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Abstract: Isotropy is a fundamental property of a diffuse sound field. Although several studies have
proposed an isotropy indicator to quantify the extent of the isotropy of a sound field, what is not yet
very clear is how to interpret the quantified isotropy using these indicators. This study aims to
contribute to the understanding of the isotropy by (i) modifying an existing isotropy indicator based on
the spherical harmonic expansion and (ii) presenting isotropic sound field model composed of a finite
number of plane waves. Theoretical and numerical investigations show that a limited-degree isotropy
can be established by using the isotropy indicator and the isotropic sound field model.
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1. INTRODUCTION

Successful modeling of the directional energy distri-

bution (DED) of sound fields should help refine sound

absorption coefficient measurements in a reverberation

room [1] and realize efficient psychophysical experiments

to clarify the mechanism of spatial auditory perception

such as the auditory source width or the listener envelop-

ment [2–5]. Here, the DED refers to the distributions of the

energy from each direction observed at a certain point in a

room, where the sound field is composed of plane waves.

To model an arbitrary DED, a method must be

constructed that can appropriately simulate DEDs for two

extremes: the most non-uniform and the most uniform

cases. A sound field with the most non-uniform DED is

one in which a single plane wave arrives from only one

direction. In contrast, it is debatable how to define a sound

field with the most uniform DED.

Based on the concept of a diffuse sound field originat-

ing from Sabine [6, Chap. 1], the physical properties of a

diffuse sound field are roughly divided into two parts:

Homogeneity Uniform distribution of the acoustic energy

in a room.

Isotropy Statistical uniformity of the directional proper-

ties (e.g., the arrival direction of a sound wave) in the

sound field observed at a point in a room.

This paper focuses on the isotropy. As in previous studies

[7], the term ‘‘isotropy’’ is used to express the uniformity of

DED in this paper.

Here, the plane-wave model (PWM, see Ref. [8, Sect.

II.B] for example) is regarded as a theoretical model of the

isotropic sound field. In PWM, the sound field is composed

of an infinite number of plane waves arriving from all

directions. Random variables determine the amplitude and

phase of each plane wave. Although PWM is essentially a

theoretical model for a diffuse sound field, it is reasonable

to treat PWM as a theoretical model of the isotropic sound

field since the diffuseness encompasses the isotropy.

Among the isotropy indicators proposed to date, most

evaluate the isotropy of a sound field using the following

physical quantities:

. Deviation of the energy decay curves calculated for

select directions [9–12];

. Ratio of the zeroth-degree spherical harmonic ex-

pansion coefficients (SHEC) of the temporarily inte-

grated DED [7,13–15].

These indicators quantify an isotropy by evaluating the

uniformity of the directional distribution of physical

quantities such as energy decay curves or the temporarily

integrated absolute amplitudes of plane waves [13].

Indicators [9–12] using the variance or deviation of energy

decay curves for each direction depend on the set of

directions selected in the calculation. Therefore, the set

of directions must be carefully selected to calculate these

indicators. In contrast, the isotropy indicators [7,13–15]

using SHECs of a DED do not explicitly require such a

selection and are more concise. Hence, the current study

focuses on them.

Since the perfectly isotropic sound field is generated by

the superposition of an infinite number of plane waves,

infinitely precise directional resolution is required to
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evaluate the isotropy of a sound field. However, existing

isotropy indicators quantify an isotropy of sound fields

employing microphone arrays with a finite number of

microphones or finitely precise directional resolution.

Thus, it remains unclear how to understand the quantified

isotropy using the existing indicators. The assumption of

an infinite number of plane waves in PWM is considered to

be the cause of these problems. Therefore, it is necessary

to construct an isotropic sound field model that assumes a

finite number of plane waves and finitely precise direc-

tional resolution.

To develop an understanding of the isotropy, this paper

(i) enhances the usefulness of the existing isotropy

indicators by modifying them from a viewpoint of rota-

tional invariance, and (ii) proposes an isotropic sound field

model composed of a finite number of plane waves using

spherical designs.

The rest of this paper is organized as follows. Section 2

defines the cumulative DED. Section 3 numerically illus-

trates rotationally variant/invariant nature of the isotropy

indicators, later, in Sect. 6, more practical numerical/

experimental examinations of them are given. Section 4

formulates a limited-degree isotropic sound field model

based on the spherical design. The model is then numeri-

cally constructed in Sect. 5.

2. CUMULATIVE DIRECTIONAL
ENERGY DISTRIBUTION

2.1. Sound Field Composed of Plane Waves

Here, a sound field composed of sinusoidal plane waves

is considered. The sound field is written as

Pðr; k; �Þ ¼
XQ
q¼1

Aqðk; �Þ � eiknq�r; i :¼
ffiffiffiffiffiffiffi
�1
p

; ð1Þ

where r ¼ ðx; y; zÞ is an observation point; nq is a unit

vector pointing at direction of arrival (DoA) of qth plane

wave; Aqðk; �Þ is the complex amplitude of qth plane wave

at the origin in the domain of short-time Fourier transform.

� [s] is the center of the time window. k [rad/m] is the

wavenumber of the plane waves.

2.2. Cumulative Directional Energy Distribution

Since the isotropy of a sound field is a statistical or

cumulative property, it is more reasonable to estimate the

isotropy using cumulative DEDs than instantaneous ones.

The cumulative or Schroeder-integrated DED in the

spherical-harmonics domain and the SHECs of that are

given respectively as

D̂c
Nð�; �; k; �Þ :¼

XN
n¼0

Xn
m¼�n

âc
n;mðk; �Þ � Y

C

n;mð�; �Þ; ð2Þ

âc
n;mðk; �Þ :¼

XQ
q¼1

1

T � �

Z T

�

jAqðk; �0Þj2 d�0
� �

� YCn;mð�q; �qÞ;

ð3Þ

where YCn;m is the complex-valued spherical harmonics

(A·1) and n ¼ 0; 1; . . . ;N and m ¼ 0;�1; . . . ;�n are the

degree and order, respectively. ð�Þ represents the complex

conjugate. 0 � �q � � and �� � �q < � are the angular

coordinates in the spherical coordinate system (Fig. 1).

These represent the DoA of qth plane wave. Hereafter, the

case of � ¼ 0 and T ¼ 1 is considered, unless otherwise

noted. Thus, the cumulative DED and the SHECs of that

are rewritten respectively as

Dc
Nð�; �; kÞ :¼

XN
n¼0

Xn
m¼�n

ac
n;mðkÞ � Y

C

n;mð�; �Þ; ð4Þ

ac
n;mðkÞ :¼

XQ
q¼1

lim
T!1

1

T

Z T

0

jAqðk; �Þj2 d�

� �

� YCn;mð�q; �qÞ

¼
XQ
q¼1

E½jAqðk; �Þj2� � YCn;mð�q; �qÞ;

ð5Þ

where E½�� denotes the expected value or time average.

3. ISOTROPY INDICATORS

This section introduces the existing isotropy indicators

to evaluate the isotropy of the DED in a sound field. Simple

numerical experiments show the rotationally variant nature

of the 1-norm isotropy indicator [7] and the rotationally

invariant nature of the 2-norm isotropy indicator, which is

given by modifying the existing isotropy indicator [14].

3.1. 1-norm Isotropy Indicator

Nolan et al. [7] proposed an isotropy indicator in 2018.

This indicator is defined as the ratio of the absolute value of

the zeroth-degree spherical harmonic expansion coefficient

(SHEC) of a sound field to the sum of the absolute value of

SHECs of that from zeroth to Nth degree, which is given as

Fig. 1 Spherical coordinate system.
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�c
NðkÞ :¼

kac
0ðkÞk1PN

n¼0 kac
nðkÞk1

; ð6Þ

where

kac
nðkÞk1 :¼

Xn
m¼�n
jac

n;mðkÞj: ð7Þ

The indicator given above is henceforth referred to as

the 1-norm isotropy indicator in this paper. By applying

the indicator (6) to the SHECs (5) of the cumulative DED,

the statistical isotropy of the sound field can be evaluated.

Here, its rotationally variant nature is considered.

Below, a simple example is numerically demonstrated

to show the rotationally variant problem. A sound field

consisting of a single plane wave arriving from a fixed

direction is considered. For simplicity, the time-averaged

energy of the plane wave is set to 1:

lim
T!1

1

T

Z T

0

jAsglðk; �Þj2 d� ¼ 1: ð8Þ

SHECs of the cumulative DED of this sound field are given

as

ac,sgl
n;m ¼ YCn;mð�in; �inÞ; ð9Þ

where ð�in; �inÞ is the DoA of the single plane wave.

In this case, it is reasonable to consider the isotropy of

the cumulative DED as a constant regardless of the DoA

of the plane wave. Supposing that the 1-norm isotropy

indicator (6) is applied to the cumulative DED, it may thus

be desirable that its numerical value

�c,sgl
N :¼

kac,sgl
0 k1PN

n¼0 ka
c,sgl
n k1

ð10Þ

should be constant regardless of the DoA ð�in; �inÞ of the

plane wave.

Figure 2 shows the numerical values of the 1-norm

isotropy indicator (10) applied to the cumulative DED for

select DoAs ð�in; �inÞ and truncation degrees N. The value

of the 1-norm indicator is not constant with variations in

the DoA of the plane wave, implying that the 1-norm

isotropy indicator is not rotationally invariant.

In order to demonstrate another problem caused by the

rotationally variant nature of the 1-norm isotropy indicator,

Sect. 6.1 shows the results of applying the 1-norm indicator

to the limited-degree isotropic models, which is to be

presented later.

3.2. 2-norm Isotropy Indicator

To cope with the rotationally variant issue of the 1-

norm isotropy indicator (6), an isotropy indicator based on

the 2-norm of SHECs is considered.

Here, the 2-norm isotropy indicator is formulated as

follows.

�c
NðkÞ :¼

kac
0ðkÞk2PN

n¼0 kac
nðkÞk2

; ð11Þ

where kac
nðkÞk2 is given as

kac
nðkÞk2 :¼

Xn
m¼�n
jac

n;mðkÞj
2

 !1=2

: ð12Þ

The 2-norm isotropy indicator (11) is essentially the

same as the one proposed by Ebeling [14] (and rediscov-

ered by Nolan et al. [15] in 2016), but this study makes

a minor modification to be consistent with the 1-norm

isotropy indicator (6).

Since the square sum of nth-degree SHECs has been

proven to be rotationally invariant [16, Prop. 2.1], its root

(12) and the 2-norm isotropy indicator (11) are also

rotationally invariant.

The 2-norm isotropy indicator can also be applied to

SHECs (9) for a sound field consisting of a single plane

wave

�c,sgl
N :¼

kac,sgl
0 k2PN

n¼0 ka
c,sgl
n k2

: ð13Þ

Figure 3 depicts the results of the numerical experi-

ment. Unlike the results for the 1-norm isotropy indicator

(Fig. 2), the numerical value of the 2-norm isotropy

indicator (13) is constant regardless of the DoA ð�in; �inÞ
of the plane wave. These results suggest that the 2-norm

isotropy indicator (11) has a rotationally invariant property,

and is favorable for evaluating isotropy. Therefore, this

study employs the 2-norm isotropy indicator to evaluate the

isotropy.

Fig. 2 Numerical values of the 1-norm isotropy indica-
tor (10) applied to the SHECs (9) for a sound field
consisting of a single plane wave. For the DoA of the
plane wave, �in increases logarithmically from 0	 to
90	, while �in varies randomly from �180	 to 180	,
respectively. Truncation degree N increases logarith-
mically from 1 to 1,000. These conditions also apply to
Fig. 3.
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In Sect. 6.2, the 2-norm isotropy indicator is applied to

some RIRs [17] in order to demonstrate the usefulness and

limitations of the indicator.

3.3. Truncation Degree of the Isotropy Indicators

Figures 2 and 3 illustrate not only the dependence/

independence of the numerical values of the isotropy

indicators on the DoA of the plane wave but also the

numerical behavior of the indicators with the variations

of the truncation degree N (defined in Eqs. (6) and (11),

respectively). The numerical values of both indicators

decrease exponentially in an inverse proportion to the

truncation degree.

It may be problematic that the numerical values of the

indicators for the same sound field vary with the truncation

degree. Nevertheless, this is likely to be unavoidable,

regardless of which of the existing isotropy indicators is

adopted. In fact, the numerical values of all the isotropy

indicators mentioned in Sect. 1 depend on the directional

resolution. Therefore, this study makes use of the trunca-

tion-degree dependence of the 2-norm isotropy indicator

in the concept of a limited-degree isotropy proposed in

Sect. 4.

4. LIMITED-DEGREE ISOTROPIC
SOUND FIELD MODEL

This section presents a concept called limited-degree

isotropy, which represents the isotropy for a given

limitation on the directional resolution. By introducing

the limited-degree isotropy, a spherical design can be used

to model an isotropic sound field consisting of a finite

number of plane waves.

4.1. Sound Field in PWM

In PWM [8, Sect. II.B], the complex amplitude at a

certain time for each plane wave that composes the

(diffuse) sound field is given as [18,19]

Apwm
q ðk; �Þ ¼

�qðk; �Þ þ i	qðk; �Þffiffiffiffi
Q
p ; ð14Þ

where �q and 	q are independent zero-mean Gaussian

random variables whose variance is 1/2. Q is the total

number of plane waves that compose the sound field. Since

Q is infinite in theory, the SHECs of the cumulative DED

of this sound field are given as

apwm
n;m ðkÞ ¼ lim

Q!1

XQ
q¼1

lim
T!1

1

T

Z T

0

jApwm
q ðk; �Þj

2 d�

� �

� YCn;mð�q; �qÞ

¼ lim
Q!1

XQ
q¼1

E½jApwm
q ðk; �Þj

2� � YCn;mð�q; �qÞ

¼ lim
Q!1

XQ
q¼1

E½f�qðk; �Þg2 þ f	qðk; �Þg2�
Q

� YCn;mð�q; �qÞ

¼ lim
Q!1

XQ
q¼1

ð1=QÞYCn;mð�q; �qÞ

¼? ð4�Þ�1=2; n ¼ 0.

0; n ¼ 1; 2; . . . .

�

ð15Þ

The last transformation of the equation is based on the

assumption that the plane waves arrive from all directions.

Although the above result is easily predictable based

on the previous studies discussing the perfect isotropy, it

suggests that PWM (infinite number of plane waves) can

synthesize the perfectly isotropic sound field in the

spherical-harmonics domain.

However, the infinite number of plane waves assumed

in PWM gives little suggestions as to a method of

quantifying the extent of the isotropy of a sound field

and an interpretation of an isotropy quantified in some

way. To solve this problem, a spherical design is

introduced as the DoAs of the plane waves.

4.2. Spherical Design

Definition 1 (Delsarte et al. [20, Def. 5.1]). For any

polynomial function p�tð�; �Þ of degree t at most defined

on the unit sphere S2 in three-dimensional Euclidean space,

the point set �̂Q ¼ fð�̂q; �̂qÞ; q ¼ 1; 2; . . . ;Qg satisfying the

following equality is the spherical t-design on S2

1

Q

XQ
q¼1

p�tð�̂q; �̂qÞ ¼
1

4�

Z �

��

Z �

0

p�tð�; �Þ sin �d�d�: ð16Þ

Equation (16) implies that the integral of any poly-

nomial function p�tð�; �Þ on S2 can be computed exactly

Fig. 3 Numerical values of the 2-norm isotropy indica-
tor (13) applied to SHECs (9) for the sound field
consisting of a single plane wave.
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if given an upper bound on the degree by summing the

discretely sampled function values on the spherical

t-design �Q. (In this study, the term ‘‘spherical t-design’’

is sometimes used to emphasize the degree of the spherical

design.)

An equivalence transformation of definition 1 yields

the following theorem using real-valued spherical harmon-

ics (A·2)

Theorem 1 (Womersley [21, Sect. 4.1]). A point set �Q ¼
fð�̂q; �̂qÞ; q ¼ 1; 2; . . . ;Qg is the spherical t-design on S2 if

and only if the following equation holds for �QXQ
q¼1

YRn;mð�̂q; �̂qÞ ¼ 0 ð17Þ

for n ¼ 1; 2; . . . ; t and m ¼ 0;�1; . . . ;�n.

Proposition 1. If and only if Eq. (17) holds for n ¼
1; 2; . . . ; t and m ¼ 0;�1; . . . ;�n, then the following

equation using complex-valued spherical harmonics also

holds

XQ
q¼1

YCn;mð�̂q; �̂qÞ ¼ 0 ð18Þ

for n ¼ 1; 2; . . . ; t and m ¼ 0;�1; . . . ;�n.

The above Proposition is proven in Appendix B.

4.3. Modeling an Isotropic Sound Field by Using

Spherical Design

Consider the case where each plane wave has a

complex amplitude, which is given in Eq. (14), and the

DoAs fð�̂q; �̂qÞ; q ¼ 1; 2; . . . ;Qg of the plane waves are

sampled on the spherical design. The SHECs of the

cumulative DED of the sound field synthesized by super-

imposing these plane waves are given as

ac;tn;mðkÞ ¼
XQ
q¼1

lim
T!1

1

T

Z T

0

jApwm
q ðk; �Þj

2 d�

� �

� YCn;mð�̂q; �̂qÞ

¼ð15Þ ð1=QÞ
XQ
q¼1

YCn;mð�̂q; �̂qÞ

¼ð18Þ ð4�Þ�1=2; n ¼ 0.

0; n ¼ 1; 2; . . . ; t.

�
ð19Þ

By applying the 2-norm isotropy indicator to the SHECs

(19), the following equality holds for the truncation degrees

such that N � t

�c;t
N�tðkÞ ¼

kac;t
0 k2PN�t

n¼0 kac;t
n k2
¼
kac;t

0 k2
kac;t

0 k2
¼
ð4�Þ�1=2

ð4�Þ�1=2
¼ 1: ð20Þ

The above results suggest that a finite number of plane

waves can synthesize a perfectly isotropic sound field for a

given upper bound of the degree. In addition, the present

results suggest the concept of the isotropy with an upper

bound of the degree, which is the main contribution of

this paper.

The concept is hereinafter referred to as the limited-

degree isotropy. (Equation (20) represents ‘‘tth-degree

isotropy.’’) Among the sound fields with tth-degree

isotropy, those with Q ¼ ðt þ 1Þ2 plane waves are called

the ‘‘tth-degree isotropic sound field model’’ in this study.

(However, it is possible to construct a spherical t-design

for a smaller number of points. For example, Womersley

[21] successfully constructed (numerical) spherical designs

with approximately ðt þ 1Þ2=2 points.)

4.4. Summary and Limitations of Limited-degree

Isotropic Sound Field Model

The proposed limited-degree isotropic sound field

model consists of ðt þ 1Þ2 plane waves arriving from

directions sampled with a spherical t-design. The complex

amplitude of each plane wave at a given time is determined

by independent standard normal complex random varia-

bles. The cumulative DED in the model satisfies the tth-

degree isotropy.

A note of caution is due here since the infinite time

integral is assumed in the process of constructing the

model. The assumption limits the application of the model

to a simulated or measured sound field. Thus, the

effectiveness of the model in the practical situations

remains to be studied.

5. NUMERICAL MODELLING
OF LIMITED-DEGREE ISOTROPIC

SOUND FIELD

5.1. Approximation of Spherical Design

This subsection describes how to construct an approx-

imate (or numerical) spherical design using the nonlinear

least-squares method, which is briefly presented in

Ref. [21, Sect. 4.4]. First, the following vector-valued

function is given as

rRt ð�QÞ :¼

"XQ
q¼1

YR1;�1ð�q; �qÞ;
XQ
q¼1

YR1;0ð�q; �qÞ;

XQ
q¼1

YR1;1ð�q; �qÞ; . . . ;
XQ
q¼1

YRt;tð�q; �qÞ

#T

:

ð21Þ

From Theorem 1, the point set ��Q that satisfies equation

rRt ð�
�
QÞ ¼ 0 is a spherical design. Instead of solving the

equation rRt ð�QÞ ¼ 0, the sum of the squares of the

elements of the original vector-valued function (21) is

minimized by the nonlinear least-squares method. Namely,

the following objective function is minimized.

fRt ð�QÞ :¼ rRt ð�QÞTrRt ð�QÞ: ð22Þ

Note that point set ��Q that satisfies fRt ð�
�
QÞ ¼ 0 is also a

spherical design.
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The Levenberg-Marquardt method (L-M method

[22,23]) is employed to obtain an approximate spherical

t-design with ðt þ 1Þ2 points (i.e., a local minimum solution

of objective function (22)). The L-M method is a hybrid of

the steepest descent and Gauss-Newton methods. It has

advantages of both. That is, the L-M method reduces the

function value at each iteration and has a fast convergence

around the solution.

The iterations are stopped once one of the following

conditions is achieved

kr fRt ð�Q;lþ1Þk1 < 10�13; ð23Þ

k�Q;lþ1 ��Q;lk1
k�Q;lk1

< 10�10; ð24Þ

where �Q;l is the approximate solution obtained at the lth

iteration. kxk1 equals to the maximum absolute value of

the elements of vector x.

The initial approximate solution is set to the maximum

determinant (MaxDet [24]), while the initial value of the

trust parameter for the L-M method is 
0 ¼ 10�2. The

calculations are performed using the MATLAB [25]

command lsqnonlin. (In lsqnonlin, conditions (23)

and (24) correspond with FunctionTolerance = 1e-9

and StepTolerance = 1e-10, respectively.)

5.2. Isotropy of Limited-degree Isotropic Sound Field

Model Using Approximate Spherical Design

The isotropy of the approximate limited-degree iso-

tropic model is evaluated. The accuracy of the isotropy

realized by the approximate limited-degree model is

assessed using the following measure

�t½n� :¼
kac;t

n k2Pt
j¼0 ka

c;t
j k2

; n ¼ 0; 1; . . . ; t; ð25Þ

where, t is the degree of an isotropic model. If an isotropic

sound field is generated by a strict spherical design (18),

the following equality is realized

�t½n� ¼
1; n ¼ 0.

0; n ¼ 1; 2; . . . ; t.

�
ð26Þ

Equation (26) enables the accuracy of the isotropy of the

approximate isotropic model to be evaluated by the

smallness of the numerical value of �t½n� for n ¼
1; 2; . . . ; t.

Figure 4 shows the calculation results of measure (25)

using the SHECs

ac;t
n;m ¼ ð1=QÞ

XQ
q¼1

YCn;mð�̂q; �̂qÞ ð27Þ

for sample DoAs ð�̂q; �̂qÞ: MaxDet [24], spherical designs

by Chen et al. [26], and the spherical designs computed

in this study. Compared with the other point sets, the

(approximate) spherical design in this study achieves

smaller ratios of kac;t
n k2 for degrees n ¼ 1; 2; . . . ; t, dem-

onstrating that the spherical design in this study realizes a

more accurate isotropy defined by the 2-norm isotropy

indicator (11).

5.3. Evaluation of Limited-degree Isotropic Sound

Field Model Using 2-norm Isotropy Indicator

Figure 5 shows the numerical value of the 2-norm

isotropy indicator (11) for SHECs (27) of select limited-

degree isotropic sound field models using approximate

spherical designs in this study. 10 degrees t of isotropic

model and 100 truncation degrees N of the indicator were

selected at logarithmically equal intervals from 0 to 100

and from 1 to 1,000, respectively.

The numerical value of the isotropy indicator is 1

(0 dB), indicating a perfect isotropy, when the truncation

degree N of the indicator is less than or equal to the degree

(a) MaxDet. (b) Spherical designs by Chen et al. (c) Spherical designs in this study.

Fig. 4 Numerical value of measure (25) for isotropic sound field models using (a) MaxDet [24], (b) spherical designs by
Chen et al. [26], and (c) spherical designs computed in this study. Degrees of isotropic models are t ¼ 0; 2; . . . ; 100.
Marker color indicates the degree of the 2-norm kac;t

n k2: n ¼ 0; 1; . . . ; t. Diamonds indicate the ratio of kac;t
0 k2, and the dots

indicate the ratio of kac;t
n k2 for n ¼ 1; 2; . . . ; t.
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t of the isotropic sound field model. In contrast, the

numerical value of the indicator decreases, indicating

anisotropy, as the truncation degree of the indicator N

exceeds the degree of the model. (The t ¼ 1 case is the

exception because it is likely that the point set converges to

the vertices of the regular tetrahedron, which is a spherical

2-design [27], in the optimization.)

It may be confusing that the numerical value of the 2-

norm isotropy indicator varies with the truncation degree.

However, this nature enables the concept of limited-degree

isotropy, which takes advantage of the truncation-degree

dependence of the indicator.

6. CASE STUDIES

6.1. Application of 1-norm Isotropy Indicator to

Limited-degree Isotropic Sound Field Model

The 1-norm isotropy indicator was applied to the

cumulative DED of the present isotropic sound field model.

Figure 6 shows the numerical value of the 1-norm

isotropy indicator (6) applied to the SHECs (27) of select

limited-degree isotropic sound field models using approx-

imate spherical designs in this study. Degrees t of the

isotropic models and truncation degrees N of 1-norm

isotropy indicator were selected as described in Sect. 5.3.

The isotropic model for t ¼ 0 is composed of a single

plane wave, and therefore, it should be less isotropic than

isotropic models of any other degree. Contrary to expecta-

tions, the value of the 1-norm isotropy indicator for 0th-

degree isotropic model is larger than that for higher-degree

isotropic models when greater truncation degree is applied.

The single plane wave arrives from the direction of the

North Pole, i.e., �in ¼ 0, in 0th-degree isotropic model. A

possible factor of the above result might thus be that, as

shown in Fig. 2, the 1-norm isotropy indicator tends to

overestimate the components arriving from near the

direction of the North Pole (the same is true for that of

the South Pole, although not shown in the figure). This

somewhat troubling results suggest that caution must be

applied when evaluating an isotropy using the 1-norm

isotropy indicator.

6.2. Applications of 2-norm Isotropy Indicator to

RIRs

First, the example of an application of the 2-norm

isotropy indicator to simulated RIRs is given. As described

in details in Ref. [17], geometrical acoustic simulation

synthesized the RIRs.

The RIRs were converted to time-frequency domain

using short-time Fourier transform, where 256-samples

hanning window and 128-samples overlapping were ap-

plied. The converted RIRs in the 4,000 Hz octave band

were then extracted and converted to spherical-harmonics

domain using spherical harmonics up to 4th degree and

radial functions [28]. The RIRs in the spherical-harmonics

domain were decoded to the amplitudes of plane waves

arriving from a spherical 8-design [21]. By Schroeder-

integrating the RIRs in the plane-wave domain, a cumu-

lative DED was calculated (see Ref. [9], for example).

Finally, the cumulative DED was converted into the

spherical-harmonics domain. Note that decay cancellation

has not been applied to the RIRs.

Figure 7 shows the numerical value of the 2-norm

isotropy indicator (truncation degree N ¼ 4) applied to the

cumulative DED obtained by the above procedure. Con-

ditions A, D, and E represent absorption conditions in the

simulation (see Table 1 and Ref. [17] for graphical visual-

izations of their DEDs). The lower limit of the vertical

axis of the figure is the theoretical minimum of the 2-norm

Fig. 5 Numerical value of the 2-norm isotropy indicator
for select limited-degree isotropic sound field models.
The degree t of isotropic model and truncation degree
N of the 2-norm isotropy indicator were selected at
logarithmically equal intervals.

Fig. 6 The numerical value of the 1-norm isotropy
indicator applied to the cumulative DED of the limited-
degree isotropic sound field models.
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isotropy indicator of 4th degree. It is shown that the 2-norm

isotropy indicator appropriately reflects the difference in

the absorption conditions, suggesting that the 2-norm

isotropy indicator can evaluate isotropy of simulated RIRs.

Next, the 2-norm isotropy indicator was applied to

measured RIRs (see Ref. [17] for details of measurement).

The RIRs in the 1,000 and 2,000 Hz octave bands

were the targets of the evaluation of isotropy. Spherical

harmonics up to 2nd degree and spherical 4-design [21]

were used for conversion of the RIRs into the domains of

spherical harmonics and plane wave, respectively. The

other procedures were the same as those described above

for the simulated RIRs.

Figure 8 displays the numerical value of the 2-norm

isotropy indicator (truncation degree N ¼ 2) applied to the

cumulative DED of the measured RIRs. The lower limit of

the vertical axis of the figure is the theoretical minimum of

the 2-norm isotropy indicator of 2nd degree.

For both 1,000 and 2,000 Hz octave bands, values of

the 2-norm isotropy indicator decrease rapidly when direct

sound arrives (t ¼ 0 ms). Sensitivity of the 2-norm isotropy

indicator is similar to that of a comparable isotropy

indicator [9]. However, the value of the indicator tends to

be larger than that for the simulated RIRs (Fig. 7). One

possible implication of this is that the 2-norm isotropy

indicator suffers from electrical noise generated by trans-

ducers. Further research is required to establish the validity

of the 2-norm isotropy indicator applied to measured

signals.

7. CONCLUSIONS

The 2-norm isotropy indicator was presented by

modifying the existing isotropy indicator from the view-

point of rotational invariance. The numerical and exper-

imental investigations of the 2-norm isotropy indicator

have shown its usefulness (sufficiently high sensitivity) and

limitations (possible vulnerability to noise).

Using the 2-norm isotropy indicator, this paper con-

ceptualized (i) an ideal isotropy for a given limitation on

the directional resolution and (ii) an isotropic sound field

composed of a finite number of plane waves arriving from

directions sampled with the spherical design. It is theoret-

ically shown that a finite number of plane waves can

synthesize a perfectly isotropic sound field by limiting the

maximum degree of the isotropy.

The present results might contribute to a better under-

standing of the isotropy of a sound field.
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APPENDIX A: SPHERICAL HARMONICS

A.1. Definitions of complex- and real-valued spherical

harmonics

For n ¼ 0; 1; 2; . . . , and m ¼ 0;�1; . . . ;�n, complex-

valued spherical harmonics [29, Ex. 4.3.32] and real-

valued spherical harmonics [29, Ex. 4.3.33] are defined as

YCn;mð�; �Þ :¼ ð�1Þm � Ln;mðcos �Þ �
eim�ffiffiffiffiffiffi

2�
p ; ðA:1Þ

YRn;mð�; �Þ :¼ Ln;jmjðcos �Þ �

cosðm�Þffiffiffi
�
p ; m < 0,

1ffiffiffiffiffiffi
2�
p ; m ¼ 0,

sinðm�Þffiffiffi
�
p ; m > 0,

8>>>>>>>><
>>>>>>>>:

ðA:2Þ

where e is the Napier number and Ln;m is fully normalized

associated Legendre polynomials [25, legendre(n,

cos(theta),‘norm’)]. Here, n and m are the degree

and order of the spherical harmonics, respectively, and

0 � � � � and �� � � < � are the angular coordinates in

the spherical coordinate system.

A.2. Relational formula between complex- and real-

valued spherical harmonics

For n ¼ 0; 1; 2; . . . , the following relational formula

holds between complex- and real-valued spherical har-

monics
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YCn;mð�; �Þ ¼

YRn;mð�; �Þ � iYRn;�mð�; �Þffiffiffi
2
p ; m < 0.

YRn;mð�; �Þ; m ¼ 0.

YRn;�mð�; �Þ þ iYRn;mð�; �Þ
ð�1Þm �

ffiffiffi
2
p ; m > 0.

8>>>>>><
>>>>>>:

ðA:3Þ

Derivation of the relational formula

m ¼ 0 case

From definitions (A·1) and (A·2), YCn;mð�; �Þ ¼ YRn;mð�; �Þ
clearly holds.

m < 0 case

From the following order-reflection formula of a fully

normalized associated Legendre polynomial, which is

given as

Ln;�mðzÞ ¼ ð�1Þm � Ln;mðzÞ; ðA:4Þ

the following equation holds

Ln;j�mjðzÞ ¼ Ln;�mðzÞ ¼ ð�1Þm � Ln;mðzÞ ðA:5Þ

for m ¼ �1;�2; . . . ;�n. Equation (A·5) and Euler’s for-

mula lead to the following relational formula

YRn;mð�; �Þ ¼ Ln;jmjðcos �Þ �
cosðm�Þffiffiffi

�
p

¼ ð�1Þm � Ln;mðcos �Þ �
cosðm�Þffiffiffi

�
p

¼
ffiffiffi
2
p
� Re½YCn;mð�; �Þ�; �1 � m � �n;

ðA:6Þ

where Re½�� is the real part of the complex number.

In contrast, considering the order-reflected real-valued

spherical harmonics, the following relation can be derived

YRn;�mð�; �Þ ¼ Ln;j�mjðcos �Þ �
sinð�m�Þffiffiffi

�
p

¼ ð�1Þm � Ln;mðcos �Þ �
�sinðm�Þffiffiffi

�
p

¼ �
ffiffiffi
2
p
� Im½YCn;mð�; �Þ�; �1 � m � �n;

ðA:7Þ
where Im½�� is the imaginary part of the complex number.

From Eqs. (A·6) and (A·7), the following formula can

be derived

YCn;mð�; �Þ ¼
YRn;mð�; �Þ � iYRn;�mð�; �Þffiffiffi

2
p ; ðA:8Þ

for m ¼ �1;�2; . . . ;�n.

m > 0 case

Using the order-reflection formula of complex-valued

spherical harmonics

YCn;�mð�; �Þ ¼ ð�1Þm � YCn;mð�; �Þ; m ¼ 0;�1; . . . ;�n;
ðA:9Þ

and Eq. (A·8), the following relation can be derived

YCn;�mð�; �Þ ¼ ð�1Þm � YCn;mð�; �Þ

¼ ð�1Þm �
YRn;mð�; �Þ � iYRn;�mð�; �Þffiffiffi

2
p

¼ ð�1Þm �
YRn;mð�; �Þ þ iYRn;�mð�; �Þffiffiffi

2
p

ðA:10Þ

for�m ¼ 1; 2; . . . ; n. Rewriting the above equation using m

instead of �m yields

YCn;m ¼ ð�1Þ�m �
YRn;�mð�; �Þ þ iYRn;mð�; �Þffiffiffi

2
p

¼
YRn;�mð�; �Þ þ iYRn;mð�; �Þ

ð�1Þm �
ffiffiffi
2
p ; m ¼ 1; 2; . . . ; n:

ðA:11Þ
The derivation of relational formula (A·3) is complete.

�

APPENDIX B: PROOF OF PROPOSITION 1

The Proposition is restated here for convenience.

Proposition. �̂Q ¼ fð�̂q; �̂qÞ; q ¼ 1; 2; . . . ;Qg is a point

set on the unit sphere S2. For n ¼ 1; 2; . . . ; t and m ¼
0;�1; . . . ;�n, the following two equations are equivalent

XQ
q¼1

YRn;mð�̂q; �̂qÞ ¼ 0: ðaÞ

XQ
q¼1

YCn;mð�̂q; �̂qÞ ¼ 0: ðbÞ

Proof

m ¼ 0 case

From relational formula (A·3), YCn;mð�; �Þ ¼ YRn;mð�; �Þ
holds. Thus, (a), (b) clearly holds.

Proof of (a)) (b)

m < 0 case

Using the relational formula (A·3) for m < 0, the

following holds

XQ
q¼1

YCn;mð�̂q; �̂qÞ ¼
XQ
q¼1

YRn;mð�̂q; �̂qÞ � iYRn;�mð�̂q; �̂qÞffiffiffi
2
p

¼
1ffiffiffi
2
p

XQ
q¼1

YRn;mð�̂q; �̂qÞ

�
iffiffiffi
2
p

XQ
q¼1

YRn;�mð�̂q; �̂qÞ

¼ 0:

m > 0 case

Similarly, using relational formula (A·3) for m > 0, the

following holds
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XQ
q¼1

YCn;mð�̂q; �̂qÞ ¼
XQ
q¼1

YRn;�mð�̂q; �̂qÞ þ iYRn;mð�̂q; �̂qÞ
ð�1Þm �

ffiffiffi
2
p

¼
1

ð�1Þm �
ffiffiffi
2
p

XQ
q¼1

YRn;�mð�̂q; �̂qÞ

þ
i

ð�1Þm �
ffiffiffi
2
p

XQ
q¼1

YRn;mð�̂q; �̂qÞ

¼ 0:

�

Proof of (a)( (b)

Equation (b) can be divided into the real and imaginary

parts and is given as

0 ¼
XQ
q¼1

YCn;mð�̂q; �̂qÞ

¼
XQ
q¼1

Re½YCn;mð�̂q; �̂qÞ� þ i
XQ
q¼1

Im½YCn;mð�̂q; �̂qÞ�:

Hence, the following two equations hold

XQ
q¼1

Re½YCn;mð�̂q; �̂qÞ� ¼ 0: ðB:1Þ

XQ
q¼1

Im½YCn;mð�̂q; �̂qÞ� ¼ 0: ðB:2Þ

m < 0 case

Using Eq. (B·1) and relational formula (A·3) for m < 0,

the following holds

XQ
q¼1

YRn;mð�̂q; �̂qÞ ¼
ffiffiffi
2
p
�
XQ
q¼1

Re½YCn;mð�̂q; �̂qÞ� ¼ 0:

m > 0 case

Using Eq. (B·2) and relational formula (A·3) for m > 0,

the following holds

XQ
q¼1

YRn;mð�̂q; �̂qÞ ¼ ð�1Þm �
ffiffiffi
2
p
�
XQ
q¼1

Im½YCn;mð�̂q; �̂qÞ� ¼ 0:

�

Thus, Proposition 1 is proven. �
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