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We propose a method to calculate wave functions and energies not only of the ground state but also of
low-lying excited states using a deep neural network and the unsupervised machine learning technique. For
systems composed of identical particles, a simple method to perform symmetrization for bosonic systems and
antisymmetrization for fermionic systems is also proposed.

DOI: 10.1103/PhysRevResearch.5.033189

I. INTRODUCTION

Atoms, molecules, and solids are composed of many elec-
trons and ions, and atomic nuclei are composed of many
nucleons. In principle, once the Schrödinger equation of these
systems is solved, most properties can be described. How-
ever, in practice, they are quantum many-fermion systems,
which are difficult to solve directly. Hence, it has been one
of the important issues to solve the Schrödinger equation for
the quantum many-fermion efficiently and accurately; in fact,
many numerical methods, for instance, the Faddeev calcula-
tion [1], several methods for few-body systems [2–12], the
quantum Monte Carlo method (QMC) including the vari-
ational Monte Carlo, diffusion Monte Carlo (DMC), and
auxiliary-field quantum Monte Carlo methods [13–19], the
configuration interaction method [20–22], the coupled cluster
method [23–26], the density functional theory (DFT) [27–29],
the density matrix renormalization group [30–33], the dynam-
ical mean-field theory [34–36], and the lattice effective field
theory [37–40] have been proposed in recent decades.

Among the above, DFT and QMC are classified into
methods based on the variational principle. The variational
principle [41] guarantees that the ground-state energy Egs of a
Hamiltonian H satisfies

Egs = inf
〈�|H |�〉
〈�|�〉 , (1)

where all the possible functions are considered in the infi-
mum. The minimizer corresponds to the ground-state wave
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function. Indeed, it is scarcely possible to consider all the pos-
sible functions throughout minimizing the energy expectation
value; hence, in practice, the calculation accuracy of a method
based on the variational principle depends on the ansatz of a
trial wave function. In other words, the size of the space of
trial wave functions, in principle, determines the calculation
accuracy.

For instance, a trial wave function of DFT is a Slater
determinant, which is the simplest antisymmetric trial wave
function. Owing to the simpleness of the ansatz, the numerical
cost is drastically reduced, while it is known that interparticle
correlation is partially missing [42].

In the QMC calculation, a Jastrow-type trial wave function
[43] is often used. A Jastrow-type wave function |�〉 consists
of a single- (or sometimes multi-)Slater determinant |�0〉 and
a correlation factor F , |�〉 = F |�0〉. With assuming F as
a symmetric function, |�〉 satisfies antisymmetry. Owing to
the introduction of the factor F , interparticle correlations are
described better than a single Slater determinant. Neverthe-
less, most QMC calculations optimize mainly F , while |�0〉
is optimized only around an initial ansatz [44]. In addition, an
ansatz is introduced even for F ; hence, accuracy also depends
on the ansatz. Recently, based on the QMC calculation, a
deep neural network (DNN) has been used for the ansatz of a
trial wave function [45–47]. Since deep neural networks span
much wider space, calculation accuracy is much improved,
which is guaranteed by the universal approximation theorem
[48,49]. Nevertheless, once the ansatz of a trial wave function
is introduced, the systematic improvement of the calculation is
difficult even with a DNN since the space trial wave functions
span is already limited.

Another problem of variational-principle-based methods
is calculation of excitation spectra. Excitation spectra are
important quantities of molecules and atomic nuclei, while
the variational principle [Eq. (1)] obtains the ground state
only. Hence, another technique is needed to calculate excited
states based on the variational principle. Indeed, a method to
calculate low-lying excited states using the DMC calculation
was proposed [50] by considering the orthogonality of wave
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functions, while its application has been still limited [51],
whereas calculation of excited states on top of the DFT ground
state has been widely performed by using the random phase
approximation or some other techniques [52–56], while there
is still room to be improved. Recently, low-lying excited states
were also obtained in Ref. [57] using the combination of the
DNN, QMC, and the orthogonal condition.

In this paper, we propose a new method to calculate
energies and wave functions of the ground state and
low-lying excited states based on the variational principle.
The ground-state wave function is assumed to be a DNN,
which, in principle, is able to represent any function [48,49].
Using an essence of the machine learning technique—the
minimization of the loss function—they are directly optimized
by using the machine learning technique. In the machine
learning technique, a network structure is introduced and the
parameters of the network are optimized with minimizing
the loss function. This process is often called training. In
many works, these parameters are trained by using the given
data called learning data, whose size is often large. On the
contrary, the machine learning trained without learning data,
called unsupervised machine learning, has also been used in
many different fields. References [58,59] also assumed the
ground-state wave function as a deep neural network that
were optimized by using the machine learning technique:
Ref. [58] performed calculation of few-body bosonic systems
and Ref. [59] performed calculation of the simplest realistic
system—a deuteron. Although these papers are pioneering
works of unsupervised machine learnings for quantum
many-body problems, the fermion antisymmetrization was
not considered and excited states were not studied, while
both ground and excited states of many-fermionic systems
are interesting in general. Recently, Ref. [60] proposed
a method to obtain the ground state of the many-body
Schrödinger equation for fermionic systems by using a tensor
neural network, while its implementation is involved and the
antisymmetrization is, indeed, not perfectly guaranteed.

In this paper, on top of the method in Refs. [58,59], a
simple method of the antisymmetrization for many-fermion
systems or the symmetrization for many-boson systems is
introduced. Then, low-lying excited states are sequentially
calculated by using the orthogonality conditions and the vari-
ational principles. In this method, there is no need to discover
a DNN architecture to generate (anti)symmetric wave func-
tions. The (anti)symmetrization is put at the level of loss
functions. Furthermore, the symmetrization and the antisym-
metrization are implemented in almost the same way and the
wave function perfectly satisfies (anti)symmetry. Thanks to
the simplicity of the implementation, the numerical cost is
quite small. We show that our method works successfully
for popular examples in bosonic and fermionic quantum me-
chanical systems, providing a fundamental basis of the DNN
method for quantum mechanics.

This paper is organized as follows: Section II is de-
voted to calculation of the ground state. The novel
(anti)symmetrization is introduced. Section III is devoted to
the calculation of low-lying excited states. All the calculations
are performed in a MacBook Pro with the Apple M1 chip
[MacBook Pro (13-inch, M1, 2020): MacBookPro17,1] and
16 GB memory. Section IV gives a summary of this paper.

FIG. 1. Schematic figure of the deep neural network representing
a one-dimensional three-body system.

II. GROUND-STATE CALCULATION

In this section, the ground-state wave function and energy
are calculated by using a DNN and the machine learning
technique. Throughout the paper, a machine learning software
named TENSORFLOW [61] is used.

A. Network structure and machine learning technique

In general, a wave function of a d-dimensional N-particle
system is a function of the spatial coordinates of all the par-
ticles r j = (r j1, r j2, . . . , r jd ) ( j = 1, 2, ..., N). Here, for the
sake of simplicity, we neglect the spin and isospin dependence
of wave functions and R denotes R = (r1, r2, . . . , rN ) =
(r11, r12, . . . , r1d , r21, r22, . . . , r2d , . . . , rN1, rN2, . . . , rNd ).

In this work, the wave function is represented by a deep
neural network with Nd-input units that corresponds to the
spatial coordinate R and one-output unit that corresponds to
the value of the wave function ψ (R). Between the input and
output layers, there are hidden layers. Each unit is connected
to all the units just one before or after layers. The schematic
figure of the deep neural network is shown in Fig. 1. In this
paper, the “softplus” function

softplus(x) = log (1 + ex ) (2)

is used for an activation function and the Adam optimizer [62]
is used for the optimization process.

As the normal procedure of the numerical calculation of
the wave function, the spatial coordinate is discretized. Each
point is treated as a batch of the machine learning. In other
words, if the spatial coordinate of each direction is discretized
with M meshes, the batch size is the same as the number of
meshes, MdN . The mini-batch technique is not used.

Once the spatial coordinates are discretized, the Hamilto-
nian

H = − h̄2

2m

∑
j

� j +
∑

j

V ext(r j ) + 1

2

∑
j �=k

V int(r j, rk ) (3)
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can be written as a matrix, where m is the mass of the parti-
cles, V ext is the external potential, and V int is the interparticle
interaction. The matrices of the external potential and the in-
teraction are diagonal and that of the kinetic energy is sparse.
Hence, the expectation value of the Hamiltonian 〈H〉 can be
calculated by using the sparse-matrix technique. The ground-
state wave function minimizes 〈H〉; therefore, 〈H〉 is regarded
as a loss function. Note that all the calculations are performed
with double precision floating point numbers (float64). For
simplicity, m = h̄ = 1 is assumed.

The procedure in the TENSORFLOW code is as follows:
(1) Construct a model of the deep neural network;
(2) Note that although a TENSORFLOW subroutine spec-

ification for the loss function technically requires two
inputs—the training data (true_value) and the network out-
put (predicts), the former is not referred in our training;

(3) Fit the model (model.fit) where the initial value of
predicts consists of positive random numbers;

(4) The final wave function output_wf is given by using
model.predict;

(5) The ground-state energy is calculated using the wave
function obtained by the last step.
The third step (model.fit) corresponds to determining the
parameters inside the DNN; the fourth step (model.predict)
corresponds to storing the wave function obtained in the
previous step; the fifth step corresponds to calculating the
ground-state energy using the wave function obtained in the
fourth step. Note that predicts and the final wave function
should be normalized whenever generated.

B. One-dimensional one-particle systems

In this section, benchmark calculations of one-dimensional
systems are shown. The dependence of the numbers of units
and layers on calculation accuracy is also discussed. Since
there exists only one particle, there is no interaction, V int ≡ 0;
thus, the Hamiltonian reads

H = −1

2

d2

dx2
+ V ext(x). (4)

Since we focus only on bound states in this paper, it is
enough to deal with the limited spatial region. In the cal-
culation, |x| � xmax is considered and the box is discretized
within 1024 meshes, i.e., M = 1024. The Dirichlet boundary
condition [ψ (±xmax) = 0] is used. For the second derivative,
the three-point derivative is used for simplicity, while it can
be straightforwardly improved for the accuracy [63]. Then, H
is discretized as

H � H̃ = − 1

2h2
T̃ + Ṽ ext, (5a)

T̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 . . . 0 0 0

1 −2 1 . . . 0 0 0

0 1 −2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −2 1 0

0 0 0 . . . 1 −2 1

0 0 0 . . . 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5b)

Ṽ ext =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V ext
1 0 0 . . . 0 0 0

0 V ext
2 0 . . . 0 0 0

0 0 V ext
3 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . V ext
M−3 0 0

0 0 0 . . . 0 V ext
M−2 0

0 0 0 . . . 0 0 V ext
M−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(5c)

and the wave function is also discretized as a (M − 1)-
dimensional vector

ψ � ψ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

...

ψM−3

ψM−2

ψM−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

where ψ̃ is assumed to be normalized, i.e., h
√∑

j ψ̃
2
j = 1,

V ext
j = V ext(x j ), ψ j = ψ (x j ), x j = −xmax + h j, and h denotes

the mesh size h = 2xmax/M [64]. This ψ̃ is used for predicts
and output_wf. Here, a tilde denotes discretized form. Then,
〈H〉 can be calculated as

〈H〉 � ˜〈H〉 = ψ̃TH̃ψ̃. (7)

1. Harmonic oscillator

First of all, the harmonic oscillator potential

V ext(x) = 1
2ω2x2 (8)

is tested. The ground-state wave function ψgs and energy Egs

are, respectively, known exactly as [41]

ψgs(x) =
(ω

π

)1/4
exp

(
−ωx2

2

)
, (9a)

Egs = ω

2
. (9b)

In this calculation, xmax = 5 is used.
Table I shows the summary of calculations. In general, all

the calculations give almost the correct energy [Eq. (9b)].
On the one hand, total optimization costs similar amount of
time in all the calculation. On the other hand, different setup
requires different number of epochs and time per epoch for
optimizing the DNN. Small DNN tends to take shorter time
for each epoch, while it requires longer epochs. It seems that
32 units per layer is too large, so it requires longer epoch and
longer estimation time per epoch. It should be noted that the
number of epochs differs in each run since the initial condition
of the fitting procedure is generated by the random numbers.
In addition, if one uses a different value of the learning rate,
the number of epochs can be different.
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TABLE I. Calculation summary of a one-body problem under the harmonic oscillator potential. Row with “—” in the column “# of unit
for 2nd layer” corresponds to calculation performed only with one layer.

# of Unit Energy

ω 1st Layer 2nd Layer Kinetic Potential Total # of Epochs Time per Epoch (µs)

1.0 4 — +0.250043 +0.250032 +0.500075 22 448 474.909
1.0 4 4 +0.250006 +0.249996 +0.500002 23 242 542.892
1.0 4 8 +0.250001 +0.249997 +0.499998 23 408 588.101
1.0 8 — +0.250002 +0.250002 +0.500004 35 973 511.120
1.0 8 4 +0.250000 +0.249998 +0.499998 19 072 592.471
1.0 8 8 +0.250004 +0.249996 +0.500001 20 531 657.621
1.0 8 16 +0.249999 +0.249999 +0.499997 16 540 725.032
1.0 16 — +0.250000 +0.249999 +0.499999 19 239 566.930
1.0 16 8 +0.250000 +0.249998 +0.499998 17 425 724.952
1.0 16 16 +0.249999 +0.249998 +0.499997 15 275 869.706
1.0 32 — +0.250000 +0.249999 +0.499998 17 924 687.738
1.0 32 16 +0.249999 +0.249999 +0.499998 13 761 999.868

5.0 4 — +1.250192 +1.250116 +2.500308 24 517 458.700
5.0 4 4 +1.250025 +1.249921 +2.499946 19 772 551.123
5.0 4 8 +1.250027 +1.249923 +2.499951 19 855 605.380
5.0 8 — +1.249994 +1.249946 +2.499939 27 232 514.425
5.0 8 4 +1.250453 +1.249510 +2.499963 26 324 630.199
5.0 8 8 +1.249994 +1.249942 +2.499936 19 440 661.411
5.0 8 16 +1.250002 +1.249937 +2.499939 14 364 731.111
5.0 16 — +1.249967 +1.249975 +2.499942 17 423 568.478
5.0 16 8 +1.250041 +1.249938 +2.499979 28 345 731.765
5.0 16 16 +1.249977 +1.249957 +2.499934 13 851 855.756
5.0 32 — +1.249919 +1.250026 +2.499945 13 461 671.493
5.0 32 16 +1.249972 +1.249966 +2.499938 11 745 1005

10.0 4 — +2.499927 +2.499866 +4.999793 21 134 482.504
10.0 4 4 +2.500071 +2.499694 +4.999765 23 623 554.103
10.0 4 8 +2.500000 +2.499720 +4.999719 24 949 605.551
10.0 8 — +2.499877 +2.499945 +4.999822 16 636 513.759
10.0 8 4 +2.500038 +2.499718 +4.999756 20 628 598.401
10.0 8 8 +2.500003 +2.499730 +4.999733 19 261 664.986
10.0 8 16 +2.499947 +2.499770 +4.999717 15 053 731.275
10.0 16 — +2.499873 +2.499896 +4.999769 17 351 561.501
10.0 16 8 +2.499996 +2.499759 +4.999756 14 979 730.518
10.0 16 16 +2.499917 +2.499822 +4.999739 15 437 859.019
10.0 32 — +2.499834 +2.499885 +4.999719 16 520 671.640
10.0 32 16 +2.499976 +2.499745 +4.999721 19 833 996.732

Figure 2 shows relative errors of the loss function, 〈H〉, to
the exact ground-state energy Egs as functions of the number
of epochs. It can be seen that, although the loss function

achieved the relative error of 1.0 × 10−8, the final accuracy
becomes about 1.0 × 10−4. This may be due to the precision
of the TENSORFLOW code.

FIG. 2. Relative error of 〈H〉 to the exact ground-state energy Egs for the harmonic oscillator potential as functions of the number of epochs.
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FIG. 3. Wave function under the harmonic oscillator potential. The red thick line corresponds to the exact solution [Eq. (9a)], while thin
lines correspond to results of DNN calculation. Different thin line corresponds to different number of units. We observe that all the simulated
results overlap with the exact solution.

Figure 3 shows calculated wave functions. The red thick
lines correspond to the exact solution given in Eq. (9a), while
thin lines correspond to the results given in this work, where
different colors correspond to different numbers of units and
layers. The relative errors of the DNN wave function, ψDNN,
to the exact one, ψexact,

δψ (x) =
∣∣ψDNN(x) − ψexact(x)

∣∣
ψexact(x)

, (10)

are shown in Fig. 4. It can be seen that the DNN calculation,
basically, reproduces the exact solution in our interest within
the accuracy of 10−4 or more. This deviation can be reduced
if we use more tight convergence criterion [65]. In the tail
region, the deviation δψ (x) diverges, while this is because
the denominator of Eq. (10), ψexact(x), reaches to zero. The
deviation looks larger if ω is smaller, which is related to the
cutoff parameter for the spatial mesh xmin. The exact value of
ψgs(xmin) is 2.8 × 10−6 for ω = 1.0, while it is 8.1 × 10−28

for ω = 5.0 and it is much smaller for ω = 10.0, while in
the numerical calculation they are approximated to zero. The
value 2.8 × 10−6 may be too large to assume to be zero.

It should be noted that rather small DNN is enough to
reproduce the solution of the wave function. Owing to the sim-
plicity, it is easy to analyze the weights and biases of the DNN.
For instance, the DNN wave function for the single layer with
four units includes only 13 parameters; the ground-state DNN

wave function for ω = 1.0 can be written as

ψgs(x) = 1

3.7451
softplus(ags(x)), (11a)

ags(x) = 2.4069a1(x) − 1.8344a2(x) − 1.9778a3(x)

+ 2.3484a4(x) − 4.8998, (11b)

a1(x) = softplus(0.35953x + 3.9226), (11c)

a2(x) = softplus(2.5821x + 0.033213), (11d)

a3(x) = softplus(−0.65170x + 2.9574), (11e)

a4(x) = softplus(0.15421x + 2.2016), (11f)

where the first coefficient of Eq. (11a) (1/3.7451) is not ob-
tained by the DNN but instead by the normalization. Hence,
smaller DNN is better not only due to the calculation cost but
also for analysis of the structure of DNN.

Let us provide our interpretation of the obtained wave
function [Eq. (11a)]. The rectified linear function (ReLU)

ReLU(x) =
{

0 (x < 0),
x (x � 0) (12)

is a widely used activation function, and the softplus function
can be regarded as a smoothed version of the ReLU. Here,
for interpreting Eq. (11a), we shall just replace the softplus
function with the ReLU. The wave function obtained by the
DNN [Eq. (11a)] and the obtained function before the output
layer [Eq. (11b)] are shown in Fig. 5, where the normalization

FIG. 4. Relative error of DNN wave function to exact one for the harmonic oscillator potential. Different thin line corresponds to different
number of units. In the region of large |x|, the deviation δψ (x) diverges, because the denominator of Eq. (10), ψ exact(x), reaches to zero. Hence,
the figures plot only |δϕ(x)| < 10−1.
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FIG. 5. Wave function obtained by the DNN [Eq. (11a)] and
the obtained function before the output layer [Eq. (11b)], where
the normalization is ignored. Equations (11a) and (11b) where the
softplus function is replaced with the ReLU function are also plotted
as ψReLU

gs and aReLU
gs , respectively.

factor (1/3.7451) of ψgs is ignored. Equations (11a) and (11b)
where the softplus function is replaced to the ReLU function
are also plotted as ψReLU

gs and aReLU
gs , respectively. The DNN

with the ReLU function can be understood as an approxima-
tion with a piecewise linear function. As shown in Fig. 5, the
ground-state wave function in DNN is approximated by the
following function:

ψgs ≈

⎧⎪⎨
⎪⎩

−ax + b (0 � x � b/a),

ax + b (−b/a � x � 0),

0 (otherwise),
(13)

where a and b are positive numbers. The ReLU function at
the output layer guarantees to make the wave function vanish
for x < −b/a and x > b/a, and thus, ags should be ±ax + b.
This function can be represented by just two ReLU functions.
Hence, even two units in hidden layer are enough to describe
the brief structure of ground-state wave function, and increas-
ing the number of units, the ground-state wave function is
reproduced easily. Since the ReLU function is not differen-
tiable at x = 0, the ReLU wave function is not differentiable.
Hence, the softplus is better to describe a differentiable
function, while the ReLU function can also describe a differ-
entiable function approximately if the number of units is large
enough. In case of N-bodies systems, the similar function to
Eq. (11a) can be represented by just 2N ReLU functions.

2. Square-well potential

Next, the square-well potential

V ext(x) =
{−V0 (|x| < x0),

0 (otherwise)
(14)

is tested (V0 > 0). The analytical forms of the ground-state
wave function ψgs and energy Egs are unknown; thus, our val-
ues of the energy will be compared with the numerical calcu-
lation obtained by the orthodox method of Hamiltonian diag-
onalization. In this calculation, xmax = 20 and x0 = 1 is used.

Table II shows the summary of calculations. In general, all
the calculations give almost the correct energy. The calcula-
tion time per epoch and the number of epochs with respect to
the number of layers and units is slightly longer than the case
of the harmonic oscillator.

Figure 6 shows relative errors of the loss function, 〈H〉, to
the exact ground-state energy Egs as functions of the number
of epochs. It can be seen that, although the loss function
achieved the relative error of 1.0 × 10−7, the final accuracy
becomes about 1.0 × 10−2. Note that in this calculation, the
convergence criteria is needed to be set looser than the other
case; otherwise, it could not reach convergence. This may be
related to the shape of the potential: Asymptotic region of the
square-well potential is zero, while the harmonic oscillator
potential increases rapidly. It will be shown later that the
double-well potential, which is close to the latter situation,
reaches convergence with the tight criterion.

Figure 7 shows calculated wave functions. The red thick
lines correspond to the exact solution given by the exact diag-
onalization, where the same mesh size matrix form are used,
for comparison; thin lines correspond to the results given in
this work. It can be seen that the DNN calculation, basically,
reproduces the solutions given by the exact diagonalization.

C. One-dimensional many-particle systems

When one considers systems composed of many identical
particles, the symmetrization for bosonic systems or the an-
tisymmetrization for fermionic systems of the wave function
must be considered. The ground state of the bosonic system is
identical to that of the different particles; hence it has no extra
difficulty as was done in Ref. [58], while the antisymmetriza-
tion is rather difficult. In this section, a simple method of
(anti)symmetrization in the DNN wave function is provided,
in which the symmetrization and the antisymmetrization can
be performed with equal footing.

1. Hamiltonian matrix

As was done in the last section, the discretized Hamiltonian
H̃ should be represented in a matrix form and the discretized
wave function ψ̃ should be represented in a vector form.
Here, one-dimensional two-body systems are considered as an
example, and their coordinates are denoted by x and y. Each
direction is discretized with M meshes, i.e., in total M × M
meshes. Then, the discretized wave function ψ̃ is

ψ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ11

ψ12
...

ψ1(M−1)

ψ21

ψ22
...

ψ2(M−1)
...

ψ(M−1)1

ψ(M−1)2
...

ψ(M−1)(M−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)
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TABLE II. Calculation summary of an one-body problem under the square-well potential. Row with “—” in the column “# of unit for 2nd
layer” corresponds to calculation performed only with one layer.

# of Unit Energy

V0 1st Layer 2nd Layer Kinetic Potential Total # of Epochs Time per Epoch (µs)

0.5 4 — +0.109852 −0.337864 −0.228012 26 600 579.787
0.5 4 4 +0.109935 −0.338093 −0.228159 44 065 717.730
0.5 4 8 +0.109944 −0.338110 −0.228166 27 771 778.485
0.5 8 — +0.109852 −0.337876 −0.228024 21 802 619.806
0.5 8 4 +0.109962 −0.338088 −0.228126 37 964 776.147
0.5 8 8 +0.110009 −0.338173 −0.228164 36 410 856.319
0.5 8 16 +0.109968 −0.338119 −0.228151 69 731 968.769
0.5 16 — +0.109923 −0.338026 −0.228104 17 015 734.647
0.5 16 8 +0.109967 −0.338116 −0.228148 22 157 1005
0.5 16 16 +0.109983 −0.338146 −0.228163 32 462 1155
0.5 32 — +0.109847 −0.337872 −0.228025 24 879 921.208
0.5 32 16 +0.109976 −0.338136 −0.228160 34 549 1400

1.0 4 — +0.206715 −0.812787 −0.606072 35 062 572.641
1.0 4 4 +0.206882 −0.813194 −0.606312 24 588 720.511
1.0 4 8 +0.206896 −0.813222 −0.606326 21 877 787.156
1.0 8 — +0.206844 −0.813106 −0.606261 45 145 609.218
1.0 8 4 +0.206877 −0.813182 −0.606305 42 888 769.973
1.0 8 8 +0.207083 −0.813407 −0.606325 26 445 834.225
1.0 8 16 +0.206900 −0.813220 −0.606320 27 073 976.154
1.0 16 — +0.206848 −0.813109 −0.606261 41 642 735.100
1.0 16 8 +0.206907 −0.813235 −0.606328 19 472 1002
1.0 16 16 +0.206888 −0.813202 −0.606314 25 746 1155
1.0 32 — +0.206877 −0.813112 −0.606235 34 259 916.159
1.0 32 16 +0.206872 −0.813146 −0.606273 11 987 1410

5.0 4 — +0.521370 −4.821182 −4.299812 45 997 565.210
5.0 4 4 +0.521033 −4.823422 −4.302390 34 568 722.257
5.0 4 8 +0.520966 −4.823344 −4.302378 38 875 774.016
5.0 8 — +0.520887 −4.822751 −4.301865 32 216 610.063
5.0 8 4 +0.520913 −4.823243 −4.302329 17 236 766.967
5.0 8 8 +0.520972 −4.823484 −4.302512 23 526 829.876
5.0 8 16 +0.520893 −4.823451 −4.302558 22 945 971.763
5.0 16 — +0.520781 −4.822461 −4.301680 27 332 740.434
5.0 16 8 +0.521167 −4.823316 −4.302150 15 343 995.692
5.0 16 16 +0.520927 −4.823470 −4.302542 18 961 1151
5.0 32 — +0.520812 −4.822494 −4.301681 30 846 917.315
5.0 32 16 +0.520893 −4.823362 −4.302470 15 731 1413

10.0 4 — +0.663220 −9.846544 −9.183324 22 506 568.630
10.0 4 4 +0.659302 −9.847228 −9.187926 25 288 719.068
10.0 4 8 +0.659456 −9.846967 −9.187511 20 766 785.202
10.0 8 — +0.659267 −9.846237 −9.186970 34 537 610.037
10.0 8 4 +0.659308 −9.847178 −9.187871 23 178 762.927
10.0 8 8 +0.659146 −9.847090 −9.187944 29 346 822.300
10.0 8 16 +0.659161 −9.847202 −9.188041 23 407 978.041
10.0 16 — +0.659727 −9.846250 −9.186523 22 091 735.663
10.0 16 8 +0.659073 −9.846888 −9.187815 18 146 955.435
10.0 16 16 +0.659103 −9.847266 −9.188162 17 500 1153
10.0 32 — +0.659058 −9.846543 −9.187485 54 691 917.252
10.0 32 16 +0.659331 −9.846907 −9.187576 15 394 1396

where ψ jk = ψ (x j, yk ), x j = −xmax + h j, yk = −ymax + hk, and xmax = ymax. Accordingly, the discretized Hamiltonian H̃ reads

H̃ = − 1

2h2
T̃1 − 1

2h2
T̃2 + Ṽ 1

ext + Ṽ 2
ext + Ṽint, (16)
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FIG. 6. Relative error of 〈H〉 to the exact ground-state energy Egs for the square-well potential as functions of the number of epochs.

where T̃1 and T̃2 are the kinetic energy matrices

T̃1 = T ⊗ IM−1, (17a)

T̃2 = IM−1 ⊗ T, (17b)

Ṽ 1
ext and Ṽ 2

ext are the external potential matrices

Ṽ ext
1 = V ext ⊗ IM−1, (18a)

Ṽ ext
2 = IM−1 ⊗ V ext, (18b)

and Ṽint are the interaction matrix whose matrix elements are

(Ṽint )i+ j(M−1),k+l (M−1) =
{

1
2 [V int(xi, y j ) + V int(y j, xi )] = V int(xi, y j ) (for i = k, j = l),

0 (otherwise),
(19)

where IM−1 is the (M − 1) × (M − 1) identity matrix

IM−1 =

⎛
⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎞
⎟⎟⎠, (20)

and ⊗ is the Kronecker product. For instance, the matrix elements of Eqs. (17) read

(T̃1)i+ j(M−1),k+l (M−1) =

⎧⎪⎨
⎪⎩

−2 (for i = k, j = l),

1 (for i = k, j = l ± 1),

0 (otherwise),
(21a)

(T̃2)i+ j(M−1),k+l (M−1) =

⎧⎪⎨
⎪⎩

−2 (for i = k, j = l),

1 (for i = k ± 1, j = l),

0 (otherwise).
(21b)
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FIG. 7. Wave function under the square-well potential. The red thick line corresponds to the exact solution obtained by the exact
diagonalization, while thin lines correspond to results of DNN calculation. Different thin line corresponds to different number of units. Almost
all lines overlap with each other.

2. Symmetrization and antisymmetrization

The discretized wave function ψ̃ should be symmetrized or antisymmetrized. In general, for the arbitrary function f (x, y),
f (x, y) + f (y, x) is a symmetrized function and f (x, y) − f (y, x) is an antisymmetrized function.

To perform (anti)symmetrization in TENSORFLOW, instead of the simple ψ̃ ,

ψ̃± =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ11

ψ12
...

ψ1(M−1)

ψ21

ψ22
...

ψ2(M−1)
...

ψ(M−1)1

ψ(M−1)2
...

ψ(M−1)(M−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

±

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ11

ψ21
...

ψ(M−1)1

ψ12

ψ22
...

ψ(M−1)2
...

ψ1(M−1)

ψ2(M−1)
...

ψ(M−1)(M−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(22)

is assumed to be a trial wave function. In the TENSORFLOW code, instead of the original predicts and output_wf, ψ̃± is used
in the third (the calculation process of the loss function) and fifth (calculate the ground-state energy) steps in Sec. II A. Note that
this process can be easily done by using the following commands:

(1) predicts_transpose = tf.reshape(predicts, [m, m]),
(2) predicts_transpose = tf.transpose(predicts_transpose),

033189-9



NAITO, NAITO, AND HASHIMOTO PHYSICAL REVIEW RESEARCH 5, 033189 (2023)

FIG. 8. Two-body wave function under the harmonic oscillator potential for bosonic systems. The exact wave function without the
interaction is shown in the left-most column.

(3) predicts_transpose = tf.reshape(predicts_transpose, [m**2, 1]),
(4) predicts = tf.add(predicts, predicts_transpose) for bosonic systems or predicts =

tf.subtract(predicts, predicts_transpose) for fermionic systems,
(5) the final predicts is used to evaluate the loss function.

Here, m corresponds to the number of meshes M. Note that
this method can be straightforwardly extended to multibody
systems.

3. Two-body systems

Two-body systems under the harmonic oscillator potential
[Eq. (8)] is tested. If there is no interaction V int ≡ 0, the
ground-state wave function ψgs and energy Egs are known
exactly. If one considers bosonic systems, they read

ψgs(x, y) =
√

ω

π
exp

[
−ω(x2 + y2)

2

]
, (23a)

Egs = ω, (23b)

and if one considers the fermionic systems, they read

ψgs(x, y) = ω√
π

(x − y) exp

[
−ω(x2 + y2)

2

]
, (24a)

Egs = 2ω. (24b)

Figures 8 and 9, respectively, show wave functions for
bosonic and fermionic systems obtained in this work. The
total energies and the calculation time are shown in Ta-
ble III. For comparison, the exact wave functions [Eq. (23a)
or Eq. (24a)] are also shown. Here, xmax = ymax = 5 and
Mx = My = 256 are used for the spatial mesh and two layers
each of which contains 32 units are used for the DNN. For the
interaction, the Gaussian-type interaction

V int(x, y) = λ exp(−(x − y)2) (25)

is used, where λ is the strength of the interaction. The DNN
results with λ = 0 show a good agreement with the exact
results, demonstrating that the DNN technique works well.

Behavior of wave functions for nonzero λ is consistent
qualitatively with our expectation: If λ is negative, i.e., the
interaction is attractive, the wave function tends to collapse;
if λ is positive, i.e., the interaction is repulsive, the wave
function tends to be broad. Time cost per epoch is almost
universal among all the calculation, while more epochs are
required to reach convergence for fermionic systems than for
bosonic systems. This may be because all the values are pos-
itive for the initial condition, while there are negative values
for fermionic ground-state wave functions. More epochs are
required for the repulsive interaction (λ > 0) than for the at-
tractive interaction (λ < 0). This may be because the topology
of the wave function is more complicated and extended in the
repulsive case than the attractive case.

Finally, we point out a strange behavior of the obtained
wave function of the two-body system of ω = 1.0 without the
interaction. Here, for simplicity, the two-layer DNN in which
each layer is composed of four units is used. In the case of two
layers, the function obtained by optimized weights of DNN is

ugs(x, y) = Asoftplus

⎛
⎝Nunit∑

j=1

w2 ju2 j (x, y) + b2

⎞
⎠, (26a)

u2 j (x, y) = softplus

(
Nunit∑
k=1

w1 jku1k (x, y) + b1 j

)
, (26b)

u1k (x, y) = softplus(w0k0x + w0k1y + b0k ), (26c)
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FIG. 9. Same as Fig. 8 but for fermionic systems.

TABLE III. Calculation summary of a two-body problem under the harmonic oscillator potential.

Particles ω λ Energy # of Epochs Time per Epoch (ms)

Boson 1.0 −1.00 −89.869381 8 490 23.583
Boson 1.0 −0.25 −19.848949 3 595 23.618
Boson 1.0 +0.00 +0.999927 27 242 23.424
Boson 1.0 +0.25 +3.298725 20 040 23.529
Boson 1.0 +1.00 +3.835173 21 763 23.677

Boson 5.0 −1.00 −87.554311 10 194 23.573
Boson 5.0 −0.25 −17.203647 10 893 23.712
Boson 5.0 +0.00 +4.997829 24 477 23.648
Boson 5.0 +0.25 +21.149827 20 721 23.797
Boson 5.0 +1.00 +31.804917 21 718 23.591

Boson 10.0 −1.00 −84.129658 18 635 23.566
Boson 10.0 −0.25 −13.118213 24 380 23.601
Boson 10.0 +0.00 +9.991009 27 489 23.692
Boson 10.0 +0.25 +32.287424 23 810 23.816
Boson 10.0 +1.00 +72.688350 19 591 23.601

Fermion 1.0 −1.00 −71.409493 18 794 23.928
Fermion 1.0 −0.25 −11.369632 17 999 23.818
Fermion 1.0 +0.00 +1.999931 19 215 23.843
Fermion 1.0 +0.25 +3.298786 25 187 23.804
Fermion 1.0 +1.00 +3.839178 106 163 24.136

Fermion 5.0 −1.00 −68.409494 18 558 23.731
Fermion 5.0 −0.25 −7.207718 19 618 23.787
Fermion 5.0 +0.00 +9.995902 75 208 23.841
Fermion 5.0 +0.25 +21.385884 51 691 23.607
Fermion 5.0 +1.00 +31.804915 27 885 23.799

Fermion 10.0 −1.00 −63.026667 26 603 23.894
Fermion 10.0 −0.25 +0.302312 21 783 23.805
Fermion 10.0 +0.00 +19.975414 10 135 23.741
Fermion 10.0 +0.25 +38.060907 79 973 24.054
Fermion 10.0 +1.00 +73.245097 59 289 23.972

033189-11



NAITO, NAITO, AND HASHIMOTO PHYSICAL REVIEW RESEARCH 5, 033189 (2023)

FIG. 10. DNN wave function of the raw [ugs in Eq. (26a)], the symmetrized, and the antisymmetrized wave functions. The rows named
“Boson” and “Fermion,” respectively, correspond to the results obtained by minimizing the bosonic or fermionic energy expectation value.

where A is the normalization constant, Nunit is the number of
units of each layer, w is a weight, and b is a bias. The left
column of Fig. 10 shows ugs(x, y). The upper and lower rows,
respectively, correspond to the results with minimizing the
bosonic or fermionic energy expectation value. It is shown
that the obtained function ugs, which is referred to as the raw
wave function, is not symmetric nor antisymmetric. After the
symmetrization ψsym(x, y) = [ugs(x, y) + ugs(y, x)]/Asym

or the antisymmetrization ψantisym(x, y) = [ugs(x, y) −
ugs(y, x)]/Aantisym is performed with the normalization
constant Asym or Aantisym, ψsym or ψantisym can be regarded
as the bosonic or fermionic ground-state wave function,
respectively. The energy expectation value of the raw (ugs), the
symmetrized (ψsym), and the antisymmetrized (ψantisym) wave
functions are shown in Table IV. A surprising fact is that even
if the raw wave function is obtained by minimizing the bosonic
(fermionic) expectation value, fermionic (bosonic) energy
expectation value is close to the correct fermionic (bosonic)
energy eigenvalue, and vice versa. The (anti)symmetrization
corresponds to the projection of the raw wave function to the
boson (fermion) subspace, while the remaining part is not
supposed to be optimized well. This unexpected coincidence
may be due to the smallness of the number of parameters in
the DNN architecture, and deserves further study.

4. Three-body systems

Three-body systems under the harmonic oscillator poten-
tial [Eq. (8)] is tested. For simplicity, we consider a system

TABLE IV. Energy expectation value of the raw [ugs in
Eq. (26a)], the symmetrized, and the antisymmetrized wave func-
tions. The rows named “Boson” and “Fermion,” respectively,
correspond to the results obtained by minimizing the bosonic or
fermionic energy expectation value.

Raw Symmetrized Antisymmetrized

Boson 1.13190 1.00012 2.05195
Fermion 1.13628 1.08235 2.00056

without any interaction V int ≡ 0. Then, the ground-state wave
function ψgs and energy Egs are known exactly as

ψgs(x, y, z) =
(ω

π

)3/4
exp

[
−ω(x2 + y2 + z2)

2

]
, (27a)

Egs = 3

2
ω, (27b)

for bosonic systems and

ψgs(x, y, z) =
(ω

π

)3/4
√

ω

6
[(x − y)(1 − 2ωz2)

+ (y − z)(1 − 2ωx2) + (z − x)(1 − 2ωy2)]

× exp

[
−ω(x2 + y2 + z2)

2

]
, (28a)

Egs = 9

2
ω (28b)

for fermionic systems.
Figures 11 and 12, respectively, show wave functions

for bosonic and fermionic systems obtained by this work.
The total energies and the calculation time are shown in
Table V. Here, xmax = ymax = zmax = 5 and Mx = My =
Mz = 64 are used for the spatial mesh and two layers each of

FIG. 11. (Left) Three-body wave function under the harmonic
oscillator potential without interparticle interaction for bosonic sys-
tems. (Right) Slice of the three-body wave function at the plane
x + y + z = 0.
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FIG. 12. Same as Fig. 11 but for fermionic systems.

which contains 32 units are used for the DNN. The interaction
is not considered.

The DNN calculations reproduce the exact ground-state
energies. The DNN wave functions are consistent with the
exact solution. The number of epochs for three-body systems
is comparable with those for two-body systems, where the
number of units and layers are identical for these two cases.
In contrast, the time per epoch for the three-body systems are
about four times of that for the two-body systems. This is
related to the number of spatial meshes: 256 × 256 = 65 536
meshes are used for the two-body systems and 64 × 64 ×
64 = 262 144 meshes are used for the three-body systems;
thus, the number of meshes for the three-body systems are
four times more than those for the two-body systems. Hence,
it can be concluded that the time per epoch is almost pro-
portional to the number of spatial meshes. This is reasonable
since we use numerical methods for sparse matrices, in which
the number of the nonzero matrix elements is O(MNd ).

III. EXCITED-STATE CALCULATION

In this section, based on the variational principle, a method
to calculate low-lying excited states sequentially is explained.
Assume that wave functions of the ground state and n excited
states, |ψ0〉, |ψ1〉, ..., |ψn〉, are obtained, where |ψ0〉 = |ψgs〉.
We consider a problem of finding the (n + 1)th excited state
|ψn+1〉, which satisfies the orthnormal condition

〈ψ j |ψn+1〉 = δ j,n+1, (29)

by using a trial wave function |ψ〉. The (n + 1)th wave func-
tion can be obtained with minimizing the expectation value

〈H〉 = 〈ψ |H |ψ〉
〈ψ |ψ〉 , (30)

where |ψ〉 is assumed to be orthogonal to |ψ j〉 ( j = 0,
1, ..., n). This can be implemented in TENSORFLOW with

TABLE V. Calculation summary of a three-body problem under
the harmonic oscillator potential. Calculation is performed with ω =
1.0.

Particles Energy # of Epochs Time per Epoch (ms)

Boson +1.497880 20 183 101.216
Fermion +4.486830 22 770 98.356

assuming that

|ψ〉 −
n∑

j=0

〈ψ j |ψ〉|ψ j〉 (31)

is a trial wave function, instead of the simple |ψ〉. For one-
body problem, xmax = 5 and M = 1024 are used for the spatial
mesh and the single-layer DNN with eight units is adopted.

A. Harmonic oscillator potential

One-body one-dimensional harmonic oscillators are taken
as examples. The exact wave functions for several low-lying
excited states are [41]

ψ0(x) =
(ω

π

)1/4
exp

(
−ωx2

2

)
, (32a)

ψ1(x) =
(ω

π

)1/4√
2ωx exp

(
−ωx2

2

)
, (32b)

ψ2(x) =
(ω

π

)1/4 2ωx2 − 1√
2

exp

(
−ωx2

2

)
, (32c)

ψ3(x) =
(ω

π

)1/4
√

ω

3
(2ωx2 − 3)x exp

(
−ωx2

2

)
, (32d)

ψ4(x) =
(ω

π

)1/4 4ω2x4 − 12ωx2 + 3

2
√

6
exp

(
−ωx2

2

)
, (32e)

where ψn is the nth excited state, and the energies are

En = (
n + 1

2

)
ω. (33)

Figure 13 shows the wave functions of the ground state
and first, second, third, and fourth excited states. Table VI
shows the summary of calculations. Basically, not only the
ground-state but also low-lying excited-states wave functions
and energies are successfully calculated. Thus, it can be con-
cluded that the method to calculate low-lying excited states
proposed here works well.

The number of epochs are almost universal for all states
calculated here. In contrast, the time per epoch for a higher
excited state is slightly longer since calculation for orthogonal
condition [Eq. (31)] is needed to be performed, while it takes
just a few µs.

Let us explain why our simple DNN can describe even the
excited states correctly. For simplicity, the single-layer DNN
with the four unit is used. The optimized raw wave functions
for the ground state (ugs) and the first (u1st) and the second
(u2nd) excited states are shown in Fig. 14. The optimized raw
wave function for the nth excited state is

unth(x) =
n∑

j=0

a jψnth(x), (34)

with
∑n

j=0 |a j |2 = 1, where ψnth is the nth excited-state wave
function. In the case of the first and second excited states,

u1st(x) = 0.981758ψ0th(x) + 0.190136ψ1st(x), (35a)

u2nd(x) = 0.969707ψ0th(x) − 0.0445505ψ1st(x)

+ 0.240173ψ2nd(x) (35b)
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FIG. 13. Wave functions of the ground and low-lying excited
states under the harmonic oscillator potential. The top panel shows
the exact wave functions and the bottom one shows the DNN wave
functions. To make consistency for the phase factor, −ψ3(x) is plot-
ted for the exact wave function of the third excited state.

are obtained. We notice that the most part of the obtained
raw wave function is the ground state and the small fraction
is for the excited components; hence, the fairly simple raw
wave function, which is made by the small architecture of the
DNN and is close to that of the ground-state wave function, is
capable of describing even the excited states.

TABLE VI. Calculation summary of excited states for a one-
body problem under the harmonic oscillator potential. Calculation
is performed with ω = 1.0.

State Energy Epochs Time per Epoch (µs)

0th +0.499998 23 419 516.238
1st +1.499991 25 646 519.026
2nd +2.499986 23 157 527.849
3rd +3.500193 37 880 534.115
4th +4.500201 19 101 542.224

FIG. 14. Optimized raw wave function u obtained by the DNN
for the ground-state (0th) and the first and the second excited states.

B. Double-well potential

To see the effect of degeneracy, we also test the double-well
potential

V ext(x) = (x2 − α2)2. (36)

If the central barrier is low enough, i.e., α is small enough,
each state is not degenerate. In contrast, if the central barrier is
high, i.e., α is large, low-lying excited states below the central
barrier are twofold degenerate: One state ψL is localized into
the left (x < 0) region while the other state ψR is localized into
the right (x > 0) region, and ψL(x) = ψR(−x) holds. Using
a linear combination of these two degenerate states, one can
recognize each state is degenerate of the following two states:
ψ±(x) = [ψL(x) ± ψR(x)]/

√
2, where ψ+ (ψ−) is a positive

(negative) parity state. According to the exact diagonalization,
α = 1.0 and 1.25 give nondegenerate ground and low-lying
excited states and thus ψ j is just a jth excited state, while α =
2.0 and 3.0 give ground and low-lying excited states, which
are almost twofold degenerate: ψ0 and ψ1 correspond to the
ground states and ψ2 and ψ3 correspond to the first excited
states.

Figures 15 and 16 shows the wave functions of the ground
state and first, second, third, and fourth excited states. Ta-
ble VII shows the summary of calculations. Basically, not
only the ground-state but also low-lying excited-states wave
functions and energies are successfully calculated, even for
the degenerate states. It is not apparent which calculation
gives left-right bases (ψL and ψR), parity bases (ψ+ and ψ−),
or even general linear combinations. The DNN calculations
for both α = 2.0 and 3.0 obtained wave functions with the
left-right bases, while it may depend on the initial condition.
Note that the exact diagonalization for α = 2.0 obtained wave
functions with the parity bases, while wave functions with
the left-right bases are plotted by using linear combinations
in Fig. 16 to make a comparison with the DNN result easily.

C. Two-body systems

Two-body one-dimensional harmonic oscillators are taken
as the last examples. Here, xmax = ymax = 5 and Mx = My =
256 are used for the spatial mesh and two layers each of which
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FIG. 15. Wave functions of the ground and low-lying excited states under the double-well potential for α = 1.0 and 1.25. The top panels
show the exact wave functions and the bottom ones show the DNN wave functions.

FIG. 16. Same as Fig. 15 but for α = 2.0 and 3.0.
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TABLE VII. Calculation summary of a one-body problem under the double-well potential.

Energy

α j Exact diagonalization Deep neural network Epochs Time per Epoch (µs)

1.0 0 +0.869573 +0.869706 29 108 513.203
1.0 1 +1.661393 +1.661685 35 596 523.556
1.0 2 +3.543667 +3.544327 55 037 524.351
1.0 3 +5.665058 +5.666010 20 083 536.858

1.25 0 +1.417858 +1.417886 30 284 512.083
1.25 1 +1.725904 +1.726013 36 992 523.092
1.25 2 +3.717933 +3.717949 30 943 528.675
1.25 3 +5.424725 +5.424850 24 474 534.907

2.0 0 +2.762317 +2.762333 23 663 519.261
2.0 1 +2.762333 +2.762343 24 764 529.129
2.0 2 +7.988520 +7.989654 19 491 532.193
2.0 3 +7.990618 +7.989601 18 662 534.543

3.0 0 +4.214229 +4.214253 20 526 515.042
3.0 1 +4.214229 +4.214284 20 290 521.291
3.0 2 +12.526202 +12.526214 51 131 519.062
3.0 3 +12.526202 +12.526278 12 488 534.752

contains 32 units are used for the DNN. Here, the interparticle
interaction is not considered. The exact wave functions for
several low-lying excited states can be written as linear com-
binations of Eqs. (32):

�0(x, y) = ψ0(x)ψ0(y), (37a)

�1(x, y) = 1√
2

[ψ0(x)ψ1(y) + ψ1(x)ψ0(y)], (37b)

�2(x, y) = 1√
2

[ψ0(x)ψ2(y) + ψ2(x)ψ0(y)], (37c)

�3(x, y) = ψ1(x)ψ1(y), (37d)

where the energy eigenvalue of �0, �1, �2, and �3 are equal
to, respectively, 1, 2, 3, and 3 for bosonic systems and

�0(x, y) = 1√
2

∣∣∣∣∣ψ0(x) ψ1(x)

ψ0(y) ψ1(y)

∣∣∣∣∣, (38a)

�1(x, y) = 1√
2

∣∣∣∣∣ψ0(x) ψ2(x)

ψ0(y) ψ2(y)

∣∣∣∣∣, (38b)

�2(x, y) = 1√
2

∣∣∣∣∣ψ0(x) ψ3(x)

ψ0(y) ψ3(y)

∣∣∣∣∣, (38c)

�3(x, y) = 1√
2

∣∣∣∣∣ψ1(x) ψ2(x)

ψ1(y) ψ2(y)

∣∣∣∣∣, (38d)

FIG. 17. Two-body wave function for the ground and low-lying excited states under the harmonic oscillator potential without the interaction
for bosonic systems. The exact wave function is shown in the top row.
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FIG. 18. Same as Fig. 17 but for fermionic systems.

where the energy eigenvalue of �0, �1, �2, and �3 are equal
to, respectively, 2, 3, 4, and 4 for fermionic systems. Note that
the second excited states, �2 and �3, are twofold degenerate
in both the bosonic and fermionic systems.

Figures 17 and 18, respectively, show the wave functions of
the ground state and first and second excited states. Table VIII
shows the summary of calculations. Note that [�2(x, y) ±
�3(x, y)]/

√
2 are plotted for the second excited states for

exact solutions. Not only the ground-state but also low-lying
excited-states wave functions and energies are successfully
calculated even for two-body systems. In addition, as one-
body problems, the numerical cost for a low-lying excited
state is almost the same as that for the ground state. Thus, this
method to calculate low-lying excited states can work even for
multibody systems with a reasonable numerical cost.

IV. SUMMARY

In this paper, we proposed a method to calculate the wave
functions and energies of not only the ground state but also
low-lying excited states of quantum multibody systems using
the deep neural network and the unsupervised machine learn-
ing technique. To calculate systems of many-particle systems
of identical particles, a simple method of symmetrization for

TABLE VIII. Calculation summary of excited states for a two-
body problem under the harmonic oscillator potential. Calculation is
performed with ω = 1.0.

Particles State Energy Epochs Time per Epoch (ms)

Boson 0th +0.999935 26 197 23.859
Boson 1st +1.999778 26 224 24.228
Boson 2nd (1) +2.999801 19 204 24.502
Boson 2nd (2) +3.000229 15 239 25.450

Fermion 0th +1.999855 38 500 23.844
Fermion 1st +2.999771 29 552 24.205
Fermion 2nd (1) +3.999251 28 197 24.674
Fermion 2nd (2) +4.004341 11 871 25.772

bosonic systems and antisymmetrization for fermionic sys-
tems were also proposed.

The obtained wave functions and energies are consistent
with the exact solution. We found that the neural network
is not necessarily large for one-body systems, which also
enables us to analyze the internal structure of the deep neu-
ral network used. For instance, just only one hidden layer
with four units is enough to describe the ground-state wave
function of the harmonic oscillator. This can be understood
by using the piecewise approximation with linear functions.
We confirmed that our simple (anti)symmetrization method
works for multibody systems. The numerical cost per epoch
for fermionic systems is almost the same as that for bosonic
systems. The numerical cost is almost proportional to the
number of spatial meshes since the sparse matrix representa-
tion is used. In addition, the numerical cost for a low-lying
excited state is almost the same as that for the ground
state.

The deep neural network has been applied to solve many-
fermion systems where the ground-state wave function is
assumed to be a Jastrow wave function [46,47,57]. The
method proposed in this paper can be an alternative method
to solve many-fermionic systems since the ansatz for the
ground-state wave function is lenient, and the symmetrization
and antisymmetrization are treated on an equal footing.

Since the numerical cost is not so large and our
(anti)symmetrization is quite simple, this method can be an
alternative method to calculate wave functions and energies of
the ground and low-lying excited states, for instance, for the
electronic structure of molecules and solids, for the nuclear
structure of atomic nuclei including a tetra neutron [66–68],
and for cold atoms [69].

At this moment, we only considered one-dimensional sys-
tems, while most problems interested are three-dimensional
systems. In addition, spin components, or even isospin
components for nuclear systems, are often important. The
restricted Boltzmann machine has been applied to obtain
the ground- and low-lying excited-states wave functions
[45,70,71]. Since the input is discrete variables in the spin
systems, the Boltzmann machine is suitable. Such pioneering
works may help to consider the spin (or isospin) components
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in this work. Such extensions are possible within our frame-
work, and remain for future work.

As far as we know, all the calculations using the deep
neural network for wave functions are static, while describing
many phenomena including the interaction between matter
and laser [72,73], ion-cluster collision [74], heavy-ion colli-
sion [75], nuclear fission [76,77], and fusion [78]. To describe
such phenomena, time evolution from a state obtained by the
deep neural network is also interesting, while it is left for a
future study.

Finally, let us make a comment on the interpretation of
the wave functions obtained in our work. As we have shown,
thanks to the simplicity of the deep neural network, we could
interpret the structure of the network easily. We found that
replacing the softmax function with the ReLU activation pro-
vides a piecewise linear function which approximates the
ground-state wave function. Since any wave function includ-
ing those for excited states, which is naturally continuous, can
be approximated by a piecewise-linear function, we intuitively
conclude that the neural network representation can work for
any physical quantum mechanical system in any dimensions.
The physical meaning of the piecewise-linear functions is
as follows. First of all, linear functions are solutions of the
free Schrödinger equation with no potential term. So it is a
good idea to start with linear functions in physical systems.
Then the inclusion of the potential term in the Hamiltonian
causes the curvature of the wave function. The curvature is
determined by the interplay between the Laplacian and the
potential term in the Hamiltonian. So, the kink structure of
the wave function is dictated by the Hamiltonian. The kinks
correspond to the ReLU activations, thus in effect, the nonlin-

earity in the Hamiltonian corresponds to the neural network
structure. This reminds us of the work [79] in which the
deep layers of the deep Boltzmann machine representing the
ground-state wave functions of spin systems were interpreted
as a Euclidean Hamiltonian evolution, or the work [80–82]
in which the deep layers of the sparse neural network used
for the AdS/CFT correspondence were interpreted as a bulk
curved geometry. Further interplay between the sparsity of the
interpretable neural networks and Hamiltonians of physical
systems is to be discovered.
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