bayes’ theorem. Some model parameters are
allowed to vary based on group differences by considering their prior distributions as dependent on other parameters, which are also
assigned prior distributions.

2.1. Data
Data from six major large earthquakes in Japan from 1995 to 2022 were analyzed to investigate the inter-event variability of post-

earthquake fire ignition models. These earthquakes are the 1995 Kobe, 2011 Tohoku, 2016 Kumamoto (foreshock and mainshock),
2018 Hokkaido, and 2022 Fukushima earthquakes; the source information is listed in Table 1. The 1995 Kobe and 2011 Tohoku
earthquakes were selected from the three earthquakes in Japanese history that are associated with great earthquake disasters (the
third one is the 1923 Kanto earthquake). The remaining earthquakes were selected from destructive earthquakes that occurred in the
last 10 years and completely destroyed more than 200 houses. These earthquakes are representative of recent earthquakes that have
produced strong ground motions over a large area of the built environment, and allow the development of ignition models applicable
to large accelerations or velocities of interest in risk assessments. Although Japan has historically suffered from post-earthquake fires,
events before 1995, such as the 1923 Kanto and 1948 Fukui earthquakes, were not considered owing to the difficulty of knowing the
ground motion intensity distribution and exposed population, which are required for ignition modeling. As previously stated, ignition
sources for fires following historical earthquakes [2], such as traditional cooking appliances using open flames, are different to those
for fires following recent earthquakes [36,41,42], such as electrical appliances, gas appliances, and oil heaters, owing to lifestyle dif-
ferences. Therefore, the exclusion of such events appears to have a minor effect on the scope of this study and practical risk assess-
ment. Because nationwide dense seismic observation networks had not yet been established in Japan, the ground motion intensity
distributions for the 1995 Kobe earthquake were estimated based on Yamaguchi and Yamazaki [43]. Their method calculates the
ground motion intensities backward from survey data on the district-level building damage ratios using empirical seismic fragility
functions. Therefore, the estimated ground motion intensity distributions for the 1995 Kobe earthquake are limited to areas included
in the survey. The ground motion intensity distributions for the earthquakes from 2011 to 2022 are provided by a quick estimation
system called QuiQuake [44], which produces maps displaying the ground motion intensities based on records observed by nation-
wide strong-motion seismograph networks operated by the National Research Institute for Earth Science and Disaster Resilience of
Japan. This system first calculates the intensities on hard rock under seismic stations by removing the site amplification effect; then, it
spatially interpolates the intensities by considering the attenuation characteristics from the source, and finally calculates the intensi-
ties on the ground surface at 250 m intervals by considering the site amplification effect.

Post-earthquake fires are identified from the records obtained from fire departments, which include information concerning the
fire type, location (address), date and time of occurrence, and ignition source. The fire records for the 1995 Kobe, 2011 Tohoku, and
2016 Kumamoto (foreshock and mainshock) earthquakes have been previously reported [36,41,42]. This study collected the fire
records for the 2018 Hokkaido and 2022 Fukushima earthquakes from municipal fire departments through questionnaire surveys.
Among the included fire incidents, fires that do not meet the above-mentioned post-earthquake fire definition are excluded, while
fires whose ignition sources are unknown are included. Then, the fires that can be linked to the ground motion intensity based on
their location are considered.

The identified post-earthquake fires are 166 fires associated with the 1995 Kobe earthquake, 114 fires associated with the 2011
Tohoku earthquake, 4 fires associated with the 2016 Kumamoto earthquake (foreshock), 6 fires associated with the 2016 Kumamoto
earthquake (mainshock), 5 fires associated with the 2018 Hokkaido earthquake, and 10 fires associated with the 2022 Fukushima
earthquake. Although there is a small number of post-earthquake fire observations for some earthquake events, these observations
still allow the development of ignition models for the pertinent earthquake events, because the hierarchical Bayesian modeling ap-
proach described below can function with limited data by estimating models referring to tendencies in other groups with many obser-
vations. As an example, Fig. 2 overlays the post-earthquake fire locations on the estimated PGV distributions for the six earthquakes.
The overlay links each post-earthquake fire to the PGV and enables the counting of the number of ignition incidents that fall within
each PGV bin. Notably, only areas subjected to the PGV of 5 cm/s or more are shown. Among the earthquakes, there are remarkable
differences in the extent of exposure to high PGV. The 500 m grid population data are also overlaid on the estimated PGV distribu-
tions to count the population that falls within each PGV bin. The same applies to the other intensity measures. Consequently, the
number of ignition incidents and exposed population are obtained for all intensity measures with specific bins, as shown in Fig. 3.
These datasets are used for the hierarchical Bayesian Poisson regressions described in the following sections. As previously stated, the

Table 1
Six major large earthquakes in Japan considered in empirical post-earthquake fire ignition modeling; source information provided by Japan Meteorological Agency.

ID Name Magnitude Time (JST) Location Depth

A 1995 Kobe earthquake M7.3 1995-01-17 05:46 34°35.9′N 135°02.1′E 16 km
B 2011 Tohoku earthquake Mw9.0 2011-03-11 14:46 38°06.2′N 142°51.6′E 24 km
C 2016 Kumamoto earthquake (foreshock) M6.5 2016-04-14 21:26 32°44.5′N 130°48.5′E 11 km
D 2016 Kumamoto earthquake (mainshock) M7.3 2016-04-16 01:25 32°45.2′N 130°45.7′E 12 km
E 2018 Hokkaido earthquake M6.7 2018-09-06 03:07 42°41.4′N 142°00.4′E 37 km
F 2022 Fukushima earthquake M7.4 2022-03-16 23:36 37°41.8′N 141°37.3′E 57 km



International Journal of Disaster Risk Reduction 98 (2023) 104124

5

T. Nishino

Fig. 2. Estimated PGV distributions and post-earthquake fire locations for six major large earthquakes in Japan.

PGA and PGV bins are specified such that they approximately correspond to the JMA intensity bins, which are specified in the range
of 4.4–7.2 at intervals of 0.4; therefore, the PGA and PGV bin widths are not identical.

Fig. 4 compares the ignition source breakdowns among the earthquakes. The cross table highlights that electricity-related fires,
that is, fires related to electrical appliances, equipment, and wiring, account for most post-earthquake fires in approximately the last
10 years (from 2011 to 2022), while conventional ignition sources, such as gas appliances and oil heaters, have rarely caused fires in
approximately the last 10 years, although some fires are related to open flames. Most fires following the 1995 Kobe earthquake had
unknown causes; however, they may have included numerous ignitions resulting from gas appliances and oil heaters, because pre-
vention measures for ignitions resulting from gas appliances and oil heaters, such as seismically sensitive household gas meters and
oil heaters with automatic turn-off devices (as described in Section 1), may not have been as widespread among households at that
time as they have become in recent years.

Only the fire records for the 2018 Hokkaido and 2022 Fukushima earthquakes include information concerning occupant firefight-
ing. Even if a combustible object inside a building is ignited, a fire may be extinguished by occupants during its initial stages without
developing into a fire involving the entire building. Fig. 5 shows the percentages of the ignition incidents where occupants attempted
and succeeded in firefighting during the initial stages. The rates of occupant firefighting attempt and success are 50%–60% and
30%–40%, respectively. For comparison, the rate of occupant firefighting success has been reported as 20.4% for fires following the
1995 Kobe earthquake [45]. For the 2018 Hokkaido earthquake, two ignition incidents wherein occupants did not attempt firefight-
ing were caused by electrical appliance and firewood or charcoal; one ignition incident wherein occupants attempted but did not suc-
ceed in firefighting was caused by high-temperature objects. For the 2022 Fukushima earthquake, five ignition incidents wherein oc-
cupants did not attempt firefighting were caused by electrical equipment and wiring; two ignition incidents wherein occupants at-
tempted but did not succeed in firefighting were caused by electrical wiring. Owing to limited data, a clear relationship between the
ignition source and attempted or successful occupant firefighting is not observed.
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Fig. 3. Datasets used for empirical post-earthquake fire ignition modeling: number of ignition incidents and exposed population for specific ground motion intensity
bins.

Fig. 4. Post-earthquake fire ignition source breakdowns for six major large earthquakes in Japan.

2.2. Formulation
Let p be the probability of ignition per person. Considering that p is not negative, the logarithm of p is modeled as a function of the

ground motion intensity x:

ln p = a + b ln x (1)

for the PGA and PGV, and

ln p = a + bx (2)
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Fig. 5. Rates of occupant firefighting attempt and success for fires following the 2018 Hokkaido and 2022 Fukushima earthquakes.

for the JMA intensity, where a is the intercept and b is the slope. In contrast to the JMA intensity ranging up to approximately 7,
the PGA and PGV are on the order of 100–1000 cm/s2 and 10–100 cm/s, respectively. Therefore, the PGA and PGV models take the
logarithm of x to harmonize with the JMA intensity model.

The probability of y ignition incidents occurring for n persons living in an area subjected to ground motion with intensity x is as-
sumed to have a Poisson distribution, as follows:

f (y|𝜆) =
𝜆

y exp (−𝜆)

y!
(3)

where λ( = np) is the average number of ignition incidents.
Thus, the logarithm of λ can be expressed by a linear relationship as

ln 𝜆 = ln n + a + b ln x (4)

for the PGA and PGV, and

ln 𝜆 = ln n + a + bx (5)

for the JMA intensity, where the logarithm of the exposed population ln n is considered as an offset term.
Following a hierarchical Bayesian approach [46], each model parameter is divided into a parameter common to all earthquake

events and a parameter specific to each earthquake event representing an unexplained variation from the common parameter value.
Hereinafter, i is used to identify the earthquake events. The intercept and slope of the i-th earthquake event are modeled as follows:

a
i
= c

a
+ r

a,i (6)
bi = cb + rb,i (7)

where ca and cb are parameters common to all earthquake events, and ra,i and rb,i are parameters specific to the i-th earthquake event.

2.3. Bayesian inference setup
Let D be a dataset of the number of ignition incidents y versus the ground motion intensity x linked to the exposed population n.

Because, as mentioned above, the number of ignition incidents and exposed population are counted for the specific ground motion in-
tensity bins, the intensity bin medians are used as the value of x. Hereinafter, j is used to identify the intensity bins. The probability of
dataset D being obtained can be written as the product of the Poisson distributions for all earthquake events and all intensity bins:

p
(
D||ca, cb, ra,1, · · · , ra,K , rb,1, · · · , rb,K

)
=

K∏
i=1

L∏
j=1

𝜆
yij

ij
exp

(
−𝜆ij

)

yij!
(8)

where K( = 6) is the number of earthquake events, and L( = 7) is the number of intensity bins.
Based on Bayes’ theorem, the posterior distribution can be written as

Posterior ∝ p
(
D||ca, cb, ra,1, · · · , ra,K , rb,1, · · · , rb,K

)
× Prior (9)

therefore, the prior distribution must be specified [46].
For the common parameter ca, a non-informative prior distribution [46] is specified. Because ca can take any positive or negative

value, a normal distribution with a mean of zero and standard deviation of 100 was adopted as its prior distribution. In Bayesian sta-
tistics, this distribution is typically used as a sufficiently flat probability distribution. The same applies to the other common parame-
ter cb. Specifically, the prior distributions are set as follows:

ca ∼ Normal (0, 100) , cb ∼ Normal (0, 100) (10)

For the event-specific parameter ra,i, a prior distribution is not specified for each earthquake event individually. Instead, a hierarchi-
cal prior distribution [46], which can change the overall variation, is specified to handle all earthquake events simultaneously. More
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specifically, the prior distribution of ra,i is first set as a normal distribution with a mean of zero and standard deviation sa. Then, the
prior distribution of this hyperparameter sa is specified. Because sa can take any positive value, a uniform distribution in the range of
0–1000, as a non-informative prior distribution, was adopted as the prior distribution of sa [47]. In Bayesian statistics, this distribu-
tion is typically used as a sufficiently flat probability distribution. The same applies to the other event-specific parameter rb,i. Specifi-
cally, the prior distributions are set as follows:

ra,i ∼ Normal
(
0, sa

)
sa ∼ Uniform (0, 1000)

]
,

rb,i ∼ Normal
(
0, sb

)
sb ∼ Uniform (0, 1000)

]
(11)

Hence, the posterior distribution can be written as follows [46]:

p
(
ca, cb, sa, sb, ra,1, · · · , ra,K , rb,1, · · · , rb,K|D

)

∝ p
(
D|ca, cb, ra,1, · · · , ra,K , rb,1, · · · , rb,K

)
p
(
ca

)
p
(
cb

)
p
(
sa

)
p
(
sb

) K∏
i=1

p
(
ra,i|sa

) K∏
i=1

p
(
rb,i|sb

) (12)

The posterior distribution is determined using the Markov chain Monte Carlo method [48]. Specifically, Markov chains are used to
generate samples from the distribution of the product of the prior and likelihood, and samples identified as having converged to the
equilibrium distribution are substituted for the posterior distribution. Four Markov chains with different starting values are con-
structed using Hamiltonian Monte Carlo sampling [49] in the Stan software [50] to monitor that they converge to similar posterior
distributions. Each chain generates 6000 samples. The first 3000 samples that appear to depend on a starting value are removed, and
the remaining 3000 samples are kept. Therefore, a total of 12,000 samples are adopted to determine the posterior distribution. The
Gelman–Rubin statistic R [51] is used for convergence diagnosis. The conventional threshold value for R is 1.1 [51]; that is, the poste-
rior distribution is considered to be convergent when all values for R are below 1.1.

2.4. Results and discussion
To discuss the results obtained from Bayesian inference, this study focused on the posterior distribution medians and compared

the models adopting them as parameter values with the data. Table 2 lists the posterior distribution medians. All values for the R sta-
tistic are below 1.1, and very close to 1; therefore, it can be considered that the generated samples converge. Notably, the models
compute very small ignition probabilities per person; however, they can produce multiple simultaneous fires when highly populated
cities are subjected to strong ground motion.

Fig. 6 compares the models adopting the posterior distribution medians as parameter values with the data. The data points repre-
sent the ratios of the number of ignition incidents to the exposed population for the specific ground motion intensity bins; therefore,
data points are not plotted for the bins wherein the number of ignition incidents or exposed population is zero. The inferred models
highlight the large variability among the earthquakes with positive correlations between the ignition probability per person and
ground motion intensity for all adopted intensity measures. Considering the PGV-based models as an example, and considering the
model for the 2011 Tohoku earthquake, which computes the medium ignition probabilities and has sufficient sample sizes, as a refer-
ence model, the inter-event variations of the ignition probability range from approximately 0.37-fold to 9.29-fold increases. Particu-
larly, while earthquake models in approximately the last 10 years vary with lower ignition probabilities, the model for the 1995
Kobe earthquake alone computes much higher ignition probabilities compared with the other models. A possible major factor con-
tributing to this remarkable difference is the change of the ignition sources. As previously stated, prevention measures for ignitions
resulting from gas appliances and oil heaters, such as seismically sensitive household gas meters and oil heaters with automatic turn-
off devices, may not have been as widespread at the time of the 1995 Kobe earthquake as they have become in recent years. The
widespread implementation of ignition prevention measures may have successfully reduced the number of ignition incidents follow-
ing earthquakes in approximately the last 10 years. Even though the ignition probabilities appear to have converged to a similar level

Table 2
Bayesian-inferred post-earthquake fire ignition model parameter values: posterior distribution medians.

Parameter Earthquake PGA PGV JMA intensity

Median R Median R Median R

a 1995 Kobe −22.81662 1.0001 −18.85483 1.0004 −23.16649 1.0006
2011 Tohoku −18.70230 1.0004 −18.11251 1.0005 −22.59432 1.0006
2016 Kumamoto (foreshock) −23.32464 1.0001 −18.96443 1.0006 −23.32625 1.0004
2016 Kumamoto (mainshock) −22.45616 0.9999 −19.15477 1.0017 −23.36919 1.0001
2018 Hokkaido −23.13921 1.0003 −18.71696 1.0004 −23.13722 1.0000
2022 Fukushima −24.26935 1.0000 −18.94663 1.0002 −23.38099 1.0009

b 1995 Kobe 2.00147 1.0001 2.11409 1.0005 2.19810 1.0006
2011 Tohoku 1.02589 1.0004 1.56327 1.0004 1.83815 1.0006
2016 Kumamoto (foreshock) 1.76675 1.0001 1.68222 1.0006 1.90328 1.0004
2016 Kumamoto (mainshock) 1.52915 0.9999 1.59088 1.0013 1.83291 1.0002
2018 Hokkaido 1.81641 1.0003 1.80239 1.0003 1.95662 0.9999
2022 Fukushima 1.86782 1.0000 1.73404 1.0002 1.91711 1.0007
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Fig. 6. Bayesian-inferred post-earthquake fire ignition models and their comparison with data; the models adopt the posterior distribution medians as parameter values.

in approximately the last 10 years, the model selection is likely to have significant impact on post-earthquake fire risk estimates, be-
cause the inter-event variations are not negligible, even in approximately the last 10 years. Therefore, ignition model uncertainty
must be incorporated into post-earthquake fire risk assessments. This aspect is addressed in the next section.

In addition to the inter-event variability, the intensity measure selection can also be considered to improve the predictions. How-
ever, model selections based on typical information criteria, such as the widely applicable information criterion [52], are not avail-
able because the data for each intensity measure are different. Therefore, this study considered the difference between the predicted
average number of ignition incidents λpre and the observed number of ignition incidents yobs for a given earthquake event and a given
intensity bin as the residual, and assumed that an intensity measure that achieves a higher reduction of the root mean square of the
residuals (RMSR) for all earthquake events and all intensity bins enables better predictions. Specifically, the RMSR is defined as

RMSR =

 1

KL

K
i=1

L
j=1


𝜆ij,pre − yij,obs

2 (13)

and computed for each intensity measure by comparing the model predictions to the observations (Fig. 7). Unexpectedly, the PGV-
based models produce the smallest RMSR with a value of 2.60. Therefore, the PGV is the most effective explanatory variable com-
pared with the PGA (RMSR = 4.63) and JMA intensity (RMSR = 3.83). Considering that the PGA and JMA intensity correspond to
the earthquake response spectra in a period range of zero and 0.1–1 s, respectively [53], it is reasonable to expect that the PGA or
JMA intensity is more effective because post-earthquake fire ignitions are strongly related to the seismic response of goods and equip-
ment (mainly in low-rise and mid-rise buildings), which are sensitive to such short-period ground motions. However, the results con-
tradict this expectation, and identifying the underlying physical causes of these findings requires further research. Fig. 7 indicates
that the residuals for the 1995 Kobe and 2011 Tohoku earthquakes, which have the first and second largest number of ignition obser-

Fig. 7. Observed number of ignition incidents versus predicted average number of ignition incidents.
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vations, dominate the RMSR. Specifically, the PGA cannot effectively explain the data for the 1995 Kobe earthquake owing to the
residuals of up to 19.3, and the JMA intensity cannot effectively explain the data for the 2011 Tohoku earthquake owing to the residu-
als of up to 13.7. In contrast, the PGV can effectively explain the data for both the 1995 Kobe and 2011 Tohoku earthquakes owing to
the smaller residuals of up to 7.4 and 6.2, respectively, and thus achieves a larger reduction of the RMSR compared with the other in-
tensity measures.

3. Shaking–fire multi-hazard risk assessment
A multi-hazard risk assessment for ground shaking and post-earthquake fires was conducted with consideration to the post-

earthquake fire ignition model uncertainty. Specifically, equal weights were assigned to several ignition models as alternative models,
and a group of weight-assigned loss exceedance curves was evaluated for a building portfolio using a shaking–fire multi-hazard risk
assessment framework [17]. Then, the curves were combined into a single loss exceedance curve. In other words, a combination of
different ignition models with equal weights was used in the development of the loss exceedance curve. Here, three ignition models
were selected from the PGV-based models, which can provide better predictions compared with models based on other intensity mea-
sures. Specifically, the models for the 1995 Kobe, 2011 Tohoku, and 2016 Kumamoto (mainshock) earthquakes were selected to com-
pute the largest, medium, and smallest ignition probabilities among the new ignition models, respectively. Similar to a previous study
[17], this case study was conducted for the historical city of Kyoto, Japan, based on national seismic activity models [54]. Six mod-
eled earthquakes along major active faults were considered (Fig. 8). These earthquake models specify a single moment magnitude
(Mw) and the probability of its occurrence for each specified source fault. The essential points of the case study are (1) the variability
in the total number of ignitions across the entire city depending on the ignition models, and (2) the variability in the loss exceedance
curve for a portfolio of buildings in Nishijin and its surrounding area, which is a designated high-priority area with densely con-
structed wooden buildings, depending on the ignition models. The city-scale ignition analysis used a 500 m grid population exposure

Fig. 8. Domains for city-scale ignition and neighborhood-scale loss analyses, specified source faults selected from national seismic activity models of Japan [54], and
distributions of average PGVs predicted by ground motion prediction equation [55]: (a) Biwako Seigan fault of Mw 6.9 earthquake; (b) Hanaore fault of Mw 6.9 earth-
quake; (c) Arima-Takatsuki fault of Mw 7.1 earthquake; (d) Ikoma fault of Mw 6.9 earthquake; (e) Kyoto Nishiyama fault of Mw 7.0 earthquake; (f) Rokko-Awaji fault
of Mw 7.3 earthquake. The probability of occurrence can be found in the literature [17].
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model, while the neighborhood-scale loss analysis used an additional detailed building exposure model [17], which contains informa-
tion on the spatially distributed buildings, such as the building location, footprint, construction type, number of floors, thermal prop-
erties of the exterior walls, and area of the exterior wall openings.

3.1. Methodology
The shaking–fire multi-hazard risk assessment framework [17] is an extension of probabilistic seismic risk assessments that in-

cludes a post-earthquake fire model consisting of the ignition, weather, urban fire spread, and fire brigade response models. This
framework can evaluate the exceedance probability of direct economic losses for a portfolio of buildings, as a result of the combined
effect of ground shaking and post-earthquake fires, in a predefined future time period by comprehensively considering various earth-
quake- and fire-related uncertainties through Monte Carlo simulations. This risk is defined as the probability p(L ≥ l;t) of the total loss
L for the portfolio of buildings, caused by the combined effect of ground shaking and post-earthquake fires, exceeding a certain value l
at least once within t years when all possible earthquakes are considered. This definition is expressed as follows:

p (L ≥ l; t) = 1 −
∏

k

[
1 − p

(
Ek; t

)
p
(
L ≥ l||Ek

)]
(14)

where p(Ek;t) is the probability of the k-th earthquake occurring within t years, and p
(
L ≥ l||Ek

)
is the probability of the total loss L ex-

ceeding a certain value l when the k-th earthquake occurs. Equation (14) ignores the probability of earthquakes occurring more than
once within t years, because earthquake recurrence intervals are typically much longer than the time period of interest t. Aftershocks
are not considered, potentially resulting in an underestimation of the risk.

While the earthquake occurrence probability p(Ek;t) is evaluated from historical records and geological and geographical data, the
conditional loss exceedance probability p

(
L ≥ l||Ek

)
can be numerically evaluated through Monte Carlo simulations, as follows:

p
(
L ≥ l||Ek

)
=

1

nMCS

nMCS∑
j=1

I
(
Lj ≥ l

|||Ek

)
(15)

where nMCS is the number of Monte Carlo trials, and I(·) is the indicator function that takes the value of 1 when the total loss for the j-
th trial Lj is greater than or equal to l; otherwise, it takes the value of 0.

The total loss for the j-th trial Lj can be evaluated by considering the replacement cost of buildings, as follows:

Lj =

nbldg∑

i=1

Lij =

nbldg∑

i=1

max

(
LS,ij,LF,ij

)
=

nbldg∑

i=1

[
CR,i × max

(
LRS,ij,LRF,ij

)] (16)

where nbldg is the number of buildings; Lij, LS,ij, and LF,ij are the losses resulting from the combined effect of ground shaking and post-
earthquake fires, ground shaking alone, and post-earthquake fires alone, respectively, for the i-th building and j-th trial; CR,i is the to-
tal replacement cost of the i-th building; LRS,ij and LRF,ij are the loss ratios for the ground shaking and post-earthquake fires, respec-
tively. The shaking loss ratio must be determined by considering different damage states, such as complete damage and partial dam-
age. The fire loss ratio can be determined by considering two damage states, complete damage or no damage, because post-
earthquake fires in low-rise wooden buildings typically affect the entire building. Hence, Equation (16) takes the greater of the shak-
ing loss or fire loss, as opposed to the cumulative effect.

The model implementation for evaluating the above equations is as follows. (1) The fault location and geometry, Mw, and occur-
rence probability are specified for individual earthquakes using the national seismic activity models of Japan [54]. (2) The PGVs at
the building locations are stochastically evaluated using an up-to-date empirical ground motion prediction equation for Japan [55].
This equation includes correction terms for the site amplification caused by deep sedimentary layers and shallow soft soils; these
terms are evaluated using nationwide shear-wave velocity structure models [56]. (3) The damage states resulting from ground shak-
ing (completely destroyed and semi-destroyed) are stochastically evaluated for individual buildings using empirical seismic fragility
functions [43,57,58], and the ground shaking loss ratios to the total replacement costs are evaluated. Similar to Goda and Risi [18], a
combination of three seismic fragility functions for Japanese low-rise wooden buildings is used in the Monte Carlo simulations to in-
corporate the fragility function uncertainty into the assessments. (4) The ignition probabilities are evaluated for individual buildings
using the new empirical ignition models, and the fire-starting buildings are stochastically determined. Specifically, the ignition mod-
els compute the ignition probability per person; therefore, this probability is converted to the ignition probability per building, which
enables the stochastic determination of the fire-starting buildings by generating a uniform random number between 0 and 1 for each
building and comparing it with the ignition probability. Buildings for which the generated random number is equal to or less than the
ignition probability are considered as the fire-starting buildings. (5) The time histories of the weather parameters, including the out-
door air temperature and wind velocity and direction, are randomly sampled from one-year hourly weather data obtained at a given
meteorological station. (6) The fire brigade response times are stochastically evaluated for individual fire outbreaks using the empiri-
cal distribution of the time from outbreak to detection for the 1995 Kobe earthquake [36], which has a sufficient sample size for high
ground motion intensity levels. (7) The time-varying behaviors of urban fire spread are numerically simulated using a physics-based
urban fire spread model [59] under the stochastically determined ignition, weather, and fire brigade response conditions, and the
post-earthquake fire loss ratios to the total replacement costs are evaluated for individual buildings. Fig. 9 shows examples of the
post-earthquake urban fire spread simulations for Nishijin and its surrounding area, adopting 72 h as the simulation period. These ex-
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Fig. 9. Examples of post-earthquake urban fire spread simulations for Nishijin and its surrounding area with densely constructed wooden buildings (visualized on
Google Earth): gray, red, and black objects represent unburned, burning, and burned buildings, respectively. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

amples demonstrate that the stochastic multi-hazard modeling can successfully generate various post-earthquake fire scenarios with a
different number of fires, fire-starting buildings, and wind velocity and direction. One similarity is that the simulated fires simultane-
ously start at multiple locations, with an enlarged burned area, and begin to burn out in sequence closer to the fire-starting buildings.
Thus, they form belt-like burning regions along the fire fronts. Additional details concerning the implemented models can be found in
the literature [17].

3.2. Results and discussion
Fig. 10 shows the empirical cumulative distribution functions of the total number of ignitions obtained from the city-scale

analysis of 600 trials for each ignition model, focusing on the Hanaore fault earthquake. As expected, the different ignition models
obtained remarkably different results. Specifically, the effect of significant decreases in the ignition probability in approximately

Fig. 10. Empirical cumulative distribution functions of total number of ignitions obtained through city-scale analysis under Hanaore fault earthquake using different
post-earthquake fire ignition models.
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the last 10 years manifests as a great reduction in the number of fire occurrences compared with the predictions using the ignition
model for the 1995 Kobe earthquake. The total number of ignitions is in the range of 2–237. The predictions of the six new igni-
tion models fall within this wide range because the ignition models for the 1995 Kobe and 2016 Kumamoto (mainshock) earth-
quakes compute the largest and smallest ignition probabilities, respectively. Notably, because numerous PGV distributions are sto-
chastically generated as a result of the error term included in the ground motion prediction equation, there is greater variation in
the total number of ignitions than when using the average PGV distribution. However, this intra-model variation appears to be
smaller than the inter-model variation.

Fig. 11 shows the building portfolio loss exceedance curves obtained from the neighborhood-scale analysis of 600 trials for each
ignition model. Unsurprisingly, using different ignition models significantly affects the risk estimates. Specifically, the ignition
model for the 1995 Kobe earthquake provides larger fire loss exceedance probabilities compared with using a combination of all ig-
nition models. Conversely, the ignition models for the 2011 Tohoku and 2016 Kumamoto (mainshock) earthquakes provide smaller
fire loss exceedance probabilities compared with using a combination of all ignition models. Considering a 0.5% probability of ex-
ceedance in 50 years, using the ignition model for the 1995 Kobe earthquake increases the loss estimate by approximately 3.2 and
25.6 times compared with using the ignition models for the 2011 Tohoku and 2016 Kumamoto (mainshock) earthquakes, respec-
tively. This highlights that the careful selection of post-earthquake fire ignition models is important in post-earthquake fire risk as-
sessments. Specifically, given the possibility that some ignition prevention measures have successfully reduced the ignition probabil-
ity since the 1995 Kobe earthquake, it may be reasonable to use ignition models for earthquakes that occurred in approximately the
last 10 years in risk assessments for future earthquakes. However, the uncertainty is not negligible even in the ignition models for re-
cent earthquakes. Therefore, it is preferable to use a combination of these models. Another important point is that all fire loss ex-
ceedance curves lie below the shaking loss exceedance curve at small total losses, while this relationship is reversed at large total
losses. This indicates that typical earthquake risk assessments that consider ground shaking alone may significantly underestimate
the loss exceedance probabilities. Particularly, such assessments may ignore the rare but catastrophic effects of post-earthquake
fires.

4. Conclusions
This study developed empirical post-earthquake fire ignition models based on data for six major large earthquakes in Japan from

1995 to 2022 using hierarchical Bayesian Poisson regression, and investigated the impact of the ignition model uncertainty on re-
gional risk estimates through a realistic case study considering possible large earthquakes. The key findings of this study are as fol-
lows. (1) The empirical relationship between the ignition probability per person and ground motion intensity greatly varies across dif-
ferent earthquakes. (2) The effects of ignition prevention measures that have been widely implemented in households since the 1995
Kobe earthquake are inferred from much smaller ignition probabilities in approximately the last 10 years. (3) The PGV is the most ef-
fective intensity measure for explaining the ignition data, as opposed to the PGA and JMA intensity. (4) Using different ignition mod-
els has a significant impact on the risk assessment results. (5) The new ignition models serve as alternative models for incorporating
epistemic uncertainty into risk assessment.

The findings of this study contribute to the advancement of regional shaking–fire multi-hazard risk assessment. However, the re-
sults were obtained from empirical and case studies specific to Japan and cannot be generalized to different countries and future
events. Therefore, further investigations are needed. Particularly, the ignition models developed in this study are based on data for
past large earthquakes, but the built environment and lifestyles are expected to change continuously in the future. Because it is impos-

Fig. 11. Loss exceedance curves of building portfolio obtained through neighborhood-scale analysis using different post-earthquake fire ignition models.
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sible to clarify the timeframe over which the models developed in this study remain valid, it is necessary to assess the relationship be-
tween the ignition probability and the ground motion intensity whenever a large earthquake occurs in the future, and update the igni-
tion models to reflect the latest situation. Additionally, epistemic uncertainty in other components, such as the weather, building ex-
posure, and urban fire spread models, was not addressed in this study, and should be investigated in future work. Incidentally, pre-
venting electricity-related ignitions is important for further reducing post-earthquake fire risk. Seismic circuit breakers, which are
household devices that detect shaking and automatically cut off the electrical power, are increasingly receiving attention in Japan as
a low-cost and fast post-earthquake fire risk reduction measure, as opposed to conventional structural measures, such as retrofitting
or rebuilding to improve fire resistance. To promote the adoption of seismic circuit breakers, the associated risk reduction effects de-
pending on the implementation rate must be quantified. Therefore, further work is needed to improve the management of post-
earthquake fire risk.
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