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Abstract

This study investigates the agricultural production responses to climate risk among small-scale

farmers in Zambia by combining grid-level historical rainfall data with nationally representa-

tive household survey data. After identifying the importance of January and February rainfall

in maize production, we define these two months’ rainfall variations over the past 59 agri-

cultural years as the climate risk index. We then relate this risk index to household-level

agricultural decisions regarding risk diversification and farm investments. Results show little

evidence of crop and plot diversification strategies in response to weather risks. Conversely,

farmers in high climate-risk regions apply less fertilizer and consequently achieve lower maize

yields than their counterparts in low-risk regions. The mediation analysis attributes under-

investment in fertilizer to 38.5% of the rainfall risk impact on maize productivity. Overall,

Zambian farmers manage climate risk by reducing risky farm inputs at the expense of returns.
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1 Introduction

The impact of climate change is becoming increasingly conspicuous worldwide. Developing coun-

tries are vulnerable to climate change, and because small-scale farmers rely mostly on rain-fed

agriculture, they are particularly exposed to severe weather risks (Kurukulasuriya et al., 2006).

Understanding climate risk management is critical to designing effective and appropriate adapta-

tion policies.

Standard economic theory suggests that risk-averse agents are willing to diversify their income

risk in risky environments. Where the credit and insurance markets are poorly developed, the most

accessible risk diversification is the adjustment of income portfolios by increasing investments in

low-risk assets in exchange for higher returns. For the same reason, agents are likely to avoid prof-

itable but risky investments. Although ensuring a secure income is a critical livelihood strategy for

individuals living close to a subsistence level to bypass life-threatening scenarios in the short run,

their missing profitable opportunities may lock them into poverty traps in the long run. To derive

welfare implications, this study investigates the nature of risk diversification as self-insurance and

its consequences for productivity in Zambian agriculture.

Zambia provides an excellent setting for empirical analysis of farmers’ risk management. First,

agricultural production is prone to climate risks because irrigation facilities are almost nonexis-

tent in rural areas; thus, farming is rain-fed (Mendelsohn and Dinar, 2003). Second, the mono-

production mode of maize crops is still dominant among Zambian smallholders, despite the gov-

ernment and aid organizations’ efforts to promote crop diversification as a practical adaptation

strategy against climate risks. Farmers’ focus on maize production may be risky given the high

weather risks, providing an empirical puzzle motivating this study. Therefore, investigating house-

hold risk management in agricultural production offers valuable implications for future policy

planning in the country.

In the self-insurance literature, previous studies have empirically examined the production re-

sponse of agricultural households to climate risks. Examples of such agricultural decisions include

crop choices (Arslan et al., 2018), seed choices (Emerick et al., 2016; Boucher et al., 2021), land

adjustments (Aragón et al., 2021), and farm investments in fertilizer (Alem et al., 2010) and labor

(Aragón et al., 2021). However, few empirical attempts have been made to discuss the conse-

quences of farmers’ weather risk management on their agricultural productivity. To fill this re-
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search gap, this study examines how climate risk affects farmers’ agricultural decisions and, as a

result, farm productivity in rural Zambia by combining nationally representative agricultural sur-

vey data and long-term pixel-level climate data.

Our analysis begins by defining a climate risk index based on historical variations in rainfall

amounts that are crucial for agricultural production. We estimate the impact of monthly precipi-

tation on maize yields for each calendar month using district-level production records and rainfall

estimates for the 1990/91 and 2018/19 cropping seasons. Past production records were obtained

from annual agricultural statistics aggregated at the district level from the Crop Forecast Survey

(CFS) conducted by the Zambia Statistics Agency in collaboration with the Ministry of Agricul-

ture. For historical rainfall data, we aggregate the grid-level rainfall database WorldClim at the

district level. Using these data, our estimation results identify January and February rainfall as

the most influential determinants of maize yield. Based on this result, we define the coefficient

of variation of these two months’ rainfall over 59 agricultural years (1960/61 to 2018/19) as the

climate risk index for this study and construct it at the ward level.

We then relate this climate risk index to agricultural decisions concerning risk diversifica-

tion and farm investments of more than 10,000 farm households from nationally representative

CFS data for the 2020/21 cropping season. As a suitable nature for this study, the CFS collects

household-crop-plot level information on seed choices and fertilizer applications. This allows us

to consider a wide range of risk management strategies and analyze them at extensive and intensive

margins. The estimation results show no evidence that farmers diversify their planted crops or plot

locations in response to climate risks. Additionally, we find little evidence for growing drought-

tolerant crop varieties such as sorghum and millet in high climate-risk regions. Conversely, the

empirical results suggest that farmers respond significantly to climate risks by reducing fertilizer

application and adopting hybrid maize seeds that are typically drought-tolerant and early maturing

and thus risk-hedging inputs, which is consistent with theoretical predictions. These results are also

economically significant: a one-standard-deviation increase in our rainfall risk measure reduces the

fertilizer applied to the field by 14.9 kilograms per hectare, corresponding to approximately 13%

of its standard deviation, and increases the likelihood of planting hybrid maize seeds by approx-

imately ten percentage points while its sample average is 74%. As our regressions control for

recent weather shocks, these input responses directly capture the long-run behavioral reactions to

location-specific rainfall risks.
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Our findings that rainfall risks significantly change household investment decisions in farming

invite natural speculation that climate risks have consequences for productivity. The data indicate

that, after accounting for soil conditions and recent climates, the maize yield gap is approximately

9% when the difference in our climate risk index equals one standard deviation. To quantify

the cost of climate risks via household-level risk-management behavior, we conduct a mediation

analysis to examine how much the responses of fertilizer application and hybrid seed adoption to

rainfall risks contribute to maize productivity (Acharya et al., 2016). Specifically, we estimate the

average conditional direct effect of historical rainfall variations conditional on fertilizer and seed

inputs and then compare these estimated coefficients to discuss the relative importance of these

two channels. This empirical exercise demonstrates that risk-induced underinvestment in fertilizer

reduces maize productivity by 38.5% while encouraging hybrid seed adoption restores it by 65.8%

in proportion to total productivity loss owing to increased climate risks. Thus, risk avoidance

through underinvestment in chemical fertilizers is costly for Zambian farmers, while risk hedging

through planting hybrid seeds has positive productivity consequences as a by-product.

This study contributes to the literature on the impact of climate risk on farmers’ welfare in

developing countries. Previous studies have examined land values, crop yields, and agricultural

productivity (e.g., Kurukulasuriya et al., 2006; Welch et al., 2010; Lobell et al., 2011; Chen et al.,

2016; Taraz, 2018) as welfare indicators influenced by climate change. Instead of estimating the

reduced-form impacts of weather conditions, this study conducts a mediation analysis to uncover

the impact of risk-induced household behavior as a channel through which climate risk affects agri-

cultural productivity. Our closest study is that of Chen and Gong (2021). They use the county-year

panel over the past 35 years in China and decompose the impact of climate change on crop yields

into the effect of changes in total factor productivity and agricultural input utilization. While both

studies investigated the mechanisms underlying climate adaptation, they are distinct in two im-

portant ways. First, Chen and Gong (2021) unpack the impacts of climate change on agricultural

outputs but do not quantify the relative importance of the two channels in productivity conse-

quences. Our results indicate that the adoption of hybrid maize seeds generates yield-enhancing

effects. However, these favorable impacts are attenuated by the negative impacts of underinvest-

ment in chemical fertilizers in response to rainfall risks. The second important difference is in the

unit of analysis. While Chen and Gong (2021) use aggregated data at the county level, this study

examines plot-level data, allowing us to obtain more precise estimates by controlling for important
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determinants of agricultural decisions, such as household demographics and plot characteristics.

This difference between the two studies may generate different findings on labor responses to cli-

mate factors, with no significant results in this study.1

Another contribution of this study is the addition of new evidence to the rich literature on

smallholder household behavior in risky environments in developing countries. One strand of the

literature identifies various agricultural decisions as a response to climate risks.2 Among them,

Arslan et al. (2018) is a notable previous work. They examine the relationship between long-term

precipitation risks and three types of diversification (crop, livestock, and income) in Zambia using

different data sources from ours and find crop portfolio diversification as a response to rainfall

risks in dry regions. In contrast to their findings, we find no significant risk management through

diversification strategies among Zambian farmers. Although the varied results may be because of

different data sources and empirical samples, the current assessment of farmers’ risk management

in the Zambian setting requires further data collection and empirical investigation. Furthermore,

our finding of no evidence for crop and plot diversification strategies warrants future investigations

into the potential hindrances to traditional self-insurance within agricultural production.

The remainder of this paper is organized as follows. Section 2 describes the theoretical mo-

tivation for this study. Section 3 provides background information on Zambian agriculture and

discusses the nature of the data used in the subsequent empirical analysis. After constructing

the climate risk index used in this study in Section 4, Section 5 investigates household produc-

tion responses to climate risks. Section 6 discusses the productivity consequences of risk-induced

household production behaviors by conducting a mediation analysis. Section 7 confirms the ro-

bustness of the primary results. Finally, Section 8 summarizes the findings and proposes a future

research agenda.

1Both studies confirm household responses through fertilizer adjustment. In addition, our observed hybrid seed

utilization and fewer fertilizer applications in high climate-risk areas may suggest that farmers adapt to uncertain

environments by adopting agricultural technologies suitable for risky production, which is consistent with adaptations

in the agricultural input portfolio highlighted by the findings of Chen and Gong (2021).
2The examples include Dercon (1996) for crop choice, Aragón et al. (2021) and Liu et al. (2023) for land ad-

justment, Aragón et al. (2021) for agricultural labor adjustment, and Cui and Xie (2022) for changing the growing

season.
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2 Risk Management in Agricultural Production

People in developing countries are vulnerable to unpredictable shocks owing to family illnesses

and extreme weather conditions. Without any risk-coping strategies, these shocks often lead to

detrimental effects on household welfare in general and irreversible consequences in human cap-

ital accumulation in particular. Given the salience of risks to their livelihoods, it is natural to

hypothesize that, reflecting history and region, farmers form expectations regarding the probability

distribution and magnitude of each shock. Additionally, their expectations were updated, if neces-

sary, by observing the events in each period. While some risks are beyond farmers’ control (e.g.,

rainfall risks), farmers can control the consequences in advance in two ways: Transacting risks

with others and self-insurance.

First, risks can spread across individuals; thus, uninsured risk creates a demand for risk pooling

within groups. Informal risk pooling within social networks is pivotal in shielding household con-

sumption from income fluctuations in rural economies.3 A typical form of informal risk-sharing

arrangement involves cash and gift transfers and labor exchange with relatives and neighbors.

Thus, a group that diversifies risk tends to be geographically confined, suggesting that informal

arrangements can be more effective against idiosyncratic shocks (e.g., family illness) than aggre-

gate shocks (e.g., climate shocks). To protect against aggregate risk, it is theoretically possible to

spread it through formal markets. A leading example is commercialized insurance products for

health and weather events. However, formal insurance markets in developing countries are imma-

ture, because the absence of market institutions that support smooth transactions makes contract

enforcement extremely challenging. Full commitment to the contract initially agreed upon is also

difficult in informal risk-sharing arrangements, although peer pressure can help enforce the agree-

ment. In addition to enforcement issues, classical information asymmetry problems such as moral

hazard and adverse selection undermine the stability of arrangements and markets. Thus, some

risks remain uninsured even after sharing them with others.

Second, the risk can spread across activities through self-insurance. Since self-insurance meth-

3The following three features of traditional village economies make informal insurance arrangements effective.

First, close-knit relationships within a group make mutual monitoring effective and create perfect information settings.

Second, villagers have limited outside options and depend heavily on the community and its members for most of their

lives, making social sanctions effective when contracts are breached. Third, long-lasting relationships with the group

members create repeated game settings, making opportunistic behavior an irrational choice.
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ods diversify the risks faced within household production, issues relating to asymmetric infor-

mation and contract enforcement are less concerning than formal contract-based insurance and

informal risk arrangements. Although its effectiveness is an empirical question, self-insurance re-

mains the most accessible risk-hedging method for small-scale farmers in developing countries.

Therefore, understanding the nature of self-insurance in practice is indispensable for effectively

designing policies aimed at enhancing the resilience of people’s livelihoods against unexpected

shocks. Among the several forms of self-insurance4, this study examines ex-ante risk diversifica-

tion in agricultural production. Specifically, we focus on diversification and investment choices.

Risk diversification through crop choice is a traditional risk-management strategy in agrarian

settings. Agricultural production is inherently risky, primary because of unforeseen climate con-

ditions. The risk of production becomes salient, particularly when agriculture is rain-fed. With

distinct production responses to weather conditions, each crop has different expected returns and

variances (Kurukulasuriya et al., 2006). Thus, farmers select an optimal crop portfolio by bal-

ancing the tradeoff between expected profits and production risks, given their risk attitudes and

the nature of the risks in their production environment. Crop diversification can reduce the total

production risk if there is no perfect yield correlation between crops (Newbery, 1991).

Similarly, plot diversification is another way to spread production risks within a production

mode (Morduch, 1995). Farm households can minimize production loss from crop disease and

livestock/bird attacks by planting the same crop on multiple plots. Although aggregate weather

risks cannot be insured by nature, this risk management strategy is effective if microclimates are

salient.

Changing the production mode to a safer one is an alternative risk-management strategy for

agricultural production. Similar to crop types, returns on inputs respond differently to production

risks. If returns on investment in farm inputs respond negatively to shocks, risk-averse farmers

hesitate to use such inputs. The leading example is fertilizer because its net return is small when

weather shocks (e.g., drought) occur. Thus, we hypothesize that fertilizer application decreases in

areas with a high climate risk.

In contrast, some inputs can contribute to hedging production risks. For instance, the variance

4Precautionary saving through the accumulation of liquid assets such as livestock and jewelry can provide effective

self-insurance against negative income shocks in developing countries (Fafchamps et al., 1998; Miura et al., 2012).

The data constraint did not allow us to investigate their empirical roles in this study.
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in profits from planting drought-tolerant crops and seed varieties is smaller than that from planting

regular crops and varieties. Another example to reduce the variance is planting early maturing

varieties because quicker crop cycles can minimize the ill effect of erratic rainfall patterns and

drought.5 Overall, we add the positive response of planting drought-tolerant and early maturing

seeds to climate risks to our empirical hypotheses.

Finally, the responses of land and labor investments to production risks are theoretically am-

biguous. As land rental and lab-or costs are minimal where outside options are limited, the re-

sponses of investment returns may be neutral to climate shocks. Thus, the direction in which they

respond to climate risks depends on their production relationship with other inputs, such as fertil-

izer. For example, if labor and fertilizer are complements (substitutes), weather risks discourage

(encourage) farmers from applying labor. Therefore, the relationship between climate risks and

investments in land and labor is an empirical question.

In summary, the theory suggests that farmers in high climate-risk regions are more likely to

(1) diversify crops, (2) diversify plots, (3) plant drought-tolerant crops and varieties, and (4) plant

early maturing varieties compared with their counterparts in low-risk regions. Moreover, farmers

in high climate-risk regions are less likely to apply chemical fertilizers than their counterparts,

while predictions regarding labor and land inputs are ambiguous ex-ante. This study tests these

empirical hypotheses by combining historical climate estimates with household production data

from Zambia.

3 Context and Data

3.1 Context

As in the rest of the sub-Saharan African countries, Zambia is an agriculture-based country; more

than half of the population lives in rural areas (54% in 2022), and agricultural employment accounts

for 59% of total employment in 2021. However, the value added from the agriculture, forestry, and

fishing sectors accounted for 3.4% in 2022, suggesting that most farmers engage in subsistence

5Planting early maturing varieties would also work as a risk-coping mechanism in the aftermath of climate shocks

because farmers can replant it after the first planting is unsuccessful, owing to dry spells in the early production stage.
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Figure 1: Agroecological zones in Zambia

Source: The shapefiles depicting this map are available at http://landscapesportal.org/layers/

geonode:agroecological zones for agroecological zones and at https://maps.princeton.edu/catalog/

stanford-yc436vm9005 for the ward boundaries.

agriculture.6

Environmental conditions are heterogeneous across the country. Based on the rainfall distribu-

tion and soil quality, the country is divided into three agroecological zones I, II, and III (Ministry

of Agriculture and Ministry of Fisheries and Livestock, 2016) (Figure 1). Region I in southern,

eastern, and western Zambia, accounting for 12% of the country’s total area, receives less than 800

mm of rainfall on an average in a year and has loamy to clayey soils on the valley floor and course,

and shallow loamy soils on the escarpment. Therefore, Region I is the driest zone with frequent

droughts. Region II accounts for 42% of the country, where the expected annual rainfall ranges

6All the statistics in this paragraph come from the World Bank Indicators (World Bank, 2022b, 2021, 2022a).
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between 800 and 1000 mm, and is further divided into Region IIa with relatively fertile soils and

Region IIb with sandy soils in the Western Province. Region III accounts for 46% of the coun-

try, and its annual rainfall ranges between 1000 and 1500 mm on average. Despite high rainfall,

agricultural productivity is low because Region III has acidic soils caused by leaching.

Smallholders rarely access irrigation facilities in rural Zambia. The Food and Agriculture Or-

ganization (FAO) estimates the proportion of land irrigated to total arable land as constant as 4–6%

in the last two decades (2002–2019) (FAO AQUASTAT). Therefore, most agricultural production

systems are rain-fed. As formal insurance and social safety nets are poorly developed, weather

shocks often depress food production and threaten national food security. Climate risk poses a pri-

mary threat to Zambian farmers, and the Zambian government promotes investments in irrigation

and crop diversification to enhance the resilience of farmers to climate change (ZVAC, 2015).

Although detailed crop calendars should be specific for each region, the main agricultural sea-

son, by and large, corresponds to the rainy season from November to April. Most farmers cultivate

maize during the rainy season, which is a staple food in Zambia. From the CFS in 2020/2021

agricultural season,7 94% of farmers cultivate maize, and approximately 80% of farmers cultivate

only maize as cereal.8 Despite salient weather risks, the dominant mono-production mode of maize

characterizes the agriculture of rural farmers in Zambia, motivating this study. Conversely, during

the dry season between May and October, agricultural activities are limited to winter maize and

vegetable production in wetlands, locally called dambos, and riverbanks because it rarely rains.

Before proceeding, touching on other essential crops in risk management strategies within

agricultural production is worthwhile. Specifically, millet and sorghum are more drought-tolerant

than maize, because their water requirements are generally mild. Appendix Figure A.1 illustrates

the relationship between the total precipitation during the rainy season and yields at the district

level by crop. As depicted in Appendix Figure A.1, the yield responses to rainfall are milder for

millet and sorghum than for maize. We expect a prevalence of millet and sorghum planting in high

climate-risk regions.

7The detailed data description of the CFS will be provided shortly.
8Cereal includes maize, sorghum, rice, and millet.
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3.2 Data

This study primarily uses historical rainfall and agricultural survey data. This subsection describes

the data sources used in this study.

3.2.1 Historical Rainfall Data

The grid cell level monthly precipitation data used for this study is obtained from WorldClim for

1960–2018 (Fick and Hijmans, 2017; Harris et al., 2020).9 The spatial resolution is 2.5 minutes (≈

21km2 at the equator). This study also uses daily rainfall estimates from TAMSAT v3.1 for 2019-

2021 to make up rainfall records for the recent period (Maidment et al., 2014; Tarnavsky et al.,

2014; Maidment et al., 2017).10 The spatial resolution of the TAMSAT data is 0.0375 degrees (≈

16km2).

By mapping these historical rainfall data onto administrative boundary data in Zambia, we

calculate monthly precipitation at the ward level as its weighted average using the area of pixels as

the weight.11 Based on constructed ward-level monthly rainfall estimates over 59 years between

the 1960/1961 and 2018/2019 cropping seasons, we define the rainfall risk index for each ward.

The empirical analysis also uses average annual precipitation over 59 years and recent rainfall

estimates at the ward level as control variables in the regression.

3.2.2 Agricultural Survey Data

Our outcome variables for agricultural practices come from the Crop Forecast Survey (CFS). The

CFS is conducted by the Zambia Statistics Agency (ZamStats) in collaboration with the Ministry

of Agriculture during March and April every year to provide a basis for inferring national food

security in the given agricultural season. The CFS covers all provinces and provides a nationally

representative sample through a two-stage stratified cluster sample design to select interviewed

9The historical monthly weather data from the WorldClim database is the CRU-TS 4.06 (Harris et al., 2020) down-

scaled with WorldClim 2.1 (Fick and Hijmans, 2017). These data are publicly available at https://www.worldclim.org/

data/monthlywth.html.
10We use the original ’rfe’ variable without recovering and filling in the missing data.
11The country has ten provinces: Central, Copperbelt, Eastern, Luapula, Lusaka, Muchinga, Northern, North-

Western, Southern, and Western. As administrative units, each province is divided into districts, which are further

subdivided into constituencies and wards.
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households. First, a sample of the Enumeration Areas (EA) has been selected in proportion to the

number of households based on the 2010 Census of Population and Housing.12 In practice, the

sampling procedure selects 680 Census EAs across the country for every survey.

Stratification is based on the total crop area. The CFS defines households cultivating less than

five hectares as small-scale farmers, households cultivating between 5 and 20 hectares as medium-

scale farmers, and households cultivating more than 20 hectares as large-scale farmers. In the

second stage of the sampling, after listing all the households for each selected EA, 20 households

cultivating less than 20 hectares (i.e., “small-” and “medium-scale” farmers) are randomly sampled

for survey interview from each list.13 Thus, the CFS selects and interviews 13,600 households

every agricultural year.

The CFS questionnaire starts with each household member’s basic demographic characteris-

tics. The agricultural module then collects detailed information on plot characteristics, farming

practices (e.g., tillage methods), inputs such as seeds and fertilizers, and expected production and

sales for each field and crop in the corresponding agricultural season. As CFS interviews are

usually conducted before the harvest is fully completed, the harvested quantities are recorded as

self-reported and estimated values by the respondents.

The primary empirical analysis uses household-level data from the CFS for the 2020/21 agri-

cultural year. The 2020/21 CFS collected information from 13,553 households. To investigate

farmers’ risk-management behavior, we calculate the outcome variables at the household level

based on plot-level data. The outcomes of interest include crop-specific yields in quantity per

hectare; risk diversification indexes, such as the number of crops cultivated and the Gini-Simpson

index of crop-specific areas; and per-hectare quantities of farm inputs, such as chemical fertilizer

and labor. To aggregate information on seeds at the household level, we calculate the weighted

average of hybrid seed indicators across maize plots using the area of the planted field as the

weight. Finally, ward-level historical precipitation records from WorldClim are assigned to each

12The EA is the geographical unit used by ZamStats. At the time of the 2010 Census of Population and Housing,

ZamStats demarcated each ward such that each EA had 60–120 (80–150) households in rural (urban) areas. The

sampling frame for the Census contained 25631 EAs. These EAs are used as sampling frame for the CFS conducted

after 2010.
13Conversely, “large-scale” farmers are always captured by the CFS every year. While the CFS interviews approxi-

mately 1600 large-scale farms in a separate survey, this study excludes this category from the analysis and focuses on

smallholders’ risk management behavior.
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CFS household.14

Before conducting the main empirical analysis relating climate risks to household production

behavior, we define a climate risk index for each region by estimating the district-level relationship

between rainfall and agricultural production. For this purpose, we use district-level production

data aggregated from household-level CFS data. Particularly, the expected quantity of harvest and

the area planted aggregated at the district level have been published since 1990. Using district-

level data between the 1990/91 and 2018/19 cropping seasons, Section 4 estimates maize yield as

a function of monthly rainfall at the district level.

3.3 Summary Statistics

Table 1 presents the descriptive statistics for the outcomes and the main explanatory variables used

in the empirical analysis. These variables are at the household level. Table 1 indicates that the

average household cultivates approximately three crops in more than three fields. Only 9% and

6% of the sample households grew millet and sorghum, respectively, during the 2020/21 rainy

season. While the average amount of fertilizer is 50 kg/ha for both types, high standard deviations

suggest significant variations in fertilizer application in the sample. Finally, three to four adult

family members work in farming in an average household. We use these variables as the outcomes

and relate them to the rainfall risk index defined in the next section.

4 Constructing Rainfall Risk Index

This section defines the index used to quantify rainfall risks. To this end, we first examine which

monthly rainfall significantly impacts maize yield, using historical rainfall and production data at

the district level. We then calculate the long-term variability in monthly rainfall that is important

for farming and define it as the rainfall risk index.

14We use ward boundary data as of 2010 because the 2020/21 CFS relies on the EAs from the 2010 census as

the sampling unit and geographical information such as wards and constituencies refers to information from the 2010

census. We could not match the CFS data from a few wards with historical rainfall data because of a mismatch between

the 2010 ward boundary data and the information provided in the CFS. The main analysis omits the observations that

could not be linked to precipitation data. As a robustness check, we also assign constituency-level rainfall records to

survey households that failed to match at the ward level.
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Table 1: Summary statistics

Variable Mean Std. Dev. Min Max Obs

CoV (Jan, Feb) 0.19 0.07 0.09 0.32 12220

CoV (Nov-Apr) 0.16 0.04 0.09 0.24 12220

Number of crop 2.90 1.60 1.00 16.00 12220

Gini simpson index 0.42 0.26 0.00 0.92 12220

Number of plot 3.20 1.70 1.00 16.00 12220

Cultivate millet = 1 0.09 0.29 0.00 1.00 12220

Cultivate sorghum = 1 0.06 0.23 0.00 1.00 12220

Basal fertilizer (kg/ha) 50.00 59.00 0.00 1675.00 12220

Top dress fertilizer (kg/ha) 50.00 61.00 0.00 1750.00 12220

Total fertilizer (kg/ha) 100.00 118.00 0.00 3425.00 12220

Hybrid maize seed 0.74 0.43 0.00 1.00 12220

Area planted/Area field 0.91 0.19 0.02 1.00 12220

Number of family labor 3.30 1.80 0.00 14.00 12220

Number of female family labor 1.60 1.10 0.00 10.00 12220

Number of male family labor 1.70 1.20 0.00 9.00 12220

Notes: CoV of Prec (Jan, Feb) is calculated at the ward level and assigned to each household. Fertilizer and

hybrid maize seed variables are originally at the plot level and converted to household-level variables by

calculating weighted averages with plot areas as the weight. Other variables are originally at the household

level.
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4.1 Specifications

We specify the district-level relationship between the maize yield and monthly rainfall as follows15:

Y ielddt = β1R
Jan
dt + β2R

Feb
dt + · · ·+ β11R

Nov
dt + β12R

Dec
dt + βlt+ βqt

2 + δp + ϵdt (1)

where Y ielddt represents maize yield (defined as expected maize harvest quantity divided by area

planted) in tons per hectare of district d in agricultural year t and Rm
dt is rainfall amount of district

d in month m of agricultural year t. Thus, regression model (1) assumes that all monthly rainfall

amounts affect maize yields additively and linearly. We include linear and quadratic time trends

t and t2 to control for agricultural technological progress over the study period. δp represents

province fixed effects which capture time-invariant geographic features and ϵdt is an error term. In

general, we can define November and December as the planting season and January and Febru-

ary as the weeding season based on the crop calendar in Zambia. Using season-specific rainfall

variables, we specify and run the following regression equation:

Y ielddt = βPR
Plant
dt +βWRWeed

dt +βPWRPlant
dt ×RWeed

dt +β3R
Mar
dt +β4R

Apr
dt +βlt+βqt

2+δp+ ϵdt

(2)

where RPlant
dt (RWeed

dt ) is the rainfall during the planting (weeding) season in district d during

agricultural year t. In addition to the independent effects on maize yield in each season, we allow

for the complementarity of rainfall across seasons by including their interaction term. Finally, we

include March and April rainfall RMar
dt and RApr

dt as controls.

We run regression equations (1) and (2) using unbalanced panel data from 76 districts for 27

cropping seasons between 1990/91 and 2018/19.16

4.2 Results

Table 2 presents the estimation results for the regression equation (1) in Column (1) and equation

(2) in Columns (2) and (3), respectively.17 Regression results in Column (1) find positive and

statistically significant impacts of rainfall in December, January, and February on maize yields.
15The purpose of this analysis is to assess the impact of rainfall rather than to estimate the specific form of the

production function.
16District-level production data for 1998/99 and 2015/16 are unavailable. Thus, we use data for 27 agricultural

years.
17Appendix Table A1 presents summary statistics for empirical variables used for the estimation.
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Table 2: Rainfall and maize yield, 1990/91 and 2018/19

All Season Season interaction

Prec Jan 0.71∗∗

(0.35)

Prec Feb 3.22∗∗∗

(0.37)

Prec Nov 0.56

(0.56)

Prec Dec 0.85∗

(0.48)

Prec Plant -0.091 1.08∗∗∗

(0.22) (0.34)

Prec Weed 1.11∗∗∗ 2.18∗∗∗

(0.19) (0.27)

Prec Plant*Prec Weed -1.95∗∗∗

(0.50)

Prec Mar -0.21 0.69 0.45

(0.42) (0.44) (0.44)

Prec Apr -1.61∗∗ -1.50∗∗ -1.43∗∗

(0.63) (0.66) (0.67)

Linear trend in year -0.061∗∗∗ -0.050∗∗∗ -0.050∗∗∗

(0.012) (0.012) (0.012)

Square trend in year 0.0029∗∗∗ 0.0028∗∗∗ 0.0027∗∗∗

(0.00042) (0.00041) (0.00042)

Adj.R-Square 0.39 0.38 0.39

Observations 1734 1734 1734

Notes: Robust standard errors clustered by district are in parentheses. Province fixed effects are included

but not reported. We control precipitation in May, June, July, August, September, and October in column 1.

*** p < 0.01, ** p < 0.05, * p < 0.1.
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By comparing the magnitudes of the estimated coefficients, the results also suggest that February

rainfall had the most significant effect on maize production.

The estimation results in Column (2), which do not include the interaction term of seasons,

suggest the relative importance of weeding season rainfall (January and February) compared to

planting season rainfall (November-December). The amount of rainfall during the weeding season

shows positive and significant correlations with maize yields, whereas planting season rainfall

shows a null association after controlling for weeding season rainfall. Adding the interaction terms

of rainfall from the two seasons confirms the substitutability of rainfall impacts across seasons

(Column 3). Although this interaction effect is interesting, a more important observation is that

the independent impact of weeding season rainfall is approximately twice as significant as that of

planting season rainfall. Appendix Tables A2 and A3 confirm that neither adding year dummies

instead of time trends nor fixed effects for districts, instead of provinces, qualitatively change the

results.

Overall, estimating the maize production function using historical data suggests the crucial role

of January and February rainfall in maize yields. This finding is consistent with field observations

and previous studies (e.g., Waldman et al., 2017). Even if drought hits the early stage of the

rainy season, local farm households can replant early maturing seed varieties to offset the loss.

Conversely, erratic dry spells during the weeding season significantly limit crop growth, leading

to poor maize harvesting. Based on the observed relative importance of weeding season rainfall

to planting season rainfall, the coefficient of variation (CV) of January and February rainfall is

defined as the precipitation risk index.18

Figure 2 plots the coefficient of variation of January and February rainfall for 59 years between

the 1960/61 and 2018/19 cropping seasons (left), the average Gini-Simpson index of areas planted

by crop as the crop diversification indicator (right), and the average amount of fertilizer applied in

kilograms per hectare (middle) for each constituency. The left panel shows high rainfall variations

in the southern part of the country corresponding to Region I of the agroecological zone classi-

fication. While the relationship between the crop diversification indicator and rainfall risk index

18Throughout all the specifications in Table 2, April rainfall is negatively correlated with maize yields. This consis-

tent finding raises the risk of focusing only on weeding season rainfall. To ease this concern, we also use the historical

variation of annual rainfall amounts between November and next April as an alternative rainfall risk index to check

the robustness of the main results.
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Figure 2: Rainfall variations, crop diversification, and fertilizer applications

Notes: The upper left map plots the coefficient of variation of January and February rainfall for the 59 years

between the 1960/61 and 2018/19 cropping seasons by ward. The upper right figure plots the average Gini-

Simpson index of areas planted by crop as the crop diversification indicator for each constituency. The lower

middle map shows the average amount of fertilizer applied in kilograms per hectare for each constituency.

The data are missing in the gray shaded areas.

is unclear, the average amounts of fertilizer applied tend to be high in Copperbelt and Luapula

provinces and low in Western and Southern provinces, suggesting a negative association with cli-

mate risks. The regression analysis presented in the next section formally tests these observations.
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5 Farmers’ Risk Mitigation in Agricultural Decisions as a Re-

sponse to Rainfall Risks

5.1 Specification

This section tests the response of farmers’ risk management to location-specific rainfall risks by

exploiting cross-sectional variations in inter-annual rainfall variability. To this end, we model

farmers’ agricultural decisions as follows:

Yiwp = βCVCV 12
wp +X′

iwpα + Z′
wpγ + ϕp + ϵiwp (3)

where Yiwp is the outcome of interest for household i in ward w of province p during the 2020/21

rainy season. The outcome variables include risk diversification measures and agricultural invest-

ments. For risk diversification, we analyze the number of crops, the Gini-Simpson index of the area

cultivated for different crops, and the number of plots cultivated. Additionally, the regression anal-

ysis examines the cultivation of sorghum and millet, which are more drought-tolerant than maize,

as another diversification measure (see Appendix Figure A.1). For agricultural investments, we

investigate fertilizer applications per area planted, adoption of hybrid maize seeds, family labor,

and the land utilization rate, defined by the ratio of areas cultivated to total areas owned.

The primary explanatory variable is CV 12
wp , the CV of January and February rainfall in ward w

calculated using historical rainfall estimates from the WorldClim database for the 59 years between

the 1960/61 and 2018/19 cropping seasons. Therefore, the parameter of interest is βCV , which

captures the impact of location-specific rainfall risks on farmers’ risk management and agricultural

investment. The sign of βCV depends on which outcome is used as the dependent variable. On the

one hand, we expect βCV > 0 in the regression with the risk diversification index as the outcome

variable if Zambian households mitigate weather risks by diversifying crops and plot locations. On

the other hand, the theory predicts βCV < 0 in the regression with fertilizer applied per hectare as

the outcome variable if farmers respond to climate risks by hesitating risky investments.

Xiwp is the vector of household-level controls, including the total size of land owned, sub-

jective land soil quality, family size, and household head characteristics such as gender, age, and

educational attainment. In contrast, Zwp represents the vector of ward-level controls, such as the

average annual rainfall over 59 agricultural years (1960/61–2018/19) and the objective soil qual-
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ity measures.19 We also add the maximum and minimum temperatures and rainfall amounts from

November 2019 to February 2020 to capture transitory income shocks that may restrict farmers’

agricultural decisions for the subsequent 2020/21 cropping season. By controlling for these imme-

diate weather shocks, βCV directly captures long-run behavioral reactions to rainfall risks. Finally,

ϕp stands for province fixed effects, and ϵiwp is an error term.

The key identification assumption for the estimation of βCV is that rainfall variability mea-

sured from historical data CV 12
wp should be uncorrelated with other determinants omitted from the

right-hand side variables of the regression equation (3). This exogeneity assumption of CV 12
wp is

violated if systematic differences exist among wards that are correlated with CV 12
w and determine

the average agricultural decisions in the area. For example, selective migration (e.g., when some

households are more likely to migrate away from high climate-risk regions) may induce this em-

pirical concern. Section 7.2 examines the possibility of selective migration according to climate

risk to ensure the validity of the identification assumption.

5.2 Results

Table 3 presents the estimation results for the risk-diversification strategies within agricultural

production. These results do not support the farmers’ management of rainfall risk through crop

and plot location choices. These findings contradict the theoretical predictions of the model of

risk-averse households in developing countries. Moreover, the null or even negative results for

diversification outcomes are not consistent with prior empirical evidence from Zambia (e.g., Arslan

et al., 2018). Columns (4) and (5) do not support planting millet and sorghum as risk-management

strategies.

Table 4 presents the regression results for agricultural investments in fertilizers and seeds.

Columns (1)–(3) suggest that farmers facing high rainfall risk apply less fertilizer, particularly

basal fertilizer such as D-Compound, than their counterparts facing low rainfall risk. This result is

also economically significant: A one standard deviation increase of CV by 0.07 reduces fertilizer

applied to the field by 14.9 kilograms per hectare, corresponding to approximately 13 percent of its

19As for soil quality measures, we include estimated amounts of nitrogen, phosphorus, potassium, water holding ca-

pacity, and soil pH. These are obtained from the soil nutrient maps of sub-Saharan Africa available at the ISRIC–World

Soil Information website.
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Table 3: Rainfall risk and diversification

# of Crop Gini–Simpson index # of Plot Millet Sorghum

CoV (Jan, Feb) 0.75 0.25 -0.72 0.47 -0.72∗

(1.61) (0.35) (1.92) (0.54) (0.43)

Average precipitation 0.10∗ 0.028∗∗ 0.28∗∗∗ 0.028∗ -0.0095

(0.053) (0.011) (0.060) (0.015) (0.0075)

Prec Nov, 19 -0.038 -0.055 -0.011 -0.058 -0.048

(0.21) (0.046) (0.25) (0.063) (0.038)

Prec Dec, 19 0.36∗∗∗ 0.058∗ 0.25∗ 0.11∗∗ 0.030

(0.13) (0.033) (0.15) (0.043) (0.044)

Prec Jan, 20 -0.34∗∗ -0.038 -0.33∗∗ -0.084∗ -0.015

(0.15) (0.031) (0.15) (0.043) (0.038)

Prec Feb, 20 -0.26∗∗ -0.036 -0.39∗∗∗ 0.0065 -0.0021

(0.13) (0.031) (0.13) (0.034) (0.032)

Temp (min) Nov, 19 -0.40∗∗∗ -0.080∗∗∗ -0.34∗∗∗ 0.0070 0.035

(0.11) (0.024) (0.12) (0.037) (0.038)

Temp (max) Nov, 19 0.20∗∗ 0.018 0.091 -0.043 -0.015

(0.092) (0.019) (0.11) (0.026) (0.017)

Temp (min) Dec, 19 0.26∗∗ 0.059∗∗ 0.27∗∗ 0.023 0.054

(0.12) (0.028) (0.12) (0.033) (0.034)

Temp (max) Dec, 19 -0.17 -0.019 -0.33∗∗ 0.064∗ 0.042

(0.15) (0.031) (0.16) (0.037) (0.028)

Temp (min) Jan, 20 0.18 0.029 0.015 0.039 -0.0030

(0.16) (0.036) (0.17) (0.052) (0.035)

Temp (max) Jan, 20 0.16 0.047 0.25 0.0041 0.060

(0.18) (0.039) (0.20) (0.057) (0.045)

Temp (min) Feb, 20 -0.072 -0.0053 0.10 -0.045 -0.066∗∗

(0.13) (0.029) (0.12) (0.057) (0.028)

Temp (max) Feb, 20 -0.15 -0.045 -0.040 -0.044 -0.091∗∗

(0.14) (0.031) (0.17) (0.045) (0.044)

Soil condition = Medium -0.021 -0.000083 -0.018 -0.0086 -0.0046

(0.041) (0.0083) (0.042) (0.0054) (0.0038)

Soil condition = High 0.12∗∗ 0.024∗∗ 0.17∗∗∗ 0.0080 -0.00061

(0.051) (0.010) (0.051) (0.0085) (0.0050)

Total Nitrogen (ppm) -0.00016 -0.000044 -0.000052 -0.00018 -0.00011

(0.00051) (0.00012) (0.00052) (0.00012) (0.00010)

Total Phosphorus (ppm) -0.0023∗∗∗ -0.00054∗∗∗ -0.0025∗∗∗ -0.00043∗∗ -0.00020

(0.00061) (0.00015) (0.00079) (0.00020) (0.00014)

Extractable Potassium (ppm) 0.0011 0.00030 0.0011 0.00095∗∗ 0.0011∗∗∗

(0.0013) (0.00029) (0.0019) (0.00046) (0.00037)

Water holding capacity (mm) 0.0016 0.00030 0.0026 0.0012∗∗ 0.00098∗

(0.0022) (0.00055) (0.0023) (0.00058) (0.00057)

Soil pH (depth 0-5cm) -0.042 -0.0035 0.0089 0.019∗∗ 0.011

(0.032) (0.0069) (0.037) (0.0084) (0.0076)

Adj.R-Square 0.39 0.27 0.39 0.19 0.14

Observations 12220 12220 12220 12220 12220

Notes: Robust standard errors clustered by district are in parentheses. The total land size, family size, the head’s gender, age, years of education,

and province fixed effects are included but not reported. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 4: Rainfall risk and investments in fertilizers and seeds

Basal (/ha) Top (/ha) Total (/ha) Hybrid seed

CoV (Jan, Feb) -125.5∗∗ -87.6 -213.1∗ 1.46∗∗∗

(58.5) (61.3) (118.6) (0.47)

Average precipitation 7.46∗∗∗ 9.05∗∗∗ 16.5∗∗∗ 0.028

(2.09) (2.15) (4.18) (0.017)

Prec Nov, 19 -13.4∗∗ -11.0∗ -24.4∗ 0.043

(6.18) (6.28) (12.3) (0.065)

Prec Dec, 19 16.0∗∗∗ 16.3∗∗∗ 32.2∗∗∗ 0.13∗∗∗

(5.25) (5.30) (10.5) (0.040)

Prec Jan, 20 2.05 -0.80 1.25 0.076

(6.16) (6.14) (12.2) (0.049)

Prec Feb, 20 -20.5∗∗∗ -23.2∗∗∗ -43.7∗∗∗ -0.16∗∗∗

(4.01) (3.84) (7.59) (0.035)

Temp (min) Nov, 19 3.81 3.35 7.16 -0.013

(3.90) (4.20) (8.02) (0.032)

Temp (max) Nov, 19 -0.52 0.60 0.082 0.030

(3.39) (3.64) (6.99) (0.027)

Temp (min) Dec, 19 1.98 0.35 2.33 0.012

(5.42) (5.51) (10.9) (0.040)

Temp (max) Dec, 19 -1.84 -1.94 -3.77 0.0080

(6.69) (6.94) (13.6) (0.062)

Temp (min) Jan, 20 -17.1∗∗ -14.8∗∗ -32.0∗∗ -0.050

(6.49) (6.84) (13.2) (0.058)

Temp (max) Jan, 20 1.69 1.26 2.95 0.019

(6.00) (5.96) (11.9) (0.051)

Temp (min) Feb, 20 7.18 7.68 14.9 -0.0068

(5.29) (5.48) (10.7) (0.048)

Temp (max) Feb, 20 -0.088 -1.64 -1.73 -0.047

(6.32) (6.45) (12.7) (0.060)

Soil condition = Medium 6.98∗∗∗ 7.48∗∗∗ 14.5∗∗∗ 0.066∗∗∗

(1.74) (1.54) (3.22) (0.017)

Soil condition = High 5.61∗∗∗ 6.39∗∗∗ 12.0∗∗∗ 0.079∗∗∗

(1.93) (1.82) (3.69) (0.020)

Total Nitrogen (ppm) 0.038∗ 0.030 0.068∗ 0.00023

(0.019) (0.020) (0.039) (0.00017)

Total Phosphorus (ppm) -0.11∗∗∗ -0.097∗∗∗ -0.20∗∗∗ -0.00044∗

(0.026) (0.028) (0.054) (0.00022)

Extractable Potassium (ppm) 0.0093 0.011 0.020 0.00076

(0.055) (0.059) (0.11) (0.00046)

Water holding capacity (mm) 0.079 0.093 0.17 0.0022∗∗∗

(0.090) (0.092) (0.18) (0.00078)

Soil pH (depth 0-5cm) 0.25 0.0014 0.25 -0.0026

(1.26) (1.31) (2.56) (0.0090)

Adj.R-Square 0.26 0.26 0.27 0.24

Observations 12220 12220 12220 12220

Notes: Robust standard errors clustered by district are in parentheses. The total land size, family size, the head’s gender, age, years of education,

and province fixed effects are included but not reported. *** p < 0.01, ** p < 0.05, * p < 0.1.
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standard deviation. Since the regression controls for transitory income shocks by including rainfall

amounts and temperature in the previous rainy season, these results capture farmers’ long-term

reactions to weather risks, rather than their short-term responses to climate shocks.

To examine household-level investments in maize seeds, we use the weighted average of the

hybrid seed indicators across maize plots, with the area planted as the weight. The results in

Column (4) indicate that farm households in regions with high rainfall variability are more likely to

adopt hybrid maize seeds than those in regions with mild variability. For example, we anticipate an

increase in the likelihood of planting hybrid seeds by ten percentage points if the rainfall risk index

increases by one standard deviation, whereas its sample average is 74%. This result is counter-

intuitive, given that planting hybrid seeds is relatively costly. However, the following features of

hybrid maize seeds provide meaningful interpretations of the high hybrid seed adoption rates in

regions with a high rainfall risk. First, hybrid varieties are more drought-tolerant than traditional

varieties. Hence, we can consider planting hybrid varieties a risk-mitigating practice. Second,

hybrid maize varieties grow faster than local varieties; thus, hybrid seeds can be replanted even

after germination failure during the first planting. Therefore, planting hybrid maize could be a

risk-coping method in the early stages of the agricultural season. Combining these observations

with the lack of significant results for the seedling rate (not reported), we speculate that Zambian

farmers consider planting hybrid maize as a risk-hedging option rather than a risky investment

option.

The discussion turns to agricultural investments in family labor and land. Table 5 summarizes

the regression results. The estimation results do not support the idea that agricultural households

adjust their family labor in response to climate risks (Columns 1–3). In contrast, the operating

rate of agricultural lands in the rainy season is higher among farm households in high climate-

risk regions than among their counterparts in low climate-risk regions, although the coefficient is

marginally significant. Given that the average land operation rate in the sample is 91%, rainfall

risks encourage farmers to make full use of accessible fields. The full use of agricultural lands

may be motivated by compensating for the loss of production from hesitant fertilizer applications

because of uninsured rainfall risks.

In summary, the estimation results find no evidence that precipitation risks promote crop and

plot diversification strategies or the adoption of drought-tolerant crops, such as millet and sorghum.

Instead, farmers respond to climate risks by reducing risky investments in fertilizers at the cost of
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Table 5: Rainfall risk, family labor, and land utilization

Labor Female labor Male labor Area Planted/Area Field

CoV (Jan, Feb) 0.99 0.16 0.83 0.51

(1.10) (0.72) (0.79) (0.34)

Average precipitation 0.038 0.028 0.010 -0.034∗∗∗

(0.038) (0.025) (0.023) (0.0083)

Prec Nov, 19 0.31∗ 0.092 0.22∗∗ 0.00017

(0.16) (0.096) (0.096) (0.030)

Prec Dec, 19 -0.075 -0.048 -0.027 0.035∗

(0.099) (0.060) (0.061) (0.020)

Prec Jan, 20 0.15∗ 0.14∗∗ 0.014 -0.013

(0.091) (0.057) (0.063) (0.020)

Prec Feb, 20 -0.15∗ -0.054 -0.099∗ 0.025

(0.087) (0.057) (0.057) (0.020)

Temp (min) Nov, 19 -0.074 -0.0081 -0.066 -0.027

(0.077) (0.041) (0.055) (0.019)

Temp (max) Nov, 19 0.098∗ -0.012 0.11∗∗∗ 0.049∗∗∗

(0.055) (0.036) (0.036) (0.016)

Temp (min) Dec, 19 -0.014 -0.053 0.039 0.0046

(0.083) (0.054) (0.050) (0.020)

Temp (max) Dec, 19 -0.19∗∗ -0.061 -0.13∗∗ 0.0098

(0.092) (0.058) (0.056) (0.022)

Temp (min) Jan, 20 -0.30∗∗∗ -0.055 -0.24∗∗∗ 0.064∗∗

(0.11) (0.063) (0.071) (0.030)

Temp (max) Jan, 20 -0.090 -0.031 -0.059 -0.032

(0.13) (0.070) (0.083) (0.024)

Temp (min) Feb, 20 0.38∗∗∗ 0.100 0.28∗∗∗ -0.062∗∗∗

(0.11) (0.062) (0.070) (0.023)

Temp (max) Feb, 20 0.17 0.10 0.069 -0.018

(0.11) (0.065) (0.076) (0.022)

Soil condition = Medium 0.011 -0.0037 0.014 0.0022

(0.047) (0.026) (0.031) (0.0047)

Soil condition = High -0.0042 0.015 -0.019 -0.0035

(0.055) (0.031) (0.036) (0.0065)

Total Nitrogen (ppm) -0.00031 -0.00016 -0.00015 -0.000039

(0.00043) (0.00027) (0.00022) (0.00011)

Total Phosphorus (ppm) 0.00063 0.00014 0.00049 -0.00011

(0.00057) (0.00035) (0.00030) (0.00019)

Extractable Potassium (ppm) 0.00043 0.00084 -0.00041 0.00036

(0.0011) (0.00078) (0.00067) (0.00037)

Water holding capacity (mm) -0.0015 -0.00089 -0.00063 0.00016

(0.0018) (0.0012) (0.0012) (0.00042)

Soil pH (depth 0-5cm) -0.015 0.0040 -0.019 -0.0075

(0.018) (0.011) (0.012) (0.0050)

Adj.R-Square 0.54 0.37 0.38 0.43

Observations 12220 12220 12220 12220

Notes: Robust standard errors clustered by district are in parentheses. The total land size, family size, the head’s gender, age, years of education,

and province fixed effects are included but not reported. *** p < 0.01, ** p < 0.05, * p < 0.1.
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high returns, making full use of accessible agricultural lands as a less costly investment to com-

pensate for the loss, and adopting hybrid maize seeds as risk management and coping strategies.

The natural question is: Why do Zambian farmers fail to pursue risk diversification through

crop choices? One possible explanation for this is the regional heterogeneity. For example, Ar-

slan et al. (2018) show that farmers in relatively heavy precipitation regions diversify their crops,

while farmers in other regions diversify their income sources and livestock portfolios in Zambia.

Thus, households may diversify their income risks owing to climate variability in other dimen-

sions. Moreover, the agronomic growing conditions and requirements are different for each crop,

which innately restricts the choice of crop varieties. The possibility of the ineffectiveness of crop

diversification in practice, misunderstanding of the effectiveness of diversification among small-

scale farmers, and strong preferences for maize as a food crop also provide alternative potential

explanations. Data constraints did not allow us to examine the reasons behind negligible crop di-

versification in response to climate risks. Determining the reasons for this is a promising avenue

for future research.

Instead, our discussion raises a different question. Our empirical results show that rainfall risk

significantly changes investment decisions in farming, suggesting that rainfall risk impacts agri-

cultural productivity. By quantifying the productivity impacts of rainfall risks, we can determine

the cost of climate risks and the potential benefits of insuring them. Thus, the extent to which

behavioral changes induced by climate risk miss agricultural outputs is an attractive question to

policymakers and governments. The mediation analysis, described in the next section, addresses

this question.

6 Mediation Analysis

6.1 Estimating Mediating Effects

In this section, we examine how risk avoidance in agricultural decisions affects final maize produc-

tivity by estimating the mediating effects. The mediation analysis focuses on hybrid seed adoption

and fertilizer application as risk-induced responses in the form of agricultural investment.

One natural estimand to examine the mediation effects is the average natural directed effect

(ANDE), which is the impact of precipitation risk on yield conditional on seed choice or fertilizer
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application. However, estimating ANDE without bias is empirically challenging. To examine this,

we consider a naı̈ve regression model to estimate the effects of treatment D (CV of January and

February rainfall in our case) on outcome Y (maize yield) conditional on mediator M (hybrid

seeds and fertilizer):

Yi = β0 + β1Di + β2Mi + β3Xi + β4Zi + ϵi (4)

where Xi and Zi stand for pretreatment and intermediate confounders, respectively (Acharya et al.,

2016). The estimation problem to identify the regression estimator for β1 is that it may contain the

intermediate variable bias, selection bias that can arise from the inclusion of variables affected by

treatment as controls in the regression model.20 Under this potential bias, the OLS estimator for β1

representing the ANDE of treatment cannot be consistent and unbiased.

Another parameter of interest is the average natural indirect effect (ANIE), which captures the

impact of the subsequent change in mediator M induced by the change in treatment D while fixing

the effect from the treatment. Denoting Y (d,m) as the potential outcome for the realized treatment

D = d and mediator M = m, the ANIE can be represented as:

ANIE(d, d′) = E[Yi(d,Mi(d))− Yi(d,Mi(d
′))]

However, ANIE is not identified in the presence of intermediate confounders, that are affected by

the intervention and affect the outcome. To get around the issue, we indirectly estimate the ANIE

as a residual by exploiting the fact that the average treatment effect (ATE) can be decomposed into

a linear sum of the average conditional direct effect (ACDE), the ANIE, and interaction effects.

ACDE is the average causal effect of the treatment when fixing the mediator variables for all

observations to a specific value (Acharya et al., 2016). For example, the ACDE of the change in

treatment from d to d′ is represented as:

ACDE(d, d′,m) = E[Yi(d,m)− Yi(d
′,m)],

Conversely, the interaction effect is the average extent to which the direct effect differs according

to the mediators. Mathematically, the interaction effect is defined as:

E[M(d′)[CDE(d, d′,m)− CDE(d, d′,m)]]

20The two sources of the intermediate variable bias are the classical omitted variable bias and the bias from blocking

the path of D → Z → Y due to the inclusion of intermediate confounders Z.
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With these definitions, the estimation of the ANIE takes two steps. After estimating the ATE and

ACDE in the first step, the subtraction of the ACDE from the ATE gives us the estimator for the

ANIE plus the interaction effect that is an approximation of the indirect effect when the interaction

effect is not substantial.

In the first step of the estimation procedure, the consistency of a regression-based estimator

for the ACDE requires the following two identification conditions.21 The first assumption is called

sequential unconfoundedness. Formally, the assumption of sequential unconfoundedness can be

expressed as:

Assumption 1 Sequential unconfoundedness

Yi(d,m),Mi(d) ⊥⊥ Di|Xi,

Yi(d,m) ⊥⊥ Mi|Di, Xi, Zi

Assumption 1 does not allow for two types of omitted variables: Those for the effect of treatment

on the outcome, conditional on the pretreatment confounders, and those for the effect of the me-

diator on the outcome, conditional on the treatment, pretreatment confounders, and intermediate

confounders. This condition assures a separate estimation of the impacts of the treatment and

mediator on the outcome.

The second assumption for ACDE identification is that there are no intermediate interactions.

This assumption can be stated as follows:

Assumption 2 No intermediate interaction

E[Yi(d,m)− Yi(d,m
′)|Di, Xi, Zi] = E[Yi(d,m)− Yi(d,m

′)|Di, Xi]

Assumption 2 requires the effect of the mediator on the outcome and the intermediate confounders

to be independent. These two assumptions comprise the necessary assumptions for unbiased me-

diation analysis.
21Semi-parametric and non-parametric estimators do not require the assumption of no intermediate interactions

(Assumption 2). However, these alternative estimators are unsuitable when the treatment and mediator variables are

continuous, which is the case in our empirical setting. See Acharya et al. (2016) for further details.
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We apply the two-stage derivation of the regression-based estimator in our empirical setting.

This empirical exercise uses plot-level CFS data because plot characteristics, as important deter-

minants of maize yield, can be controlled for in the regression analysis. The first-stage regression

estimates the impact of mediators (i.e., hybrid seed adoption and fertilizer application) on outcomes

(i.e., maize yield). Specifically, we run the following regression equation in the first stage:

log Y ieldliwp = β1CV 12
wp +M ′

liwpβ2 +X′β3 + Z′β4 + δp + ϵliwp (5)

where log Y ieldliwp is the logarithm of (expected) maize yield in plot l of household i in ward w

and Mliwp is a vector of the dummy taking one if household i plants hybrid maize seeds in plot l

and the amount of fertilizer applied per hectare to plot l by household i. X contains pre-determined

covariates at the plot level (soil conditions), household level (e.g., sex and age of the household

i’s head), and ward level (monthly rainfall amounts and temperatures from November 2020 to

February 2021 to control for current productivity shocks). Z contains post-determined covariates

including the family size of household i in ward w. δp stands for fixed effects for province p, and

ϵliwp is an error term.

In the second stage, we regress the demediated outcome ˜log Y ieldliwp = log Y ieldliwp −

M ′
liwpβ̂2 on the treatment and controls:

˜log Y ieldliwp = α1CV 12
wp +X′α3 + Z′α4 + δp + εliwp (6)

In this regression model, the coefficient α1 represents the ACDE of the rainfall risk CV 12
w . As the

standard errors in the second regression are biased owing to the estimation error in the first-stage

regression, we use standard non-parametric bootstrap methods in both stages.

The credibility of the mediation analysis depends on the specification of Equation (5) and the

validity of the identification assumptions. In Section 7, we test the robustness of the mediation

analysis results by conducting a sensitivity analysis of the violation of Assumption (1).

6.2 Results

Table 6 summarizes the mediation analysis results.22 In the first column, the estimated ATE is

−1.40, suggesting that a one-standard-deviation increase in the rainfall risk index by 0.07 dimin-

ishes maize yields by 9.3 (=exp(-1.396 × 0.07)-1)×100) percent. Long-term rainfall risk is the
22Appendix Table A5 presents summary statistics for empirical variables used for the estimation.
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Table 6: Estimated ATE and ACDEs

Total Fertilizer Hybrid seed

CoV (Jan, Feb) -1.396∗∗∗ -.858∗∗ -2.314∗∗∗

Bootstrap s.e. (0.41) (0.406) (0.422)

Observations 11429 11429 11429

Notes: The table presents the average treatment effect and the average conditional direct effects of the

coefficient of variation of January and February rainfall. Non-parametric bootstrap standard errors in both

stages are in parentheses.

sole cause of this 9.3% maize yield gap as the regression controls for soil conditions and weather-

related productivity shocks. Given that a non-negligible number of Zambian farmers live near the

subsistence level, the estimated risk impacts on staple food production would be significant in ab-

solute terms. The key observation is that the direct effect of precipitation risk on yield may come

from additional factors that affect productivity other than soil conditions, rainfall conditions in that

year, and endogenous risk management strategies.

The second and third columns present the ACDE of historical rainfall variations conditional

on fertilizer and seed inputs. For example, the estimated coefficient in the second column repre-

sents the effects of rainfall risk when the fertilizer amount applied is fixed to the empirical sample

average. Conversely, the third column shows the impact of rainfall risk when no adoption of hy-

brid maize seeds is assumed. The estimation results imply that maize yields decrease by 5.8%

after a one standard deviation increase in rainfall risk when fertilizer inputs are conditioned at

the sample average. The same increase in rainfall risk depresses the maize yield by 15.0% when

not planting hybrid maize. In other words, if farmers do not use fertilizer in both high- and low-

risk regions, the rainfall risk impact on maize productivity decreases by approximately 38.5%

(1.396−0.858
1.396

× 100) relative to the ATE. In contrast, if farmers use hybrid seeds in both high- and

low-risk regions, the treatment effect of rainfall risk on maize productivity increases by approxi-

mately 65.8% (2.314−1.396
1.396

× 100) relative to the ATE.
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Figure 3: ATE and ACDEs of rainfall risks

Notes: The figure illustrates the point estimates and 95% confidence interval of the average treatment effect

and average conditional treatment effects.

7 Robustness Check

This section confirms the robustness of the main empirical results by altering the proxy for rain-

fall risk, discussing the possibility of selective migration as a source of endogenous climate risk,

and checking the sensitivity of the mediation analysis results to the violation of the sequential

unconfoundedness assumption.

7.1 Alternative Definition of Precipitation Risk

The first concern is the misspecification of precipitation risk measures defined in Section 4. In-

stead of the coefficient of variation of January and February rainfall over 59 years, we check the

robustness of the main results to alternative definitions of precipitation risk. Particularly, we use

(1) rainfall during the entire agricultural season between November and April or (2) rainfall during

the planting and weeding seasons between November and February, and then calculate the coeffi-

cient of variation for each rainfall. The regression results in Appendix Tables A6-A11 are similar

to the main results, although some coefficients lose statistical significance.
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7.2 Endogeneity in Climate Risk: Migration

Another empirical concern is the potential endogeneity of precipitation risk. Selective migration

is a potential source of endogeneity. As a possible scenario, if better-off households migrate away

from high-risk regions, only resource-poor households will be concentrated in disadvantageous

regions. This scenario systematically differentiates between low- and high-rainfall-risk regions in

terms of the production resources that determine agricultural decisions.

As a simple empirical test for this possibility, we examine if the change in the regional average

of asset levels is correlated with our rainfall risk index using data from the Census of Population

and Housing in 2000 and 2010.23 To construct the asset index, the principal component analysis

calculates the asset score based on the ownership of durable goods for each household, and then

we aggregate them at the constituency level.24,25

While the left panel in Figure 4 plots the change in the ranking of asset scores at the con-

stituency level, the right panel shows a scatter plot between the rank change and our rainfall risk

index, that is, the CV of January and February rainfall based on historical rainfall data at the con-

stituency level. We find no correlation between ranking changes based on asset scores and climate

risk. Thus, this empirical exercise does not find supporting evidence for selective migration based

on production resources.

7.3 Sensitivity Analysis of Mediation Analysis

The credibility of the ADCE estimation depends on the validity of Assumptions 1 and 2 and the

specifications of the regression equation (5). Among these, we can assess the violations of As-

sumption 1, which is sequential unconfoundedness. This assumption requires that the treatment

assignment of rainfall risks CV 12
w should be uncorrelated with potential outcomes and potential

23The 10% sample microdata of the Zambian Census of Population and Housing are available at https://international.

ipums.org/international/.
24For the 2000 Census data, we use the following durable goods as components of the asset index: Refrigerators,

radios, kitchens, motorcycles, motor vehicles, telephones, and roof materials. In addition to these durable assets, we

add the following to the list of score components when calculating the asset index using 2010 Census data: Televisions,

bicycles, Internet facilities, computers, and mobile phones. Although the sources of the asset index differ across census

years, it is not necessary to use the same set of durable assets because we compare the rankings of constituencies based

on asset scores rather than comparing the asset indexes per se.
25Constituencies are the finest geographic units available in the census for both survey years.

30

https://international.ipums.org/international/
https://international.ipums.org/international/


Figure 4: Asset scores and climate risk by constituency, 2000 and 2010

Notes: The left figure is the histogram of the change in the ranking of the asset index based on the first

principal components of durable goods from 2000 to 2010. The right figure depicts the relationship between

the change in the ranking of the asset index and the coefficient of variation of January and February rainfall

over the past 59 years.

mediators after conditioning on pretreatment covariates and that mediators should be uncorrelated

with potential outcomes after controlling for treatment, pretreatment confounders, and interme-

diate confounders. In other words, these conditions allow us to consistently estimate the effects

of rainfall risk, fertilizer input, and hybrid seed utilization on maize yield using OLS. However,

because input choices, such as hybrid seeds and chemical fertilizers, are part of complicated house-

hold decisions, some unobservables may violate the latter condition.

Acharya et al. (2016) propose a sensitivity analysis to violate sequential unconfoundedness.

The sensitivity analysis is based on the observation that bias arises from the correlation between

the error terms in equations (5) and (7).26 Therefore, we can characterize the violation of the

sequential unconfoundedness assumption by estimating the ACDE for the different hypothetical

values of the correlation between mediator and outcome errors.

Figure 5 depicts the estimated ACDE under different correlation level assumptions. If unmea-

sured factors make both fertilizer applications and maize yields positively correlated (considered

more plausible in this case), the impact of climate risks on yields at a constant level of fertilizer

input will become smaller in absolute terms compared to when there is no such bias. Convergence

of the estimated ACDE to zero as the positive correlation between fertilizer application and yield

26Appendix Section A.4 presents the bias form.
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Figure 5: Estimated ACDEs for different correlations between error terms

Notes: The figure depicts the relationship between the correlation of error terms and the ACDEs conditional

on fertilizer input (left) and hybrid seed usage (right). Gray-shaded regions represent the 95% confidence

interval of the ACDE. The construction of confidence intervals does not consider the sample uncertainty of

the bias.

becomes strong implies that climate adaptations are made primarily through adaptation in the agri-

cultural input portfolio, particularly when agricultural decisions are interconnected and comple-

mentary. Thus, this sensitivity analysis result highlights the significant productivity implications

of household responses to climate risk through fertilizer investments. Conversely, the sensitivity

analysis results for the ACDE, conditional on the lack of hybrid maize seeds in the right panel of

Figure 5, suggest that only accounting for maize seed choice leaves significant and independent

climate risk impacts unexplained.

8 Conclusion

Active debates in the climate policy arena require a comprehensive understanding of farmers’

responses to weather risks in developing countries. This study contributes to the literature by

providing micro-level evidence for risk management in agricultural production among Zambian

farmers. Our empirical results found no evidence that rainfall risks promote crop and plot diversi-

fication strategies or the adoption of drought-tolerant crops, such as sorghum and millet. Instead,

they respond to climate risks by reducing fertilizer application as a risky investment, expanding

planted agricultural land as a less costly investment, and adopting hybrid maize seeds as risk man-
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agement and coping strategies. We also found that, after accounting for soil conditions and recent

climate-related productivity shocks, the maize yield gap is approximately 9% when the difference

in our climate risk index equals one standard deviation. Our mediation analysis focused on fertil-

izer application and hybrid seed adoption as essential pathways through which climate risk affects

household maize production. Although the results indicate that adopting hybrid maize seeds gen-

erates yield-enhancing effects, their favorable impacts are attenuated by the negative impacts of

underinvestment in chemical fertilizers in response to rainfall risks. Overall, the empirical evi-

dence suggests that household-level climate adaptations are made primarily through adjustments

in the agricultural input portfolio rather than risk diversification strategies in Zambia.

We conclude by suggesting two promising avenues for future research. First, our finding of no

diversification in response to rainfall risk raises the question of why Zambian farmers fail to pursue

risk diversification through crop choices. Providing rational explanations for this empirical puzzle

and proposing policy interventions to relax these constraints are left for future research. Second,

this study did not consider heterogeneity in responses to climate risks. For example, access to off-

farm activities may cushion the impacts of climate risk on farm income, allowing farmers to make

different agricultural decisions. Such a potential interplay of risk management strategies suggests

the importance of identifying cost-effective ways to control the consequences of climate risks

faced by smallholders. The data constraint did not allow us to explore these critical possibilities.

Incorporating other income-generating activities into the empirical analysis along with further data

collection will enrich our understanding of farmers’ risk management in developing countries.
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A Appendix

A.1 Appendix Figure

Figure A1: Rainfall and crop yields

Notes: The figure depicts the district-level relationship between rainfall amounts between November and

February in the rainy season and the average yields by crop. Agricultural statistics aggregated at the district

level from the CFS were used for the estimation.

A.2 Appendix Tables
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Table A1: Summary statistics: Variables used for the estimation of the maize production function

at the district level

Variable Mean Std. Dev. Min Max Obs

Yield (1000kg/ha) 1.70 0.99 0.00 12.00 1734

Prec Jan 0.24 0.07 0.07 0.48 1734

Prec Feb 0.20 0.06 0.03 0.42 1734

Prec Mar 0.17 0.07 0.01 0.49 1734

Prec Apr 0.05 0.04 0.00 0.21 1734

Prec May 0.01 0.01 0.00 0.14 1734

Prec Jun 0.00 0.00 0.00 0.01 1734

Prec Oct 0.02 0.02 0.00 0.12 1734

Prec Nov 0.12 0.05 0.02 0.34 1734

Prec Dec 0.23 0.07 0.06 0.42 1734

Prec Weed 0.46 0.15 0.12 1.70 1734

Prec Plant 0.37 0.13 0.13 1.30 1734

Notes: The table presents the summary statistics of the variables used to estimate the maize production

function at the district level. Maize yields are computed using agricultural statistics aggregated at the district

level from the CFS. The other variables are historical precipitation estimates aggregated at the district level

using the WorldClim.
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Table A2: Robustness to adding time fixed effects

All Season Season interaction

Prec Jan 0.71∗

(0.40)

Prec Feb 2.71∗∗∗

(0.52)

Prec Nov 0.66

(0.72)

Prec Dec -0.58

(0.48)

Prec Plant -0.44∗∗ 0.16

(0.21) (0.32)

Prec Weed 0.67∗∗∗ 1.24∗∗∗

(0.19) (0.28)

Prec Plant*Prec Weed -0.98∗∗

(0.39)

Prec Mar 0.70 1.53∗∗∗ 1.36∗∗

(0.48) (0.53) (0.52)

Prec Apr -3.43∗∗∗ -3.31∗∗∗ -3.23∗∗∗

(0.97) (1.09) (1.08)

Adj.R-Square 0.54 0.54 0.54

Observations 1734 1734 1734

Notes: Robust standard errors clustered by district are in parentheses. Province fixed effects and year

dummies are included but not reported. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A3: Robustness to using district fixed effects

All Season Season interaction

Prec Jan 0.34

(0.36)

Prec Feb 2.93∗∗∗

(0.32)

Prec Nov 0.88∗

(0.46)

Prec Dec 0.62

(0.51)

Prec Plant -0.087 0.99∗∗∗

(0.24) (0.30)

Prec Weed 0.93∗∗∗ 1.91∗∗∗

(0.19) (0.21)

Prec Plant*Prec Weed -1.79∗∗∗

(0.36)

Prec Mar -0.16 0.46 0.30

(0.33) (0.33) (0.33)

Prec Apr -0.73 -0.50 -0.51

(0.66) (0.60) (0.62)

Linear trend in year -0.057∗∗∗ -0.047∗∗∗ -0.047∗∗∗

(0.014) (0.014) (0.014)

Square trend in year 0.0028∗∗∗ 0.0028∗∗∗ 0.0027∗∗∗

(0.00047) (0.00047) (0.00048)

Adj.R-Square 0.49 0.48 0.48

Observations 1734 1734 1734

Notes: Robust standard errors clustered by district are in parentheses. District dummies are included but not

reported. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A4: Summary statistics: Control variables

Variable Mean Std. Dev. Min Max Obs

Total land size (ha) 2.90 2.70 0.01 32.0 12220

Family size 5.90 2.70 1.00 24.0 12220

Educ years, head 7.60 3.00 1.00 15.0 12220

Age, head 46.00 14.00 13.00 99.0 12220

Female head dummy 0.17 0.38 0.00 1.0 12220

Average precipitation 10.00 2.00 5.50 15.0 12220

Prec Jan, 20 2.20 0.36 1.20 3.1 12220

Prec Feb, 20 2.50 0.47 1.50 4.0 12220

Prec Nov, 19 1.00 0.45 0.21 2.2 12220

Prec Dec, 19 2.40 0.35 1.60 3.8 12220

Temp (max) Jan, 20 27.00 1.80 17.00 42.0 12220

Temp (max) Feb, 20 28.00 1.90 18.00 43.0 12220

Temp (max) Nov, 19 31.00 2.40 19.00 48.0 12220

Temp (max) Dec, 19 27.00 1.80 18.00 42.0 12220

Temp (min) Jan, 20 17.00 1.60 9.90 26.0 12220

Temp (min) Feb, 20 17.00 1.50 10.00 26.0 12220

Temp (min) Nov, 19 18.00 1.90 10.00 28.0 12220

Temp (min) Dec, 19 17.00 1.60 9.20 27.0 12220

Soil condition 1.10 0.61 0.00 2.0 12220

Total Nitrogen (ppm) 759.00 106.00 523.00 1345.0 12220

Total Phosphorus (ppm) 235.00 62.00 142.00 669.0 12220

Extractable Potassium (ppm) 121.00 37.00 56.00 299.0 12220

Water holding capacity (mm) 95.00 22.00 8.90 131.0 12220

Soil pH (depth 0-5cm) 59.00 2.70 54.00 66.0 12220

Notes: This table presents the summary statistics of the control variables in the regression used to estimate

household production responses to climate risk.

41



Table A5: Summary statistics: Mediation analysis

Variable Mean Std. Dev. Min Max Obs

Log yield (log kg/ha) 7.40 0.98 2.2 9.3 11459

Fertilizer (kg/ha) 102.00 119.00 0.0 3425.0 11459

Hybrid seed=1 0.74 0.44 0.0 1.0 11429

Soil condition 1.00 0.57 0.0 2.0 11459

Total Nitrogen (ppm) 758.00 105.00 523.0 1345.0 11459

Total Phosphorus (ppm) 235.00 60.00 142.0 669.0 11459

Extractable Potassium (ppm) 121.00 37.00 56.0 299.0 11459

Water holding capacity (mm) 94.00 22.00 8.9 131.0 11459

Soil pH (depth 0-5cm) 59.00 2.70 54.0 66.0 11459

Notes: This table presents the summary statistics of the plot-level variables used in the mediation analysis.

The soil condition variable represents the subjective assessment of the soil quality of the plot with 0 as low,

1 as medium, and 2 as high.
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Table A6: Robustness to using the CV of rainy season rainfall as the risk measure: Diversification

# of Crop Gini–Simpson index # of Plot Millet Sorghum

CoV (Nov-Feb) 3.93 0.95∗ 2.48 0.38 -0.99

(2.57) (0.53) (3.07) (0.71) (0.62)

Average precipitation 0.13∗∗ 0.033∗∗∗ 0.31∗∗∗ 0.027∗ -0.010

(0.055) (0.011) (0.060) (0.014) (0.0079)

Prec Nov, 19 -0.073 -0.063 -0.039 -0.059 -0.042

(0.21) (0.046) (0.25) (0.062) (0.040)

Prec Dec, 19 0.34∗∗ 0.053 0.23 0.11∗∗ 0.031

(0.13) (0.033) (0.15) (0.043) (0.043)

Prec Jan, 20 -0.31∗∗ -0.031 -0.31∗∗ -0.084∗ -0.019

(0.15) (0.032) (0.15) (0.044) (0.036)

Prec Feb, 20 -0.27∗∗ -0.038 -0.39∗∗∗ 0.0053 0.00022

(0.13) (0.031) (0.13) (0.034) (0.031)

Temp (min) Nov, 19 -0.46∗∗∗ -0.091∗∗∗ -0.41∗∗∗ 0.013 0.033

(0.12) (0.024) (0.12) (0.036) (0.037)

Temp (max) Nov, 19 0.21∗∗ 0.020 0.097 -0.043 -0.016

(0.094) (0.020) (0.11) (0.026) (0.017)

Temp (min) Dec, 19 0.27∗∗ 0.062∗∗ 0.28∗∗ 0.023 0.051

(0.12) (0.028) (0.12) (0.034) (0.036)

Temp (max) Dec, 19 -0.20 -0.026 -0.33∗ 0.058 0.052∗

(0.16) (0.033) (0.17) (0.037) (0.031)

Temp (min) Jan, 20 0.19 0.030 0.023 0.038 -0.0021

(0.16) (0.036) (0.17) (0.053) (0.035)

Temp (max) Jan, 20 0.17 0.049 0.25 0.0064 0.057

(0.18) (0.038) (0.20) (0.057) (0.044)

Temp (min) Feb, 20 -0.017 0.0060 0.17 -0.052 -0.063∗∗

(0.14) (0.029) (0.13) (0.053) (0.027)

Temp (max) Feb, 20 -0.16 -0.045 -0.056 -0.040 -0.096∗∗

(0.13) (0.029) (0.16) (0.044) (0.043)

Soil condition = Medium -0.025 -0.00094 -0.023 -0.0083 -0.0044

(0.040) (0.0083) (0.042) (0.0053) (0.0038)

Soil condition = High 0.12∗∗ 0.024∗∗ 0.17∗∗∗ 0.0081 -0.00071

(0.051) (0.010) (0.051) (0.0085) (0.0051)

Total Nitrogen (ppm) -0.00014 -0.000037 -0.000070 -0.00016 -0.00014

(0.00052) (0.00012) (0.00051) (0.00011) (0.000095)

Total Phosphorus (ppm) -0.0022∗∗∗ -0.00051∗∗∗ -0.0024∗∗∗ -0.00042∗∗ -0.00023

(0.00062) (0.00016) (0.00081) (0.00020) (0.00014)

Extractable Potassium (ppm) 0.0010 0.00025 0.0011 0.00089∗ 0.0012∗∗∗

(0.0013) (0.00029) (0.0019) (0.00046) (0.00037)

Water holding capacity (mm) 0.0018 0.00034 0.0031 0.0011∗ 0.0011∗

(0.0022) (0.00056) (0.0023) (0.00058) (0.00061)

Soil pH (depth 0-5cm) -0.045 -0.0040 0.0021 0.021∗∗ 0.0098

(0.030) (0.0067) (0.036) (0.0080) (0.0072)

Adj.R-Square 0.39 0.27 0.39 0.19 0.14

Observations 12220 12220 12220 12220 12220

Notes: Robust standard errors clustered by district are in parentheses. The total land size, family size, the head’s gender, age, years of education,

and province fixed effects are included but not reported. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A7: Robustness to using the CV of rainfall between November and February as the risk

measure: Diversification

# of Crop Gini–Simpson index # of Plot Millet Sorghum

CoV (Nov-Apr) 0.92 0.12 -0.56 0.14 -1.12∗

(2.60) (0.57) (3.09) (0.73) (0.62)

Average precipitation 0.10∗ 0.026∗∗ 0.28∗∗∗ 0.025∗ -0.011

(0.055) (0.011) (0.062) (0.015) (0.0074)

Prec Nov, 19 -0.037 -0.054 -0.013 -0.056 -0.048

(0.21) (0.046) (0.25) (0.062) (0.039)

Prec Dec, 19 0.36∗∗∗ 0.059∗ 0.25 0.12∗∗ 0.031

(0.13) (0.033) (0.15) (0.044) (0.044)

Prec Jan, 20 -0.34∗∗ -0.038 -0.34∗∗ -0.086∗ -0.022

(0.15) (0.032) (0.15) (0.044) (0.037)

Prec Feb, 20 -0.27∗∗ -0.038 -0.38∗∗∗ 0.0044 0.0089

(0.13) (0.031) (0.13) (0.035) (0.033)

Temp (min) Nov, 19 -0.40∗∗∗ -0.075∗∗∗ -0.35∗∗∗ 0.018 0.036

(0.12) (0.024) (0.13) (0.036) (0.038)

Temp (max) Nov, 19 0.20∗∗ 0.018 0.092 -0.043 -0.014

(0.092) (0.019) (0.11) (0.026) (0.017)

Temp (min) Dec, 19 0.26∗∗ 0.059∗∗ 0.27∗∗ 0.023 0.048

(0.12) (0.029) (0.12) (0.035) (0.036)

Temp (max) Dec, 19 -0.18 -0.022 -0.32∗ 0.060 0.049

(0.16) (0.033) (0.17) (0.037) (0.030)

Temp (min) Jan, 20 0.18 0.028 0.018 0.037 0.00034

(0.16) (0.036) (0.17) (0.052) (0.035)

Temp (max) Jan, 20 0.16 0.048 0.25 0.0063 0.056

(0.18) (0.039) (0.20) (0.058) (0.045)

Temp (min) Feb, 20 -0.078 -0.011 0.11 -0.057 -0.065∗∗

(0.13) (0.028) (0.12) (0.051) (0.028)

Temp (max) Feb, 20 -0.15 -0.043 -0.046 -0.040 -0.095∗∗

(0.14) (0.031) (0.17) (0.044) (0.044)

Soil condition = Medium -0.020 0.00022 -0.019 -0.0079 -0.0050

(0.040) (0.0084) (0.042) (0.0054) (0.0037)

Soil condition = High 0.12∗∗ 0.025∗∗ 0.17∗∗∗ 0.0082 -0.0012

(0.050) (0.010) (0.051) (0.0086) (0.0052)

Total Nitrogen (ppm) -0.00013 -0.000037 -0.000075 -0.00016 -0.00014

(0.00051) (0.00012) (0.00051) (0.00011) (0.000096)

Total Phosphorus (ppm) -0.0023∗∗∗ -0.00054∗∗∗ -0.0025∗∗∗ -0.00043∗∗ -0.00021

(0.00061) (0.00015) (0.00079) (0.00020) (0.00014)

Extractable Potassium (ppm) 0.0011 0.00027 0.0011 0.00090∗ 0.0011∗∗∗

(0.0013) (0.00029) (0.0019) (0.00046) (0.00038)

Water holding capacity (mm) 0.0014 0.00024 0.0027 0.0011∗ 0.0011∗

(0.0022) (0.00056) (0.0023) (0.00057) (0.00060)

Soil pH (depth 0-5cm) -0.041 -0.0028 0.0073 0.021∗∗ 0.011

(0.031) (0.0068) (0.037) (0.0082) (0.0075)

Adj.R-Square 0.39 0.27 0.39 0.19 0.14

Observations 12220 12220 12220 12220 12220

Notes: Robust standard errors clustered by district are in parentheses. The total land size, family size, the head’s gender, age, years of education,

and province fixed effects are included but not reported. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A8: Robustness to using the CV of rainy season rainfall as the risk measure: Investments in

fertilizer and seeds

Basal (/ha) Top (/ha) Total (/ha) Hybrid seed

CoV (Nov-Feb) -47.2 22.8 -24.4 2.39∗∗∗

(91.7) (96.6) (186.3) (0.69)

Average precipitation 8.36∗∗∗ 10.2∗∗∗ 18.5∗∗∗ 0.033∗

(2.09) (2.18) (4.21) (0.018)

Prec Nov, 19 -13.6∗∗ -11.6∗ -25.2∗∗ 0.027

(6.26) (6.42) (12.6) (0.065)

Prec Dec, 19 15.2∗∗∗ 15.4∗∗∗ 30.6∗∗∗ 0.12∗∗∗

(5.49) (5.45) (10.9) (0.038)

Prec Jan, 20 2.50 0.047 2.54 0.088∗

(6.20) (6.25) (12.4) (0.048)

Prec Feb, 20 -20.2∗∗∗ -23.1∗∗∗ -43.3∗∗∗ -0.17∗∗∗

(4.03) (3.81) (7.58) (0.035)

Temp (min) Nov, 19 1.03 0.29 1.33 -0.018

(4.00) (4.22) (8.12) (0.028)

Temp (max) Nov, 19 -0.55 0.70 0.15 0.034

(3.46) (3.70) (7.12) (0.026)

Temp (min) Dec, 19 2.04 0.62 2.66 0.019

(5.30) (5.32) (10.5) (0.039)

Temp (max) Dec, 19 -0.52 -1.26 -1.78 -0.015

(6.20) (6.45) (12.6) (0.060)

Temp (min) Jan, 20 -16.7∗∗ -14.4∗∗ -31.1∗∗ -0.051

(6.62) (6.96) (13.5) (0.056)

Temp (max) Jan, 20 1.11 0.91 2.02 0.027

(6.05) (5.97) (11.9) (0.050)

Temp (min) Feb, 20 10.2∗ 10.9∗ 21.1∗ -0.0048

(5.74) (5.85) (11.5) (0.052)

Temp (max) Feb, 20 -1.37 -2.71 -4.08 -0.038

(6.55) (6.59) (13.1) (0.058)

Soil condition = Medium 6.85∗∗∗ 7.32∗∗∗ 14.2∗∗∗ 0.065∗∗∗

(1.77) (1.56) (3.28) (0.017)

Soil condition = High 5.57∗∗∗ 6.35∗∗∗ 11.9∗∗∗ 0.079∗∗∗

(1.97) (1.87) (3.77) (0.020)

Total Nitrogen (ppm) 0.034∗ 0.028 0.062 0.00028

(0.020) (0.021) (0.040) (0.00017)

Total Phosphorus (ppm) -0.11∗∗∗ -0.096∗∗∗ -0.20∗∗∗ -0.00038∗

(0.026) (0.028) (0.053) (0.00022)

Extractable Potassium (ppm) 0.025 0.021 0.045 0.00055

(0.056) (0.061) (0.12) (0.00047)

Water holding capacity (mm) 0.11 0.12 0.23 0.0021∗∗∗

(0.089) (0.091) (0.18) (0.00078)

Soil pH (depth 0-5cm) -0.18 -0.38 -0.56 -0.00050

(1.28) (1.30) (2.57) (0.0087)

Adj.R-Square 0.26 0.26 0.27 0.24

Observations 12220 12220 12220 12220

Notes: Robust standard errors clustered by district are in parentheses. The total land size, family size, the head’s gender, age, years of education,

and province fixed effects are included but not reported. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A9: Robustness to using the CV of rainfall between November and February as the risk

measure: Investments in fertilizer and seeds

Basal (/ha) Top (/ha) Total (/ha) Hybrid seed

CoV (Nov-Apr) -128.3 -64.0 -192.2 2.13∗∗∗

(85.3) (89.9) (173.3) (0.64)

Average precipitation 7.73∗∗∗ 9.44∗∗∗ 17.2∗∗∗ 0.030

(2.14) (2.17) (4.25) (0.018)

Prec Nov, 19 -13.6∗∗ -11.2∗ -24.9∗∗ 0.043

(6.16) (6.29) (12.3) (0.065)

Prec Dec, 19 15.6∗∗∗ 15.9∗∗∗ 31.5∗∗∗ 0.13∗∗∗

(5.48) (5.48) (10.9) (0.040)

Prec Jan, 20 1.60 -0.85 0.75 0.088∗

(6.25) (6.33) (12.5) (0.050)

Prec Feb, 20 -19.1∗∗∗ -22.5∗∗∗ -41.7∗∗∗ -0.18∗∗∗

(4.01) (3.79) (7.57) (0.036)

Temp (min) Nov, 19 2.72 2.06 4.78 -0.013

(3.93) (4.20) (8.04) (0.029)

Temp (max) Nov, 19 -0.47 0.64 0.17 0.029

(3.45) (3.69) (7.10) (0.026)

Temp (min) Dec, 19 1.41 0.11 1.52 0.023

(5.47) (5.52) (10.9) (0.039)

Temp (max) Dec, 19 -0.58 -1.08 -1.66 -0.0074

(6.44) (6.67) (13.1) (0.058)

Temp (min) Jan, 20 -16.6∗∗ -14.4∗∗ -31.0∗∗ -0.057

(6.49) (6.87) (13.3) (0.056)

Temp (max) Jan, 20 0.99 0.81 1.80 0.028

(6.08) (6.02) (12.0) (0.051)

Temp (min) Feb, 20 8.63 9.19 17.8 -0.011

(5.51) (5.72) (11.1) (0.050)

Temp (max) Feb, 20 -1.01 -2.39 -3.40 -0.039

(6.57) (6.58) (13.1) (0.058)

Soil condition = Medium 6.86∗∗∗ 7.39∗∗∗ 14.3∗∗∗ 0.067∗∗∗

(1.77) (1.56) (3.27) (0.017)

Soil condition = High 5.52∗∗∗ 6.34∗∗∗ 11.9∗∗∗ 0.080∗∗∗

(1.94) (1.84) (3.72) (0.020)

Total Nitrogen (ppm) 0.034∗ 0.027 0.061 0.00029∗

(0.019) (0.021) (0.040) (0.00017)

Total Phosphorus (ppm) -0.11∗∗∗ -0.097∗∗∗ -0.20∗∗∗ -0.00044∗∗

(0.026) (0.028) (0.054) (0.00022)

Extractable Potassium (ppm) 0.021 0.019 0.040 0.00064

(0.055) (0.059) (0.11) (0.00046)

Water holding capacity (mm) 0.10 0.11 0.21 0.0020∗∗∗

(0.088) (0.090) (0.18) (0.00077)

Soil pH (depth 0-5cm) 0.048 -0.20 -0.15 -0.0017

(1.29) (1.33) (2.61) (0.0089)

Adj.R-Square 0.26 0.26 0.27 0.24

Observations 12220 12220 12220 12220

Notes: Robust standard errors clustered by district are in parentheses. The total land size, family size, the head’s gender, age, years of education,

and province fixed effects are included but not reported. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A10: Robustness to using the CV of rainy season rainfall as the risk measure: Family labor

and land utilization

Labor Female labor Male labor Area planted/Area field

CoV (Nov-Feb) 0.85 -0.86 1.71∗ 0.54

(1.31) (0.88) (0.94) (0.45)

Average precipitation 0.035 0.019 0.017 -0.034∗∗∗

(0.036) (0.024) (0.021) (0.0089)

Prec Nov, 19 0.31∗ 0.10 0.20∗∗ -0.0026

(0.16) (0.095) (0.098) (0.029)

Prec Dec, 19 -0.073 -0.041 -0.032 0.035∗

(0.097) (0.060) (0.059) (0.021)

Prec Jan, 20 0.15 0.13∗∗ 0.024 -0.012

(0.092) (0.057) (0.061) (0.021)

Prec Feb, 20 -0.16∗ -0.053 -0.10∗ 0.023

(0.086) (0.057) (0.056) (0.020)

Temp (min) Nov, 19 -0.062 0.014 -0.075 -0.023

(0.075) (0.040) (0.054) (0.019)

Temp (max) Nov, 19 0.100∗ -0.014 0.11∗∗∗ 0.049∗∗∗

(0.056) (0.037) (0.035) (0.016)

Temp (min) Dec, 19 -0.012 -0.057 0.045 0.0058

(0.084) (0.053) (0.052) (0.021)

Temp (max) Dec, 19 -0.20∗∗ -0.059 -0.14∗∗ 0.0030

(0.090) (0.061) (0.054) (0.023)

Temp (min) Jan, 20 -0.30∗∗∗ -0.058 -0.24∗∗∗ 0.063∗∗

(0.11) (0.062) (0.070) (0.030)

Temp (max) Jan, 20 -0.085 -0.031 -0.054 -0.029

(0.13) (0.070) (0.081) (0.025)

Temp (min) Feb, 20 0.37∗∗∗ 0.077 0.29∗∗∗ -0.067∗∗∗

(0.11) (0.061) (0.072) (0.022)

Temp (max) Feb, 20 0.18 0.11 0.073 -0.014

(0.12) (0.065) (0.077) (0.022)

Soil condition = Medium 0.011 -0.0023 0.013 0.0023

(0.047) (0.026) (0.031) (0.0047)

Soil condition = High -0.0040 0.015 -0.019 -0.0034

(0.055) (0.031) (0.036) (0.0065)

Total Nitrogen (ppm) -0.00028 -0.00016 -0.00012 -0.000024

(0.00042) (0.00026) (0.00022) (0.00011)

Total Phosphorus (ppm) 0.00064 0.00011 0.00053∗ -0.00010

(0.00057) (0.00034) (0.00030) (0.00019)

Extractable Potassium (ppm) 0.00030 0.00084 -0.00053 0.00029

(0.0011) (0.00078) (0.00069) (0.00035)

Water holding capacity (mm) -0.0017 -0.0010 -0.00066 0.000081

(0.0018) (0.0011) (0.0012) (0.00041)

Soil pH (depth 0-5cm) -0.012 0.0060 -0.018 -0.0063

(0.019) (0.012) (0.012) (0.0050)

Adj.R-Square 0.54 0.37 0.38 0.43

Observations 12220 12220 12220 12220

Notes: Robust standard errors clustered by district are in parentheses. The total land size, family size, the head’s gender, age, years of education,

and province fixed effects are included but not reported. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A11: Robustness to using the CV of rainfall between November and February as the risk

measure: Family labor and land utilization

Labor Female labor Male labor Area planted/Area field

CoV (Nov-Apr) 0.54 -0.43 0.97 0.62

(1.36) (0.86) (0.88) (0.53)

Average precipitation 0.032 0.023 0.0096 -0.034∗∗∗

(0.036) (0.025) (0.020) (0.0087)

Prec Nov, 19 0.31∗ 0.094 0.22∗∗ 0.00068

(0.16) (0.096) (0.096) (0.030)

Prec Dec, 19 -0.070 -0.045 -0.025 0.036∗

(0.098) (0.060) (0.060) (0.021)

Prec Jan, 20 0.15 0.13∗∗ 0.018 -0.010

(0.092) (0.059) (0.061) (0.021)

Prec Feb, 20 -0.16∗ -0.050 -0.11∗ 0.019

(0.084) (0.056) (0.056) (0.021)

Temp (min) Nov, 19 -0.056 0.0055 -0.061 -0.025

(0.077) (0.040) (0.056) (0.019)

Temp (max) Nov, 19 0.098∗ -0.013 0.11∗∗∗ 0.048∗∗∗

(0.056) (0.037) (0.036) (0.016)

Temp (min) Dec, 19 -0.012 -0.056 0.044 0.0076

(0.083) (0.053) (0.052) (0.021)

Temp (max) Dec, 19 -0.20∗∗ -0.062 -0.13∗∗ 0.0046

(0.091) (0.060) (0.054) (0.022)

Temp (min) Jan, 20 -0.30∗∗∗ -0.056 -0.25∗∗∗ 0.061∗∗

(0.10) (0.063) (0.069) (0.031)

Temp (max) Jan, 20 -0.085 -0.031 -0.055 -0.029

(0.13) (0.070) (0.083) (0.025)

Temp (min) Feb, 20 0.36∗∗∗ 0.086 0.28∗∗∗ -0.066∗∗∗

(0.12) (0.059) (0.078) (0.023)

Temp (max) Feb, 20 0.18 0.11 0.075 -0.014

(0.12) (0.065) (0.079) (0.022)

Soil condition = Medium 0.012 -0.0032 0.015 0.0026

(0.047) (0.026) (0.031) (0.0048)

Soil condition = High -0.0037 0.015 -0.018 -0.0032

(0.055) (0.031) (0.036) (0.0064)

Total Nitrogen (ppm) -0.00028 -0.00016 -0.00012 -0.000021

(0.00042) (0.00026) (0.00023) (0.00011)

Total Phosphorus (ppm) 0.00062 0.00013 0.00049 -0.00011

(0.00056) (0.00034) (0.00030) (0.00019)

Extractable Potassium (ppm) 0.00033 0.00081 -0.00048 0.00031

(0.0011) (0.00078) (0.00069) (0.00036)

Water holding capacity (mm) -0.0017 -0.00099 -0.00075 0.000085

(0.0018) (0.0011) (0.0012) (0.00041)

Soil pH (depth 0-5cm) -0.012 0.0056 -0.018 -0.0070

(0.019) (0.012) (0.012) (0.0049)

Adj.R-Square 0.54 0.37 0.38 0.43

Observations 12220 12220 12220 12220

Notes: Robust standard errors clustered by district are in parentheses. The total land size, family size, the head’s gender, age, years of education,

and province fixed effects are included but not reported. *** p < 0.01, ** p < 0.05, * p < 0.1.
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A.3 Identification of ACDE

Under these two assumptions, the ACDE can be identified.

γ(r,m, x) = E[Yi(r,m)− Yi(r,m
′)|Xi]

= E[Yi(r,m)|Xi, Zi, Ri]− E[Yi(r,m
′)|Xi, Zi, Ri]

E[Yi − γ(r,m, x)|Ri, Xi] = E[Yi(r,m
′)|Xi]

E[Yi − γ(r,Mi, x)|Ri, Xi]− E[Yi − γ(r′,Mi, x)|Ri, Xi]

= E[Yi(r,Mi)|Xi]− E[Yi(r
′,Mi)|Xi]

= ACDE(x)

A.4 Bias Form

Ml = γ0 + γ1CV 12
w +X ′

lγ2 + Z ′
lγ3 + δp + ξl (7)

Acharya et al. (2016) show that the bias of the estimator of the ACDE is:

plim ̂ACDE − ACDE

= −δ̃
δ̃y
δm

2
√

(1− ρ̃2)/(1− ρ2),

where ρ is the correlation coefficient between the error terms of equation (5) and equation (7) and

δ is the effect of the treatment on the mediator.
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