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a b s t r a c t 

The detrending moving average (DMA) analysis demonstrates excellent performance for the character- 

ization of long-range correlations and fractal scaling and is performed in various research fields. The 

conventional DMA with a simple moving average can remove linear trends embedded in the observed 

time series. To improve the detrending ability of the DMA, higher-order DMA including a higher order 

polynomial detrending was also introduced using the Savitzky-Golay filter and its fast implementation 

algorithm was developed. However, the higher-order DMA applicable to higher dimensional data is yet 

to be well established. As the data dimension increases, an increase in the computational cost becomes 

a problem that needs to be resolved. Further, the implementation of the higher order DMA is a time- 

consuming procedure. To resolve this problem, we here proposed a fast algorithm for multidimensional 

DMA with higher order polynomial detrending. In the proposed algorithm, to reduce the computational 

complexity, parallel translation and recurrence techniques are introduced. Monte Carlo experiments for 

two-dimensional data show that the computational time of the proposed algorithm is approximately 

proportional to the cubic of the data length, whereas the computational time of the conventional im- 

plementation is approximately proportional to the quartic of the data length. Moreover, we evaluate the 

estimation accuracy of the Hurst exponent of the proposed method. Finally, we demonstrate the possible 

application of the proposed method by estimating the Hurst exponent of images. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 
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. Introduction 

Long-range correlation and fractal scaling behavior are om- 

ipresent in various systems, e.g., biological [1–4] , economic [5–

] , and social systems [8,9] . To characterize such phenomena, vari- 

us scaling exponents have been proposed. For instance, the Hurst 

xponent H is the parameter of fractional Brownian motion (fBm) 

10] with long-range correlated increments and is defined based 

n the self-affine structure of the fBm. H has been proven use- 
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ul in characterizing one-dimensional and higher dimensional data. 

or example, in the one-dimensional case, the long-term heart-rate 

ariability (HRV) time series exhibiting a 1 / f β -type power spec- 

rum [11,12] can be characterized by H. The power-law exponent 

is also the scaling exponent and is linked with H as β = 2 H + 1

 β > 1 ) [13] . In higher dimensional cases, H-based fractal concepts 

re used to model and quantify isotropic and anisotropic fracture 

urfaces [14,15] . 

To characterize fractal scaling behavior in one-dimensional and 

igher dimensional cases, power spectral analysis method [16,17] , 

avelet-transform-based analysis method [18–21] , detrended fluc- 

uation analysis (DFA) [2,22] , and detrending moving average 
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DMA) algorithms [6,23] have been proposed. Among these meth- 

ds, DMA is one of the best methods to estimate H owing to its ac-

urate result and the easy implementation. However, the detrend- 

ng ability of DMA is worse than higher order DFA because the 

rend is estimated by simple moving average. This lack of detrend- 

ng ability will affect the reliability of the estimated result and 

ause the spurious detection of H. 

Higher order DMA, which is based on higher order moving av- 

rage polynomials, was proposed to improve the detrending ca- 

ability [24] . This higher order approach shows better detrending 

apability in terms of removing a higher order polynomial trend 

25] . Moreover, it has been confirmed that higher order DMA ex- 

ibits better performance while performing long-range correlation 

nd characterizing fractal scaling behavior owing to its detrending 

bility and stabilities, whereas the nonlinear filtering property of 

FA results in the instability of the scaling exponent estimation 

25,26] . However, such higher order DMA has just been established 

n one-dimensional space, and the higher dimensional implemen- 

ation of higher order DMA has not been established. Moreover, a 

ast algorithm for one-dimensional higher order DMA has been de- 

eloped because the conventional implementation of DMA based 

n the convolutional operation is time-consuming [13] . As data 

imensions increase, the computational cost increases, and thus, 

here is a demand for the development of fast algorithms. 

In this study, we propose a multidimensional higher order de- 

rending moving average approach to estimate the scaling expo- 

ent corresponding to H. First, we introduce the general descrip- 

ion of multidimensional DMA; next, we derive the second-order 

nd fourth-order DMA in 2D space. To reduce the computational 

ime, we propose their fast algorithms. To evaluate the accuracy 

f our algorithm, we test our algorithm numerically with differ- 

nt data sizes and H values. Moreover, we discuss the applicability 

f the proposed method to biological image analysis to character- 

ze the actin filament network behind the cell cortex. In the ap- 

endices, we demonstrate the detectable scaling exponent and de- 

rending capability for removing the polynomial trend to show the 

fficiency of the proposed method. 

. Multidimensional scaling analysis using a higher order 

oving polynomial function 

.1. Multidimensional scaling analysis using moving average 

In this subsection, we review the multidimensional detrending 

oving average method. To analyze high-dimensional fractals, a 

eneralized multidimensional detrending moving average method 

as been proposed [23] . In d-dimensional space, the scale can be 

epresented by a subarray n = (n 1 , n 2 , . . . , n d ) . If we choose n 1 =
 2 = · · · = n d = s ( s > 1 is an odd positive integer), the generalized

ariance at scale s is defined as: 

2 

DMA 

(s ) = 

1 ∏ d 
i =1 (N i − s + 1) 

N 1 −(s −1) / 2 ∑ 

x 1 =(s −1) / 2 

· · ·
N d −(s −1) / 2 ∑ 

x d =(s −1) / 2 

[
f (x d ) − ˜ f ( x d ) 

]2 
. (1) 

here x d = (x 1 , x 2 , . . . , x d ) and f (x d ) denotes the d-dimensional

ata, e.g., an fBm surface, and N i denotes the length of x i in the i th

imension. ˜ f (x d ) is the moving average function of f (x d ) , which 

s defined by: 

˜ f ( x 1 , . . . , x d ) = 

1 

s d 

(s −1) / 2 ∑ 

ξ1 = −(s −1) / 2 

· · ·
(s −1) / 2 ∑ 

ξd = −(s −1) / 2 

f (x 1 + ξ1 , . . . , x d + ξd ) . (2) 

If f (x 1 , x 2 , . . . , x d ) has an fBm-surface-like structure, the ex- 

ected relationship between the generalized variance and the scal- 

ng exponent α is: 

DMA 

(s ) ∼ s α. (3) 
2 
herefore, the log-log plot of σDMA 

(s ) verses s is a straight line 

ith slope α. 

.2. Multidimensional scaling analysis using a second-Order moving 

olynomial function 

To date, it has been reported that a high-order polynomial trend 

n time series may cause spurious scaling behavior, which will 

educe the accuracy of the scaling exponent estimation [13,25] . 

herefore, we introduce second-order moving average detrending 

or the scaling analysis in d-dimensional space. In addition, the al- 

orithm of the fourth-order moving average method in 2D space is 

entioned in Appendix A. For any scale n that considers odd in- 

eger values, we represent s by s = 2 m + 1 , where m is a positive

nteger. Similar to the central DMA in 1D space [13] , we introduce 

 parallel translation technique to describe and implement multi- 

imensional higher order DMA. Figure 1 shows parallel translation 

n 2D space, where s is 5 ( m = 2 ). 

Considering a d-dimensional data f (x 1 , x 2 , . . . , x d ) , the trend es-

imated by the second-order polynomial function based on the 

east-squares fit is as follows: 

˜ f (x 1 , x 2 , . . . , x d ) = a (0) + 

d ∑ 

i =1 

a (1) 
i 

x i + 

d ∑ 

i =1 

a (2) 
i 

x 2 i + 

d ∑ 

i =1 

d ∑ 

j= i +1 

a (1 , 1) 
i, j 

x i x j . (4) 

Here, the least squares polynomial fit is performed over a re- 

ion −m ≤ x i ≤ m ( i = 1 , . . . , d). This polynomial for trend estima-

ion is identical to the multidimensional Savitzky-Golay filter [27–

9] . The coefficients { a (0) , a (1) 
i 

, a (2) 
i 

, a (1 , 1) 
i, j 

} in Eq. (4) are obtained

y minimizing the square error: 

({ a (0) , a (1) 
i 

, a (2) 
i 

, a (1 , 1) 
i, j 

} ) = 

m ∑ 

x 1 = −m 

· · ·
m ∑ 

x d = −m 

[
f (x d ) − ˜ f (x d ) 

]2 
. (5) 

o minimize Eq. (5) , we calculate the partial derivative with re- 

pect to each coefficient and set all the partial derivatives to zero. 

sing the parallel translation technique, the value of the polyno- 

ial function at a certain data point is given by: 

˜ f (0 , . . . , 0) = a (0) , (6) 

Therefore, the essential equation that provides a (0) is: 

m ∑ 

 1 = −m 

· · ·
m ∑ 

x d = −m 

P (2) 
d 

(
P (2) 

d 

)T 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

a (0) 

a (2) 
1 

a (2) 
2 
. . . 

a (2) 
d 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

m ∑ 

x 1 = −m 

· · ·
m ∑ 

x d = −m 

P (2) 
d 

f (x d ) , (7) 

here 

 

(2) 
d 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 

x 2 1 

x 2 2 
. . . 

x 2 
d 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. (8) 

Finally, by solving Eq. (7) , we obtain the general formula for the 

econd-order moving average polynomial function in d-dimension: 

˜ f (x d ) = 

{
(5 d + 4) m 

2 + (5 d + 4) m − 3 
}

S (0) (x d ) − 15 

d ∑ 

i =1 

S (2) 
i 

(x d ) 

(4 m 

2 + 4 m − 3)(2 m + 1) d 
, (9) 

here 

 

(0) (x d ) = 

m ∑ 

ξ1 = −m 

· · ·
m ∑ 

ξd = −m 

f (x 1 + ξ1 , . . . , x d + ξd ) (10) 
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Fig. 1. Parallel translation technique for s = 5 ( m = 2 ) in 2D space. Each square represents a data point in this 2D time series. The central point (the red square) is shifted 

to (0,0), which converts the calculation interval into a symmetrical interval [ −m, m ] in each dimension. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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(2) 
i 

(x d ) = 

m ∑ 

ξ1 = −m 

· · ·
m ∑ 

ξd = −m 

ξ 2 
i f (x 1 + ξ1 , . . . , x d + ξd ) (11) 

Figure 2 shows the estimated trend of an fBm surface with 

urst exponent H = 0 . 7 and detrending results. In this study, the

Bm surface was artificially generated based on the midpoint in- 

erpolation method [30,31] . Based on Eqs. (10) and (11) , we ana- 

yze the time complexity of our algorithm. For example, given a 2D 

ime series with size S = N × N and scale n , the calculation step of

he summation of f (x 1 , x 2 ) in Eqs. (10) and (11) is n 2 (N − n + 1) 2 ,

hich is proportional to N 

2 . With regard to the application of the 

caling analysis, n is defined by a sequence n 
′ 
1 
, n 

′ 
2 
, . . . , n 

′ 
L 
, wher e L 

s the total number of the scales and n 
′ 
1 

< n 
′ 
2 

< · · · < n 
′ 
L 
. If the se-

uence { n ′ 
l 
} L 

l=1 
is defined by a geometric progression with a fixed 

ommon ratio and n L 
′ 

is proportional to N, the sum of { n ′ 
l 
} is pro-

ortional to S. As a result, the summation step in Eqs. (10) and 

11) is proportional to N 

4 . Thus, the computational complexity is 

 (N 

4 ) . This result implies that the computation time grows steeply 

s the number of data points increase. It is important to note that 

q. (9) is expressed in the form of convolution. As will be shown 

n the next section, Eq. (9) is useful for the development of the fast

lgorithm of multidimensional DMA. 

. Fast algorithm for second-order 2D DMA 

As discussed in the aforementioned section, the calculation 

ime of the algorithm rapidly increases when the number of data 

oints increases. In this section, we propose a fast algorithm for 

econd-order 2D DMA. We developed two approaches to derive 

he fast algorithm: First, we use the parallel translation technique 

o describe the algorithm, as explained in Section 2 . Second, we 

alculate Eqs. (10) and (11) with a recurrence formula. The use of 

he parallel translation technique will simplify the calculation of 

he value of the polynomial function at a certain data point as 
˜ f (0 , . . . , 0) = a (0) , which implies that the calculation of other co-

fficients of the polynomial function is not necessary. In Eq. (9) , 
3 
he calculation of S (0) and S (2) is time-consuming. Herein, we solve 

his problem by using the recurrence formula of S (0) and S (2) . 

ased on Eq. (1) , the generalized variance of a 2D time series 

f (x 1 , x 2 ) at scale n is defined as: 

2 

DMA 

(s ) = 

1 

(N 1 − s + 1)(N 2 − s + 1) 

N 1 − s −1 
2 ∑ 

x 1 = s −1 
2 

N 2 − s −1 
2 ∑ 

x 2 = s −1 
2 

[
f (x 1 , x 2 ) − ˜ f (x 1 , x 2 ) 

]2 
. 

(12) 

Here, N 1 and N 2 are the lengths in each dimension respectively. 

ccording to Section 2 , by replacing n with 2 m + 1 , ˜ f (x 1 , x 2 ) is

iven by 

˜ f (x 1 , x 2 ) = 

14 m (m + 1) − 3 

(2 m + 1) 2 (4 m (m + 1) − 3) 
S (0 , 0) 

m 

(x 1 , x 2 ) 

− 15 

(2 m + 1) 2 (4 m (m + 1) − 3) 
S (2 , 0) 

m 

(x 1 , x 2 ) 

− 15 

(2 m + 1) 2 (4 m (m + 1) − 3) 
S (0 , 2) 

m 

(x 1 , x 2 ) , (13) 

here 

 

(0 , 0) 
m 

(x 1 , x 2 ) = 

m ∑ 

i = −m 

m ∑ 

j= −m 

f (x 1 + i, x 2 + j) , (14) 

 

(2 , 0) 
m 

(x 1 , x 2 ) = 

m ∑ 

i = −m 

m ∑ 

j= −m 

i 2 f (x 1 + i, x 2 + j) , (15) 

 

(0 , 2) 
m 

(x 1 , x 2 ) = 

m ∑ 

i = −m 

m ∑ 

j= −m 

j 2 f (x 1 + i, x 2 + j) . (16) 

Let us consider the general forms of Eqs. (14) –(16) , which is 

enoted by S (k,l) 
m 

(x 1 , x 2 ) = 

∑ m 

i = −m 

∑ m 

j= −m 

i k j l f (x 1 + i, x 2 + j) ( k, l =
 , 1 , 2 , . . . ). In our algorithm, S (k,l) 

m 

(x 1 , x 2 ) is calculated for each

oint of f (x 1 , x 2 ) , where m ≤ x 1 ≤ N 1 − m and m ≤ x 2 ≤ N 2 − m .

he calculation for the next point is performed by incrementing 
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Fig. 2. Example of two-dimensional second-order DMA for the analysis of a fBm surface with H = 0 . 7 . (a) The 3D view of a fBm surface f (x 1 , x 2 ) with H = 0 . 7 and a size 

of 1025 ×1025 pixels. (b-d) Results of the second-order moving average ˜ f (x 1 , x 2 ) with a scale of n = 17, 65, and 257 ( m = 8,32, and 128, respectively). (e-g) The detrending 

results f (x 1 , x 2 ) − ˜ f (x 1 , x 2 ) using the moving average results shown in (b-d) respectively. 
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 1 or x 2 . Specifically, it defines the calculation of S (k,l) 
m 

(x 1 + 1 , x 2 ) 

r S (k,l) 
m 

(x 1 , x 2 + 1) using the recurrence formula: 

 

(k,l) 
m 

(x 1 + 1 , x 2 ) = 

k ∑ 

h =0 

(
k 
h 

)
(−1) k −h S (h,l) 

m 

(x 1 , x 2 ) 

+ 

m ∑ 

j= −m 

j l 
{

m 

k f (x 1 + m + 1 , x 2 + j) 

−(−m − 1) k f (x 1 − m, x 2 + j) 
}
, (17) 

 

(k,l) 
m 

(x 1 , x 2 + 1) = 

l ∑ 

h =0 

(
l 
h 

)
(−1) l−h S (k,h ) 

m 

(x 1 , x 2 ) 

+ 

m ∑ 

i = −m 

i k 
{

m 

l f (x 1 + i, x 2 + m + 1) 

−(−m − 1) l f (x 1 + i, x 2 − m ) 
}
. (18) 

When two different scales s 1 = 2 m 1 + 1 and s 2 = 2 m 2 + 1 ( m 2 >

 1 and �m = m 2 − m 1 ) are given, S (k,l) 
m 2 

(x 1 + �m, x 2 + �m ) can be

alculated using S (k,l) 
m 

(x 1 , x 2 ) based on the recurrence formula: 

1 

4 
 

(k,l) 
m 2 

(x 1 + �m, x 2 + �m ) = 

k ∑ 

h =0 

l ∑ 

u =0 

(
k 

h 

)(
l 

u 

)
( −�m ) 

k + l−u −h S (h,u ) 
m 1 

(x 1 , x 2 ) 

+ 

m 2 +�m ∑ 

i = m 1 +1 

m 1 ∑ 

j= −m 1 

( i − �m ) 
k 
( j − �m ) 

l 

f (x 1 + i, x 2 + j) 

+ 

m 2 ∑ 

i = −m 2 

m 2 +�m ∑ 

j= m 1 +1 

i k j l f (x 1 + �m + i, x 2 + j) . 

(19) 

Therefore, Eqs. (14) –(16) can be calculated across x 1 and x 2 and 

cale by substituting k and l with 0 or 2 in Eqs. (17) –(19) . As de-

cribed in Appendix A, the fast algorithm of fourth-order 2D DMA 

an be derived from Eqs. (17) –(19) . To evaluate the efficiency of the 

roposed fast algorithm, we estimate the computation time of 2D 

MA. Here, for a 2D time series with size S = N × N, the analyzed

cales { n 1 , n 2 , . . . , n k } are the odd integers nearest to the geomet- 

ic progression with a common ratio of 2 1 / 2 and less than N/ 10 .

hus, the number of the analyzed scales is approximately propor- 

ional to log N. As shown in Fig. 3 , the convolution-based imple- 
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Fig. 3. Comparison of computation time. The computation time were averaged over 

5 runs. The Comparison was conducted on a PC with Windows operating system 

and Intel(R) Core (TM) i7-8086k CPU (4.00GHz). 
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entation of second-order 2D DMA incurs a much higher compu- 

ational cost that is approximately proportional to N 

4 . In contrast, 

he computation time of the proposed fast algorithm is approxi- 

ately proportional to N 

3 . Thus, the computational complexity is 

 (N 

3 ) . DFA is one of the most widely used method. As shown in
ig. 4. Visualization of the estimation of the Hurst exponent. The result was obtained

097 × 4097 pixels and a Hurst exponent of 0.1. The black dash line denotes the slope o

xponent of 0.9. The black dash line denotes the slope of 0.9. (c) Result of the fBm surfac

enotes the slope of 0.9. (d) Estimation results of the fBm surface with different sizes and

5 
13] , its computational complexity is comparable with that of the 

ast implementation algorithm of DMA. 

. Accuracy of the scaling analysis of 2D DMA 

In this section, we evaluate the accuracy of the Hurst exponent 

stimation of 2D DMA. We conduct the experiment on fBm sur- 

aces of different sizes ( 257 × 257 , 1025 × 10225 , and 4096 × 4097 )

ith different Hurst exponent. 

.1. 2D DMA gained higher accuracy on a larger size fbm surface 

For a fixed Hurst exponent, as the size of the fBm surface ap- 

roaches infinity, the estimated result will converge to the true 

alue with probability 1 according to the law of large numbers. 

owever,as the real fBm surface exhibits a finite size, the estima- 

ion accuracy on the smaller fBm surface will be lower than that 

n the larger surface. Table 1 lists these results, where the esti- 

ated Hurst exponent gets closer to the true value with an in- 

rease in the data size for a fixed Hurst exponent. Figure 4 (b) and

c) illustrate these results with sizes 4097 × 4097 and 257 × 257 , 

espectively; the Hurst exponent of each fBm surface is 0.9. The 

lack dash line represents the slop of 0.9. 

We can see that the estimation on the surface with the size of 

097 × 4097 shows the slope much closer to 0.9 than that on the 

urface with the size of 257 × 257 . Finally, Fig. 4 (d) summarizes the 

stimation accuracy of the fBm surface with three different sizes 
 from the average of 100 samples. (a) Result of the fBm surface with a size of 

f 0.1. (b) Result of the fBm surface with a size of 4097 × 4097 pixels and a Hurst 

e with a size of 257 × 257 pixels and a Hurst exponent of 0.9. The black dash line 

 different Hurst exponents. 
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Fig. 5. (a) Actin filament network far away from lamellipodia. (b) Log-log plot of log 10 s versus log 10 σDMA (s ) in (a) using zeroth-order, second-order, and fourth-order DMA. 

The Hurst exponent is 0.53, which is calculated using the linear regression of data points in the log-log plot. (c) Actin filament network on lamellipodia. (d) Log-log plot 

of log 10 s versus log 10 σDMA (s ) in (c) using zeroth-order, second-order, and fourth-order DMA. The Hurst exponent is 0.26, which is calculated using the linear regression of 

data points in the log-log plot. (e) Change in the Hurst exponent of the actin filament network shown in (a) and (c) over time. The result suggests that the fiber density of 

the actin filament network far away from lamellipodia was almost constant, whereas the fiber density of the actin filament network on lamellipodia changed frequently and 

dramatically. 
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nd Hurst exponents, where the black dash line implies that the 

stimated Hurst exponent signifies the true value. 

.2. 2D DMA gained higher accuracy on the fBm surface with a 

arger scaling exponent 

For a fixed size, the estimation of the low Hurst exponent is 

ess accurate than that of the high Hurst exponent. As listed in 
6 
able 1 , for the same data size, the estimation error of the fBm 

urface with a higher Hurst exponent is smaller than that with a 

ower Hurst exponent. Fig. 4 (a) illustrates the Hurst exponent esti- 

ation of the fBm surface with the size of 4097 × 4097 ; the Hurst

xponent is 0.1, which implies that the slope is larger than 0.1. 

igure 4 (d) shows this result as well, where we can observe that 

he estimation shows a larger error when the Hurst exponent is 

maller than 0.2. 
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Table 1 

The Hurst exponent estimation result using 2D DMA. The experiment was con- 

ducted on fBm surface with different size and different Hurst exponent, and each 

result was obtained by averaging 100 samples. 

Hurst Data Order 

Exponent Size Zero Order Second Order Forth Order 

H = 0 . 1 

257 × 257 0 . 16 ± 0 . 02 0 . 18 ± 0 . 02 0 . 20 ± 0 . 01 

1025 × 1025 0 . 14 ± 0 . 02 0 . 15 ± 0 . 02 0 . 16 ± 0 . 01 

4097 × 4097 0 . 13 ± 0 . 01 0 . 13 ± 0 . 01 0 . 14 ± 0 . 01 

H = 0 . 9 

257 × 257 0 . 86 ± 0 . 07 0 . 84 ± 0 . 05 0 . 81 ± 0 . 03 

1025 × 1025 0 . 88 ± 0 . 07 0 . 89 ± 0 . 06 0 . 88 ± 0 . 05 

4097 × 4097 0 . 89 ± 0 . 04 0 . 90 ± 0 . 03 0 . 90 ± 0 . 03 
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. Application of the multidimensional DMA 

To date, the Hurst exponent was used to quantify the diversity 

f 3D landscape, and, thus may be extended to quantitatively de- 

cribe the atomic-force-microscope (AFM) images of electrospun 

anofiber mats [32,33] . In this section, we show an application 

f the proposed method that can be used as a tool to quantita- 

ively describe the density of the actin filament network behind 

he cell cortex. We assume that the fiber network with higher fiber 

ensity will exhibit diversity with regard to the representation of 

ts image. If an image of a fiber network has a higher Hurst ex- 

onent, the diversity of the image surface is low, which implies 

ess content on the image and thus, the fiber density is low. Our 

ideo data were imaged by fast-scanning atomic force microscopy 

nd represented the organization of the actin filament network dy- 

amics behind the cell cortex in a living cell [34] . Two kinds of

he actin filament network were imaged: One is the actin filament 

etwork on the cell surface far away from lamellipodia ( Fig. 5 (a)), 

nd the other is the actin filament network on the cell surface of 

amellipodia ( Fig. 5 (c)). These two images are two snapshots of two 

ideos with an image size of 640 × 480 pixels, respectively. We 

sed COS-7 cells that were derived from monkey kidney tissue. 

igure 5 (b) and (d) show the results of the Hurst exponent esti- 

ation of the actin filament network structure shown in Fig. 5 (a) 

nd (c). The results show the power-law scaling between log 10 s 

nd log 10 σDMA (s ) , where the data points are approximately located 

n a straight line, which suggests that the structure of the two 

inds of the actin filament network behave self-similarity proper- 

ies. The estimated Hurst exponents of the actin filament network 

n the cell surface far away from and of lamellipodia are 0.53 

nd 0.26, respectively, which implies that the fiber density of the 

atter actin filament network is higher. These Hurst exponents are 

btained using the linear regression of data points in the log-log 

lot. It is worth noticing that the result of the estimated Hurst 

xponent is independent to the order of DMA, which means that 

he estimated scaling exponent remains unchanged when the or- 

er of DMA changes. Finally, we calculate the Hurst exponent of 

he actin filament network shown in the frame of each video. The 

hange in the Hurst exponent versus time is shown in Fig. 5 (e). 

igure 5 (e) demonstrates that the Hurst exponent of the actin fila- 

ent network far away from lamellipodia rarely changed, whereas 

he Hurst exponent of the actin filament network on lamellipodia 

ramatically changed. This result reveals that during the imaging 

rocess, the fiber density of the actin filament network far away 

rom lamellipodia stayed around a constant, whereas the fiber den- 

ity of the actin filament network on lamellipodia frequently and 

ramatically changed. This is because the actin filament network 

n lamellipodia plays the role of cell migration, and the genera- 

ion and degeneration of actin filament happen frequently; thus, 

ts density changes frequently and dramatically. However, the actin 

lament network far away from lamellipodia does not exhibit this 

ind of behavior; therefore, its density almost remains constant. 
7 
. Summary and discussion 

In this study, we proposed a multidimensional higher order de- 

rending moving average algorithm for fractal analysis in higher di- 

ensional space; moreover, we analytically derived its formula and 

ast algorithm in 2D space. The experiments showed that the pro- 

osed fast algorithm can reduce the computational time compared 

ith the conventional convolution-based implementation and re- 

ealed that the proposed method can gain higher estimation ac- 

uracy on a larger fBm surface or with a higher Hurst exponent. 

oreover, we demonstrate the application of the proposed method 

s a tool to quantitatively describe the density of the actin filament 

etwork behind the cell cortex. According to the previous study, 

igher dimensional DFA was widely applied to image analysis [35–

7] , whereas higher dimensional DMA [23] was rarely used. Thus, 

ur study can facilitate the application of higher order DMA to var- 

ous investigations, e.g., the multifractal [22] and scaling analysis of 

ime series in higher dimensional space. 
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ppendix A. 2D DMA using the fourth-order moving 

olynomial function 

In the case of 2D DMA, using the fourth-order moving polyno- 

ial function, the fourth-order polynomial trend can be defined 

s: 

˜ f ( x 1 , x 2 ) = a ( 0 ) + a ( 
1 ) 

1 
x 1 + a ( 

1 ) 
2 

x 2 + a ( 
2 ) 

1 
x 2 1 + a ( 

2 ) 
2 

x 2 2 + a ( 
1 , 1 ) 

1 , 2 
x 1 x 2 

+ a ( 
3 ) 

1 
x 3 1 + a ( 

3 ) 
2 

x 3 1 + a ( 
2 , 1 ) 

1 , 2 
x 2 1 x 2 + a ( 

1 , 2 ) 
1 , 2 

x 1 x 
2 
2 

+ a ( 
4 ) 

1 
x 4 1 + a ( 

4 ) 
2 

x 4 2 + a ( 
2 , 2 ) 

1 , 2 
x 2 1 x 

2 
2 + a ( 

3 , 1 ) 
1 , 2 

x 3 1 x 2 

+ a ( 
1 , 3 ) 

1 , 2 
x 1 x 

3 
2 . 

(A1) 

Similar coefficients of Eq. (5) can be obtained by minimizing 

he loss function 

({ a } ) = 

m ∑ 

x 1 = −m 

m ∑ 

x 2 = −m 

[
f (x 1 , x 2 ) − ˜ f (x 1 , x 2 ) 

]2 
. (A2) 
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Here, a is a vector that contains all the coefficients of Eq. (A1) .

y setting the derivative of Eq. (A2) with respect to a to zero, we

an obtain the essential equation that provides a (0) : 

m ∑ 

 1 = −m 

· · ·
m ∑ 

x d = −m 

P (4) 
d 

(
P (4) 

d 

)T 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

a (0) 

a (2) 
1 

a (2) 
2 

a (4) 
1 

a (4) 
2 

a (2 , 2) 
1 , 2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

m ∑ 

x 1 = −m 

· · ·
m ∑ 

x d = −m 

P (4) 
d 

f (x 1 , x 2 ) , 

(A3) 

here 

 

(4) 
d 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 

x 2 1 

x 2 2 

x 4 1 

x 4 2 

x 2 1 x 
2 
2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (A4) 

By solving Eq. (A3) , we can obtain the formula of the fourth- 

rder moving average polynomial function: 

˜ f ( x 1 , x 2 ) = 

[(
1944 m 

6 + 5832 m 

5 − 1674 m 

4 − 13068 m 

3 − 3150 m 

2 

+4356 m − 540 ) S 
( 0 , 0 ) 
m 

( x 1 , x 2 ) 

−
(
540 0 m 

4 + 1080 0 m 

3 − 8550 m 

2 − 13950 m + 4725 

)(
S ( 

2 , 0 ) 
m 

( x 1 , x 2 ) + S ( 
0 , 2 ) 

m 

( x 1 , x 2 ) 
)

+945 

(
4 m 

2 + 4 m − 3 

)(
S ( 

4 , 0 ) 
m 

( x 1 , x 2 ) + S ( 
0 , 4 ) 

m 

( x 1 , x 2 ) 
)

+900 

(
4 m 

2 + 4 m − 15 

)
S ( 

2 , 2 ) 
m 

( x 1 , x 2 ) 
]
/D, 

(A5) 

here 

 = 4 

(
4 m 

2 + 4 m − 15 

)(
8 m 

3 + 12 m 

2 − 2 m − 3 

)2 
. (A6) 

The fast algorithm for Eq. (A6) that calculates across x 1 and x 2 
nd scale can be obtained from Eqs. (17) –(19) . 

ppendix B. Detrending capability of 2D DMA 

One advantage of higher order DMA is its improved detrending 

erformance, which plays a vital role in improving the estimation 

ccuracy of the scaling exponent. To show this, we analyzed the 

D data array generated by the superposition of the fBm surface 

ith Hurst exponent H = 0.7 and the higher order polynomial trend 

 Fig. 6 ). 
ig. 6. (a) fBm surface with a size of 1025 × 1025 pixels and H = 0.7. (b) 2D polynomial

rend are shown in (a) and (b), respectively. 

8

As shown in Fig. 7 , we analyzed the fBm surface with the su- 

erposition of second-, fourth-, fifth-, and sixth-order polynomial 

rends. The plot shows spurious scaling behavior at a large scale, 

s suggested by the slope much steeper than 0.7 at a large value 

f s . The steep slope is caused by the adverse effect of the deter-

inistic higher order two-dimensional polynomial pattern. How- 

ver, the result illustrated in Fig. 7 suggests that as the order of 

MA increases, the spurious scaling behavior will be attenuated 

r even disappear. For example, spurious scaling behavior has not 

ccurred in fourth-order DMA while analyzing time series with 

econd-, fourth-, and fifth-order trends; it occurs at the zeroth- 

rder DMA. Moreover, this numerical study shows that m th order 

D DMA can accurately perform the scaling analysis of a fBm sur- 

ace with the m + 1 order trend, which coincides with the result of 

D DMA [13,25] . 

Here, we analytically show that the second-order 2D DMA can 

emove deterministic patterns described by the cubic polynomial 

urface. When we consider the summation of two uncorrelated 

ata f A (x, y ) and f B (x, y ) , the superposition law of the mean 

quare deviation in DMA holds [38] : 

σ (A + B ) 
DMA 

(s ) 
)2 

= 

(
σ (A ) 

DMA 

(s ) 
)2 

+ 

(
σ (B ) 

DMA 

(s ) 
)2 

, (B1) 

here σ (A + B ) 
DMA 

(s ) , σ (A ) 
DMA 

(s ) and σ (B ) 
DMA 

(s ) denote the root-mean- 

quare deviation corresponding to 
{

f A (x, y ) + f B (x, y ) 
}

, 
{

f A (x, y ) 
}

, 

nd 

{
f B (x, y ) 

}
, respectively. Therefore, if a data array is defined by 

he summation of a stochastic pattern and a polynomial surface, 

he additive law of mean-square deviations holds. Therefore, we 

an study the separate effects of the polynomial surface. To sim- 

lify the calculation, we assume a cubic polynomial surface S 3 (x, y ) 

efined in the region −m ≤ x ≤ m , −m ≤ y ≤ m , where the scale is

iven by s = (2 m + 1) 2 : 

 

3 (x, y ) = c 0 , 0 + c 1 , 0 x + c 0 , 1 y + c 2 , 0 x 
2 + c 0 , 2 y 

2 + c 3 , 0 x 
3 + c 2 , 1 x 

2 y 

+ c 1 , 2 xy 2 + c 0 , 3 y 
3 . (B2) 

By employing parallel translation, an arbitrary situation while 

nalyzing the cubic polynomial surface can be described in the 

forementioned form. To calculate ˜ f 2 (x, y ) at (x, y ) = (0 , 0) on the

oving polynomial surface, we obtain the coefficients 
{

a i, j 

}
of the 

east-square polynomial surface by minimizing 

 

({
a i, j 

})
= 

m ∑ 

x 1 = −m 

m ∑ 

y = −m 

(
S (3) (x 1 , x 2 ) − ˜ f 2 (x, y ) 

)2 
. (B3) 

here 

˜ f 2 (x, y ) = a 0 , 0 + a 1 , 0 x + a 0 , 1 y + a 2 , 0 x 
2 + a 1 , 1 xy + a 0 , 2 y 

2 . (B4)
 trend. (c) The superposition of the fBm surface and the second-order polynomial 
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Fig. 7. Results of the detrending capability of 2D m th-order DMA. (a, b, c, and d) are the estimation results of the fBm surface (H is 0.7 and size is 1025 × 1025 pixels). q is 

the order of the polynomial trend. The results are obtained by averaging 100 samples. The black dashed line denotes the slope of 0.7. 
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Thus, we solve the following equations: 

∂ I 
({

a i, j 

})
∂a k,l 

. (B5) 

Equation defined by Eq. (B4) for a pair of even numbers of i and

j results in 

m ∑ 

 = −m 

m ∑ 

y = −m 

[ 

1 x 2 y 2 

x 2 x 4 x 2 y 2 

y 2 x 2 y 2 y 4 

] [ 

c 0 , 0 − a 0 , 0 
c 2 , 0 − a 2 , 0 
c 0 , 2 − a 0 , 2 

] 

= 

[ 

0 

0 

0 

] 

. (B6) 

AS m is a positive integer, the matrix in Eq. (B6) is regular. Thus,

e can obtain 

 0 , 0 = c 0 , 0 

 2 , 0 = c 2 , 0 

 0 , 2 = c 0 , 2 (B7) 

n this case, the moving average point at (x, y ) = (0 , 0) on the

olynomial surface ˜ f (2) (x, y ) is given by 

˜ f (2) (0 , 0) = a 0 , 0 = c 0 , 0 . (B8) 

herefore, the square deviation based on the cubic polynomial sur- 

ace S (3) (x, y ) is calculated as (
S (3) (x, y ) − ˜ f (2) (x, y ) 

)2 
∣∣∣

x =0 ,y =0 
= ( c 0 , 0 − a 0 , 0 ) 

2 = 0 , (B9) 

This result demonstrates that σ 2 
DMA 

(s ) = 0 when a polynomial 

urface with degree q ≤ 3 is analyzed by second-order 2D DMA. 
9 
In contrast, it is possible to demonstrate that zeroth-order 2D 

MA can remove flat surface patterns described by S (1) (x, y ) = 

 0 , 0 + c 0 , 0 x + c 0 , 1 y . Furthermore, when a quadratic polynomial sur- 

ace (elliptical paraboloid), S (2) (x, y ) = S (1) (x, y ) + c 2 , 0 x 
2 + c 1 , 1 xy +

 0 , 2 y 
2 , is analyzed using zeroth-order 2D DMA, we obtain 

2 

DMA 

(s ) = 

( c 2 , 0 + c 0 , 2 ) 
2 

144 

( s − 1 ) 
2 
, (B10) 

here s = (2 m + 1) 2 . Therefore, as shown in Fig. 7 (a), the spurious

caling behavior with a steeper slope is observed. 

ppendix C. Limitation of the detectable scaling exponent 

As reported in the study of the one-dimensional higher order 

MA, the limitation of the detectable scaling exponent exists and 

epends on the order of DMA [13,25] . In 1D m th order DMA, the

pper limit of the detectable scale of the artificially generated time 

eries with a power-law power spectral density S( f ) ∼ f −β ( f is 

he frequency) is given by m + 2 [25] . By conducting numerical 

xperiments, we show that higher order 2D DMA has this limita- 

ion as well. As shown in Fig. 8 , the result that has been obtained

y the average of 100 generated samples suggests that the limita- 

ion of the detectable scaling exponent is determined by the or- 

er of DMA. The largest scaling exponents, which zeroth-, second-, 

nd fourth-order DMA can detect, are 2, 4, and 6, respec- 

ively. This result suggests that the upper limit of the detectable 

cale is m + 2 , and this limited detection ability is identical to 1D

MA. 
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Fig. 8. The plot of the relationship between the true scaling exponent and the 

estimated scaling exponent using 2D zeroth-order, second-order, and fourth-order 

DMA. The black dash line implies that the estimated Hurst exponent signifies the 

true value. The results are obtained by averaging 100 samples with a size of 1025 

× 1025 pixels. 
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