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A microscopic description of nuclear fission represents one of the most challenging problems in nuclear theory.
While phenomenological coordinates, such as multipole moments, have often been employed to describe fission,
it is not obvious whether these parameters fully reflect the shape dynamics of interest. We here propose a novel
method to extract collective coordinates, which are free from phenomenology, based on multitask deep learning
in conjunction with density functional theory (DFT). To this end, we first introduce randomly generated external
fields to a Skyrme energy density functional (EDF) and construct a set of nuclear number densities and binding
energies for deformed states of 236U around the ground state. By training a neural network on such a dataset with
a combination of an autoencoder and supervised learning, we successfully identify a two-dimensional latent
variables that accurately reproduce both the energies and the densities of the original Skyrme-EDF calculations,
within a mean absolute error of 113 keV for the energies. In contrast, when multipole moments are used as latent
variables for training in constructing the decoders, we find that the training data for the binding energies are
reproduced only within 2 MeV. This implies that conventional multipole moments do not provide fully adequate
variables for a shape dynamics of heavy nuclei.
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I. INTRODUCTION

It is a highly nontrivial issue to determine the most con-
sistent collective coordinates to describe a shape dynamics of
heavy nuclei, such as nuclear fission. A related question is
how many collective coordinates one would need to achieve
an essential description of such shape dynamics. These are
the questions which we discuss in this paper.

Nuclear fission is in fact one of the most fundamental and
yet challenging problems in nuclear theory. In most calcula-
tions carried out so far, except for the ones based on the time-
dependent density functional theory (TDDFT) [1], one usually
assumes a few collective coordinates for fission and con-
structs a (multidimensional) potential energy surface [2]. For
spontaneous fission, one in addition computes the moment of
inertia and estimates the decay half-life based on the Wentzel-
Kramers- Brillouin (WKB) approximation [3–8]. On the other
hand, for induced fission, one computes transport coefficients
and solves the dynamics with, e.g., the Langevin approach
[9,10], the random walk approach [11,12], and the time-
dependent generator coordinate method (TDGCM) [13–15].

The most serious problem in these approaches is that one
has to assume a priori relevant collective degrees of freedom
for fission based on a phenomenological consideration,
despite the collective degrees of freedom for large amplitude
motions, such as fission, being highly nontrivial. Therefore,
it is not obvious whether chosen collective coordinates are
optimum for the dynamics of interest. In principle, the
self-consistent collective coordinate (SCC) method [16–18]
can be used to derive a collective path without resorting to a
phenomenological assumption. Even though several approxi-
mate calculations based on SCC have been carried out [19,20],
it is still computationally quite demanding. Evidently, a more
efficient method to determine collective coordinates is urged.

We believe that a machine learning technique will provide
a useful means in this respect. As it continues to evolve,
machine learning is bringing about a pivotal shift in nuclear
theory. Currently, regression analysis with supervised learning
is a common practice in nuclear theory [21–34]. For example,
it has been employed to construct a new mass table [35]. It
is important to notice that machine learning extends beyond
supervised learning, encompassing other techniques such as
unsupervised learning [36], reinforcement learning [37], and
self-supervised learning [38]. These have successfully been
applied not only in physics but also in several other disciplines
as well.

Of particular interest within unsupervised learning is the
method of using an autoencoder [39]. In this method, input
data are mapped onto low-dimensional latent variables, with
which the input data are subsequently reconstructed back.
The underlying idea of this method is based on the manifold
hypothesis [40], that is, data of interest occupy only limited
locations in a quite high-dimensional space. This technique
has been applied in various contexts, including a data charac-
teristic analysis and a computation cost reduction.

In nuclear physics, Ref. [41] recently employed au-
toencoders to acquire low-dimensional representations of
quadrupole and octupole deformed Hartree-Fock-Bogoliubov
(HFB) wave functions, which were to be used in generator co-
ordinate method (GCM) calculations. Notice that the manifold
hypothesis may hold rather trivially in the study of Ref. [41],
as autoencoders were applied only to limited datasets. Nev-
ertheless, the basic idea of Ref. [41] remains intriguing. See
also Ref. [42] for a recent related work. In fact, the concept of
collective coordinates in nuclear physics is practically equiva-
lent to the manifold hypothesis. That is, both of them state that
low-energy dynamics of a nucleus can be approximated within
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a restricted region in the infinite-dimensional manifold which
fully specifies degrees of freedom of a system, such as the full
Hilbert space. It would thus be reasonable to anticipate that
machine learning methods, including unsupervised learning,
work effectively in describing nuclear collective motions.

In this paper, we shall apply multitask learning (MTL)
[25,33,43] to discuss adiabatic shape dynamics of 236U near
the ground state. To this end, in this work we employ the
density functional theory (DFT) [44,45] and combine an au-
toencoder and supervised learning. A remarkable advantage
of DFT is that the only dynamical variable is in principle a
particle number density. This is in contrast to other many-
body theories with many-body wave functions, which are
significantly more difficult to handle even numerically. By
employing multitask learning, we shall extract a common
feature representation of the energy and the density of 236U,
that is, common latent variables which yield both the energy
and the density. This representation is expected to contain a
large amount of information on the adiabatic dynamics.

The paper is organized as follows. In Sec. II, we will
detail our procedure for MTL. To construct a dataset, we will
introduce random potentials to the system. In Sec. III, we will
discuss criteria for evaluations of our MTL calculations. We
will apply these criteria to discuss the applicability of the con-
ventional collective coordinates for fission, by comparing the
results with the criteria. In Sec. IV, we will carry out MTL and
discuss latent variables for shape dynamics. We will then sum-
marize the paper in Sec. V and discuss future perspectives.

II. FORMULATION

A. Skyrme EDF with random external potentials

Our purpose in this paper is to analyze a low-energy defor-
mation dynamics of 236U with the density functional theory
(DFT) [44,45] and multitask learning. The DFT evaluates a
ground state dynamics, i.e., the adiabatic dynamics, under ar-
bitrary external fields. An elemental degree of freedom in the
DFT is the particle number density ρ, with which any observ-
able, including the ground state energy E , can be evaluated.
Namely, in principle, there is an energy density functional
(EDF) E [ρ], that solely depends on the particle number den-
sity, to describe the adiabatic dynamics. However, in nuclear
physics, almost all calculations employ a Kohn-Sham type
energy density functional (KS-EDF), which depends not only
on the particle number density but also on other densities,
such as the kinetic energy, the spin-orbit, and the pairing
densities [46]. Among them, the Skyrme EDF is one of the
most famous and commonly used KS-EDFs [46–48], and we
shall also adopt it in this paper. For simplicity, we impose
the axial and the time reversal symmetries on the system.
The actual calculations are performed with the computer code
HFBTHO (v3.00) [49]. This is an open source DFT solver, in
which Kohn-Sham wave functions are expanded on an axial
symmetric harmonic oscillator basis,

ϕnz,nr ,�(r; bz, b⊥) = ϕnz (ξ ; bz )ϕ|�|
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where r = (rρ, z, φ) is a three-dimensional (3D) cylindrical
coordinate, and b⊥ and bz are the oscillator length parameters.
Hnz and L|�|

nr
are the Hermite polynomials and the associated

Laguerre polynomials, respectively. Note that the octupole
deformation is included in our analysis, as we do not impose
the reflection symmetry along the z axis.

We adopt the SLy4 parameter set [50] and a surface
type paring interaction [46] to evaluate the Kohn-Sham DFT
within the Hartree-Fock-Bogoliubov (HFB) scheme [48]. The
strengths of the pairing interaction are determined so that the
average pairing gaps of protons and neutrons agree with the
empirical value 12/

√
A MeV with the mass number A = 236.

The resultant values are −650.98 MeV/fm3 for protons and
−526.53 MeV/fm3 for neutrons. We also optimize bz and
b⊥ to minimize the ground state energy of 236U, with the
maximum number of oscillator shells Ntot of 26, which is
large enough to describe the deformation dynamics around
the ground state of 236U. We obtain bz = 2.08 fm and b⊥ =
1.92 fm, with which the ground state energy is found to be
−1780.87 MeV.

To construct a set of the densities and the energies, (ρ, E ),
one must solve the Kohn-Sham equation with various exter-
nal fields v. Even though the density constraint method [51]
directly provides the energy for a desired density, a numerical
cost in this method may increase when a numerical accuracy
is required. We shall therefore adopt a random potential ap-
proach [52] in this paper.

Notice that it is computationally impossible to deal with
fully arbitrary densities. Even if that was possible, such densi-
ties might contain an enormous amount of information that is
not of our interest, especially that which corresponds to high
energy configurations. Therefore, it is desirable to sample
densities according to a probability distribution p[ρ] such that
a large portion of the sampled densities are relevant to our
purpose. However, what one actually does in the KS-EDF is
to sample external fields from some probability distribution
q[v] that is normalized as∫

Dv q[v] := 1, (5)

with the functional integration of v.
In principle, one can map the probability distribution q[v]

onto the probability distribution p[ρ] in the following way.
Since there is a bijection ρ[v] and v[ρ] in the DFT, the con-
ditional probability is formally denoted by P(ρ|v) = δ[ρ −
ρ[v]], where the delta function is normalized as∫

Dρ δ[ρ − ρ[v]] := 1,

∫
Dρ p[ρ] := 1. (6)
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Therefore, sampling v from q[v] yields the probability distri-
bution

p[ρ] =
∫

Dv δ[ρ − ρ[v]]q[v] =
[∣∣∣∣Det

(
δv

δρ

)∣∣∣∣q[v]

]
v=v[ρ]

,

(7)

where Det is a functional determinant.
Since the relation between the densities and the external

fields, that is, ρ[v] and v[ρ], is nontrivial, how one can choose
external potentials appropriately is a highly complicated prob-
lem. Although the strategy of selecting an appropriate q[v]
is unknown, it is meaningful to sample v highly randomly.
It is important to notice here that in general the result of
machine learning with a dataset sampled from q[v] may not
work well with another dataset generated from a different
probability distribution q′[v]. This is recognized as a serious
issue, referred to as the problem of the domain shift, in the
field of machine learning [53,54]. In particular, in the field of
DFT, it has been shown that there can be a case where results
trained with a simple q[v] have little predictive ability when
it is applied to highly random data with q′[v] [55,56]. On the
other hand, results with random data with q′[v] are expected
to have a much better predictive ability, and thus we employ
random potentials in this study. To this end, we introduce
random potentials based on the axial harmonic oscillator basis
given by Eq. (1):

v(i)(r, z) =
′∑

v
(i)
nz,nr ,|�|ϕnz (ξ ; b(i)

z )ϕ|�|
nr

(η; b(i)
⊥ ), (8)

where
∑′ indicates that the sum is restricted with a condi-

tion nz/q + 2nr + |�| � Nshell, with q = (bz/b⊥)2 = 1.1736.
Here, i denotes a index of data, for which v

(i)
nz,nr ,|�|, b(i)

z , and b(i)
⊥

are randomly generated. Note that, in addition to the weight
factors vnz,nr ,|�|, we also randomly sample the length param-
eters, bz and b⊥, even though the basis functions can express
arbitrary function with fixed values of bz and b⊥. This is to
avoid the neural network learning the specific scales (bz, b⊥)
when adopting a finite shell number Nshell. We apply the same
external fields to both protons and neutrons.

The random potentials (8) are not symmetric along the z
axis, and the center-of-mass position of the system can move
around. To fix it, we add the quadratic constraint on the center-
of-mass position to the KS-EDF during the HFB iterations:1

ECoM[ρ] = C

2

(∫
d3r zρ(r) − z0

)2

, (9)

with C = 1.0 MeV fm−2 and z0 = 0. When one needs a
dataset in which the center-of-mass position is not fixed, one
can simply add data by shifting the densities. Because of the
translational invariance in the nuclear Hamiltonian, the total
binding energy will remain the same. This approach reduces
the cost of creating a new dataset and maintaining it.

1Although not done in this paper, an alternative way to fix the
center-of-mass position is to introduce the Lagrange multiplier.
This operation corresponds to restricting the domain of the random
potentials.

FIG. 1. A histogram of the binding energies for the dataset gen-
erated in this work. Since we randomly remove excessive amount of
data, the distributional bias is largely eliminated. The ground state
energy is −1780.87 MeV, and one can see that the data are almost
uniformly distributed below the excitation energy of 8 MeV, i.e., the
energy of −1772 MeV.

The basic strategy to determine the random potentials is to
generate a large number of deformed states near the ground
state, with excitation energies below about 15 MeV, which
is larger than the first barrier for fission. To this end, we
scale the optimized oscillator lengths as b(i)

z,⊥ = (1 + t (i)
z,⊥)bz,⊥

with uniform random numbers of t (i)
z,⊥ within [0, 0.5]. On the

other hand, we individually generate v
(i)
nz,nr ,|�| for each set of

(nr, nz, |�|) using uniform random numbers within [−v0, v0].
Note that a single scale cutoff parameter v0 leads to a signifi-
cant bias in the distribution of the calculated binding energies.
To avoid this problem, we adopt a multiple values of v0, that
is, 0.6, 1.2, 1.8, and 2.4 MeV fm3/2. Moreover, a certain set
of data should be removed so that the resultant data do not
have a large bias in the binding energies. For this purpose,
we randomly remove excessive amount of data at each bin in
the histogram when the number of data exceeds 2250. The
total number of bins is taken to be 100. Furthermore, we also
discard datasets outside of −1780.87 � E � −1765.00 MeV.
In addition, as we are interested in the shape dynamics only
around the ground state in this paper, we reject the data with
large deformation, with a cutoff of [3.0 b, 16.0 b] for an ex-
pectation value of the mass quadruple moment operator

Q̂λk = rλYλk (θ̂ , φ̂) (10)

with λ = 2 and k = 0, where Yλk is the spherical harmonics
with the polar coordinates r = (r, θ, φ).

With this strategy, we generate 298 982 random po-
tentials, out of which 181 134 potentials remain for the
machine learning. The composition of each v0 is 20% for
v0 = 0.6 MeV fm3/2, 23% for v0 = 1.2 MeV fm3/2, 49% for
v0 = 1.8 MeV fm3/2, and 8% for v0 = 2.4 MeV fm3/2. Fig-
ures 1 and 2 show the histogram of the binding energies
and the energy surface for the remaining data, respectively.
For the latter, we plot the energy for each density in the
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FIG. 2. A scatter plot for the quadruple and the octupole
moments for the dataset. The color of each points shows the cor-
responding binding energy. The image appears symmetric along
Q30 = 0, reflecting the fact that the results of the Skyrme-EDF are
invariant under the parity transformation with respect to the z axis.

two-dimensional plane for the quadrupole and the octupole
moments corresponding to the density. Note that the binding
energy is calculated excluding the energy for the external
fields. To utilize the densities for deep learning, we discretize
them with the mesh size 0.4 fm for both the z and r axes,
which is approximately half of values commonly used in
Skyrme DFT calculations with a 3D lattice representation.
The numbers of mesh points are 48 points (for the r axis)
and 128 points (for the z axis). The nucleon density is then
regarded as an monotonic image of 48 × 128 pixels. Notice
that it is desirable to have the number of pixels with a power of
2, since layers that double or halve the number of vertical and
horizontal pixels are often used in the field of image recog-
nition. Our choice of mesh points approximately satisfies this
condition.

B. Deep learning

1. Multitask learning

Based on the manifold hypothesis and the assumption of
collective coordinates in nuclear theory, we expect that our
dataset constructed in the previous subsection can be well
characterized by a small number of parameters. To extract
such latent variables of a dataset, the use of an autoencoder
is a common approach [39]. We apply this to extract latent
variables for our dataset. Namely, an input density is encoded
to latent variables and then a decoder attempts to reproduce
the original density with the latent variables as inputs. This is
schematically denoted as

ρ → z = E[ρ] → ρ = D(z), (11)

where z = {z1, z2, . . . , zdz } are the extracted latent variables
with dimension dz, and E and D are an encoder and a decoder,
respectively. The number of extracted latent variables may
become too large to understand if a high accuracy is imposed
onto the encoder-decoder system. In practice one would thus

FIG. 3. A conceptual diagram of our model. The encoder E com-
presses the information on the density ρ into the latent variables z,
and the decoder of the density Dρ reconstructs the density itself from
the latent variables. At the same time the other decoder DE predicts
the energy from the latent variables.

need a compromise for the accuracy. In addition, a large error
may be generated when reconstructed densities are applied to
predict energies with the orbital-free EDF (OF-EDF). This
problem is known as the density driven error (DDE) [57],
and in this case the latent variables may not have enough
information on the energies.

On the other hand, one can directly apply the encoder-
decoder structure to learn the OF-EDF itself. Namely, one can
construct a decoder which reproduces the energy, rather than
the original density, as

ρ → z = E[ρ] → E = D(z). (12)

However, in this supervised learning approach, there is always
a risk of leading to meaningless variables, for example, when
all of the latent variables are regarded as a transformation of
the energy.

To avoid such drawbacks, we combine these two tasks:

ρ → z = E[ρ] → E = DE (z) and ρ = Dρ (z), (13)

where DE and Dρ are decoders for the energy and for
the density, respectively. The encoder-decoder functions are
approximated by neural networks. Figure 3 illustrates the
conceptual architecture of our model. We can expect that the
common feature representation z contains information on both
the densities and the energies.

Machine learning is referred to as multitask learning
(MTL) when multiple tasks are solved simultaneously [43].
While MTL is often utilized to improve the generalization
performance of all tasks, the primary purpose of our study
is to apply MTL to obtain a common feature representation
across the tasks.

2. Architecture

To perform MTL, one must define a specific model for the
encoder and the decoders, E , DE , and Dρ . In this work, the
input for the neural network is a nucleon density ρ(r, z), that
is, the binding energy is determined only by the total density,
ρ = ρp + ρn, rather than the proton and neutron densities ρp

and ρn separately. The total nucleon density ρ(r, z) can be re-
garded as a monochromatic image with the size 1 × 48 × 128.
As this size is too large to use in an architecture which consists
only of fully connected layers, we mainly use convolutional
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FIG. 4. The architecture of the decoders in our MTL model. The left and right blocks correspond to the decoders for the energies, DE ,
and for the densities, Dρ , respectively. In the convolutional layers, the left numbers denote the kernel sizes, and the right numbers are for the
number of the output channels. At each convolutional layer, the amount of padding is taken such that the width and the height of the input
image are equal to those of the output image. The upsample layer doubles the size of the image both vertically and horizontally, for which the
interpolation is not applied.

neural networks (CNNs), which have been successful in the
image recognition field. We adopt ResNet (residual neural
network ) in particular [58], which is one of the most famous
CNN models and won a 2015 image recognition competition
[59]. The critical idea of ResNet is to use the skip (residual)
connection, where an output from a previous layer is added to
the output of the current layer, allowing for a benefit of mul-
tilayering. In the original paper of ResNet [58], five different
models with 18, 34, 50, 101, and 152 layers are proposed,
which are called ResNet18, ResNet34, ResNet50, ResNet101,
and ResNet152, respectively.

For the encoder E , we adopt the ResNet18 model. Since
our image data is smaller than the one of ImageNet [60], for
which the size of images is 3 × 256 × 256, we remove the 2D
max pooling layer with the kernel size = 3, stride = 2, and
padding = 1 from the original ResNet18. The size of each
output sample is equal to the latent dimension dz, which is a
changeable parameter.

For the decoder for the densities, Dρ , we do not use ResNet
as it is, but adopt a model motivated by ResNet as shown in
Fig. 4.2 Note that we do not use the transposed convolution

2We also checked the parametric rectified linear init (PReLU)
model [61] for the activation functions, but the performance was not
improved.

because it may cause checkerboard artifacts [62]. On the other
hand, upsampling which we employ in our model does not
create such problem, although one needs to pay attention to
jaggies (staircase edges). In addition, the upsample layer does
not explicitly make a specific direction along the z axis, which
is physically reasonable for the axially symmetric system
studied in this paper. For the decoder of the energy, DE , we
use a model with six fully connected layers (see Fig. 4). Notice
that we use a relatively small number of layers in this study to
avoid an overcomplicated dependence of the energy on the
latent variables.

3. Loss function

Multitask learning involves several tasks and an appropri-
ate optimization is a critical problem. A common approach
is to balance the individual loss functions for separate tasks
[43]. Several approaches have been proposed to combine these
different loss functions, such as uncertainty weighting (UW)
[63] and dynamic weight average (DWA) [64]. In our MTL
model, the energy prediction task and the density prediction
task tend to compete with each other, especially when the
latent dimension dz is small. It would be desirable to define
a single metric to evaluate the performances of these tasks,
but it is difficult to determine it in advance. Therefore, in this
paper we simply combine an energy loss LE and a density loss
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Lρ with a constant ratio α as

LMTL(D; α) = LE (D) + α Lρ (D), (14)

with

LE (D) = 1

|D|
|D|∑
i=1

(
E (i)

pred − E (i)
true

)2
(15)

and

Lρ (D) = 1

|D|
|D|∑
i=1

∫
d3r

(
ρ

(i)
pred(r) − ρ

(i)
true(r)

)2
, (16)

where |D| is the number of data in a dataset D. The constant
hyperparameter α determines the relative importance between
the energy and the density for optimization. We will vary this
parameter to examine the performance of our MTL, as we
will show in the next section. All the parameters in the neural
networks are optimized to minimize the loss function LMTL.
Note that in the actual calculations the data are min-max
normalized, even though we return to the original physical
normalization when we discuss the performance of MTL.
Then the energies E and the densities ρ are also normalized,
and the loss function for the energies LE (D) is dimensionless,
but that for the densities Lρ (D) has a physical dimension fm3

originating from the radial integral in Eq. (16). Therefore, the
physical dimension of α is fm−3.

4. Optimization

To optimize the parameters in the neural networks,
we utilize the Adam (adaptive moment estimation) opti-
mizer [65] with the default hyperparameters in PYTORCH

[66], except for the learning rate. The initial value of
the learning rate is 10−4 and, following Ref. [41], we
dynamically reduce the learning rate by a factor of 0.5
if the loss of validation data is not improved among
the last 15 epochs. One can easily implement this with
“torch.optim.lr_scheduler.ReduceLROnPlateau”. When using
such an approach, that is, the approach with a dynamic learn-
ing rate decay, it is not fair to evaluate the final performance
with the validation data as the approach itself depends upon
the data. Therefore, we randomly divide our dataset into
training data (90%), validation data (5%), and test data (5%),
among which the test data are utilized only for a final evalua-
tion of the performance.

In our model, the minibatch size is 128 and the number of
epochs is 1000. Since the convergence of the validation loss is
worse than that of the training loss in our MTL calculations,
and the validation loss sometimes fluctuates during learning,
we adopt the parameters which yield the smallest loss LMTL

for the validation data and use them to evaluate the results. As
we will show in the next section, we will also perform another
type of deep learning calculations in this paper. Even in that
case, we use the same optimization method unless otherwise
mentioned.

It is useful to mention the numerical cost of our cal-
culations: optimizing our MTL model for a single set of
hyperparameters takes 50 GPU hours with processor NVIDIA

RTX 3090TI. Namely, we must run n NVIDIA RTX 3090TIs
for 50/n hours.

III. CRITERIA FOR EVALUATION

A. Criterion for energy

Before we evaluate results of MTL, let us first discuss
criteria for such evaluations. We first discuss errors for the
energies. Because the number of our data is finite, it is nat-
ural that the energy cannot be perfectly predicted, and thus
such training should not be done in terms of generalization
performance. Therefore, we first estimate how much errors
our dataset admits in terms of energy prediction. Namely, we
learn the OF-EDF E [ρ] using supervised learning, and regard
the resultant error as a limitation of the energy prediction.

Table I summarizes the mean absolute errors (MAEs) and
the mean square errors (MSEs) for the energy prediction with
several neural networks. These are defined as

MAE = 1

|D|
|D|∑
i=1

∣∣E (i)
pred − E (i)

true

∣∣, (17)

and

MSE = 1

|D|
|D|∑
i=1

∣∣E (i)
pred − E (i)

true

∣∣2
, (18)

respectively.ResNets are the same as those described in
Sec. II, except for the output layer, for which we operate
ReLU (rectified linear unit) at the last stage. ResNet09, which
is not included in the original paper [58], is a model in which
the residual blocks are halved from ResNet18. We optimize
each of the models in Table I using the MSE loss function,
Eq. (15). We notice that the errors of ResNet34 and ResNet50
are almost the same as that of ResNet18, while the error of
ResNet09 is significantly worse, implying that ResNet18 has
an enough representational capacity to capture the character-
istics of our dataset. Because of this, we mainly use ResNet18
in this paper. We thus define the criterion for the energy
prediction as 64 keV.

We also evaluate the OF-EDF with the vision transformer
(ViT) model [67], which has achieved state-of-the-art per-
formance in image recognition. ViT is an application of
the transformer [68], which has been remarkably successful,
especially in large language models (LLMs), to image recog-
nition. We utilize a ViT model consisting of 16 transformer
blocks with multihead self-attention in which the number of
heads and the dimension of hidden layers are 16 and 2048,
respectively. The patch size, the embedding dimension, and
the dropout rate are 8 × 8, 128, and 0.3, respectively. Table I
indicates that the errors of our ViT model are much larger
than those with the ResNets. However, it is important to point
out that ViT requires a large amount of data to outperform
CNN models [67]. Once a large amount of data suitable for
machine learning will become available in nuclear physics,
we expect that ViT will play an important role. Therefore, it
is meaningful to study the performance of ViT at this stage.

The calculations presented so far are performed with the
total densities as inputs. To validate such calculations, we
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TABLE I. The mean absolute error (MAEs) and the mean square error (MSEs) for supervised learning of OF-EDF E [ρ] with ResNets and
ViT. The results imply that 64 keV is a criterion for energy predictions. For comparison, we also perform another training with proton and
neutron number densities as inputs, as shown in the last row.

Validation data (5%) Test data (5%)

Model Input(s) Output MAE (MeV) MSE (MeV2) MAE (MeV) MSE (MeV2)

ResNet18 ρ E 0.0633 0.00965 0.0638 0.00963
ResNet34 ρ E 0.0638 0.00965 0.0646 0.00949
ResNet50 ρ E 0.0649 0.01084 0.0649 0.01023
ResNet09 ρ E 0.0724 0.01197 0.0720 0.01161
ViT [67] ρ E 0.2613 0.15161 0.2704 0.16302
ResNet18 ρn, ρp E 0.0641 0.00973 0.0635 0.00951

also perform another training with the proton and the neutron
number densities as inputs. The result is shown in the last row
in Table I, which indicates that the errors are similar to those
with the total densities.

B. Criterion for density

Let us next evaluate the errors in the densities. It is im-
portant to notice that density is an input variable in the DFT,
and supervised learning cannot be used to evaluate the errors.
Therefore, we use the autoencoder (AE) [39], which is a kind
of unsupervised learning. In our MTL shown in Fig. 3, if we
remove the decoder for the energy, DE , as well as the loss
function for the energy, the model is equivalent to the AE for
the density [see Eq. (11)]. In this way, we evaluate the AE
for several latent dimensions. The results are shown in Fig. 5.
Here, the MAE for the density is defined as

MAE = 1

|D|
|D|∑
i=1

∫
d3r

∣∣ρ (i)
pred(r) − ρ

(i)
true(r)

∣∣. (19)

Note that the MAE is a dimensionless variable as the densities
in this equation have physical dimension. One can see that
the MAEs in lower dimensions are as large as a few percent

FIG. 5. The mean absolute errors (MAEs) for predicting density
with the autoencoder as a function of the latent dimension dz, taken
as dz = 1, 2, 3, 4, 10, 24, 25, 26, 27, 28, and 29 = 512.

of the mass number, A = 236. These large errors imply that
our dataset contains a variety of densities. Because of this,
increasing the latent dimension does not rapidly reduce the
errors, even though the errors are significantly small when the
latent dimension is large: MAE of 0.5 is achieved for dz =
512, that is, the maximum dimension for the original ResNets
[58]. For each dz, we will use the corresponding MAE for a
criterion for density.

C. Errors with multipole moments

Conventionally, the multipole moments {Qλ,k} have often
been employed to describe nuclear shape dynamics. It is
therefore interesting to evaluate with our dataset how much
information these variables contain. To this end, we apply a
supervised learning to predict the energies from several sets of
multipole moments, E (Q20, Q30, . . . , QL0). A neural network
which we use is the decoder of our MTL model, DE , with
{Qλ,k}, instead of the latent variables z, as inputs. Figure 6
shows the MAEs for several sets of the input variable defined
as SL = {Q20, Q30, . . . , QL0}. One can see that these errors
are significantly larger than the criterion defined in Sec. III A,

FIG. 6. The mean absolute errors (MAEs) for predicting energy
from multipole moments. The vertical axis denotes the maximum
multipoles in SL = {Q20, Q30, . . . , QL0}, which is similar to the latent
dimension in our MTL.
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FIG. 7. The mean absolute errors (MAEs) of the densities and the energies as a function of the latent dimension for several values of the
hyperparameter α in the MTL loss function given by Eq. (14). The dashed line on the right panel is the same as that plotted in Fig. 5, which
shows the results of the autoencoders (AE).

that is, 64 keV. We also tried with a deeper model with more
trainable parameters, but the results were not improved. As a
reference, we compute the MAE by assuming that the output
energies are given by uniform random numbers within a range
of energies in our dataset, that is, the MAE obtained by re-
placing E (i)

pred in Eq. (17) with random numbers. The resultant
value is 5.0 MeV. The errors with the low order multipole
moments are reduced from this value only by a factor of
about 2, indicating that the multipole moments do not contain
enough information, at least for our dataset.

We also examine the density prediction from the multipole
moments using the decoder Dρ . We find that the mean ab-
solute errors are several times larger than the mass number
A = 236, indicating that the multipole moments do not have a
capacity to predict the densities, at least, for our dataset. Our
results might be somewhat improved with techniques such as
pretraining with another dataset, though. Rather than attempt-
ing it, however, in the next section we will propose using MTL
to extract much more consistent variables for shape dynamics
than the multipole moments.

IV. RESULTS OF MTL

A. Latent variables and dimensions

Let us now discuss the MTL results and the extracted latent
variables. The MTL loss function has one hyperparameter α,
which determines the relative priority between the errors of
energy and those of density [see Eq. (14)]. We determine the
value of α so that LE and Lρ are roughly on the same scale.
In this study, we employ three different values for α, that is,
α = 10−2, 10−3, and 10−4 fm−3.

Figure 7 illustrates the MAE for the energies (the left
panel) and for the densities (the right panel). One can see
that increasing the latent dimension rapidly increases the per-
formance of the energy prediction, while the performance
for the densities tends to increase only slowly. As the two
competing tasks tend to increase the errors of each other, the

density and energy errors behave oppositely when increasing
or decreasing α. That is, while increasing α reduces the errors
in the densities, it increases the errors in the energies.

Remarkably, even with a small number of the latent vari-
ables, the energy can be predicted within errors of at most a
few hundred keV. In particular, when the latent dimension is
increased from 1 to 2, the errors in energy decrease rapidly
for α = 10−2 and 10−3 fm−3. With two latent variables, the
densities can also be predicted well: the density prediction
errors for dz = 2 are in fact larger than the results of the
autoencoders (AE) only by a small amount (see the dashed
line).

It is a good compromise to set α = 10−3 fm−3. For larger
values of α, the density prediction is better but the energy
prediction is worse. On the other hand, for small values of
α the density predication is worse. With α = 10−3 fm−3, both
the energy predication and the density prediction are simul-
taneously good. With this choice of α, the errors in energy
do not decrease much when the latent dimension is increased
from 2 to 3. This implies that the main part of the dynamics
in our dataset can be characterized by only two parameters.
We emphasize that our latent variables contain much more
information on our dataset as compared to the conventional
multipole moments. This can be regarded as evidence that
the multipole moments may not provide appropriate collective
coordinates to describe shape dynamics of heavy nuclei, such
as 236U, even in the region of small deviations from the ground
state deformation.

In the cases where the latent dimension is smaller than
3, we can easily visualize the profile of the latent variables.
Especially, the two- and three-dimensional cases have good
performance compared with the criteria defined in Sec. III.
Figure 8 shows scatter plots of the latent variables obtained
with dz = 2 (the left panel) and dz = 3 (the right panel) to-
gether with α = 10−3 fm−3. Notice that the latent variables do
not have a physical dimension, and the scales in the figure are
irrelevant. The color dimension denotes the binding energy
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FIG. 8. The latent variables for a combination of the validation data (5%) and the test data (5%). The performances for these data are
almost the same, and we include the validation data in this figure only for a presentation purpose. The latent dimensions are 2 (the left panel)
and 3 (the right panel), and the hyperparameter of the MTL loss function is set to be α = 10−3 fm−3. The binding energy of each data is
denoted with color. In the left panel, the ground state with no external field is shown by a filled square, for which the corresponding latent
variables are (z1, z2) = (−1.85, 0.79). The black stars denote those points whose densities are reconstructed from the latent variables in Fig. 9.

of each data. Here, we plot both the validation data and the
test data, since the errors for those data are almost the same.
The ground state of 236U is at (z1, z2) = (−1.85, 0.79) if the
external potential is not introduced, as shown by a square dot
in the left panel. One can notice that there is a symmetric
axis in the plots. To see the significance of the symmetric
axis, the reconstructed densities are plotted in Fig. 9 for the
points shown in the left panel of Fig. 8. Even though those
densities contain certain errors as they are reconstructed ones,
one can still see that the shapes on the opposite side across
the symmetry axis can be regarded as the same shapes but
inverted with respect to the z axis. This implies that our MTL
model successfully recognizes the parity symmetry. Note that
the direction of the symmetry axis and the position of the
origin are not physically meaningful, as they are determined
by the initial trainable parameters of the neural network. In
fact, we performed exactly the same calculations but with
another initial condition, and obtained a similar scatter plot
with a different position of the origin of the z coordinate.

Let us focus on the case with dz = 2. Figure 10 shows the
quadruple moment and the octupole moment of each latent
variable. One can see the existence of the symmetry axis.
The figure also indicates that Q20 and Q30 do not play a
special role in our dataset. An advantage of our latent variables
is that all the points which correspond to excited states for
given multipole moments can be treated as ground states at
the corresponding latent variables. Even though it is trivial to
obtain a smooth energy surface if the dimension of the latent
variables is large, it is notable that this is achieved even with
the dimension of 2. On the other hand, if the energies are
plotted in the (Q20, Q30) plane, those energies are rather scat-
tered, as one can see in Fig. 2. Note that all the configurations
correspond to the ground state with external fields, but they do
not necessarily correspond to the local ground state for each
(Q20, Q30) in the constrained HFB.

To see how the multipole moments (Q20, Q30) in Fig. 2
map onto the two-dimensional plot for the latent variables

shown in the left panel of Fig. 8, we carry out the constrained
HFB calculations. Points connected with color arrows on the
left panel of Fig. 11 correspond to the points connected with
the same color on the right panel. One can see that the trajec-
tories on the (z1, z2) plane are quite complex, and the mapping
from (Q20, Q30) to (z1, z2) is highly nontrivial. Evidently, the
main feature of our dataset captured by MTL cannot easily be
described by conventional quadrupole moments and requires
novel latent variables.

B. Domain shift

The fact that a neural network performs well on test data
does not necessarily mean that the model will perform well
when users try with their own data. This is because properties
of two datasets may be different. To clarify this problem,
we introduce the idea of a domain in the context of trans-
fer learning (TL). Here, a domain D = {X , P(X )} consists
of a feature (input) space X and a probability distribution
P(X ), X ∈ X [53,54].3 In this study, X corresponds to a set of
densities as a whole, and P(X ) corresponds to the probability
distribution of the densities p[ρ] discussed in Sec. IIA. In
machine learning, one usually prepares a labeled dataset for
training and test by sampling from a source domain Ds and a
target domain Dt , respectively. In traditional machine learning
methods, which we follow in this paper, Ds is assumed to
be identical to Dt . We have generated both the datasets by
randomly splitting a single dataset, and therefore we have also
adopted this assumption. However, the traditional machine
learning methods do not guarantee good performance for a
target domain when the domains are different, i.e., Ds �= Dt .
This problem of domain shift is quite crucial when one would
like to adopt a learned model for actual applications. It is

3Introducing the idea of a task allows a more detailed and strict
categorization of a problem. See Refs. [53,54] for details.
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FIG. 9. Sample densities reconstructed from latent variables for the points shown in Fig. 8. The two numbers displayed on the top of each
panel denote the latent variables (z1, z2), while those at the bottom are the quadrupole and the octupole moments, (Q20, Q30 ).

not uncommon that a performance of a model immediately
declines when the model is actually applied, even when the
model shows superior performance with data at hand.

In this subsection, we check the performance of our MTL
model when it is applied to data generated by a domain which
is different from the one of our dataset, namely, the source

FIG. 10. Same as the left panel of Fig. 8, but for the quadrupole moment (the left panel) and the octupole moment (the right panel).
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FIG. 11. Mapping from Fig. 2 to the left panel of Fig. 8. Points connecting with a color arrow on the left panel correspond to the points
connecting with the same color in the right panel. The color for each points denotes the difference between the true energy and the predicted
energy estimated with the MTL model with α = 10−3 fm−3 and dz = 2.

domain. In nuclear physics, the constrained HFB method with
Q20 and Q30 is often utilized, and we regard that as a target
domain. Of course the corresponding dataset is expected to
have some overlap with the dataset generated by our random
potentials, but the probability would be quite small because
the number of data is finite. Thus, we can consider that the
target domain is different from the source domain in our
dataset.

The colors of the points in Fig. 11 show the difference be-
tween the true energy and the predicted energy with the MTL
model. In the left panel, one can see that the performance
of our MTL model is high in the region where the training
data exist in terms of multipole moments, indicating that our
model is not overly adapted to the source domain. On the other
hand, the performance becomes significantly worse outside
the region.

For a fission problem, one would also need a calculation
for large deformations which are outside the region studied
in this paper. If we want the MTL model to have a pre-
diction ability even for such larger deformations, we simply
need to use larger datasets that include such deformed states.
Alternatively, one can also use other techniques, such as
domain adaptation (DA) [53,54] and domain generalization
(DG) [69].

C. Symmetry and data augmentation

Even though the latent variables obtained in this study are
good enough, one may obtain better latent variables by taking
into account symmetry of the datasets. To check this, in this
subsection we repeat MTL by constructing the datasets in
which symmetry of the system is respected.

The densities constructed in this paper have axial symme-
try along the z axis. Even though those densities in general
break parity symmetry, the binding energy is invariant with
respect to the parity operation. To reflect this physical sym-
metry in the learning results, it is desirable to have the same
symmetry in the dataset as well. Since the source domain is

invariant under the parity transformation, if one samples a
quite large amount of data, one can assume that the distribu-
tion of the dataset should also be invariant under the parity
transformation. However, this is difficult in practice with a
finite amount of data. Therefore, we adopt the data augmen-
tation of flipping images, for which the corresponding energy
is exactly invariant due to the parity symmetry. In the actual
calculations, we randomly flip an input image with respect to
z axis with a probability of 0.5. In addition, we also introduce
an improvement to the encoder of our MTL model. That is,
as the original ResNets, which utilize odd kernel sizes even
with a stride of 2, might cause a shift of a center of the image,
we increase the kernel sizes by 1 for the convolutional layers
when the stride is set to be 2.

We train the improved MTL model with the augmented
dataset, with dz = 2, 3 and α = 10−3 fm−3. We evaluate the
performance of the symmetry with the following two metrics:

ME =
|D|∑
i=1

1

|D|
∣∣DE (E[ρ (i)]) − DE

(E[
ρ

(i)
F

])∣∣, (20)

Mρ =
|D|∑
i=1

1

|D|
∫

d3r
∣∣Dρ (E[ρ (i)]) − F[Dρ

(E[
ρ

(i)
F

])]∣∣, (21)

where F is the flipping operation, and ρF is defined as F[ρ].
If the model fully respected the symmetry, both of these met-
rics would be exactly zero.

Table II shows ME and Mρ for our datasets. One can see
that the symmetry consideration does not significantly affect
the performance of MTL. This is because our MTL models
have enough representation ability, and the datasets are from
the beginning symmetric enough to learn the symmetry. In
fact, comparing the two metrics to the MAEs, the symmetry
is correctly learned within the errors because the metrics are
smaller. Rather, the influence of the initial values of the neural
network is more significant. On the other hand, when we
apply the data augmentation to supervised learning for the
energy only with the improved ResNet18, we find that MAE
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TABLE II. The metrics ME and Mρ defined by Eqs. (20) and (21) to evaluate the role of symmetry of the MTL models. These are evaluated
only for test data (5%). For comparison, the MAEs for energy and density are also shown. If symmetry is False, the results for the MAEs are
the same as those in Fig. 7. On the other hand, in the case of True, we apply the data augmentation as well as the improvement of the encoder.

Symmetry dz ME (MeV) Mρ MAE E (MeV) MAE ρ

False 2 0.0842 5.0618 0.1133 9.2352
True 2 0.0798 5.4921 0.1250 9.2756
False 3 0.0675 3.7661 0.1043 7.6681
True 3 0.0716 3.3035 0.1003 7.7055

is reduced to 52 keV. Therefore, we conclude that, while data
augmentation itself is helpful in increasing accuracy, it does
not necessarily contribute to the accuracy of models when they
include adversarial tasks, such as our multitask learning.

V. SUMMARY AND FUTURE PERSPECTIVE

We have applied multitask learning (MTL) to a shape dy-
namics in the vicinity of the ground state of 236U in order
to extract a common feature representation of densities and
binding energies. To this end, we have employed the Skyrme
Kohn-Sham density functional theory (Skyrme KS-DFT) with
random external potentials. In our MTL models, the input
densities are compressed into latent variables by an encoder,
and they are reconverted into energies and densities by de-
coders. The resultant latent variables can be regarded as a
kind of collective coordinates, as the manifold hypothesis
and an assumption of collective coordinates are conceptually
close to each other. We have shown that latent variables with
dimension of as small as 2 well reproduce the energies and the
densities of the test data. On the other hand, we have shown
that conventional multipole moments contain much less infor-
mation on shape dynamics in our dataset. This suggests that it
is important to choose collective coordinates by appropriately
taking into account dynamics, as in our latent variables.

In this study we have utilized the autoencoder only for an
analysis of latent variables. When one would like to apply
our idea as a generative model, one should adopt probabilis-
tic models, such as a variational autoencoder (VAE) [39,70].
Notice that, in an image generation, it is difficult to obtain gen-
eralization performance and generate novel images which are
not included in a training dataset. To handle this, generative
adversarial networks (GANs) [71,72] and, in the latest studies,
diffusion models (DMs) [73–75] are gaining popularity in this
field. In particular, the DMs have achieved state-of-the-art
performance for text to image generation tasks. Therefore,
one may think of applying the latest probabilistic models to
nuclear physics.

To extract latent variables that consistently describe nu-
clear fission, it would be necessary to collect a large number
of data on larger deformed states. In that case, the dimension
of latent variables may increase, even though the dimension
of 2 is sufficient for shape dynamics near the ground state.

However, we found it difficult to obtain such data with ran-
dom potentials, especially data at unstable locations such as a
barrier top. To obtain such data, one would need either a huge
amount of effort or a drastic improvement of the numerical
algorithm for convergence of the DFT. In addition, since the
calculations have been performed in the framework of density
functional theory, no information on the many-body wave
functions are available from our MTL, and thus our method
cannot be connected to GCM or other methods that deal with
many-body wave functions. Clearly, novel ideas are necessary
in order to connect the latent variables to collective models so
that, e.g., the moment of inertia can be computed.

One of the important conclusions in this paper is that
sufficiently large data sets themselves contain a wealth of
information on the dynamics. If one analyzes them in an ap-
propriate manner, one can immediately extract information on
the dynamics. Especially in the context of KS-DFT, one can
avoid using phenomenological constraining fields, which are
only convenient mathematical tools in most cases in nuclear
physics. This merit enables one to recast nuclear physics from
a new perspective.

Fortunately, due to the remarkable growth of the machine
learning field in recent years, there have been many useful
tools to analyze big data. Unfortunately, however, there is still
a lack of datasets to learn in nuclear theory. Therefore, at this
stage, the generation of high quality datasets such as Ima-
geNet [60] is still awaited. For such data,vision transformer
(ViT) [67] is expected to perform better than the conventional
neural network models. In addition, it is also difficult at this
moment to train models with more than a billion parameters.
This is because CPUs have been mainly utilized in nuclear
physics and it may still be difficult to access to a large number
of expensive GPUs. Moreover, it is also important to secure
GPUs, which will be even in a greater demand in future.
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