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Characterizing phenotypes is a fundamental aspect of biolog-
ical sciences, although it can be challenging due to various 
factors. For instance, the liverwort Marchantia polymorpha is 
a model system for plant biology and exhibits morphological 
variability, making it difficult to identify and quantify distinct 
phenotypic features using objective measures. To address 
this issue, we utilized a deep-learning-based image classi-
fier that can handle plant images directly without manual 
extraction of phenotypic features and analyzed pictures of 
M. polymorpha. This dioicous plant species exhibits morpho-
logical differences between male and female wild accessions 
at an early stage of gemmaling growth, although it remains 
elusive whether the differences are attributable to sex chro-
mosomes. To isolate the effects of sex chromosomes from 
autosomal polymorphisms, we established a male and female 
set of recombinant inbred lines (RILs) from a set of male and 
female wild accessions. We then trained deep learning mod-
els to classify the sexes of the RILs and the wild accessions. Our 
results showed that the trained classifiers accurately classi-
fied male and female gemmalings of wild accessions in the 
first week of growth, confirming the intuition of researchers 
in a reproducible and objective manner. In contrast, the 
RILs were less distinguishable, indicating that the differences 
between the parental wild accessions arose from autosomal 
variations. Furthermore, we validated our trained models by 
an ‘eXplainable AI’ technique that highlights image regions 
relevant to the classification. Our findings demonstrate that 
the classifier-based approach provides a powerful tool for 
analyzing plant species that lack standardized phenotyping 
metrics.

Keywords: Artificial intelligence • Image analysis • Marchantia 
polymorpha • Sexual dimorphism • Visual explanation

Introduction

Plant phenotypes are influenced by genetic and environmental 
factors, resulting in differences in shape, color and generation 
of specific organs. Although the characterization of such phe-
notypes is a fundamental aspect of plant biology, it often poses 
considerable challenges. For instance, the liverwort Marchan-
tia polymorpha, an emerging model system in plant biology 
(Kohchi et al. 2021, Bowman et al. 2022), has phenotypic 
traits that are not easily quantifiable. Marchantia polymorpha
grows as a flattened creeping thallus that periodically bifur-
cates from the apical notch (Shimamura 2016, Solly et al. 2017). 
The continuous architecture is variable and thus hinders the 
identification and quantification of distinct phenotypic features 
using objective measures. This difficulty makes potentially sig-
nificant phenotypes cryptic, which means they are recognizable 
to the human eye but not available for quantitative and statis-
tical analysis. Therefore, developing a method to handle such 
cryptic phenotype features would facilitate the understand-
ing of M. polymorpha and other plant species that differ from 
well-characterized model organisms.

Phenotypic characterization and comparison using hand-
picked features, such as the aspect ratio of leaves, is a classic yet 
effective method. However, such features often lack the neces-
sary expressiveness to describe diverse biological forms. This has 
led to the development of sophisticated shape and color analy-
sis techniques, often utilizing computer-assisted image analysis 
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(Chitwood and Sinha 2016). For example, Fourier-based anal-
ysis allows the decomposition of an arbitrary contour shape 
into a sum of periodic components with different frequencies 
and has been applied to characterize cell and tissue shapes. 
Additionally, the characterization of surface properties such as 
color and texture has been an active research field to under-
stand, for example, floral evolution driven by the color pref-
erences of insects (Ohashi et al. 2015). However, it remains 
challenging to analyze shape, color and texture information in 
a unified manner. Consequently, the discriminative ability of 
phenotyping methods for image datasets is often inferior to 
that of the human eye. A research direction for resolving this 
issue would be to employ neural-network-based image classi-
fiers, which have produced promising results (Singh et al. 2018). 
Furthermore, Akagi et al. adopted not only deep-learning-based 
classifiers but also ‘eXplainable AI (XAI)’ techniques to visual-
ize the reasons behind the diagnosis of calyx-end cracking in 
persimmon fruits (Akagi et al. 2020). This demonstrates the 
potential of such techniques to augment the cognitive capacity 
of researchers.

The image-classifier-based approach offers an advantage by 
eliminating the need for defining specific features. Deep learn-
ing models can learn complex features specialized for classi-
fication tasks, and thus they are capable of detecting cryptic 
morphological variability that may not be easily detectable 
using traditional morphological or visual assessments. How-
ever, it should also be noted that there is no guarantee that the 
deep learning models will use biologically meaningful features in 
images (Khorram et al. 2021). For example, differences in photo-
graphic condition and photographer can lead to subtle changes 
in the color and brightness of images. If a classifier utilizes 
such irrelevant image features, it would not have any biological 
significance, regardless of the accuracy of the classification.

To maximize the above benefit and reduce the risk of 
using deep learning models, we devised an analysis proto-
col that includes a validation step of the trained models by 
human-interpretable feature ablations and XAI techniques to 
distinguish biologically meaningful classifiers from meaning-
less ones. Here, we demonstrated the effectiveness of our 
approach by resolving an open question regarding the morpho-
logical variability of M. polymorpha. This dioicous plant species 
often exhibits morphological differences between male and 
female plants even in accessions collected from the same site, 
such as Takaragaike accessions (male Tak-1 and female Tak-2) 
(Bowman et al. 2017) and Australian/Melbourne (Aus) acces-
sions (Flores-Sandoval et al. 2015). However, it remains elusive 
whether the differences in these wild accessions arise from sex 
chromosomes. In this study, to isolate the effects of sex chro-
mosomes from autosomal polymorphisms, we established male 
and female recombinant inbred lines (RILs) from Tak-1 and Tak-
2. We then utilized deep learning models to classify the sexes 
from pictures of the RILs and the wild accessions in gemmal-
ings during the first week of development. To achieve this, we 
adopted ResNet50 (He et al. 2016), a model architecture that 
has been proven to be highly effective in image classification. 

Furthermore, we validated the trained models by an XAI tech-
nique that highlights image regions relevant to the classification. 
Our study paves the way for the application of deep learn-
ing models for analyzing plant species that lack standardized 
phenotyping metrics.

Results

Establishment of RILs Rit-1/Rit-2
Common laboratory accessions, such as Tak-1/Tak-2 and Aus 
male and female lines, were collected as independent plants and 
therefore possess polymorphisms between the counterparts.

To reduce autosomal polymorphisms, we generated RILs. 
Briefly, we first crossed male Tak-1 and female Tak-2 to obtain 
the F1 generation. We then inbred the siblings four times to 
obtain F5 generation siblings, which were named ‘Recombi-
nant inbred line derived from Takaragaike (Rit)’, Rit-1 (male) 
and Rit-2 (female) (Fig. 1A). We sequenced the whole genome 
of Rit-1 and Rit-2 and mapped them, together with Tak-2, to 
the genome of Tak-1 to call variants (Fig. 1B). Rit-1 and Rit-
2 shared the same polymorphism patterns in the autosomes. 
Of the autosomal regions, 57.0% did not contain a significant 
number of polymorphisms between Tak-1 and Tak-2 (Supple-
mentary Table S1), which may have resulted from a natural 
cross(es) before the collection of Tak-1 and Tak-2. Of the auto-
somal regions, 30.7% contained a significant number of poly-
morphisms between Tak-1 and Tak-2 as well as that between 
Tak-1 and Rit-1 or Rit-2 (Supplementary Table S1), indicating 
that this region was derived from Tak-2 and the rest (12.3%) 
from Tak-1. These data indicate the establishment of Tak-1/Tak-
2-derived RILs.

Deep learning for sex classification of M.
polymorpha based on gemmaling images
To acquire images of M. polymorpha gemmalings, we used male 
Rit-1 and female Rit-2, their parental male Tak-1 and female 
Tak-2, and male/female of another wild accession Aus. We 
included Aus accession to provide another example exhibiting 
morphological differences between male and female plants col-
lected at the same site. Fig. 2 shows representative images of 
the lines and developmental days. The number of male/female 
images was approximately 100/100 for the Tak-1/Tak-2 and Aus, 
and approximately 300/300 for Rit-1/Rit-2 (see Supplementary 
Table S2 for details). Images were acquired on days 0, 1, 2, 3, 4 
and 7 after planting gemmae. These images were processed and 
used for further analysis.

First, we quantified the simplest morphological feature, the 
area of the gemmalings (Fig. 3A–C). In Tak-1/Tak-2, Tak-2 
(female) was larger than Tak-1 (male) from day 0. Aus males and 
females were similar in size up to day 4, but females became 
larger at day 7. Rit-1/Rit-2 did not differ in size throughout 
the examined period. We quantitatively validated the findings 
through the calculation of the unbiased Cohen’s d, an estimate 
for the mean difference normalized by the standard deviation 
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Fig. 1 Establishment of RILs. (A) Inbreeding scheme to generate Rit-1 (male) and Rit-2 (female). (B) A Circos plot showing the derivation of genomic 
regions in RILs’ autosomes. Outer tracks (tracks 1–4) show polymorphism frequencies compared to Tak-1: track 1, Tak-2; track 2, Rit-1; track 3, 
Rit-2; and track 4, intersection of Tak-2, Rit-1 and Rit-2. The most inner track depicts the predicted derivation of genomic regions in Rit-1/Rit-2. 
Cyan, regions derived from Tak-1; magenta, those from Tak-2; gray, those shared between Tak-1 and Tak-2. 

(SD; Gurevitch and Hedges 1993). The calculated values, sum-
marized in Supplementary Table S3, evaluate male-to-female 
differences in areas relative to individual variations.

Second, to visualize the dataset, we conducted dimen-
sion reduction using image feature extraction and t-distributed 
stochastic neighbor embedding (t-SNE) (Maaten and Hinton 
2008). The image feature extraction was achieved by a pre-
trained deep neural network, ResNet50 (He et al. 2016). For 
individual images, we extracted 2,048-dimensional features 
from the last average pooling layer of the ResNet50. Then, 
we applied t-SNE to the feature vectors of all developmental 
days and accessions. Fig. 3D–F displays the clustering of all 
images, encompassing three lines and six developmental days. 
The entire dataset was clustered, but for better visualization, 
the results are presented in separate figures. In Aus (Fig. 3D) 
and Rit-1/Rit-2 (Fig. 3F), the images were grouped into clus-
ters according to the day of development; however, those of 
different sexes were not distinctly placed into separate clus-
ters. In contrast, Tak-1/Tak-2 (Fig. 3E) were separated by sex, 
and the images were periodically embedded according to devel-
opmental days: the first cycle (days 0, 1 and 2) and the sec-
ond cycle (days 3, 4 and 7). These clustering results suggest 
that the morphological differences between sexes are diffi-
cult to discriminate in Aus and Rit-1/Rit-2 but are clearer in
Tak-1/Tak-2.

Finally, we trained ResNet50, a well-tested deep learning 
model for image classification. The model was fed with input 
information, i.e. images of M. polymorpha gemmalings and sex 
labels associated with each image, to predict the sex of the 
new images with hidden sex labels. Although we took hun-
dreds of images of gemmalings, the dataset size was much 
smaller than that of common training datasets, which typi-
cally contain millions of images. Because deep learning mod-
els have numerous parameters (e.g. 25.6 million in ResNet50), 
training a model with a small dataset may lead to overfit-
ting, a situation in which a model simply memorizes all train-
ing images and corresponding sex labels instead of extract-
ing meaningful morphological traits. To avoid overfitting, we 
employed a common approach for transfer learning. As illus-
trated in Fig. 4A, we utilized a pretrained ResNet50 model with 
the ImageNet dataset (Russakovsky et al. 2015) as a starting 
point and then retrained only the last layer of the model to 
classify the sex of the plant (see Materials and Methods for fur-
ther details about the training process) (Donahue et al. 2014,
Sharif Razavian et al. 2014).

Fig. 4B shows the classification accuracy for the test images, 
i.e. the accuracy for images not used in the training phase. 
Test accuracy, unlike training accuracy, helps to detect invalid 
models that simply memorize training images without learn-
ing meaningful features. For each developmental day and set 
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Fig. 2 Representative images of early gemmalings from Aus, Tak-1/Tak-
2 and Rit-1/Rit-2. Rows: developmental day of gemmalings. Columns: 
accession and sex. Scale bars, 1 mm. 

of male and female accessions, the images were independently 
analyzed using different models; hence, each model addressed 
the binary classification of male/female. For each classification 
task, we conducted five independent model training sessions 
using randomly selected training, validation and test images 
from the dataset. We used 64% of the images for training, 
16% for validation and 20% for testing. As a negative con-
trol, we trained the same model based on randomized sex 
labels (Fig. 4B, inset). This confirmed that the test accuracies in 
the negative control setting were indistinguishable from chance. 
Detailed evaluation of the trained models is in Supplementary 
Figs. S1–S3.

As shown in Fig. 4B, the gemmaling images of Tak-1/Tak-
2, compared to those of Aus and Rit-1/Rit-2, were most easily 
classified, with an accuracy of >90% on day 7. This is consis-
tent with the area quantification (Fig. 3A–C) and t-SNE clus-
tering (Fig. 3D–F), which suggests that Tak-1 and Tak-2 are 
more distinguishable than the other accessions. The classifica-
tion accuracy for Aus was relatively low on day 0, whereas the 
accuracy increased substantially after day 2, becoming com-
parable to that for Tak-1/Tak-2 after day 4. Meanwhile, the 
trained models encountered difficulty in accurately classifying 
the test images of Rit-1/Rit-2 and demonstrated the lowest 
accuracies (from 64.0 ± 2.3% on day 0 to 76.2 ± 2.1% on day 7) 
among all examined accessions, despite having a larger num-
ber of training images compared to the wild accessions. This 
finding objectively confirms the intuition of researchers that 
morphological differences between sexes in wild accessions are 
more distinct and these differences are diminished in the inbred
lines.

Dissecting image regions relevant to the 
decision-making of trained deep learning models
Deep learning models are capable of utilizing any type of visual 
property, such as texture, color, shape and the presence of 
particular objects. However, a model may undesirably recognize 
irrelevant features such as background medium color, rather 
than sex-associated morphological differences. To investigate 
the features that the trained model utilized for classification, we 
removed certain features from the original images and newly 
trained the ResNet50 model with the feature-ablated images.

We conducted three types of feature ablations: (I) masking 
the background with black, (II) binarization into white fore-
ground and black background and (III) binarization and severe 
blurring (Fig. 5A). For ablation (I), we eliminated information 
from the background by filling all the background areas in black. 
If the model recognized features from the background, then 
the test accuracies would decrease compared to those from 
the original setup. Thus, the decrease in accuracy quantifies the 
information from the background. For ablation (II), we bina-
rized images to erase the information on the color and texture 
of the plant aerial part as well as the information from the 
background. For ablation (III), we severely blurred the binarized 
images to render detailed contours unrecognizable.

Fig. 5B–D shows the test accuracies of the feature-ablation 
experiments for Aus (Fig. 5B), Tak-1/Tak-2 (Fig. 5C) and Rit-
1/Rit-2 (Fig. 5D). When comparing the accessions, the classi-
fication accuracies for Rit-1/Rit-2 were lower than those for the 
wild accessions and dropped to near-chance rates under abla-
tions (II) and (III). The results confirmed that Rit-1 and Rit-2, 
compared with the wild accessions, show smaller differences 
between male and female plants. Previous studies have shown 
that deep learning models tend to use not only foreground 
regions but also background for image classification (Geirhos 
et al. 2020, Moayeri et al. 2022). We also found modest decreases 
in the test accuracy under most conditions after ablation (I) in 
Aus and Rit-1/Rit-2, indicating that the trained models partially 
utilized background information irrelevant to plant morphol-
ogy. The test accuracies for Tak-1/Tak-2, except day 0, were 
little affected by ablation (I), possibly because noticeable differ-
ences between gemmalings of Tak-1 and Tak-2 obviate the need 
to rely on background information. In all accessions, the test 
accuracies remained well above the chance rate after ablation 
(I), and this indicates that the models utilized the informa-
tion of plant area. Ablation (II), which involved binarization, 
resulted in degradation of the accuracy in all conditions. This 
indicates that the color and/or texture of gemmalings are at 
least equally informative as compared to the background. On 
the other hand, ablation (III) did not lead to accuracy reduc-
tion. Previous feature-ablation experiments have shown that 
ImageNet-pretrained models are capable of classifying silhou-
ette images if there are shape differences (Kubilius et al. 2016, 
Geirhos et al. 2019). Thus, the comparable accuracies under 
ablation (II) and ablation (III) indicate that the contour shape 
of gemmalings did not contribute to the classification. How-
ever, this result does not completely eliminate the possibility 
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Fig. 3 Basic analysis of gemmaling image dataset. (A–C) Quantification of the area of aerial part of gemmalings of Aus (A), Tak-1/Tak-2 (B) and 
Rit-1/Rit-2 (C). The horizontal axis represents the day after planting gemmae. A box plot is overlaid with individual data points. Colored dots 
represent individual images. The box plot displays the median (line within the box), the lower and upper quartiles (box) and largest and smallest 
data points within the interval of 1.5 times the interquartile range from the box (whiskers). Black dots represent outliers. (D–F) Image clustering 
using t-SNE for Aus (D), Tak-1/Tak-2 (E) and Rit-1/Rit-2 (F). Each point represents a different image. 

that the correlation between contour shape and color/texture 
might be informative for the classification since the correlation 
was already lost after ablation (II). Note that the gemmalings 
of Aus and Tak-1/Tak-2 exhibited the area differences between 
the sexes (Fig. 3A, B), thus it is not surprising that the images 
of wild accessions were still classifiable after severe blurring,
ablation (III).

The above analysis raised a concern that the background 
ablation possibly influences the results in Fig. 4B. Thus, we plot-
ted the test accuracies for the images after ablation (I) against 
the developmental days as in Fig. 4B and confirmed that the 
conclusion remained unaffected (Supplementary Fig. S4).

XAI methods for model validation
For further validation, it would be useful to analyze the param-
eters of the trained models. However, such an analysis is 
intractable because of the sheer complexity of deep learning 
models. To make these models transparent and interpretable, 
post hoc model-analysis methods known as ‘XAI’ have been 
developed in the past decade. To visualize the relevant regions 
for the decision-making of the trained models, we employed 
Grad-CAM (Selvaraju et al. 2017), which is one of the most 
well-tested XAI methods for image classifier models. Grad-CAM 
generates a ‘class-discriminative localization map’, which is a 
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Fig. 4 Sex classification of M. polymorpha using the ResNet50 architecture. (A) Training scheme of the pretrained ResNet50 model. Only the 
last fully connected layer was modified and retrained for the sex classification of gemmaling images. Abbreviations: conv, convolutional layer; 
res_block, residual block; avg_pool, global average pooling; fc, fully connected layer. (B) Test accuracy of sex classification was plotted against 
developmental days of gemmalings. Points and bars indicate the mean and SD for five independent trials with random training, validation or test 
splitting for each day. Statistical analyses were performed on day 7. Asterisks indicate a significant difference in a two-tailed Welch’s t-test with 
Bonferroni adjustment, P < 0.01; n.s., not significant; n = 5. The inset shows negative controls where the sex labels of the images were randomly 
permuted. 

heatmap superimposed on an input image that highlights dis-
criminative regions containing critically important features for 
classification.

Grad-CAM heatmaps visualized whether discriminative fea-
tures were located in the gemmalings themselves or in the 
background. If the models appropriately pay attention to plant 
region, discriminative features should appear in the gemmaling 
area. In contrast, the Grad-CAM heatmaps on the background 
instead of the gemmalings indicate that the models utilized 
irrelevant features.

Fig. 6A–F shows representative Grad-CAM heatmaps for 
predicted sex for test images of all accessions on days 0 and 
7. Here, we focused on correctly classified images. To avoid 
displaying cherry-picked results upon selecting a single repre-
sentative heatmap among the 20 (Aus and Tak-1/Tak-2) and 60 
(Rit-1/Rit-2) test images for each developmental day and each 
sex, we quantified the degree of confidence that the models 
had in each classification and used the images with the highest 
confidence scores. We found that the representative heatmaps 
often appeared on the aerial part of the gemmaling, while other 
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Fig. 5 Validation of the trained classifier with feature ablation. (A) 
Examples of feature-ablated images. (B–D) Plots showing test accu-
racy against feature-ablation types for Aus (B), Tak-1/Tak-2 (C) and 
Rit-1/Rit-2 (D). The same ablation procedure was applied to train-
ing, validation and test datasets in each model training session. The 
data points are grouped by developmental days, indicated by the col-
ors. Points and bars represent the mean and SD, respectively, for five 
independent trials with random training, validation or test splitting. 

cases imply problematic attention to, for example, a scratch on 
the culture medium (Fig. 6B, top right).

Next, we calculated Intersection over Union (IoU), also 
known as the Jaccard coefficient, to summarize the image-wise 

explanations across the test images. The IoU score is a metric for 
measuring the degree of overlap between two regions of inter-
est, where 1 (maximum) indicates a pixel-perfect match and 
0 (minimum) indicates no overlapping area. Fig. 6G–I shows 
the IoU scores between the Grad-CAM heatmaps and the aerial 
parts of the gemmalings for all test images (see Supplementary 
Fig. S5 for the heatmap area normalized by the whole image 
area). Until day 1, the IoU scores on males and/or females were 
close to zero, suggesting that the models responded to nui-
sance features such as background medium color. Meanwhile, 
from days 3 to 7, the Grad-CAM heatmaps overlapped with 
the gemmalings in both male and female images. The excep-
tion to this trend is on day 7 of Aus male when the heatmaps 
appeared mostly on the culture medium. Interestingly, all acces-
sions exhibited a transition in the IoU distribution around day 
2, although the time courses of classification accuracy (Fig. 4B) 
were largely different among the accessions.

Although Grad-CAM provides valuable insights with regard 
to relevant regions for image classification, the heatmaps are 
often too coarse for dissecting subregions within an organ-
ism. Besides, such coarse heatmaps can make IoU scores mis-
leading. Thus, higher-resolution visual explanation methods, 
such as Layer-wise Relevance Propagation (Bach et al. 2015) 
and a region-based attribution method, XRAI (Kapishnikov 
et al. 2019), would be useful for further validation. To this 
end, we conducted the same analysis as in Fig. 6, but using 
XRAI. Fig. 7A–F shows representative XRAI heatmaps for pre-
dicted sex for test images of all accessions on days 0 and 
7. As expected, we found that the XRAI heatmaps exhib-
ited more prominent localization to the gemmalings. Note 
that XRAI also detected the problematic attention to the 
scratch on the culture medium (Fig. 7B, top right), illustrating 
the consistency between Grad-CAM and XRAI results. Then, 
we calculated the IoU scores for the test images (Fig. 7G–I) 
(see Supplementary Fig. S6 for the heatmap area normal-
ized by the total image area). The overlap between the XRAI 
heatmaps and the aerial part of gemmalings increases along 
with the developmental days. In comparison with the Grad-
CAM results, the transition on day 2 was less clear for Tak-
1/Tak-2. In addition, the IoU scores of XRAI, unlike those 
of Grad-CAM, did not exhibit significant differences between 
males and females. Taken together, we confirmed that the 
decision-making of the trained models was based on the 
gemmalings rather than nuisance background features after
day 2.

Transferability of Tak-1/Tak-2 and Rit-1/Rit-2 
classifiers
We have focused on the test accuracy of classifiers for the 
images of the same accessions as in the training data, and 
thereby we have found that accession-specific morphological 
differences in Tak-1/Tak-2 were reduced in Rit-1/Rit-2. Addi-
tionally, it would also be interesting to examine the accuracy 
of Tak-1/Tak-2 (Rit-1/Rit-2) classifiers on Rit-1/Rit-2 (Tak-1/Tak-
2) images. For example, if the small yet detectable differences 
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Fig. 6 Grad-CAM heatmaps visualize image regions relevant to classification. (A–F) Representative Grad-CAM heatmaps for Aus day 0 (A), Tak-
1/Tak-2 day 0 (B), Rit-1/Rit-2 day 0 (C), Aus day 7 (D), Tak-1/Tak-2 day 7 (E) and Rit-1/Rit-2 day 7 (F). IoU scores quantify the degree of overlap 
between the Grad-CAM heatmaps and the genmmalings. (G–I) Distribution of quantified overlap between the Grad-CAM heatmap and the 
gemmaling with the IoU score. Violin plots show IoU scores on correctly predicted images of (G) Aus, (H) Tak-1/Tak-2 and (I) Rit-1/Rit-2. Points and 
bars indicate the median and interquartile range, respectively. The left and right sides of each violin plot represent male and female, respectively. 

in Rit-1/Rit-2 were inherited from Tak-1/Tak-2, the classifiers 
trained on Rit-1/Rit-2 images would be able to classify Tak-
1/Tak-2 images. We conducted such transfer-prediction exper-
iments. Fig. 8A–D shows the prediction performances of Tak-
1/Tak-2 classifiers on Rit-1/Rit-2 images on each developmental 
day, while Fig. 8E–H shows those of the Rit-1/Rit-2 classi-
fiers on Tak-1/Tak-2 images (see Supplementary Fig. S7 for 
details). We found that, on all developmental days, the accu-
racies of Tak-1/Tak-2 classifiers on Rit-1/Rit-2 images were poor. 
On the other hand, the Rit-1/Rit-2 classifier on day 7 (Fig. 8F) 
was able to classify Tak-1/Tak-2 images with an accuracy of 

0.74 (Fig. 8G) and Matthew’s correlation coefficient (MCC) 
of 0.507 (Fig. 8H). The asymmetric transfer-prediction perfor-
mances between Tak-1/Tak-2 and Rit-1/Rit-2 classifiers were 
robustly reproduced under ablation (I) and ablation (II), i.e. 
background-ablated and silhouette images (Supplementary 
Figs. S8, S9). The results suggest that the remaining morpho-
logical differences in Rit-1/Rit-2 were inherited from parental 
Tak-1/Tak-2; in other words, the morphological differences in 
Tak-1/Tak-2 did not completely disappear in Rit-1/Rit-2. On the 
other hand, concerning the poor performance of Tak-1/Tak-
2 classifiers on Rit-1/Rit-2 images, we hypothesized that the
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Fig. 7 XRAI heatmaps visualize image regions relevant to classification. (A–F) Representative XRAI heatmaps for Aus day 0 (A), Tak-1/Tak-2 day 
0 (B), Rit-1/Rit-2 day 0 (C), Aus day 7 (D), Tak-1/Tak-2 day 7 (E) and Rit-1/Rit-2 day 7 (F). IoU scores quantify the degree of overlap between the 
Grad-CAM heatmaps and the genmmalings. (G–I) Distribution of quantified overlap between the XRAI heatmap and the gemmaling with the 
IoU score. Violin plots show IoU scores on correctly predicted images of (G) Aus, (H) Tak-1/Tak-2 and (I) Rit-1/Rit-2. Points and bars indicate the 
median and interquartile range, respectively. The left and right sides of each violin plot represent male and female, respectively. 

Tak-1/Tak-2 classifiers relied on easy-to-learn differences such 
as area and ignored the other features, which is a common 
problem in deep-learning-based image classifiers (Geirhos et al. 
2020).

Discussion

In this study, we proposed a deep-learning-based approach 
to detect and quantify cryptic morphological variability in M. 
polymorpha. We have demonstrated the effectiveness of our 
approach by analyzing the differences observed in gemmal-
ings of different sexes during the first week of development. 

To isolate the contributions of sex chromosomes, we estab-
lished RILs, Rit-1 and Rit-2, from the wild accessions, Tak-
1 and Tak-2. To construct a dataset for deep learning, we 
acquired images of gemmalings of Rit-1/Rit-2, Tak-1/Tak-1 and 
male/female of another wild accession, Aus. We observed 
that deep-learning-based ResNet50 successfully classified male 
and female gemmalings of the wild accessions with >90% test 
accuracy, while it could not reliably predict the sex of the 
RILs (Fig. 4B). This implies that the RILs have lost morpholog-
ical differences present in parental Tak-1 and Tak-2, indicating 
that they are most likely attributable to autosomal variations 
rather than solely determined by sex chromosomes. Notably, 

 1351

D
ow

nloaded from
 https://academ

ic.oup.com
/pcp/article/64/11/1343/7292451 by Kyoto U

niversity user on 25 January 2024



Y. Tomizawa et al. | Deep learning analysis for cryptic morphology

Fig. 8 Performance of transfer prediction. Original non-ablated images were used in training, validation and testing. (A–D) Performance of Tak-
1/Tak-2 classifiers on Rit-1/Rit-2 images. Confusion matrices for true sex labels of Rit-1/Rit-2 plants (columns) and predicted sex labels (rows) 
for day 0 (A) and day 7 (B). M and F denote male and female, respectively. Numbers in the confusion matrices indicate the numbers of Rit-
1/Rit-2 images in the corresponding categories. If the prediction is perfectly accurate for both males and females, the matrix should be diagonal. 
Prediction accuracy (C) and MCC (D) were plotted against developmental days of gemmalings. (E–H) Performance of Rit-1/Rit-2 classifiers on 
Tak-1/Tak-2 images. Confusion matrices for true sex labels of Tak-1/Tak-2 plants (columns) and predicted sex labels (rows) for day 0 (E) and day 
7 (F). Prediction accuracy (G) and MCC (H) were plotted against developmental days of gemmalings. 

the parental Tak-1 and Tak-2 had identical sequences in >50% 
of their genomes (Fig. 1), which shows that Tak-1 and Tak-
2 had been already inbred at the time of collecting, despite 
visible morphological differences even within the first week of 
gemmaling growth. This also highlights the importance of care-
fully constructed inbred lines; thus, Rit-1 and Rit-2 serve as 
an appropriate model system for investigating sexual dimor-
phism. Our approach is particularly important for quantifying 
the degree of phenotypic loss resulting from genetic changes, 
because the deep-learning-based classifiers eliminate the need 
for manual feature definition, thus bypassing the ‘devil’s proof’ 
that manually defined features may be inadequate for capturing 
phenotypic changes.

We trained separate classifiers for each developmental 
day and set of male and female accessions. The model 
design enabled us to conduct the transfer-prediction experi-
ments (Fig. 8), which gave insights into the features learned 
from Tak-1/Tak-2 and Rit-1/Rit-2 images. An alternative design 
is to train a unified model on all images possibly with supple-
mental inputs such as developmental days. Such approaches are 
data-efficient and simpler to analyze and hence would be useful 
for further analysis.

To validate whether the models learned to use
features of biological importance, we adopted feature-ablation 
experiments and XAI methods such as Grad-CAM and 
XRAI (Figs. 5–7). As a result, we confirmed that after a few 
days of growth, the sex classifications of the trained models 
depended on the plant body rather than irrelevant features such 

as scratches on the medium surface. An interesting research 
direction would be to identify the exact morphological features 
responsible for this classification. Another promising research 
direction is the so-called ‘Human-in-the-Loop’ approach. For 
example, in the Clustering-Aided Rapid Training Agent frame-
work (Kutsuna et al. 2012), a model optimizes a set of fea-
tures based on human feedback, simultaneously leading to high 
accuracy and interpretability.

Our approach based on the classifier has the advantage 
of being applicable to other modalities, such as fluorescence 
microscopy and infrared thermography. In particular, recent 
advancements in fluorescence/luminescence reporters have 
allowed us to acquire diverse image data for which optimal 
methods of characterization and quantification have not yet 
been established. The procedures developed here should facili-
tate a wide range of applications of deep-learning-based meth-
ods in plant biology.

Materials and Methods

Establishment of the RILs of M. polymorpha
The accessions Tak-1 and Tak-2 (Ishizaki et al. 2008) were used as original 
male and female strains, respectively, for the generation of RILs. All plants of 
Tak-1, Tak-2 and their offsprings were cultured on half-strength Gamborg’s B5 
(1/2 B5) medium (Gamborg et al. 1968) with 1% agar under continuous light 
(50∼60 μmol photons m−2 s−1) at 22∘C.

To cross male and female plants, gemmae were aseptically incubated on 
1/2 B5 medium for >2 weeks and then incubated in a container, ECO2box 
(E1654, Duchefa Biochemie B.V., Haarlem, Netherland), containing 1/2 B5 
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medium under sexual-organ induction conditions, i.e. continuous white light 
(50∼60 μmol photons m−2 s−1) supplemented with far-red light (30 μmol pho-
tons m−2 s−1) at 18∘C. After archegoniophores and antheridiophores had been 
formed, sperm were collected from antheridia as suspension in sterile water 
and put onto archegoniophores three times a week until sporangia were visi-
bly recognized. Matured sporangia were collected and dried for 1 week at room 
temperature. Dried sporangia were mixed into sterilized water, then spread 
onto 1/2 B5 medium plate and grown to the optimal size that is enough for 
genotyping of sex diagnosis as described previously (Iwasaki et al. 2021).

The spores obtained by the cross between Tak-1 and Tak-2 were desig-
nated as the F1 generation. More than 10 male and female F1 individuals were 
selected. Crosses between more than five sibling couples were performed, and 
one normal-looking sporangium was collected from each cross. These sporangia 
were separately spread onto 1/2 B5 medium, and one with enough number of 
spores and a high germination rate was selected as the F2 generation. These pro-
cedures were repeated for several generations. A pair of F5 siblings were defined 
as the male and female RILs Rit-1 and Rit-2.

Genome sequencing
Rit-1 and Rit-2 genomic DNAs were purified, and DNA libraries for sequenc-
ing were constructed using the NEBNext Ultra II FS DNA Library Prep Kit for 
Illumina and used to obtain paired-end reads using the Illumina NextSeq500 
platform.

Validation of RILs by polymorphism detection
Fastq files available from SRA-run ID DRR120994 were used for the analysis of 
Tak-2 polymorphisms. The fastq files of Tak-2, Rit-1 and Rit-2 were trimmed 
by fastp (v0.12.4) (Chen et al. 2018) and then mapped against Tak-1 genome 
v6.1 [downloaded from MarpolBase (marchantia.info)] by bwa-mem2 (v2.2.1) 
(Vasimuddin et al. 2019) at default parameters. Output sam files were sorted 
by samtools (v1.11) (Li et al. 2009) sort, followed by samtools fixmate with 
-m option. Samtools sort with -n option was used to sort these bam files 
before samtools markdup to produce dedupped bam files for following variant 
calling. Due to the lack of a golden standard list of single-nucleotide poly-
morphisms (SNPs) in M. polymorpha unlike human, we used variants called 
by GATK (v4.1.3.0) (McKenna et al. 2010) to recalibrate bam files for the sec-
ond variant call. The first variant call was done by gatk HaplotypeCaller with 
-pairHMM LOGLESS_CACHING -ERC GVCF -ploidy 1 options followed by the 
run of GenotypeGVCF with -ploidy 1 option. Hard filters were applied for each 
SNP and insertion and deletion (INDEL) to filter out low-quality variants by 
gatk VariantFilteration and SelectVariants—exclude-filtered. For SNP filtering, 
QD < 2.0, QUAL < 30.0, SOR > 3.0, FS > 60.0, MQ < 40.0, MQRankSum < −12.5 
and ReadProRankSum < −8.0 criteria were used. QD < 2.0, QUAL < 30.0 and 
FS > 20.0 filters were used for INDEL filtering. Output vcf files for SNPs and 
INDELs were fed to gatk BaseRecalibrator to generate a recalibration table with 
which gatk ApplyBQSR recalibrated bam files for the second variant call. The 
second variant call was done as described above to gain vcf files for SNPs and 
INDELs, respectively. Detected variants were also filtered out by the threshold 
described in the first step of variant filtration. To produce a Circos plot, we 
used bcftools (v1.9) (Danecek et al. 2021) norm to normalize the called vari-
ants and bcftools isec to detect intersections among Tak-2, Rit-1 and Rit-2. A 
homemade R script (https://github.com/PMB-KU/Rit-dev) was used to count 
polymorphisms, including SNPs and INDELs, in every 100 or 1,000 kb window. 
The regions that contained >100 polymorphisms per 100 kb or 1,000 poly-
morphisms per 1,000 kb were defined as those with a significant number of 
polymorphisms in Supplementary Table S1 or Fig. 1B, respectively. The Circos 
plot was visualized by the shinyCircos package (Yu et al. 2018).

The fasta files of the Rit-1 and Rit-2 genome sequences were created based 
on SNPs and INDELs using the gatk FastaAlternateReferenceMaker. Filtered 
reads were mapped against the created genome sequences using bwa-mem2 
with default parameters. Coverage was calculated using the bedtools (v2.30.0) 

(Quinlan and Hall 2010) genomecov, and regions with 0 coverage were masked 
with N using the bedtools maskfasta. These masked fasta files were registered as 
PRJDB15748 in the International Nucleotide Sequence Database Collaboration.

Image acquisition
Tak-1/Tak-2, Rit-1/Rit-2 and male and female Aus accessions were cultured from 
gemmae on 1/2 B5 medium containing 1.0% agar at 22∘C under continuous 
white light. Images were acquired by the digital microscope KH-7700 (Hirox, 
Tokyo, Japan) equipped with the lens MXG-2016Z (days 0∼3: ×60, day 4: ×40, 
day 7: ×20). The dataset includes 199–200 plants for Aus and Tak-1/Tak-2 and 
600–602 for Rit-1/Rit-2, with the same numbers of female and male individuals, 
except for 99 females and 100 males in Aus 7-day-old gemmalings (see Supple-
mentary Table S2 for details). The time points were for days 0, 1, 2, 3, 4 and 7 
after planting gemmae.

Data visualization of gemmaling images
For dimension reduction of the gemmaling images, we first preprocessed 
the images with ImageNet-pretrained ResNet50 (ResNet50_Weights.IMA-
GENET1K_V2 from the torchvision library) as a feature extractor. Specifi-
cally, we extracted image features from the last global average pooling layer; 
hence, the original dataset images (1,200 × 1,600 × 3) were reduced to 2,048-
dimensional vectors. Then, for t-SNE clustering, we used a Python imple-
mentation from the scikit-learn library, ‘sklearn.manifold.TSNE’ (random_state: 
1,000,000, perp: 30, n_iter: 1,000).

Training and validation of deep learning models
We preprocessed images before feeding them to deep learning models using 
the ‘transform’ function in the torchvision library from the PyTorch project (see 
Supplementary Table S4 for the versions of the libraries used in this study). To 
construct the training dataset, we began by center-cropping the original images 
with a crop size of 1,200 pixels to remove the excess background regions. Next, 
we erased the scale bar and augmented the images by flipping and rotating 
them. Finally, we resized the images to 300 × 300 pixels. Then, the pixel inten-
sity range was transformed from [0, 255] to [0, 1], and the red, green, and 
blue intensities of each image were normalized by using the mean [0.485, 0.456, 
0.406] and SD [0.229, 0.224, 0.225]. For the validation/test dataset, we used 
the same preprocessing steps except that we did not apply flipping or rotation. 
Supplementary Table S5 provides a pseudocode for the data augmentation.

We used ImageNet-pretrained ResNet50 (ResNet50_Weights.IMA-
GENET1K_V2 from the torchvision library) as the base model. The penultimate 
layer was customized for binary classification and only the parameters of the 
layer were trained. The images were randomly split into training, validation and 
test sets at a ratio of 64:16:20. We adopted the Adam optimizer (learning rate: 
0.001, batch size: 32, epochs: 500) and used the parameters that achieved the 
maximum accuracy on the validation set during training.

We adopted the scikit-image library to implement the image modifications 
in Fig. 5. First, we blurred the images using a Gaussian filter (bandwidth = 10 
pixels) and created binary masks using Otsu’s thresholding. Then, we applied 
dilation and hole-filling operations in order to make the masks cover the entire 
regions of gemmalings. Masks were used to eliminate the background/fore-
ground information in the images. A Gaussian filter (bandwidth = 60 pixels) 
was applied for severe blurring.

Visual explanation based on XAI methods
We adopted the Grad-CAM method to visualize highly relevant regions for 
the classification of the trained models (Selvaraju et al. 2017). By using a 
PyTorch implementation (https://github.com/jacobgil/pytorch-grad-cam, ver-
sion 1.4.8), we computed the Grad-CAM heatmaps based on the gradients 
with regard to activations in the last convolutional layer. Then, from the 
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heatmaps for correctly predicted test images for each accession/sex/develop-
mental day, we selected a representative heatmap for the image of the highest 
value of the unnormalized logit, i.e. the raw output of the last fully con-
nected layer in ResNet50. The logit values were used to quantify the degree 
of representativeness of the input images, following recent studies on out-of-
distribution detection in deep learning models (Hendrycks et al. 2022; Vaze et al. 
2022).

We also adopted XRAI (Kapishnikov et al. 2019) to obtain fine-grained 
visualization of relevant regions for classification. We modified the original 
XRAI implementation in TensorFlow (https://github.com/PAIR-code/saliency, 
version 0.2.0) to analyze our PyTorch models. The selection criteria for repre-
sentative heatmaps were the same as those for Grad-CAM.

We used IoU, also known as the Jaccard coefficient, in order to mea-
sure the degree of overlap between the aerial part of gemmalings and the 
Grad-CAM/XRAI heatmaps. To this end, we binarized the normalized Grad-
CAM/XRAI heatmaps with a threshold of 0.5. For the gemmalings, we utilized 
the silhouette images (Fig. 5). For each binarized image and the corresponding 
heatmap, IoU is defined as the area of intersection between the image and the 
heatmap normalized by the area of union of the image and the heatmap.
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