
International Journal of Applied Earth Observation and Geoinformation 120 (2023) 103339

Available online 9 May 2023
1569-8432/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

A statistical model of land use/cover change integrating logistic and linear 
models: An application to agricultural abandonment 

Ian Estacio a,*, Corinthias P.M. Sianipar a,b, Kenichiro Onitsuka a, Mrittika Basu a, 
Satoshi Hoshino a 

a Graduate School of Global Environment Studies, Kyoto University, Kyoto 606-8501, Japan 
b Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan   

A R T I C L E  I N F O   

Keywords: 
GIS 
Land-use simulation 
Logistic regression 
Genetic algorithm 
Fuzzy Kappa 
Ifugao rice terraces 

A B S T R A C T   

Several land use/cover change (LUCC) models have been developed to simulate future LUCC. However, current 
models work with the assumption that the input non-spatial variables are significant to the LUCC in hand and 
there is still a lack of model that could identify which non-spatial variables are significant drivers of LUCC. This 
paper presents a statistical model of LUCC that integrates a logistic model based on spatial drivers and a linear 
model based on non-spatial drivers. The logistic model produces a probability map that represents local prob-
abilities of LUCC while the linear model produces a global probability threshold that represents a global prob-
ability of LUCC, and by comparing the two variables, LUCC is mapped. The statistical model was utilized to 
model agricultural abandonment in the Ifugao rice terraces, Philippines. Statistical modeling identified the 
significant spatial and non-spatial drivers of agricultural abandonment in the terraces. Accuracy assessment 
showed that simulated maps achieved accuracies suitable for LUCC simulation, demonstrating that the statistical 
model can be a potential tool for prediction of future LUCC.   

1. Introduction 

Land use/cover change (LUCC) continuously occur on the surface of 
the earth as a result of complex interactions between socio-economic 
and environmental drivers (Geist et al., 2006; He et al., 2022; Mitsuda 
and Ito, 2011). In the current age of globalization, LUCC typically occur 
as urban expansion where non-urban land use types are converted for 
urban use (Güneralp and Seto, 2013; Seto et al., 2011; van Vliet, 2019). 
Along with continuous urban expansion, globalization also drives the 
occurrence of other LUCC such as agricultural abandonment, defores-
tation, and reclamation (Cao et al., 2021; Hou et al., 2021; Wu et al., 
2016; Xystrakis et al., 2017). As human society continuously interacts 
with the global environment to acquire its needs, hence forming per-
petual socio-ecological systems (SES), it is expected that human activ-
ities will continuously cause impacts on the environment leading to 
recurring LUCC (Li et al., 2017; Synes et al., 2019). These LUCCs cause 
alterations in ecosystem services that can lead to multifaceted envi-
ronmental problems (Li et al., 2016; Liu et al., 2020b; Wang et al., 2018; 
Zhang et al., 2019). Thus, it is imperative that future LUCC based on 
current trends can be projected so that planners will have the technical 

information to devise counter-interventions to mitigate the escalation of 
subjected LUCCs. 

For simulating the future status of land, several LUCC models and 
tools have been developed in previous research (Liu and Yang, 2015; 
Ren et al., 2019; Verburg et al., 2019). LUCC models can be placed along 
a spectrum of pattern-based to process-based model types (Ren et al., 
2019), On one end of the spectrum, the process-based models, which 
adopt “bottom-up” approach, simulate the behavior and interactions of 
system actors to predict the emergent spatial patterns of land cover. 
These models are useful for simulating scenarios based on management 
policies, thus they can act also as decision models. However, develop-
ment of process-based models is limited by the availability of empirical 
resources and the ability to capture the significant system processes, 
hence most of the time cannot achieve high land cover prediction ac-
curacy (Liu and Yang, 2015; Ren et al., 2019). On the other hand, 
pattern-based models, which adopt a “top–bottom” approach, map 
future land cover based on historical patterns by utilizing statistical or 
machine learning approaches (Boavida-Portugal et al., 2016). The 
advantage of such models is that future land cover maps can be simu-
lated with relatively more available data even with lack of knowledge of 
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the processes of the LUCC. Within statistical approaches, a demand- 
allocation approach is implemented where Markov chains compute 
the demand or quantitative data of LUCC while logistic models compute 
the allocation of the quantitative data into a map through probability 
maps. A limitation of this purely statistical approach is that only spatial 
drivers can be incorporated, but in reality, non-spatial drivers have 
significant effects in the quantity of LUCC. To address this limitation, 
hybrid models have also been developed which, like pattern-based 
models, adopt a demand-allocation approach but integrates process- 
based models to represent the demand component so that non-spatial 
drivers can be incorporated to project LUCC. For example, System Dy-
namics has been used in several studies to represent how aggregated 
system structures affect the quantity of LUCC (Dang and Kawasaki, 
2017; Mao et al., 2014; Xu et al., 2016). Previous studies have also 
incorporated Agent-based models (ABM) to incorporate the decision 
making in an SES (Liu et al., 2020a; Mustafa et al., 2017; Tang and Yang, 
2020). 

Although there already exist hybrid models that can incorporate non- 
spatial drivers to project future LUCC, two limitations can be found in 
the usage of these models. First, as much as current hybrid models can 
accept various non-spatial variables as inputs, it is possible that the 
variables being used by a specific model may not be significant drivers of 
an LUCC being studied. For example, agricultural abandonment is a 
multifaceted global phenomenon that is driven by various drivers 
depending on the social, economic, and environmental settings of a 
landscape (Gellrich and Zimmermann, 2007; Osawa et al., 2016; Pazúr 
et al., 2020). It is thus necessary that in projecting the future agricultural 
abandonment in a study area, the significant spatial and non-spatial 
drivers be first identified so that they can all be incorporated in a 
simulation model. Second, development of a model that incorporate all 
the significant drivers of an LUCC model requires capturing the 
complexity of the interactions and feedbacks of all these drivers in a 
socio-ecological system (Liu and Yang, 2015; Ren et al., 2019). How-
ever, modeling of these systems requires the participation of experts and 
stakeholders which possess the empirical knowledge regarding the SES 
in hand and a skilled modeler that can devise a model structure to 
incorporate this empirical knowledge. For planning purposes, the 
participation of such knowledgeable and skilled personnel is mostly not 
feasible. For simple prediction purposes such as projecting LUCC 
brought by changes in some driving factors, a more general statistical 
model which can also incorporate non-spatial drivers can be useful. 
Looking into the spectrum of process-based to pattern-based models of 
LUCC, there has not been a previously developed statistical pattern- 
based model that can incorporate non-spatial drivers. 

In order to propose a method of identifying both the significant 
spatial and non-spatial drivers of LUCC and simplifying the projection of 
future LUCC, this study presents a statistical model of LUCC which in-
tegrates both a logistic model based on spatial explanatory variables and 
a linear model based on non-spatial explanatory variables. Specifically, 
the proposed statistical model simulates LUCC by mapping a probability 
map and a global probability threshold through the logistic model and 
linear model, respectively. By comparing each pixel in the probability 
map with the global probability threshold, the true-or-false occurrence 
value of LUCC in every pixel is mapped. To test the statistical model’s 
capability in simulating LUCC maps, the model was applied in simu-
lating the agricultural abandonment in the Ifugao rice terraces in the 
Philippines, where a UNESCO World Heritage site is situated. The ac-
curacies of the simulated maps were assessed by comparing the simu-
lated maps with actual maps of agricultural abandonment using 
accuracy measures of Fuzzy Kappa and Absolute Deviation Percentages 
(ADP). 

2. Model description 

In pattern-based and hybrid models of LUCC, a logistic model is used 
to act as an allocation component which produces a probability map 

(also called suitability map) of occurrence of an LUCC (Gellrich et al., 
2007; Hu and Lo, 2007). A logistic model is expressed as a function of 
the form 

P(u, v, t) =
1

1 + e− (a0+
∑m

i=1
aixi(u,v,t) )

=
1

1 + e− (a0+a1x1+a2x2+⋯+amxm)
(1) 

where P is the probability of the LUCC to occur at a pixel of indices (u,
v) at a time period t and has a range from 0 to 1 where a higher value 
indicates a higher likelihood of LUCC occurrence, xi(i = 1,2,⋯,m) is a 
spatial explanatory variable that varies through space and time, and 
ai(i = 0, 1,⋯,m) is a parameter estimated from logistic regression, 
where a0 is the intercept and a1, a2, …, am are the respective coefficients 
of the spatial explanatory variables x1, x2, …, xm (Cheng and Masser, 
2003; Shu et al., 2020). Logistic regression, which estimates the pa-
rameters of the logistic model, is implemented by denoting a binary 
variable Z as a dependent variable, where Z takes only values of 1 or 0, a 
value of 1 denoting the LUCC occurred while 0 denoting the LUCC did 
not occur. However, as the logistic model only produces values of 
probability that ranges from 0 to 1, the logistic model in the form of 
Equation (1) does not produce the spatial pattern of occurrences of LUCC 
but instead produces just the spatial pattern of probability. Hence, for 
the simulation of future LUCC, a demand module is incorporated which 
produces quantitative data based on non-spatial explanatory variables 
(Liu and Yang, 2015; Ren et al., 2019). Different types of demand 
modules have been utilized such as System dynamics (Dang and Ka-
wasaki, 2017; Mao et al., 2014; Xu et al., 2016), and Agent-based 
Modeling (Tang and Yang, 2020). 

A workaround from computing a quantitative data of LUCC is to 
implement thresholding of probability values in a probability map. 
Thresholding is implemented by assigning a global probability threshold 
Pthreshold and using the following equation to compute for the LUCC 
occurrence Z: 

Z(u, v, t) =
{

1,P(u, v, t)〉Pthreshold(t)
0,P(u, v, t) ≤ Pthreshold(t)

(2) 

Equation (2) indicates that the occurrence of LUCC in a pixel is based 
on the comparison of the pixel’s probability value with a global Pthreshold 

at period t with the probability value in a pixel, where the lower is the 
Pthreshold, the higher is the chance that the LUCC will occur in the pixel. 
Thus the Pthreshold acts as a global model parameter that increases or de-
creases the likelihood of LUCC in a map, hereby affecting the quanti-
tative value of LUCC in an inversely proportional manner. This also 
implies that different probability threshold values will produce different 
simulated maps which will have different accuracies when compared to 
actual maps of LUCC. Hence, an optimal probability threshold exists 
where the difference between simulated and actual maps will be at a 
minimum and accuracy will be maximized. Previous studies imple-
mented different strategies to find the optimal thresholding values such 
as through parametric methods (Sandnes, 2011) or by optimizing an 
objective function (Li et al., 2020). In the study, an optimal probability 
threshold value was determined by implementing an optimization 
routine with the objective to find the Pthreshold that maximizes the simi-
larity statistic between simulated and actual LUCC maps. 

The probability of LUCC, P, was related to spatial explanatory vari-
ables because it is spatial in nature. On the other, the Pthreshold is a global 
variable that is constant throughout a study area, thus it is a non-spatial 
in nature and can be related to non-spatial explanatory variables. To 
relate the global probability threshold to non-spatial explanatory vari-
ables, a linear model is utilized in the form 

Pthreshold(t) = b0 +
∑n

j=1
bjyi(t) = b0 + b1y1 + b2y2 +⋯+ bnyn (3) 

where Pthreshold is the global probability threshold value for converting 
a probability map at time period t into an LUCC map, yi(j = 1, 2,⋯, n) is 
a non-spatial explanatory variable that varies through time, and bi(j =
0, 1,⋯, n) is a parameter estimated from linear regression, where b0 is 
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the intercept and b1, b2, …, bn are the respective coefficients of the non- 
spatial explanatory variables y, y2, …, yn. To produce the linear model in 
Equation (3), linear regression is implemented where the dependent 
variable is Pthreshold values through time and the explanatory variables are 
non-spatial drivers, variables that are constant through the mapping 
area but varies through time. Based on accuracy statistics of the linear 
regression, variables that are found significant for explaining the vari-
ation in quantities of LUCC through different periods will be added to 
the linear model. 

Based on equations (1), (2), and (3), this study developed a statistical 
model which incorporates a logistic model and a linear model for 
simulating LUCC at pixel (u,v) at time period t with the form: 

Z(u, v, t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1,
1

1 + e− (a0+
∑m

i=1
aixi(u,v,t) )

> b0 +
∑n

j=1
bjyj(t)

0,
1

1 + e− (a0+
∑m

i=1
aixi(u,v,t) )

≤ b0 +
∑n

j=1
bjyj(t)

(4) 

The left side of Equation (4), which comes from the logistic model, 
dictates the local probabilities of LUCC by producing a probability map 
based on spatial drivers (Fig. 1). The right side of the equation, which 
comes from the linear model, dictates the global probability of LUCC by 
computing for a global probability threshold based on non-spatial 
drivers. By comparing every pixel in the probability map with the 
global probability threshold, an LUCC map will be produced. 

3. Study area 

The proposed statistical model for LUCC was applied for modeling 
agricultural abandonment in a watershed containing the Bangaan 
terrace cluster, one of the United Nations Educational, Scientific, and 
Cultural Organization (UNESCO) world heritage site in the Ifugao rice 
terraces, Philippines (Fig. 2). The rice terraces in the watershed have 
been experiencing continuing permanent agricultural abandonment 
since the 1990 s due to various driving factors (Estacio et al., 2022). 
Farmers cite erosion of their agricultural lands as one of the reasons for 

abandoning their lands (Calderon et al., 2009). Water availability is also 
cited as a cause for abandonment, where water supply from streams are 
insufficient during the dry season (Calderon et al., 2009). Climate 
changes were also observed through the past decades such as changes in 
temperature and precipitation, which qualitatively aligned with farmer 
observation (Soriano et al., 2017). Because of several socio-economic 
and environmental factors that can be attributed to the agricultural 
abandonment in the Ifugao rice terraces, it is of importance to analyze 
the impact of each of these factors to the ongoing agricultural aban-
donment and to predict future changes based on past trends by devel-
oping a statistical model. 

4. Methods 

The methodological workflow was implemented in five main steps 
(Fig. 3). First, GIS techniques were utilized to prepare spatial and non- 
spatial data. Second, logistic regression was implemented based on 
point samples of the binary response variable and spatial explanatory 
variables to produce a logistic model. Third, optimization based on a 
Genetic Algorithm (GA) was implemented to find the optimal global 
probability threshold for every probability map produced by the logistic 
model. Fourth, linear regression was implemented based on values of 
the optimal global probability threshold response variable and non- 
spatial explanatory variables to produce a linear model. Lastly, the ac-
curacies of the simulated maps were assessed by comparing it to the 
actual maps of agricultural abandonment. 

4.1. Data preparation 

Four types of data were prepared for the statistical modeling of 
agricultural abandonment: Raster files of LUCC binary response vari-
able, vector files of sample points, raster files of spatial explanatory 
variables, and tables values of non-spatial explanatory variables. A more 
detailed description of the preparation of these data can be found in the 
supplementary material. 

To prepare binary maps of continuously cultivated and permanently 
abandoned paddy fields, time-series land cover maps from 1990 to 2015 
in five-year intervals were processed using Geographic Information 
System (GIS) (Fig. 4). Samples of the binary response variable were 
acquired by creating sample points that do not exhibit spatial autocor-
relation. All sets of created sample points exhibited a maximum 
magnitude of Moran’s I of 0.027, hence the points can be considered 
random (Cheng and Masser, 2003; Xiao et al., 2015). Raster files of 
spatial explanatory variables were then prepared based on previous 
studies on the abandonment of mountainous agricultural landscapes 
(Nainggolan et al., 2012; Pazúr et al., 2020; Xystrakis et al., 2017) and 
also subjected to data availability (Fig. 5). The values of all spatial 
explanatory variables were extracted into the created sample points so 
that each point has a binary value of agricultural abandonment occur-
rence alongside values of the spatial explanatory variables. Lastly, non- 
spatial drivers such as economic, social, and environment variables were 
selected and prepared based on previous studies on mountainous agri-
cultural landscapes (Table 1) (Liu et al., 2020a; Mao et al., 2014; Xu 
et al., 2016). 

4.2. Logistic regression of LUCC binary response variable with spatial 
explanatory variables 

To identify the significant spatial drivers of agricultural abandon-
ment, logistic regression was implemented using the 1500 samples 
points of binary response variable and spatial explanatory variables 
gathered from 1990 to 2015. The accuracy of the resulting logistic 
model was assessed using Pseudo R-square and ROC (Relative Operating 
Characteristic) values. If the Pseudo R-Square is greater than 0.2, the 
produced logistic model for the respective period was deemed to be of 
good fit to be used to explain the significance of each spatial driver to the 

Fig. 1. The conceptual framework of the statistical model for simulating maps 
of LUCC based on spatial and non-spatial factors. 
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Fig. 2. The location of the study area, Bangaan watershed: (A) The location of Ifugao province in the Philippines; (B) The location of the Bangaan watershed and 
Banaue municipality in the Ifugao province; (C) The land cover in the Bangaan watershed in the year 2015. 

Fig. 3. Workflow of the modeling process in five main steps.  
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occurrence of agricultural abandonment (Hu and Lo, 2007). Logistic 
regression was implemented using R 3.3.0. 

4.3. Derivation of optimal probability threshold by optimization 

The next step is to derive the optimal probability thresholds for the 
probability maps of every period. First, probability maps for every 
period were generated using the produced logistic model, utilizing the 
spatial explanatory variables for every period. Optimization was then 
implemented using a Genetic Algorithm (GA) to find the probability 
threshold that will yield the highest Fuzzy Kappa statistic between a 
simulated map and an actual map. Fuzzy Kappa is a statistic for 
comparing the similarities between two maps based on local neighbor-
hood, and is closer to how human observers compare maps (Drogoul 
et al., 2016; Visser and De Nijs, 2006). Hence, optimizing the probability 
threshold based on maximizing the fuzzy kappa statistic is akin to 
finding a simulated map with the least difference between an actual 
map. It should be noted that Fuzzy simulation, another accuracy sta-
tistic, was not used because an end-state land use/cover map is used as 
input in this statistic, and a map simulated in this step is an LUCC (land 
use/cover change). A Genetic Algorithm, which is a population-based 
search algorithm that aims to find the best solution, was set with the 
following parameters: population = 7, generations = 5, crossover = 0.7, 
mutation = 0.1 (Katoch et al., 2021; Mirjalili, 2019). After implementing 
the GA, optimal probability thresholds for each period were obtained. 

Coding of the GA was implemented in the GAMA platform (Taillandier 
et al., 2019). 

4.4. Linear regression of optimal probability thresholds with non-spatial 
explanatory variables 

To relate the variation of the global probability thresholds with non- 
spatial explanatory variables, multivariate linear regression was 
implemented to create a linear model. First, as several non-spatial 
explanatory variables were prepared, different combinations of vari-
ables were tested for the linear regression. For every combination, the P- 
value of every non-spatial explanatory variable was checked for its 
significance (if P < 0.05). The significance F of the model was also 
checked for is significance (if F < 0.05), which indicates that the linear 
model fits the data better than a model with no explanatory variables. 
Once all the P-values and significance F in a combination of variables are 
significant, the adjusted R-squared of the model was recorded. After 
testing different combinations of variables, the combination with the 
recorded highest adjusted R-squared was chosen as the non-spatial 
explanatory variables of the linear model of global probability 
threshold. Linear regression was implemented using the Data Analysis 
tools in Microsoft Excel. 

Fig. 4. Spatial distribution of the continuously cultivated and permanently abandoned paddy fields through five-year periods from 1990 to 2015.  
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Fig. 5. Raster layers of spatial explanatory variables included in the logistic regression (sample layers for the year 2000).  
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4.5. Accuracy assessment of modeled maps 

Using the produced linear model where non-spatial explanatory vari-
ables and probability maps were used as inputs, binary maps of agricul-
tural abandonment for every period were simulated. To assess the 
accuracy of the simulated agricultural abandonment maps and the reli-
ability of the statistical model, the simulated maps were compared with its 
respective actual maps by computing for the Fuzzy Kappa and Absolute 
Deviation Percentages (ADP) statistics. Unlike Fuzzy Kappa statistic which 
computes similarities based on local neighborhood, ADP is a global indi-
cator that computes the differences between maps based on the quantity of 
each land cover class (Truong et al., 2016). Using the two statistics, along 
with visual comparison of the actual and simulated maps, the accuracy of 
the model was assessed if it can be used for LUCC simulation. 

5. Results 

5.1. Logistic regression of agricultural abandonment with spatial 
explanatory variables 

Logistic regression based on 1500 samples from 1990 to 2015 

produced a logistic model with Pseudo-R squared value of 0.225 and 
AUC ROC of 0.804 (Table 2), indicating that the model was of good-fit 
and can be used for explaining the significant drivers of agricultural 
abandonment in the rice terraces. Slope and paddy field density were the 
most significant drivers of agricultural abandonment in the logistic 
model (P < 0.001), where areas with higher slope values and low density 
of neighboring paddy fields have the highest chances of abandonment. 
The next set of significant variables were cosine aspect, quickflow, and 
low vegetation density (P < 0.01), which indicates that the direction of 
the field, quickflow during rainy periods, and neighborhood percentages 
of low vegetation also contribute to the likelihood of abandonment. 
Other significant drivers were distance to town center, distance to road, 
world heritage site status, and forest density (P < 0.05). 

5.2. Linear regression of optimal probability threshold with non-spatial 
explanatory variables 

Optimal probability thresholds for maximizing the similarity be-
tween simulated maps and actual maps were derived using a GA 
(Table 3). The minimum attained Fuzzy Kappa statistic for all simulated 
maps was 0.3718 while the maximum statistic is 0.5062. On the other 
hand, the optimal probability threshold ranges only from 0.73 to 0.86, 
revealing that the optimal probability threshold only underwent small 
variations between periods. This however does not imply that the sub-
sequent quantitative change in LUCC will have the same variation as 
quantitative change also depends in the values in the probability maps. 

Using the optimal probability thresholds as the response variable, 
linear regression based on using forest total area, precipitation (5-year 
smooth), and maximum temperature (annual mean) as non-spatial 
explanatory variables produced a linear model with adjusted R- 
squared of 0.9999996 and significance F of 0.0003817, indicating that 
the linear model was of excellent fit (Table 4). All explanatory variables 
attained significant P values (P < 0.01), with forest total area and max 
temperature having P values<0.001. 

5.3. Statistical model for mapping agricultural abandonment 

By integrating the logistic model based on spatial explanatory vari-
able and the linear model based on non-spatial explanatory variables, a 
statistical model was derived for mapping agricultural abandonment, in 
the form:  

Table 1 
List of non-spatial explanatory variables included in the linear regression to 
model global probability thresholds of permanent agricultural abandonment.  

Category Variable (unit) 

Land cover Paddy field total area (m2) 
Low vegetation total area (m2) 
Forest total area (m2) 
Built-up total area (m2)  

Demography Average household size 
Number of households 
Household Population  

Climate Precipitation – annual mean (mm) 
Precipitation – 5-year smooth (mm) 
Mean Temperature – annual mean (◦C) 
Mean Temperature – 5-year smooth (◦C) 
Min Temperature – annual mean (◦C) 
Min Temperature – 5-year smooth (◦C) 
Max Temperature – annual mean (◦C)  
Max Temperature – 5-year smooth (◦C)  

Table 2 
Summary statistics of the logistic model of local probabilities of agricultural abandonment.  

Spatial variable (unit) Coefficients Standard error Z P-value 

(Intercept) ns ns  0.338  0.653 
Elevation (m) ns ns  − 0.807  0.420 
Slope (◦) 0.0499*** 0.00851  5.868  0.000 
Sine aspect Ns ns  1.682  0.092 
Cosine aspect − 0.303** 0.0939  − 3.221  0.001 
Soil type ns ns  0.432  0.666 
Quickflow (mm) 0.000360** 0.000111  3.243  0.001 
Distance to stream (m) ns ns  0.950  0.342 
Distance to town center (m) 0.000198* 0.0000836  2.366  0.018 
Distance to road (m) − 0.000281* 0.000129  − 2.179  0.029 
Distance to tourist hotspot (m) ns ns  − 0.532  0.594 
World heritage site status − 0.841* 0.404  − 2.080  0.038 
Forest density 1.210* 0.587  2.057  0.040 
Low vegetation density 2.010** 0.617  3.256  0.001 
Built-up density ns ns  − 1.456  0.145 
Paddy field density − 2.540*** 0.544  − 4.673  0.000 
Accuracy: Pseudo R-squared 0.225    
Accuracy: AUC ROC 0.804    

ns: P greater than 0.05 (insignificant). 
* : 0.01 ≤ P < 0.05. 
** : 0.001 ≤ P < 0.01. 
*** : P < 0.001. 
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where Z is the occurrence of agricultural abandonment in a pixel in a 
particular period where a value of 1 denotes occurrence while 0 denotes 
no occurrence, S is the slope, C is the cosine aspect, Q is the Quickflow, T 
is the distance to town center, R is the distance to road, H is the status as 
world heritage site, DL is the low vegetation density, DF is the forest 
density, DP is the paddy field density, AF is the forest total area, PA is the 

average precipitation within 5 years, and Tmax is the annual mean of the 
daily maximum temperature. The statistical model includes nine spatial 
explanatory variables and three non-spatial explanatory variables. All 
variables vary through time, hence given a pixel of indices (u, v), the 
occurrence of agricultural abandonment at different periods may vary 
depending on the temporal variation of the explanatory variables (such 
as quickflow, forest density, or precipitation). 

5.4. Accuracy assessment of modeled maps 

Through the statistical model, maps of agricultural abandonment for 
every period were simulated using the spatial and non-spatial explana-
tory variables in every respective period (Fig. 6). The accuracies of these 
simulated maps were assessed by comparing them to the actual maps of 
agricultural abandonment for the respective period (Table 5). As the fit 
of the linear model is almost equal to 1.0 (Table 4), the derived Fuzzy 
Kappa statistics for the simulated maps are almost equal as those derived 
from the optimal probability thresholds (Table 3). The maximum ADP 
for all modeled maps was 1.053%, indicating that the differences in 
derived quantitative values of agricultural abandonment is minimal, 
even when optimization of probability threshold is aimed on maxi-
mizing Fuzzy Kappa which focuses on neighborhood similarities. 

6. Discussion 

6.1. Implications of the developed LUCC statistical model 

The structure of the developed statistical model of LUCC that is 
composed of a logistic model and a linear model implies a different 
mechanism of simulating LUCC than the demand-allocation models that 
also incorporate a logistic model. Demand-allocation models incorpo-
rate two modules, allocation and demand (Liu and Yang, 2015; Ren 
et al., 2019). The demand module generates the quantitative value of 
LUCC by adopting models such as System dynamics or Markov Chain 
(Boavida-Portugal et al., 2016; Dang and Kawasaki, 2017; Xu et al., 
2016). The derived quantitative value of land cover change from the 
demand module are then allocated into an LUCC map through the 
allocation module. Thus, the allocation module dictates the spatial 
pattern of LUCC by deriving probability maps using a logistic model 
derived from historical patterns of spatial explanatory variables. 
Through a probability map, LUCC is allocated to pixels starting from the 
pixel with the highest probability of change going to the next highest 

Table 4 
Summary statistics of the linear model of global probability threshold of agri-
cultural abandonment.  

Temporal non- 
spatial 
variables (unit) 

Coefficients Standard error t-stat P-value 

(Intercept)  7.3859***  0.00342  2158.31  0.00029 
Forest total 

area (m2)  
− 0.00039391***  0.000000208  − 1895.66  0.00034 

Precipitation – 
5-year 
smooth (mm)  

− 0.0000354805**  0.0000000940  − 377.446  0.0017 

Max 
Temperature 
– annual 
mean (◦C)  

− 0.16666***  0.000117  − 1422.39  0.00045      

Accuracy: 
Adjusted R- 
squared  

0.9999996    

Accuracy: 
Standard 
error  

0.0000357    

Accuracy: 
Significance 
F  

0.0003817     

Z =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1,
1

1 + e

− 1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.050S − 0.303C

+3.60
(
10− 4)Q

+1.98
(
10− 4)T

− 2.81
(
10− 4)R

− 0.841H + 1.21DL

+2.01DF − 2.54DP

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

> 7.39 − 3.94
(
10− 4)AF − 3.55

(
10− 5)PA − 0.170Tmax

0,
1

1 + e

− 1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.050S − 0.303C

+3.60
(
10− 4)Q

+1.98
(
10− 4)T

− 2.81
(
10− 4)R

− 0.841H + 1.21DL

+2.01DF − 2.54DP

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

≤ 7.39 − 3.94
(
10− 4)AF − 3.55

(
10− 5)PA − 0.170Tmax

(5)   

Table 3 
Optimal probability thresholds for maximizing the Fuzzy Kappa statistic be-
tween simulated and actual maps of agricultural abandonment.  

Period Optimal probability threshold Maximum fuzzy kappa 

1990–1995  0.82  0.3718 
1995–2000  0.86  0.5062 
2000–2005  0.87  0.3978 
2005–2010  0.87  0.4440 
2010–2015  0.73  0.4327  
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one, until the quantitative value of LUCC is met. Previous studies have 
also incorporated rules in allocation such as cellular automata that takes 
into account neighborhood effects and limitations on transitions (Mao 
et al., 2014; Mustafa et al., 2017). 

In the proposed statistical model, instead of a demand module, the 
model utilizes a linear model of global probability threshold which 
dictates which pixels undergo LUCC based on comparing the local 

probability and the global probability threshold. This structure implies 
that the probability map also dictates the quantitative value of the 
LUCC, as compared to demand-allocation models where probability 
maps only dictate the spatial pattern. For example, in a demand- 
allocation model, adding a constant probability value in a particular 
area in the probability map will not affect the total quantitative value of 
the LUCC but will only affect the spatial pattern. However, in the 
developed statistical model, subtracting a constant probability value in a 
particular area will not only affect the spatial pattern but also the 
quantitative value. In relation to this, global probability thresholds hold 
a role of dictating on which probability value pixels start to change, 
where lower thresholds lead to more changes, and vice versa. Global 
probability thresholds can hence be treated as an inverse global prob-
ability of the LUCC occurring in the whole mapping area. 

In essence, spatial explanatory variables, which dictate the proba-
bility maps, control the local probabilities of LUCC and hold an effect not 
only to the spatial pattern but also to the quantitative value of LUCC. For 
example, in the case study, adding more conservation areas in a political 

Fig. 6. Side-by-side comparison of actual and simulated agricultural abandonment maps for the periods 1990–1995 (the period with the worst Fuzzy Kappa and 
ADP), 1995–2000 (the period with the best Fuzzy Kappa), 2010–2015 (the period with the best ADP). 

Table 5 
Accuracy statistics for the simulated agricultural abandonment maps of every 
period.  

Period Fuzzy Kappa ADP 

1990–1995  0.3718  1.053% 
1995–2000  0.5062  0.277% 
2000–2005  0.3978  0.576% 
2005–2010  0.4440  0.113% 
2010–2015  0.4327  0.863%  
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restriction variable will affect the simulated quantitative value of agri-
cultural abandonment. Another example is improving the values in a 
productivity variable which will lead to less quantities of agricultural 
abandonment. In a demand-allocation model which uses system dy-
namics, modifying the stocks or flows in the SD module should be 
implemented if quantitative value of LUCC based on changes in spatial 
variables need to be simulated. However, in the developed model, this is 
not needed as changes in the spatial explanatory variable directly affect 
the quantitative value of LUCC. 

On the other hand, non-spatial explanatory variables, which dictate 
the global probability threshold, control the global probability of LUCC 
which affects the quantitative value of LUCC. For example, the results 
show that precipitation has a significant inverse linear relationship with 
the global probability threshold. As the global probability threshold has 
a negative relationship with quantitative value of LUCC, precipitation 
can be treated as a determinant that has a positive relationship on the 
probability of agricultural abandonment, where an increase in precipi-
tation leads to an increase in the overall probability of agricultural 
abandonment in the study area. 

Lastly, the developed statistical model simulates LUCC by utilizing 
the generated significant statistical relationships with spatial and non- 
spatial explanatory variables. In modeling terms, the statistical model 
acts like a black box that accepts inputs and generates an output without 
an understanding of the socio-ecological processes that produce the 
statistical relationships between entities. This differentiates itself from 
process-based models where a thorough manifestation of system pro-
cesses is used to generate outputs based on inputs. Thus, in the spectrum 
of LUCC models, the developed statistical model can be put under the 
classification of pattern-based models (Ren et al., 2019). Regardless of 
the model type, the developed statistical model also follows the capa-
bilities of other models in simulating future scenarios where inputs or 
parameters are modified to match the circumstances of a scenario. For 
example, as the statistical model has shown that “distance to road” is a 
significant spatial driver of agricultural abandonment, modifying the 
map of this variable to show a scenario where new roads are established 
can be implemented to simulate the effects of building roads to agri-
cultural abandonment. 

6.2. Application of the model: Spatial and non-spatial drivers of 
agricultural abandonment 

The produced logistic model for the period from 1990 to 2015 
attained a Pseudo R-squared a value greater than 0.2, indicating that 
models is of good fit and can be used to explain the explain the signif-
icance of each spatial driver to the occurrence of permanent abandon-
ment in each period (Hu and Lo, 2007). Based on the logistic model, 
slope and paddy field density were the most significant spatial drivers of 
agricultural abandonment in the rice terraces. This indicates that fields 
of steep slopes and low neighborhood percentages of paddy field expe-
rienced the highest probability of agricultural abandonment. This result 
aligns with the study of Corbelle-Rico et al. (2012) which found that 
agricultural parcels with steeper slopes and higher distances to farm 
(hence, less neighborhood of agricultural parcels) lead to more aban-
donment. The next set of significant variables were cosine aspect, 
quickflow, and low vegetation density. Results show that fields that face 
south, experience heavy quickflow during rainy periods, and have high 
neighborhood percentages of low vegetation are also most likely to 
experience permanent abandonment. Results for the low vegetation 
density aligned with the study of Pazúr et al. (2014) which showed that 
fields that are nearer to shrubs have higher chances of being abandoned. 
The last set of significant spatial drivers are distance to town center, 
distance to roads, status as world heritage site, and forest. Fields that are 
far from the town center, are near to roads, are not part of the world 
heritage site, and have high neighborhood percentages of forest also 
have high chances of being abandoned. Pazúr et al. (2020) also showed 
that forest density increases the likelihood of abandonment. Results for 

the distance to town center aligned with the results of previous studies, 
such as of Pazúr et al. (2014) which showed that increasing the distance 
to a county center increased the likelihood of agricultural abandonment 
and of Perpiña Castillo et al. (2021) which showed that remoteness, 
represented by the travelling time to the nearest town, also increased the 
likelihood of agricultural abandonment. For the results of the world 
heritage site, it is worth noting that status as world heritage site was 
highly significant (P < 0.01) for the particular period of 2000–2005, 
which may be attributed to the inclusion of the Ifugao rice terraces 
heritage cluster into UNESCO’s list of World Heritage in Danger in 2001 
(UNESCO, n.d.), influencing the farmers to exclude the fields in the 
heritage cluster for abandonment. Increase in probability of abandon-
ment in areas neared to roads may be attributed to the conversion of 
paddy fields near roads to built-up cover, which is related to the findings 
of Nainggolan et al. (2012) which showed that likelihood of abandon-
ment was higher in areas close to the village due to the demand for 
settlement expansion. 

For the linear model, the linear regression attained a significance F of 
0.0003817, indicating that the non-spatial explanatory variables were of 
good fit to the global probability threshold. The linear model revealed 
that total forest area, precipitation, and average daily maximum tem-
perature were significant determinants of the probability of agricultural 
abandonment. Higher areas of forest cover led to higher probability of 
agricultural abandonment in the study area. This is in line with previous 
studies in the Ifugao rice terraces where increases in forest cover 
decreased the total water yield, thereby promoting further agricultural 
abandonment (Estacio et al., 2022; Soriano and Herath, 2018). This 
implies that even though water scarcity is an existing problem in the 
Ifugao rice terraces, high precipitation promotes agricultural abandon-
ment because of the resulting increase in erosion. Combining the im-
plications of the total forest area and precipitation, results indicate that 
it is the water yield during the dry season, not the amount of precipi-
tation during the wet season, that is important in the rice terraces as 
cultivation of rice occurs during the dry season. Lastly, increasing daily 
maximum temperature was found to increase chances of abandonment. 
This can also be related to the water yield as the rice terraces suffer 
insufficient supply of water in the dry season, hence the paddy fields are 
sensitive to increases in evaporation brought by increasing temperature, 
leading to more abandonment. 

6.3. Future direction in LUCC modeling 

Simulated maps of agricultural abandonment using the statistical 
model attained Fuzzy Kappa statistics ranging from 0.3718 and 0.5062 
and ADP ranging from 1.053% to 0.277%, which are satisfactory ac-
curacy values for LUCC simulations. For example, the hybrid ABM 
developed by Mustafa et al. (2017) simulated maps in three experiments 
and achieved Fuzzy Kappa ranging from 0.3942 to 0.4792 and ADP 
ranging from 43.22% to 22.11%. The simulated maps from the devel-
oped statistical model achieved fuzzy kappa values in the same range 
while the ADP values are much more accurate. Ahmed et al. (2013) 
compared maps simulated from three types of Markov models (Sto-
chastic, Cellular Automata, and Multi-layer Perceptron) and calculated 
Fuzzy Kappa accuracies of 0.304, 0.862, and 0.953, respectively. Based 
on this, the performance of the statistical model can be assessed to be in 
between a Stochastic Markov model and a Cellular Automata Markov 
model. Based on this assessment, the statistical model can then be 
deemed suitable for simulating future LUCC maps. 

The statistical model differentiates itself from other LUCC models 
through its capability of identifying the significant non-spatial drivers of 
an LUCC. In using established LUCC simulation models, input variables 
are already set thus users are limited with their ability to incorporate 
variables that may be significant for the LUCC. A user can opt to develop 
a hybrid LUCC model coupled with system dynamics or agent-based 
model to be able to incorporate all significant non-spatial drivers. 
However, building such a complicated model needs detailed capturing 
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of the system processes hence can take a lot of time. Thorough cali-
bration of the model to ensure that generated LUCC maps are of 
acceptable accuracy also takes plenty of trial-and-error. With the pro-
posed statistical model, the significant non-spatial drivers can be iden-
tified and, at the same time, be incorporated in the model right away for 
simulation. 

To simulate future LUCC through the statistical model, generating 
the future values of the explanatory variables is essential, thus coupling 
with another established models to derive these future values may be 
essential if the situation calls for it. For example, in the case study where 
future agricultural abandonment is to be simulated, predictions of some 
explanatory variables are needed such as future land cover maps, 
quickflow maps, precipitation, and temperature. For this purpose, 
existing models can be utilized such as Markov Chain for predicting 
future land cover values, the InVEST seasonal water yield model for 
mapping quickflow, and climate models for projecting future trends of 
precipitation and temperature. 

Aside from being used for simulation of scenarios, the statistical 
model can also be used as a step before using process-based models to 
identify first the significant drivers of LUCC. After the identification of 
the significant drivers of LUCC using the statistical model, a user will 
then be informed on which current process-based LUCC model is most 
suitable to use for scenario simulation. At the same time, a modeler can 
also use the model to gain insight on the drivers of a LUCC before pro-
ceeding to model the socio-ecological processes of an LUCC in hand. 

A main limitation of the statistical model that users should remember 
is its capability of simulating only one type of LUCC, as in the case study, 
agricultural abandonment. In reality, LUCC occurs in various land cover 
types which also transition into more than one LUCC type. Hence, the 
statistical model is limited in its ability to project the full end-state land 
cover of a study area. The statistical model can however be useful when 
only one type of LUCC is of concern, such as urban expansion, defor-
estation, or reclamation. The proposed statistical model is especially 
useful to inform relevant land use stakeholders of the significant drivers 
of an LUCC they are concerned about and to show the future circum-
stance of the LUCC based on future values of these drivers. 

In the future, studies can explore the calibration of global probability 
thresholds based on a different objective function. In the developed 
statistical model, global probability threshold values were derived using 
an optimization routine based on a GA that maximizes fuzzy kappa, a 
map comparison statistic which is on similarities in local neighborhood 
similarities. However, maximizing fuzzy kappa does not guarantee 
similarities in global value of the LUCC. In the future, LUCC studies can 
explore minimizing the ADP, which focuses on differences in global 
quantitative value, to find the optimal probability threshold. Examples 
of such studies may focus on simulation of future reclamation, mangrove 
extent change, or urbanization which focuses more on quantity 
prediction. 

7. Conclusions 

This paper developed a statistical model for simulating LUCC by 
integrating a logistic model based on spatial explanatory variables that 
generates a probability map and a linear model based on non-spatial 
explanatory variables that generates a global probability threshold. 
Previous LUCC models integrated an allocation module based on a lo-
gistic model with a demand module such as systems dynamics to 
compute a quantitative value of LUCC based on non-spatial explanatory 
variables. These allocation-demand models can produce accurate maps 
but are too complex to develop if a list of significant non-spatial 
explanatory variables should be included in a model. The developed 
statistical model adopts a simple pattern-based approach where non- 
spatial explanatory variables are incorporated in simulating LUCC by 
relating these non-spatial variables to a global probability threshold 
through a linear model. By comparing the pixel values in the probability 
map with the global probability threshold, maps of LUCC occurrence can 

be simulated. To derive optimal probability thresholds for linear 
regression, optimization through a GA was implemented that will 
maximize the Fuzzy Kappa or neighborhood similarities between 
simulated and actual maps. 

The statistical model was applied in a watershed in the Ifugao rice 
terraces, Philippines to simulate the occurrence of agricultural aban-
donment. Results showed that slope, cosine aspect, quickflow, distance 
to town center, distance to road, world heritage site status, forest den-
sity, low vegetation density, and paddy field density were significant 
determinants of the local probabilities of agricultural abandonment 
while total forest area, five-year average precipitation, and average 
daily maximum temperature were significant determinants of the global 
probabilities of agricultural abandonment. Accuracy assessment of the 
simulated maps showed satisfactory accuracies for LUCC simulation 
applications. This confirms that the developed statistical model that uses 
time-series trends of spatial and non-spatial explanatory variables can be 
utilized to simulate future LUCC. 

The developed statistical model brings forward the field of LUCC 
modeling by providing land use scientists and planners with another 
option in modeling and simulation with its capability to identify the 
significant spatial and non-spatial driving factors of LUCC and use these 
factors for future simulation. In future research, derivation of global 
probability thresholds based on optimization can be geared towards 
minimizing ADP to align simulated quantitative value of LUCC to actual 
quantitative values. Coupling the statistical model with simulation 
models to simulate LUCC based on future values of explanatory variables 
can also be explored. 
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