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Orbital-free density functional theory (OF-DFT) has been used when studying atoms, 
molecules, and solids. In nuclear physics, applications of OF-DFT have been quite scarce so 

far, as DFT has been widely applied to the study of many nuclear properties mostly within 

the Kohn–Sham (KS) scheme. There are many realizations of nuclear KS-DFT, but compu- 
tations become very demanding for heavy systems, such as superheavy nuclei and the inner 
crust of neutron stars, and it is hard to describe exotic nuclear shapes using a finite basis 
made with a limited number of orbitals. These bottlenecks could, in principle, be overcome 
by an orbital-free formulation of DFT. This work is a first step towards the realistic appli- 
cation of OF-DFT to nuclei. In particular, we have implemented possible choices for an 

orbital-free kinetic energy and solved the associated Schrödinger equation either with sim- 
ple potentials or with simplified nuclear density functionals. While the former choice sheds 
light on the differences between electronic and nuclear systems, the latter choice allows us 
to discuss the practical applications to nuclei as well as open questions. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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1. Introduction 

Orbital-free density functional theory (OF-DFT) was introduced in Ref. [ 1 ], in which an in-
ter esting r emark was made, r elated to the original Hohenberg–Kohn (HK) theorem [ 2 ]. This
HK theorem sets an exact one-to-one correspondence between the energy E of an interact-
ing fermion system and that of a fictitious, non-interacting fermion system ( E f ) with the same
density ρ. If ρ is, in turn, expressed in terms of orbitals like ρ = 

∑ 

j | φj | 2 we have the usual
Kohn–Sham (KS) formulation of DFT [ 3 ]. The Kohn–Sham form of the energy density func-
tional (EDF) is 

E f = E KS = 

∑ 

j 

∫ 

d 

3 r φ∗
j ( r ) 

(
− � 

2 

2 m 

∇ 

2 
)

φ j ( r ) + 

∫ 

d 

3 r V KS [ ρ] , (1) 

where the first term is the kinetic energy with a mass m and the second term includes all in-
teractions (for electronic systems, this means Hartree energy, exchange-correlation energy, and
interaction with the external potential). 

In Ref. [ 1 ], the authors noted that one can actually map the interacting fermion system onto a
non-interacting boson system. In fact, in the proof of the HK theorem, no special role is played
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by the statistics of the particles (as well as by their mass). Ther efor e, one could write the energy
of the system as 

E b = E OF −DFT 

= 

� 

2 

2 m 

∫ 

d 

3 r 
(∇ 

√ 

ρ
)2 + 

∫ 

d 

3 r V [ ρ] , (2) 

where the first term is now the boson kinetic energy. The second term could be, at least in prin-
ciple, related to the KS interaction energy by adding the KS kinetic energy and subtracting the
boson kinetic energy (one should remember here that the KS kinetic energy, although written
in terms of orbitals, must be a functional of ρ as e v ery property of the system at hand is). 

Either from Eqs. ( 1 ) or ( 2 ), one can minimize the energy using the variational principle with
a fixed number of particles. From Eq. ( 1 ) one easily obtains the famous Kohn–Sham set of 
equations, (

− � 

2 

2 m 

∇ 

2 + v KS 

)
φ j ( r ) = ε j φ j ( r ) , (3) 

where the effecti v e KS potential is v KS ≡ δ
δρ

∫ 
d 

3 r V [ ρ] = 

∂V 
∂ρ

and ε j are the Lagrange multipliers
associated with the normalization of the single orbitals, which are interpreted as eigenenergies
of those orbitals. On the other hand, if one starts from Eq. ( 2 ) and applies 

δ

δρ

(
E − μ

∫ 

d 

3 r ρ
)

= 0 , (4) 

one easily arri v es at (
− � 

2 

2 m 

∇ 

2 + 

∂V 

∂ρ

)√ 

ρ = μ
√ 

ρ, (5) 

which is the basic (Euler) equation of OF-DFT. We shall simply write v = 

∂V 
∂ρ

in what follows. 
The practical advantage of the latter equation ( 5 ) over the conventional KS equations ( 3 ) is

clear. Instead of solving N equations for N orbitals, one has to solve only one equation. All
particles lie on a single orbital and this must have a simple shape, like that of an � = 0 orbital
in a spherical potential, etc. This has motivated a series of applications for atoms , molecules ,
and solids; see, e.g., Refs. [ 4–6 ] for useful papers that re vie w many of these applications. Even
public software is available [ 7 ]. The time-dependent (TD) extension of OF-DFT is discussed in
Ref. [ 8 ] and r efer ences ther ein. 

In the case of nuclear systems, the advantages brought by OF-DFT can be e v en stronger.
Many finite nuclei have intrinsic deformed shapes, so that Kohn–Sham le v els hav e little degen-
eracy and the set of equations can be very large. Superheavy nuclei, or nucleons in the inner
crust of neutron stars, are still a big challenge for conventional nuclear DFT and the same
can be said for time-dependent calculations. OF-DFT can be very instrumental in all these
cases, and others. Some nuclei are known to exhibit shape coexistence, and a description in
terms of orbitals calls for a superposition of orbitals associated with different shapes that are
non-orthogonal. A prospecti v e OF-DFT description would be simpler to implement and to
interpret. 

Despite these motivations, to the best of our knowledge the only modern application of OF-
DFT to finite nuclei is in Ref. [ 9 ], where an orbital-free formulation is proposed as an alternati v e
to KS for the global fit of masses but no details are provided. Therefore, our purpose in the
present work is to start to fill this gap. In particular, the scope of the paper is to explore different
prescriptions for the orbital-free kinetic energy, and see how they perf orm f or simple nuclei. One
of the key questions that we have in mind is if there are basic differences between electronic and
2/11 
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nuclear systems due to the long-range or short-range character of the underlying interaction.
Ultimately, we would like to assess to what extent OF-DFT is useful for nuclear systems. 

Notice that OF-DFT bears some resemblance to what have, in the nuclear physics context,
been called the Thomas–Fermi (TF) or extended TF (ETF) approximations [ 10–17 ]. In Ref.
[ 10 ], it was demonstrated that the ETF appr oximation pr ovides a good description of the
ground-state energy but it yields an incorrect tail for the density distribution (see also Ref. [ 18 ]).
A simple recipe was considered in Ref. [ 10 ] to cure this problem by changing the coefficient of 
the von Weizsäcker correction term in the kinetic energy within the ETF approximation. An
equivalent recipe for the von Weizsäcker correction, but in a slightly different context, was
adopted in Ref. [ 17 ]. In this paper, we also address the question of the density distributions and
the capability of OF-DFT to reproduce its asymptotic tail. 

The paper is organized as follows. In Sect. 2 , some possible choices of the OF-DFT ansatz, to-
gether with the relationship with ETF, are discussed. In Sect. 3 , we present our first, exploratory
results aimed at showing analogies and differences between nuclear and Coulomb systems. In
Sect. 4 , we move to applications based on a realistic, albeit simplified, nuclear interaction and
discuss the issue of the shell structure. Our conclusions are drawn in Sect. 5 . 

2. The OF-DFT kinetic energy 

We go back to Eq. ( 2 ), i.e., 

E = 

� 

2 

2 m 

∫ 

d 

3 r 
(∇ 

√ 

ρ
)2 + 

∫ 

d 

3 r V [ ρ] ≡ T + V. 

Let us assume that we have an ansatz for V and focus on how to start from the boson kinetic
energy T and best approximate the fermion kinetic energy, keeping a density-dependent (and
not orbital-dependent) form. 

The mer e r eplacement of the fermion kinetic energy with the boson one is named after von
Weizsäcker (vW). In this case, 

T = T vW 

≡ � 

2 

2 m 

∫ 

d 

3 r 
(∇ 

√ 

ρ
)2 

. (6) 

This expression is obviously exact for a single fermion, or two fermions in a spin-singlet state. In
Coulomb systems, it provides a rigorous lower bound to the exact kinetic energy (cf. Sect. 1a of 
Ref. [ 6 ]). A sort of complementary choice is the kinetic energy gi v en by the TF approximation,
which takes care of the Pauli principle and is exact in a uniform system, but is approximate for
finite systems. In this case, 

T TF 

= 

� 

2 

2 m 

∫ 

d 

3 r 
3 

5 

(
3 π2 )2 / 3 

ρ5 / 3 . (7) 

This form of the kinetic energy is close to another rigorous lower bound, as shown by Lieb [ 19 ].
The TF approximation is known to have shortcomings in the nuclear case, and in particular not
to provide the correct asymptotic form of the nuclear densities [ 10 , 11 ]. 

In the Coulomb case, there exist some pragmatic prescriptions for mixing vW and TF. One
possibility is 

T TF , vW ,β = T TF 

+ βT vW 

, (8) 

e v en though one may also introduce another factor in front of the first term. This equation is
motiv ated b y a conjecture, again by Lieb [ 20 ], namely that the exact kinetic energy T should
obey T < T vW 

+ T TF 

. Popular choices for β are β = 

1 and 

1 . One could use the response
5 9 
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Table 1. Values of the total energy and of the r.m.s. radius of 16 O, calculated either with the potential 
( 13 ) (this result is labeled as exact) or with different prescriptions for the kinetic energy as defined by 

Eq. ( 8 ). 

E (MeV) 
√ 

〈 r 2 〉 (fm) 

exact −142.27 2.575 

OF-DFT ( β = 1/9) −140.85 2.500 

OF-DFT ( β = 1/5) −135.19 2.562 

OF-DFT ( β = 1) −96.31 3.120 
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function of the uniform free electron gas χ0 and write the kinetic energy of the slightly per-
turbed gas: the second-order expansion in ∇ρ is equivalent to β = 

1 
9 in Eq. ( 8 ). The choice of 

β = 

1 
9 can also be obtained with the semi-classical approximation to the kinetic energy, while

β = 1 is the original value deri v ed by von Weizsäcker. β = 

1 
5 was obtained from empirical fits. 

Another possible choice is 

T = 

∫ 

d 

3 r τTF 

F ( r ) , (9) 

where F is the so-called enhancement factor. We mention this choice because it has been
adopted in Ref. [ 9 ]; the corresponding expression for F is provided in the appendix below. We
have tested this choice, and checked that we obtain results that lead to the same qualitati v e
conclusions obtained with our simpler prescription ( 8 ). Notice that, if one adopts 

F = 

(
1 + β

τvW 

τTF 

)
, (10) 

then one goes back to Eq. ( 8 ). 
In what follows, we are going to display the results obtained by solving the Euler equation ( 5 )

in spherical symmetry. The explicit form of the equation in this case is provided in the appendix .

3. Results for simple potential models 
In this section, we use simple systems of non-interacting fermions in a gi v en potential. The
model Hamiltonian for such systems reads 

H = 

∑ 

i 

(
− � 

2 

2 m 

∇ 

2 
i + V ( r i ) 

)
. (11) 

The total energy for this Hamiltonian is obviously 

E = 

∑ 

i: occ 

εi , (12) 

i.e., the sum of the eigenenergies for the occupied orbits. 

3.1. Nuclear systems 
Let us first consider a system with 8 neutrons in a Woods–Saxon potential gi v en by 

V (r ) = − V 0 

1 + exp [(r − R 0 ) /a ] 
, (13) 

with V 0 = 50 MeV, R 0 = 1.2 × 16 

1/3 fm, and a = 0.65 fm, mimicking the 16 O nucleus. For sim-
plicity, the spin–orbit interaction is ignored. The single-particle energies ε with this potential 
are −32.6 and −16.8 MeV for the 1s and 1p states, respecti v ely. The total energies and the root-
mean-square (r.m.s.) radii for se v eral values of β are summarized in Table 1 . The corresponding
4/11 
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Fig. 1. Density distributions as a function of the radius r for a system with 8 neutrons in a Woods–
Saxon potential gi v en by Eq. ( 13 ). The top and middle panels show the density distributions on 

linear and logarithmic scales, respecti v ely, while the bottom panel shows the densities on a linear 
scale multiplied by r 2 . In each panel, the solid line denotes the exact density, while the dashed, 
dot–dashed, and dotted lines show the densities from orbital-free DFT with β = 1/5, 1/9, and 1, 
respecti v ely. 
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density distributions are shown in Fig. 1 . These results indicate that β = 1/9 is slightly better
for the total energy while β = 1/5 is slightly better for the r.m.s . radius . Both choices can be rea-
sonable although not highly accurate, while β = 1 should be discarded. This overall conclusion
is confirmed by looking at the density distributions. In particular, the exponential tail shown in
the middle panel indicates that the tail is not well reproduced with β = 1/9 and 1, as has been
discussed in Ref. [ 10 ], while β = 1/5 significantly improves the tail. This consideration may be
important when applying OF-DFT to, e.g., nuclear reactions. 

3.2. Coulomb systems 
We next consider a system of 10 electrons in the attractive Coulomb potential 

V (r ) = −10 e 2 
. (14) 
r 

5/11 
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Table 2. Values of the total energy and of the r.m.s. radius of the 10 electrons bound by the Coulomb 

potential ( 14 ). The exact result is compared with different prescriptions for the kinetic energy as defined 

by Eq. ( 8 ). 

method E (Ha) 
√ 

〈 r 2 〉 (a.u.) 

exact −200.0 0.27 

OF-DFT ( β = 1/9) −208.6 0.30 

OF-DFT ( β = 1/5) −196.1 0.32 

OF-DFT ( β = 1) −142.0 0.48 

Fig. 2. Same as Fig. 1 , but for a system with 10 electrons in a Coulomb potential gi v en by Eq. ( 14 ). 
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We use atomic units in this subsection. The eigenenergies of this potential are ε = −50.0 (Ha)
for the 1s orbital and −12.5 (Ha) for the 2p and 2s orbitals. The results are shown in Table 2
and Fig. 2 . 

From Table 2 , one can see that there is not a big difference between the results obtained with
β = 1/5 and 1/9, while β = 1 does not perform well, as was the case for the nuclear system that
we have just discussed. The same qualitati v e conclusion as in the nuclear case can be obtained
6/11 
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for the tail of the density distributions: while the deviation is large for β = 1 and 1/9, the choice
of β = 1/5 significantly improves the surface behavior of the density distribution. Howe v er, we
notice that the central density is considerably larger in the Coulomb case, and the deviation of 
the tail appears only at much smaller densities (relati v e to the central density) as compared to
the nuclear case. The wrong tail in the density distribution would thus be much less relevant
here as compared with the nuclear case. 

4. Tow ar ds r ealistic models 
In a first attempt towards realistic nuclear OF-DFT calculations, we have solved the self-
consistent equa tions associa ted with the potential part of a Skyrme EDF for a few spherical
nuclei. In fact, we have used the simple force introduced in Ref. [ 21 ], i.e., 

v NN 

( r , r ′ ) = 

[
t 0 + 

t 3 
6 

ρ

(
r + r ′ 

2 

)α]
δ( r − r ′ ) , (15) 

with which the potential part of the energy functional in Eq. ( 1 ) reads 

V KS [ ρ] = 

3 

8 

t 0 ρ( r ) 2 + 

t 3 
16 

ρ( r ) α+2 . (16) 

We have used the same values for the parameters t 0 , t 3 , and α as those in Ref. [ 21 ]. This is a
semi-realistic choice and is not as accurate as a standard, complete Skyrme EDF; still, we can
learn about shell effects. 

In fact, a criticism that has been raised against OF-DFT is that shell effects may be somehow
missing. A discussion of shell effects, for the Coulomb case, can be found in, e.g., Ref. [ 22 ]
and r efer ences ther ein. Similar discussions can be f ound f or the nuclear case in se v eral ETF
works. For instance, in the density distributions, oscillations associated with the occupancies
of different orbitals do not show up, at least with simplified effecti v e potentials. Ideally, the
exact OF-DFT should reproduce the exact density, including the oscillations. This means that,
most likely, the exact OF-EDF will include a potential with more, or higher-or der, deri vati v e
terms than those that we can build at present. 

At the moment, we have not had yet built sophisticated new OF-EDFs and this is not doable
within a short-range perspecti v e. Ev en though the Strutinsky shell correction method can be
applied to the ground-state energies [ 12–16 , 22 ], we w ould lik e to take into account the shell
effect on the density distributions as well. For this purpose, we have found a simple prescription
that allows the shell-effects to be r ecover ed with little cost, on top of OF-DFT. As has been done
in Refs. [ 23–25 ] for the Coulomb case and in Ref. [ 18 ] for the nuclear case, we have implemented
the following procedure. After arriving at a converged OF result, we have included the resultant
effecti v e potential in the Kohn–Sham equation and carried out just one further iteration. 

The results of this procedure are shown in Fig. 3 . It can be easily seen that just one iteration
of the Kohn–Sham equations using the converged potential from the OF Euler equation is
enough to produce density distributions that are similar to the ones obtained from the full
iterati v e Kohn–Sham procedure. This holds true as far as we consider shell effects, i.e., the
oscillations in the inner region, but also as far as the tail is considered. In Fig. 3 , we emphasize
the two complementary aspects by displaying densities on both linear and logarithmic scales.
Our conclusion is quite general and is demonstrated by using two different nuclei and the two
reasonable choices for β, namely β = 1/5 and 1/9. 
7/11 
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Fig. 3. A comparison of the density distributions obtained with a simplified Skyrme EDF. The left, 
middle, and right panels show the density distributions for 16 O from OF-DFT with β = 1/5, those for 
16 O with β = 1/9, and those for 40 Ca with β = 1/9, respecti v ely. The upper and lower panels show the 
density distributions on linear and logarithmic scales, respecti v ely. In each panel, the solid and dotted 

lines show the density obtained with the Kohn–Sham method and the OF-DFT, respecti v ely. The dashed 

lines show the densities with OF-DFT, but with the correction based on the last iteration using the Kohn–
Sham method after convergence is achieved with OF-DFT, as discussed in the text. 
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5. Conclusion 

In this paper, we have made a first attempt to seriously answer the question of whether OF-
DFT can be applied to nuclear systems with some chance of success. OF-DFT has been applied
to Coulomb systems by different groups and in different ways. Nuclei are characterized by a
different basic interaction, which is short-r ange r ather than long-r ange; at the same time, nu-
clear DFT is more demanding from the computational viewpoint and the study of superheavy
isotopes, or of the crust of neutron stars, would benefit from OF-DFT. Nuclei with shape co-
existence, which are not easy to describe using a limited basis of single-particle orbitals, are a
further motivation to explore OF-DFT for nuclei. 

We have found that OF-DFT provides reasonable results for magic nuclei, once the kinetic
energy has been approximated with Eq. ( 8 ) in a similar way as for electronic systems. A careful
look into the density distributions re v eals that the tails are not well reproduced in both the
nuclear and electronic cases, e v en though the long-range character of the Coulomb force does
indeed play a role and washes out the discrepancies between the exact results and those with
r easonable values of β, mor e than in the nuclear case. One of the inter esting r esults of our work
is that density distributions can also be markedly improved by just one last KS iteration, after
the OF-DFT procedure has reached convergence. 

Fine-tuning of the OF functionals is now in order. This is among our perspecti v es but,
at the same time, one should de v elop the formalism to go beyond the simple EDFs that
depend on the local number density only. OF versions of EDFs that depend on density
gradients, higher-or der deri vati v es, or other generalized densities (spin–orbit densities, pairing
densities, etc.) should be investigated. We plan to go along this line, by comparing different
f ormulations (f or instance, spin polarization vs spin–orbit density). Another possible direc-
tion towards this goal may be to use deep learning techniques, as has been advocated in
Ref. [ 26 ]. 
8/11 
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Last but not least, we should go beyond the spherical approximation and formulate OF-
DFT f or def ormed nuclei. In this case, the way to optimize the energy may be re-discussed
(see, e.g., Ref. [ 27 ]). Moreover, it was argued in Ref. [ 10 ] that the ETF approximation “fails
to gi v e reasonab le deformation energies due to a drastic overestimation of the surface energy
contributions” (see Sect. 3.3 in Ref. [ 10 ]). It would be interesting to see how well the deformation
energy is described with the prescription of a singe KS iteration after convergence of OF-DFT.

More generally, past ETF studies of nuclear systems have not been able to go beyond some
le v el of accuracy. The broad and novel perspective that we wish to highlight goes beyond ETF,
with a more fle xib le form of the kinetic energy, and uses state-of-the-art methods like Bayesian
inference or machine learning [ 28 , 29 ] to improve over ETF. 
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A. Euler equation and total energy in the spherical case 

In this appendix, we deri v e the Euler equation associated with the OF-DFT kinetic energy in
the form of Eq. ( 8 ) and a generic potential part. We also specialize the result to the case of 
spherical symmetry. 

The EDF with T gi v en by Eq. ( 8 ) reads 

E = β
� 

2 

2 m 

∫ 

d 

3 r 
(∇ 

√ 

ρ
)2 + α

� 

2 

2 m 

∫ 

d 

3 r 
3 

5 

(
3 π2 )2 / 3 

ρ5 / 3 + V [ ρ] . (A1) 

The variation of the first term is 

δT vW 

δρ
= 

∂ 
√ 

ρ

∂ρ

δT vW 

δ
√ 

ρ
= 

1 

2 

√ 

ρ

(
−∇ 

∂T vW 

∂ ∇ ρ

)
= − � 

2 

2 m 

∇ 

2 √ 

ρ√ 

ρ
, (A2) 

while for the second term it is 
δT TF 

δρ
= 

� 

2 

2 m 

(
3 π2 )2 / 3 

ρ2 / 3 . (A3) 

Then, the Euler equation becomes [ 

−β
� 

2 

2 m 

∇ 

2 √ 

ρ√ 

ρ
+ α

� 

2 

2 m 

(
3 π2 )2 / 3 

ρ2 / 3 + 

δV 

δρ

] 

= μ. (A4) 

By m ultipl ying both sides of this equation by 

√ 

ρ/β, one obtains [
− � 

2 

2 m 

∇ 

2 + 

α

β

� 

2 

2 m 

(
3 π2 )2 / 3 

ρ2 / 3 + 

1 

β

δV 

δρ

]√ 

ρ = 

μ

β

√ 

ρ. (A5) 

In general, using a spherical basis, we can write 

√ 

ρ ≡ � = 

∑ 

lm 

φlm 

r 
Y lm 

. (A6) 

In the spherical case, only φ00 is to be considered. From the previous equation ( A5 ), we easily
obtain the reduced Schrödinger equation in the form [

− � 

2 

2 m 

d 

2 

dr 2 
+ 

� 

2 

2 m 

l (l + 1) 
r 2 

+ 

α

β

� 

2 

2 m 

(
3 π2 )2 / 3 

ρ2 / 3 + 

1 

β

δV 

δρ

]
φ = 

μ

β
φ. (A7) 
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The total energy can be written in a useful form by exploiting the fact that 

∇ 

√ 

ρ = 

1 

2 

√ 

ρ
∇ ρ = 

1 

2 ρ

∂ρ

∂r 
e r . 

In this way, 

E = β
� 

2 

2 m 

∫ 

d 

3 r 
1 

4 ρ

(
∂ρ

∂r 

)2 

+ α
� 

2 

2 m 

∫ 

d 

3 r 
3 

5 

(
3 π2 )2 / 3 

ρ5 / 3 + 

∫ 

d 

3 r 
δV 

δρ
ρ

= β
� 

2 

2 m 

∫ 

d r 4 πr 2 
1 

4 ρ

(
∂ρ

∂r 

)2 

+ α
� 

2 

2 m 

∫ 

d r 4 πr 2 
3 

5 

(
3 π2 )2 / 3 

ρ5 / 3 + 

∫ 

dr 4 πr 2 
δV 

δρ
ρ. 

(A8) 

For the sake of completeness, we also report here the Euler equation and its reduction to the
spherical case, in the specific case of the kinetic energy gi v en by Eq. ( 9 ) with the enhancement
factor proposed in Ref. [ 9 ], namely 

F = 

1 + ( 1 + κ ) X + 9 κX 

2 

1 + κX 

(A9) 

and 

X = 

5 

27 

|∇ 

√ 

ρ| 2 (
3 π2 

)2 / 3 
ρ5 / 3 

. (A10) 

In this case, the Euler equation becomes [
− � 

2 

2 m 

F 

′ 

9 

∇ 

2 + 

� 

2 

2 m 

(
3 π2 )2 / 3 

ρ2 / 3 (F − F 

′ X 

) + 

δV 

δρ

]√ 

ρ = μ
√ 

ρ. (A11) 

In the spherical case, we easily arri v e at 

d 

2 φ

dr 2 
= 

[(
3 π2 )2 / 3 

ρ2 / 3 9 ( F − F 

′ X ) 
F 

′ + 

2 m 

� 

2 

9 

F 

′ 
δV 

δρ
− 2 m 

� 

2 

9 

F 

′ μ
]

φ. (A12) 

The total energy reads 

E = 

� 

2 

2 m 

∫ 

d 

3 r 
3 

5 

(
3 π2 )2 / 3 

ρ5 / 3 F + 

∫ 

d 

3 r 
δV 

δρ
ρ (A13) 

and we could also write 

E = μ − 2 

5 

� 

2 

2 m 

∫ 

d 

3 r 
(
F − F 

′ X 

) (
3 π2 )2 / 3 

ρ5 / 3 . (A14) 

The second term can be interpreted as a rearrangement energy. 
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