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Sparse Bayesian Inference on
Gamma-Distributed Observations Using
Shape-Scale Inverse-Gamma Mixtures∗

Yasuyuki Hamura†, Takahiro Onizuka‡, Shintaro Hashimoto§ and Shonosuke
Sugasawa¶

Abstract. In various applications, we deal with high-dimensional positive-valued
data that often exhibits sparsity. This paper develops a new class of continuous
global-local shrinkage priors tailored to analyzing gamma-distributed observations
where most of the underlying means are concentrated around a certain value.
Unlike existing shrinkage priors, our new prior is a shape-scale mixture of inverse-
gamma distributions, which has a desirable interpretation of the form of posterior
mean and admits flexible shrinkage. We show that the proposed prior has two
desirable theoretical properties; Kullback-Leibler super-efficiency under sparsity
and robust shrinkage rules for large observations. We propose an efficient sampling
algorithm for posterior inference. The performance of the proposed method is
illustrated through simulation and two real data examples, the average length of
hospital stay for COVID-19 in South Korea and adaptive variance estimation of
gene expression data.

Keywords: gamma distribution, Kullback-Leibler super-efficiency, Markov chain
Monte Carlo, tail-robustness.

1 Introduction
In various statistical applications, we often face a sequence of positive-valued obser-
vations such as machine failure time, store waiting time, survival time under a certain
disease, an income of a certain group, and so on. A common feature of the data is “spar-
sity” in the sense that most of the underlying means of observations are concentrated
around a certain value (grand mean) while a small part of the means is significantly
away from the grand mean. To reflect the sparsity structure, a useful Bayesian technique
is an idea of “global-local shrinkage” (e.g. Polson and Scott, 2012) that provides adap-
tive and flexible shrinkage estimation of underlying means; when the observations are
around the grand mean, the posterior mean strongly shrinks the observation toward the
grand mean, but the observations that are away from the grand mean remain unshrunk.

This paper proposes a new framework for sparse Bayesian inference on a sequence
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of positive-valued observations by using gamma sampling distributions for observations
and develops a novel class of global-local shrinkage priors for positive-valued heteroge-
neous mean parameters based on shape-scale mixtures of inverse-gamma distributions.
Specifically, we introduce a scaled beta (SB) distribution and its extension called inverse
rescaled beta (IRB) distribution as mixing distributions in the shape-scale mixture. We
discuss distributional properties, tail decay rate, and concentration around the origin
of the proposed priors and develop an efficient sampling scheme from the posterior
distribution. Moreover, we reveal two theoretical properties of the proposed prior, tail-
robustness for large means and Kullback-Leibler supper-efficiency under sparsity.

There are several works on shrinkage inference of a sequence of positive-valued
data. Under the gamma sampling model (as in our proposal), simultaneous estima-
tion for rate/scale parameters was considered by several authors decades ago (e.g.,
Berger, 1980; Ghosh and Parsian, 1980; DasGupta, 1986; Dey et al., 1987). However,
the classical framework does not take into account sparsity and provides only universal
shrinkage regardless of the observed values. To address the sparsity in positive-valued
data, Donoho and Jin (2006) proposed a threshold-type estimator with the false dis-
covery rate control, but the sampling model is an exponential distribution (a special
case of gamma distribution). Therefore, its applicability is quite limited. Recently, Lu
and Stephens (2016) proposed an empirical Bayes shrinkage method customized for
variance estimation using a χ2-distribution (a special case of gamma distribution) for
the observed sampling variance and a finite mixture of inverse-gamma priors for the
true variance. More recently, Kwon and Zhao (2022) also proposed a novel formulation
called F-modeling for variance shrinkage estimator in terms of nonparametric empiri-
cal Bayes. However, this approach does not address sparsity, and no theoretical results
are discussed. More importantly, the existing methods only produce point estimates of
the underlying means. In contrast, the proposed method can obtain full information on
posterior distributions, enabling us to carry out uncertainty quantification.

In Bayesian analysis, the methodology and application of “global-local shrinkage
priors” have been developed last decades. Under Gaussian sequence or normal linear
regression models, there have been a variety of shrinkage priors including the most fa-
mous horseshoe (Carvalho et al., 2010) prior and its related priors (e.g. Armagan et al.,
2013; Bhadra et al., 2017; Bhattacharya et al., 2015; Hamura et al., 2020; Zhang et al.,
2020). Such prior is known to have an attractive shrinkage property, making it possi-
ble to strongly shrink small observations toward zero while keeping large observations
unshrunk. Recently, techniques of global-local shrinkage priors for Gaussian data are
extended to the (quasi-)sparse count data (e.g. Datta and Dunson, 2016; Hamura et al.,
2022b). Although several theoretical properties (e.g., Kullback-Leibler supper-efficiency
and tail-robustness) have been revealed under the Gaussian and Poisson sampling dis-
tributions, theoretical properties of global-local shrinkage under the gamma sampling
model are not fully discussed. Furthermore, the theoretical development of the proposed
prior requires substantial work due to the form of shape-scale mixtures that are rather
different from the existing global-local shrinkage priors. To fill the gap, we contribute
to the theoretical development of global-local shrinkage by showing Kullback-Leibler
supper-efficiency and tail-robustness under the gamma sampling model.
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The remainder of the paper is structured as follows. In Section 2, we introduce set-
tings and our hierarchical model, and we propose a global-local shrinkage prior based
on a kind of beta distribution. Furthermore, we illustrate the properties of the marginal
prior and posterior distributions for λi, and also discuss the selection of hyperparame-
ters of the proposed priors. An efficient posterior computation algorithm is constructed
via the Markov chain Monte Carlo method. In Section 3, we show two theoretical prop-
erties of the proposed priors. The performance of the proposed method is demonstrated
through numerical studies in Section 4, and we apply the method to two real datasets
related to the average length of hospital stay for COVID-19 in South Korea and variance
estimation of gene expression data in Section 5. Proofs and technical details are given in
the Supplementary Material (Hamura et al., 2022). R code implementing the proposed
methods is available at Github repository (https://github.com/sshonosuke/GLSP-
gamma/).

2 Sparse Bayesian inference on gamma-distributed
observations

2.1 Settings and models
Suppose we observe a sequence of gamma-distributed observations, denoted by y1, . . . , yn.
For each i = 1, . . . , n, we assume the following gamma model yi:

yi | λi ∼ Ga
(
δi,

δi
λiηi

)
, (2.1)

where Ga(α, β) denotes a gamma distribution with shape parameter α and rate pa-
rameter β, δi is a fixed constant, and λi is a parameter of interest. Under the model,
E(yi) = λiηi and ηi is a structural component that may be modeled to incorporate
covariates and other external information (e.g., spatial information). In what follows,
we assume ηi = 1 for simplicity, under which λi is interpreted as the mean of yi, but all
the computation algorithms and analytical results are valid for the general form of ηi as
long as ηi is conditioned on. As considered in Lu and Stephens (2016), if yi and λi are
sampling and true variances, respectively, the choice is δi = ni/2, where ni is a sample
size used to compute yi. Moreover, if yi is a sample mean based on ni samples generated
from an exponential distribution Exp(1/λi), it holds that δi = ni, and it reduces the
framework of a sequence of exponential data when ni = 1, considered in Donoho and
Jin (2006). In the present framework, our interest lies in the simultaneous estimation
of the sequence of positive-valued means λ = (λ1, . . . , λn) by combining information
of a given set of data y = (y1, . . . , yn). In particular, we focus on the structure that
most observations are located around the grand mean while some observations are very
large. To carry out flexible Bayesian inference even under this situation, we employ an
idea of global-local shrinkage that can provide customized shrinkage estimation of λi

depending on the location of the observed value yi.

Specifically, we consider the following prior distribution for λi:

λi | ui ∼ IG(1 + τui, βτui), i = 1, . . . , n, (2.2)

https://github.com/sshonosuke/GLSP-gamma/
https://github.com/sshonosuke/GLSP-gamma/
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where β and τ are unknown global parameters and ui is a local parameter related
to the customized shrinkage rule. The prior mean of λi is E(λi) = β so that β is
interpreted as a grand mean of underlying heterogeneous means. On the other hand,
since Var(λi) = β2/(τui − 1) as long as τui > 1, τ and ui control the scale of the prior.
Unusual parametrization of (2.2) is the dependence of both shape and scale parameters
on the local parameter ui so that setting a mixing distribution for ui leads to a class of
shape-scale mixtures of inverse-gamma distributions. However, this parametrization is
essential to interpret the form of posterior means of λi.

Under the inverse-gamma prior (2.2), the conditional posterior distributing of λi

given ui is IG(1 + δi + τui, δiyi + βτui), so that the posterior mean of λi is given by

E(λi | yi) = E

(
δiyi + βτui

δi + τui
| yi

)
= β + {1 −E(κi | yi)} (yi − β),

where κi = τui/(δi + τui) ∈ (0, 1) is known as shrinkage factor that determines the
amount of shrinkage of yi toward the grand mean β. As desirable properties of κi,
E(κi | yi) should be close to 1 when yi is close to the grand mean, leading to strong
shrinkage toward β, while E(κi | yi) should be sufficiently small for yi having large
yi−β to prevent bias caused by over-shrinkage. We also note that the global parameter
τ determines the overall shrinkage effect, whereas the local parameter ui allows κi to
vary over different observations.

2.2 Global-local shrinkage priors
Our hierarchical model can be expressed as

yi | λi ∼ Ga
(
δi,

δi
λi

)
, λi | ui ∼ IG(1 + τui, βτui), ui ∼ π(·),

where priors for β and τ are discussed at the end of this subsection. For the local
parameter ui, we suggest two prior distributions. The first one is the scaled beta (SB)
prior

πSB(ui) = 1
B(a, b)

ui
a−1

(1 + ui)a+b
,

where a, b > 0 are hyperparameters and B(a, b) is the beta function. The SB distribution
is also known as the beta prime distribution (e.g. Johnson et al., 1995), and the related
family of distributions has been often used in Bayesian statistics (e.g. Pérez et al., 2017;
Hamura et al., 2021), especially in the context of shrinkage priors. As an alternative
prior, we newly propose the inverse rescaled beta (IRB) prior

πIRB(ui) = 1
B(b, a)

1
ui(1 + ui)

{log(1 + 1/ui)}b−1

{1 + log(1 + 1/ui)}b+a
.

Note that the IRB prior for ui is equivalent to using the rescaled beta prior (Hamura
et al., 2021) for 1/ui.

Here, we summarize basic properties of πSB(ui) and πIRB(ui) under ui → 0 and
ui → ∞. As is well known, the SB prior has the following properties.
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• Concentration at the origin. As ui → 0, we have πSB(ui) ∝ ui
a−1. In particular,

πSB(κi) → ∞ as κi → 0 if and only if a < 1.

• Tail decay. As ui → ∞, we have πSB(ui) ∝ ui
−1−b. In particular, πSB(κi) → ∞

as κi → 1 if and only if b < 1.

Meanwhile, ignoring log factors, we see that πIRB(ui) has the following properties:

• Concentration at the origin. As ui → 0, we have πIRB(ui) ≈ ui
−1. In particular,

πIRB(κi) ≈ κi
−1 → ∞ as κi → 0 whatever the value of a > 0 is. This is in contrast

to the case of the SB prior.

• Tail decay. As ui → ∞, we have πIRB(ui) ∝ ui
−1−b. In particular, πIRB(κi) → ∞

as κi → 1 if and only if b < 1. This is exactly as in the case of the SB prior.

In the context of existing global-local shrinkage priors, the concentration at both
κi = 0 and κi = 1 is closely related to the properties of shrinkage and tail robustness
of the marginal prior of the parameter of interest (e.g. Carvalho et al., 2010; Datta and
Dunson, 2016). However, as shown in the subsequent section, the concentration at κi = 0
leads to unnecessary shrinkage toward the origin in our framework, possibly because
the local parameter depends not only on scale but also on shape unlike the existing
formulation of global-local shrinkage. Hence, we should not pursue the concentration
at κi = 0 in the proposed model. In fact, as shown in Proposition 2.1, the choice of a
(controlling the concentration at κi = 0) is not related to the performance of shrinkage
and tail robustness as the marginal prior of λi.

We discuss the priors for β and τ . Remember that β is a grand mean (i.e. shrinkage
target of the posterior mean) of λi and τ controls the overall shrinkage. It would be
possible to fix β or assign an informative prior for β if the user has much information
about β. On the other hand, when there is not much prior information on β and τ , we
recommend using proper but slightly diffuse priors. In our numerical studies, we use
priors, β ∼ Ga(0.1, 0.1) and τ ∼ Ga(0.1, 0.1) as default priors, which are conditionally
conjugate. Although improper priors can be assigned for β and τ , checking the poste-
rior propriety given a certain form of improper prior is not straightforward due to the
complicated hierarchical forms of the model. In the Supplementary Material, we discuss
the conditions of posterior propriety under some forms of improper priors. For example,
using π(β) ∝ 1/β combined with a proper gamma prior for τ leads to posterior propriety
under some conditions. Furthermore, we also note that the standard improper priors
for scale parameters such as π(β) ∝ 1 or π(β) ∝ 1/β may not be necessarily reasonable
under the hierarchical gamma model, that is, it is not clear whether these priors can
be justified as objective ones such as reference priors. Since we assume subjective priors
for λi and ui, we may be able to consider reference priors for β and τ using an idea
of partial information prior (Sun and Berger, 1998), but we do not pursue the detailed
argument here.
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2.3 Marginal prior for λi

In this section, we consider the behavior of the marginal prior of λi. We assume that
the grand mean β and global shrinkage parameter τ are fixed at 1 for simplicity so
that the grand mean is 1 in the following discussion. We first discuss the roles of the
hyperparameters, a and b, of the proposed priors, and then we propose particular choices
of the hyperparameters.

The goal is to select a and b so that the marginal prior of λi should ideally (G1)
not be thick at the origin and have (G2) a fat right-tail and (G3) a spike at 1. We
provide the following analytical results concerning the behavior of the marginal prior
for λi.

Proposition 2.1. Suppose that either π(ui) = πSB(ui) ∝ ui
a−1/(1+ui)a+b or π(ui) =

πIRB(ui) ∝ [1/{ui(1+ui)}]{log(1+1/ui)}b−1/{1+log(1+1/ui)}b+a. Then the marginal
prior p(λi) of λi has the following properties:

(i) As λi → 0,

p(λi) ≈
{
λi

a−1, if π(ui) = πSB(ui),
λi

−1, if π(ui) = πIRB(ui).

(ii) As λi → ∞,

p(λi) ≈ λi
−2.

(iii) As λi → 1,

p(λi) →
{
∞, if b ≤ 1/2,
C1 < ∞, if b > 1/2

for some finite positive constant 0 < C1 < ∞.

Proposition 2.1 shows that our three goals are achieved whenever b ≤ 1/2 and a > 1
for the SB prior, and that goal (G1) is impossible to achieve under the IRB prior but
(G2) and (G3) are achieved for b ≤ 1/2. This result is obtained from a more general
theorem (Theorem S1), given in the Supplementary Material. Theorem S1 provides
equivalents for the tail densities and density at 1 of λ under different priors for ui and
relies on convergence theorems and approximations to prove them. We note that log
factors are ignored in the above statement.

In more detail, Part (i) corresponds to shrinkage and non-shrinkage for small λi

under the SB prior with a > 1 and the IRB prior, respectively. Part (ii) corresponds to
robustness for large λi (i.e., the posterior mean of λi does not shrink large yi) under
the proposed priors; if we fix ui, then we necessarily have p(λi) ∝ λi

−2−ui < λi
−2 as

λi → ∞. Part (iii) corresponds to shrinkage for moderate λi under the proposed priors
with b ≤ 1/2; if we fix ui, then p(λi) never diverges at λi = 1.
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In other words, the left tail of π(ui) can affect the left tail of p(λi) if we use the SB
prior with a ≤ 1 or the IRB prior; the right tail of p(λi) is guaranteed to be sufficiently
heavy for any values of the hyperparameters; we can expect that a sufficient amount of
prior probability mass is put around λi = 1 if we choose b ≤ 1/2 for the SB and IRB
priors. Based on these findings, we propose to use a > 1 for the SB prior and b ≤ 1/2
for both the SB and IRB priors. In particular, our default choices are a = 2 and b = 1/2
for both the priors.

The marginal prior densities of λi under the SB and IRB priors are illustrated in
Figure 1. As expected, it can be seen from the right panel that the right tail of p(λi)
is heavier under the proposed priors than the global shrinkage prior (denoted by GL
in Figure 1) when ui is fixed, that is, λi ∼ IG(2, 1). Also, it is confirmed that the IRB
prior makes the right tail heavier than the SB prior. The left panel shows that the
hyperparameter a of the SB and IRB priors causes a trade-off between undesirable tail
thickness at the origin and desirable tail thickness at infinity. However, for the case of
the SB prior, we at least have that p(λi) → 0 as λi → 0 for a = 2 and for a = 3. The
most remarkable point we want to stress here is that under each of the proposed priors,
p(λi) has a spike at λi = 1. This means that a large shrinkage effect is expected when
we use one of the proposed priors, and this is quite in contrast to the case of fixing
ui = 1, where the mode of p(λi) is significantly shifted to the left.

Finally, the choice a = 2 may seem slightly strange in the literature on global-local
shrinkage priors. Under ui ∼ SB(a, b), the shrinkage factor κi = ui/(1 + ui) follows
the beta distribution Beta(a, b). The well-known horseshoe prior (Carvalho et al., 2010)
corresponds to the case (a, b) = (1/2, 1/2), and the resulting prior distribution of κi

is Beta(1/2, 1/2), which has the popular U-shaped density. For our model, we do not
adopt the choice (a, b) = (1/2, 1/2), since setting a = 1/2 causes unexpected tail-
robustness (or lack of desirable shrinkage toward the grand mean) around the origin
and since using a > 1 does not affect tail-robustness around infinity much (see also
Section 3.1).

2.4 Marginal posterior of λi

Here, we discuss the flexibility of the proposed prior distributions. As an artificial ex-
ample, we suppose that m = 50 observations (the first 46 observations are 5 and the
others are 7, 15, 30, 50) are observed. Furthermore, we set δi = 5. We show marginal
posterior distributions of the shrinkage factor κi given y ∈ {7, 15, 30, 50} in Figure 2.
The marginal posterior under the global shrinkage prior (ui = 1) does not depend on y
and over-shrinks the posterior density under a large signal such as y = 30 and y = 50.
Also, the global shrinkage method does not have strong shrinkage near the grand mean
when y = 7. On the other hand, Figure 2 shows that the posterior of κi under the SB
and IRB priors change flexibly according to the observed values, as expected from the
design of the priors. Comparing the two priors, it can be seen that the IRB posterior
is more concentrated around κi = 0 than the SB prior when yi is large. Therefore, we
recommend using IRB prior to situations where tail-robustness is required.

We further investigate the behavior of the posterior distribution through posterior
means and variances of λi as a function of yi. To see the properties of the local shrinkage
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Figure 1: Marginal prior densities for λi. The right panel is an enlarged version of the
left panel in the log-scaled tail region.

property, the hyperparameters in the three priors are fixed to their posterior means
obtained to make Figure 2. We set (log y1, . . . , log y100) to equally-spaced 100 points
from −4 to 4, and computed posterior means and variances of λi (i = 1, . . . , 100) based
on the three priors. The results are shown in Figure 3. It is observed that both the
posterior mean and variance of the GL prior are simple functions of yi. On the other
hand, the proposed two priors, SB and IRB, strongly shrink yi around the grand mean
while do not shrink large or small yi. Moreover, the posterior variances of the proposed
two priors are small around the grand mean due to the strong shrinkage property and
those are large when the observed value is large.

2.5 Posterior computation

We provide an efficient Metropolis within the Gibbs algorithm for our model by using the
approximation method of Miller (2019). Here, we consider the case of the SB prior. The
details of posterior computation under the IRB prior are given in the Supplementary
Material. In order to simplify sampling of τ , we make the change of variables νi = τui

for i = 1, . . . , n. Then the overall posterior distribution of (λ, β, τ, ν) given y is expressed
by

p(λ, β, τ, ν | y) ∝ π(β)π(τ) 1
τn

n∏
i=1

{
π(νi/τ)β

νi+1νi
νi

Γ(νi)
1

λi
νi+2 e

−βνi/λi
1

λi
δi

exp
(
−δiyi

λi

)}
,

where ν = (ν1, . . . , νn). Since the SB prior density is expressed as

πSB(ui) = 1
B(a, b)

ui
a−1

(1 + ui)a+b
= 1

Γ(a)Γ(b)

∫ ∞

0
ti
a+b−1e−tiui

a−1e−tiuidti
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Figure 2: Marginal posterior densities for the shrinkage factor κi under four types of
observed values.

for all i = 1, . . . , n, it follows that

p(λ, β, τ, ν | y) ∝
∫

(0,∞)n

[
π(β)π(τ) 1

τna

×
n∏

i=1

{
ti
a+b−1e−tiνi

a−1e−tiνi/τ
βνi+1νi

νi

Γ(νi)
1

λi
νi+2

× e−βνi/λi
1

λi
δi
e−(δiyi)/λi

}]
dt.
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Figure 3: Posterior means and variances of λi for various observed values.

We consider t = (t1, . . . , tn) ∈ (0,∞)n as a set of additional latent variables. For the
global parameters, we consider the conjugate gamma priors π(β) = Ga(β | aβ , bβ) and
π(τ) = Ga(τ | aτ , bτ ).

The variables λ, β, τ , t, and ν are updated in the following way.

- Sample λi ∼ IG(δi + νi + 1, δiyi + βνi) independently for i = 1, . . . , n.

- Sample β ∼ Ga(
∑n

i=1 νi + n + aβ ,
∑n

i=1 νi/λi + bβ).

- Sample τ ∼ GIG(−na + aτ , 2bτ , 2
∑n

i=1 tiνi), where GIG(a, b, γ) has density pro-
portional to xa−1 exp(−bx/2 − γ/2x).

- Sample ti ∼ Ga(a + b, 1 + νi/τ) independently for i = 1, . . . , n.
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- The full conditional distribution of νi is proportional to
n∏

i=1
{Ga(νi | a, ti/τ)Ga(1/λi | νi, βνi)},

which can be accurately approximated by using the method of Miller (2019) for
each i = 1, . . . , n. The method is based on the gamma approximation of intractable
probability density function by matching the first- and second-derivatives of log
densities. We use the approximate full conditional distributions as proposal dis-
tributions in independent Metropolis-Hastings (MH) steps.

The full conditional distributions of parameters and latent variables other than νi
are of familiar forms. Even for the full conditional of vi, we can efficiently sample
from the distribution. Note that the number of latent variables in the proposed priors
is larger than that of GL prior to exhibit global-local shrinkage properties. Hence,
the computation time of the MCMC (Markov chain Monte Carlo) algorithm with the
proposed priors can be longer than that of the GL prior. Specifically, in the example
given in Section 2.4, the computation times of SB and IRB to generate 5000 posterior
samples are around 5 seconds while that of GL is less than 1 second. Such an increase in
computational costs would be a reasonable price for the desirable shrinkage properties.

3 Theoretical properties
In this section, we analytically compare properties of different priors for ui and, in
particular, show two properties of the proposed priors, namely, tail-robustness for large
observations (Section 3.1) and desirable Kullback-Leibler risk bound under sparsity
(Section 3.2). For simplicity, we fix β = τ = 1 in what follows so that all the theoretical
results are conditional on the hyperparameters.

3.1 Tail-robustness for large observations
For a prior π(ui) of local parameter ui, we consider the class given by

sup
u�1

{uπ(u)} < ∞, (3.1)

π(u) ∼ C
uα−1

{1 + log(1 + 1/u)}1+γ
as u → 0 for some α � 0 and γ � −1, (3.2)

where C is a positive constant. The notation f(x) ∼ g(x) means limx→0 f(x)/g(x) = 1.
Condition (3.1) is a technical condition satisfied by most priors. Condition (3.2) is a
condition on the tail of π(ui) at the origin and is satisfied by both the SB and the IRB
priors. Because we consider proper distributions only in this paper, the case of α = 0
and γ ≤ 0 is excluded.

We consider the tail robustness of the Bayes estimator of λi given by

λ̂i = λ̂ML
i − E(κi | yi)(λ̂ML

i − 1),
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where λ̂ML
i = yi and κi = ui/(δi+ui). Specifically, we show that the expected shrinkage

factor, E(κi | yi), converges to zero as yi → ∞.

Theorem 3.1. There exists a function κ∗ : (0,∞) → (0,∞) such that

E(κi | yi) ∼
1
δi

(1 + α)κ∗ (δiyi) → 0

as yi → ∞.

Since the local parameter depends on not only the scale parameter but also the
shape parameter, the evaluation of the posterior mean requires a detailed investigation
of integrals involving gamma functions, where the details of the proof are given in
the Supplementary Material. The constant α � 0 is related to the tail of π(ui) at the
origin. The heavier the tail is, the faster the expected shrinkage factor converges to zero.
Finally, we note that if we fix ui = 1, then E(κi | yi) = 1/(δi + 1) does not converge to
0 as yi → ∞.

In the Supplementary Material, we further investigate the rate of κ∗(y), which shows
that κ∗(y) = 1/ log y as y → ∞. This means that E(κi | yi) converges to 0 very slowly
as yi → ∞, while it remains a positive constant when ui = 1 even under yi → ∞. This
property of E(κi | yi) indicates that (E[λi | yi]− yi)/yi → 0 as yi → ∞, which is known
as weakly tail-robust (Hamura et al., 2022b). Such property is also adopted to show the
robustness of shrinkage under count response (Datta and Dunson, 2016) and correlated
normal response (Okano et al., 2022).

In the Supplementary Material, we also investigate the behavior of E(κi | yi) as
yi → 0, where it is shown that E(κi | yi) → 0 as yi → 0 if either π(ui) = πSB(ui) with
δi ≥ a or π(ui) = πIRB(ui). This indicates that tail-robustness for a small observation
is also established.

3.2 Kullback-Leibler super-efficiency under sparsity

We now consider the predictive efficiency for the proposed method (e.g. Polson and
Scott, 2010; Carvalho et al., 2010; Datta and Dunson, 2016). In particular, we discuss the
Kullback-Leibler divergence between the true sampling density and the Bayes predictive
density under the proposed global-local shrinkage prior. We consider the following one-
dimensional model

y ∼ Ga
(
δ,

δ

λ

)
, λ ∼ IG(1 + u, u), u ∼ π(u).

In the above model, let f(y | λ) = Ga(y | δ, δ/λ) and let λ0 be the true value of λ.
We define the Kullback-Leibler (KL) divergence between f(y | λ) and f(y | λ0) by
DKL(λ0, λ) = DKL(f(y | λ0), f(y | λ)). Then we have

DKL(λ0, λ) = δ

(
1/λ
1/λ0

− 1 − log 1/λ
1/λ0

)
= δ

(
λ0

λ
− 1 − log λ0

λ

)
.



Y. Hamura, T. Onizuka, S. Hashimoto, and S. Sugasawa 89

Furthermore, the KL neighborhood around λ0 is defined by

Aε(λ0) =
{
λ ∈ (0,∞) | DKL(λ0, λ) < ε

}
.

We assume that the prior p(λ) is information dense in the sense of pr(λ ∈ Aε(λ0)) > 0
for all ε > 0. From the Proposition 4 in Barron (1987), we have the Cesáro-mean risk
Rn is expressed by

Rn ≤ ε− n−1 log pr(λ ∈ Aε(λ0)), (3.3)

where Rn = n−1 ∑n
k=1 D

KL(f(y | λ0) | f̂k(λ)) and f̂k(λ) is the Bayes predictive density
under KL divergence using the posterior density based on k ≤ n observations y1, . . . , yk.
We now evaluate the prior probability pr(λ ∈ Aε(λ0)) in the right-hand side of (3.3)
when λ0 = 1.

Although we proved the theorem for the univariate case, the convergence in the
multivariate case is derived from a component-wise application.

Theorem 3.2. Assume that the true sampling model is Ga(δ, δ/λ0). For λ0 �= 1, the
Cesáro-mean risk for Bayes predictive density f̂n, which is the posterior mean of the
density function f(· | λ), satisfies

Rn = O
(
n−1 logn

)
.

If λ0 = 1 and if π(u) ∝ u−1−b as u → ∞ for some 0 < b ≤ 1/2, then

Rn = O
{
n−1 (logn− log logn)

}
.

The proof of the theorem is given in the Supplementary Material. The results indi-
cate that the Cesáro-mean risk achieves the optimal rate of convergence for the finite-
dimensional parametric family when λ0 �= 1, while the risk has the super-efficient rate
of Kullback-Leibler convergence for λ0 = 1. The latter phenomenon is called Kullback-
Leibler super-efficiency, which is a kind of higher-order optimality, and such results are
commonly adopted to show theoretical superiority in handling sparsity in the context of
global-local shrinkage priors (e.g. Polson and Scott, 2010; Carvalho et al., 2010; Datta
and Dunson, 2016). Theorem 3.2 relates the right tail of π(ui) to the risk given in (3.3).
To achieve Kullback-Leibler super-efficiency, it is sufficient to use π(ui) with a suffi-
ciently heavy tail (b ≤ 1/2). Thus, b plays a role in controlling sparsity at the grand
mean. We remark that fixing ui = 1 corresponds to using a point mass prior for ui and
hence to violation of the sufficient condition that π(u) ∝ u−1−b as u → ∞.

4 Simulation studies
We evaluate the performance of Bayesian and frequentist shrinkage methods under
gamma response. Let yi ∼ Ga(δi, δi/λi) for i = 1, . . . , n(= 200) and δi = 5. We consider
the following six scenarios of the true mean λi:

(Scenario 1) λi ∼ 0.95δμ + 0.05Ga(20μ, 2), (Scenario 2) λi ∼ 0.9δμ + 0.1Ga(20μ, 2),
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(Scenario 3) λi ∼ 0.95δμ + 0.05μ|t3|, (Scenario 4) λi ∼ 0.9Ga(5μ, 5) + 0.1μ|t1|,
(Scenario 5) λi ∼ 0.9δμ + 0.1Ga(10μ, 2), (Scenario 6) λi ∼ 0.85δμ + 0.15Ga(10μ, 2),

where μ = 5, δa denotes a point mass at a and tc denotes a t-distribution with c degrees
of freedom. In the first three scenarios, most of the true means λi is exactly equal to
μ = 5, and a small part of true means are very large compared with μ. In scenario 4,
most true means are concentrated around μ (not exactly equal to 0).

For the simulated data, we apply six methods, the proposed scaled beta (SB) and
inverse rescaled beta (IRB) priors, the global shrinkage (GL) prior (setting ui = 1 in
the proposed model), shrinkage estimators given by DasGupta (1986) (DG), adaptive
variance shrinkage estimators by Lu and Stephens (2016) (VS), and maximum likelihood
(ML) estimator yi. Note that the DG method is to provide decision-theoretic point
estimates of λi by minimizing a weighted quadratic loss function, and the VS method
uses a finite mixture of inverse-gamma distributions as a prior distribution for λi. The
tuning parameters in the SB and IRB priors are set to a = 2 and b = 1/2. We used non-
informative gamma priors, β ∼ Ga(0.1, 0.1) and τ ∼ Ga(0.1, 0.1) for SB, IRB and GL
priors. For the Bayesian methods, 3000 posterior samples are generated after discarding
the first 2000 samples as burn-in. Note that we used the R package “vashr” (https://
github.com/mengyin/vashr) to apply the VS method, where the degrees of freedom
of χ2-distribution is set to 2δi(= 10).

We first investigate the shrinkage property of the proposed global-local shrinkage
priors compared with the other methods. In Figure 4, we show scatter plots of observed
values and point estimates (posterior means for the Bayesian methods) produced by
five shrinkage methods under scenario 1. It is observed that the standard shrinkage
methods, GL, DG, and VS, linearly shrink the observed value yi, that is, the shrinkage
factor is constant regardless of yi. On the other hand, the proposed SB and IRB priors
more strongly shrink the observed values around λi = 5, showing the adaptive shrinkage
property of the global-local shrinkage prior.

We next evaluate mean absolute percentage error (MAPE), defined as
n−1 ∑n

i=1 λ
−1
i |λi − λ̂i| with a point estimate λ̂i. We present boxplots of MAPE for

1000 replications in Figure 5. The results indicate that the proposed SB and IRB pro-
vide more accurate point estimates than the other methods in all the scenarios, except
for IRB under Scenario 3. The amount of improvement of the proposed methods is re-
markable when the null and non-null signals are well-separated, as in Scenarios 1 and
2. Comparing SB and IRB, SB tends to provide a smaller overall MAPE than IRB. To
compare the two methods more precisely, we also computed MAPE only for non-null
signals. The averaged values of MAPE for non-null signals are given in Table 1, which
shows that IRB performs slightly better than SB for the estimation of non-null signals,
and this is consistent with the stronger tail-robustness property of IRB than that of SB.

Furthermore, we computed the coverage probability (CP) and average length (AL) of
95% credible/confidence intervals. We only consider the ML method for the frequentist
methods since DG and VS do not provide interval estimation. The 95% confidence inter-
val of ML can be obtained as (yi/PG(0.975; δi, δi), yi/PG(0.025; δi, δi)), where PG(·;α, β)
denotes the probability function of Ga(α, β). The CP and AL averaged over 1000 Monte

https://github.com/mengyin/vashr
https://github.com/mengyin/vashr
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Figure 4: Scatter plots of observed values (ML) and point estimates obtained from five
shrinkage methods. The right panel is an enlarged version of the left panel. The vertical
line in the right panel indicates the location of null signals.

Figure 5: Boxplots of mean absolute percentage errors (MAPE) for 1000 Monte Carlo
replications.

Carlo replications are given in Table 2. It can be seen that all three Bayesian methods
have empirical CP values larger than the nominal level of 0.95 except in Scenario 6,
whereas the interval lengths of SB and IRB tend to be smaller than GL and ML in all
the scenarios.
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Scenario 1 2 3 4 5 6
SB 0.365 0.359 0.304 0.292 0.388 0.384
IRB 0.360 0.360 0.284 0.286 0.385 0.386

Table 1: Mean absolute percentage errors (MAPE) for non-null signals averaged over
1000 Monte Carlo replications.

Coverage probability Average length
Scenario SB IRB GL ML SB IRB GL ML

1 98.7 98.4 97.6 95.0 1.13 1.19 1.58 2.59
2 97.3 97.1 97.1 95.0 1.32 1.33 1.79 2.59
3 98.1 98.4 97.9 95.0 0.81 1.09 0.91 2.59
4 95.6 96.0 97.2 95.0 1.12 1.23 1.43 2.59
5 96.6 96.3 96.7 95.0 1.23 1.27 1.56 2.59
6 94.4 94.0 96.2 95.0 1.37 1.39 1.69 2.59

Table 2: Coverage probabilities and average lengths of 95% credible/confidence intervals
averaged over 1000 Monte Carlo replications.

5 Real data example
5.1 Average admission period of COVID-19 in Korea
We first apply the global-local shrinkage techniques to estimate the average length
of hospital stay of COVID-19-infected persons. We use the data set available at Kag-
gle (https://www.kaggle.com/kimjihoo/coronavirusdataset), where the date of ad-
mission and discharge is observed for 1587 individuals in Korea. We then group these
individuals regarding 98 cities and three classes of age, young (39 or less), middle
(from 40 to 69), and old (70 or more), resulting in n = 185 groups after omitting
empty groups. Assuming exponential distributions with group-specific mean for admis-
sion period (days) of each individual, the group-wise sample mean is distributed as
Ga(ni, ni/λi) for i = 1, . . . , n, where ni is the number of individuals within the ith
group and λi is the true mean of admission period specific to the ith group. Note that
ni ranges from 1 to 258, and the scatter plot of ni and yi are given in Figure 7.

We apply the proposed SB prior as well as GL and DG methods. Regarding the prior
distributions for grand mean β in the SB and GL models, we assign a non-informative
prior, Ga(0.1, 0.1). Furthermore, we set a = 2 and b = 1/2 in the proposed prior dis-
tributions. The posterior means for SB and GL are computed based on 10000 posterior
samples (after discarding 3000 samples), whose histograms are shown in Figure 6. The
posterior mean of the grand mean β in the SB model was 22.0 (95% credible interval was
(21.3, 22.8)), which is consistent with the evidence that the average admission period is
around 21 (e.g. Jang et al., 2021). On the other hand, the posterior mean of the grand
mean β in the GL model was 24.4, where 95% credible interval was (22.5, 26.6). We
also present the histogram of shrinkage estimates made by DG. It is observed that SB
strongly shrinks the observed values toward the grand mean β so that most of the pos-
terior means of the average admission period are concentrated around the grand mean.

https://www.kaggle.com/kimjihoo/coronavirusdataset
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Figure 6: Histograms of shrinkage estimates (red) and observed values (gray) of the
average admission period.

Figure 7: Left: Scatter plot of sample size ni and average admission. Right: Scatter plot
of sample size ni and difference of yi and posterior mean of λi.

This is because most groups having large sample means have small sample sizes, and
such unreliable information is strongly shrunk. We found that only a single group (old
age class of Gyeongsan-si) has a much larger average admission period, about 35 days.
Since the sample size of this group is 107, and the sample mean is about 37, the posterior
result seems reasonable. To see more detailed results, we present scatter plots of observed
values and posterior means against sample size ni, in Figure 7. It is observed that the
amount of shrinkage (i.e., the difference between observed values and posterior means)
decreases as ni increases, and observations having small sample sizes strongly shrunk
toward the grand mean. From Figure 6, it can also be seen that GL also provides rea-
sonably shrunk estimates of λi and DG does not, but the proposed SB prior can provide
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Figure 8: Histograms of shrinkage estimates (blue) and observed values (gray) of vari-
ances of gene expression data.

strongly shrunk point estimates. Moreover, the average length of 95% credible intervals
made by SB was 19.0, which was considerably smaller than the 22.9 produced by GL.

5.2 Variance estimation of gene expression data
We next apply the shrinkage methods to variance estimation of gene expression data. As
noted in Lu and Stephens (2016), in gene expression analysis aimed at identifying defer-
entially expressed genes, accurate estimation of the unknown variance is an essential step
since it directly relates to the degree of statistical significance. We use a popular prostate
cancer dataset from Singh et al. (2002). In this dataset, there are gene expression values
for n = 6033 genes for 50 subjects in control subjects. We compute sampling variances of
n gene expressions, distributed as Ga(ni/2, ni/2λi) for i = 1, . . . , n, where λi is the true
variance of the ith gene expression. By assigning non-informative priors, Ga(0.1, 0.1) for
β in the SB, IRB, and GL models as well as the VS method. In the Bayesian methods,
we computed posterior means using 2000 posterior samples after discarding the first
1000 samples. The histograms of posterior means are shown in Figure 8. As confirmed



Y. Hamura, T. Onizuka, S. Hashimoto, and S. Sugasawa 95

in the previous example, we can see that the proposed SB and IRB priors can provide
more shrunk estimates than the other methods. Furthermore, average lengths of 95%
credible intervals made by SB and IRB were 0.640 and 0.639, respectively, which are
smaller than 0.663 by GL. This shows the efficiency of the proposed priors.

6 Discussion
We proposed a new class of continuous global-local shrinkage priors for high-dimensional
positive-valued parameters based on shape-scale mixtures of inverse-gamma distribu-
tions. Although this paper focuses on a sequence of gamma-distributed observations,
it can also be useful in other models. One notable application would be using a flexi-
ble error distribution in a regression model for gamma-distributed observations, such as
gamma regression or accelerated failure time models. For the latter model, the proposed
distribution may cast an alternative to the Bayesian nonparametric approach (e.g. Han-
son, 2006; Kuo and Mallick, 1997), and some comparisons would be an interesting future
study. Although the approximate sampling method of Miller (2019) is adopted in sam-
pling from the local parameter in the proposed priors, it might be worth implementing
the more recent data augmentation technique of Hamura et al. (2022a).

Supplementary Material
Supplementary Materials for “Sparse Bayesian inference on gamma-distributed obser-
vations using shape-scale inverse-gamma mixtures” (DOI: 10.1214/22-BA1348SUPP;
.pdf). Supplementary material available online includes proof of the theoretical results.
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