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Scaling laws for frictional granular materials confined by constant pressure under oscillatory shear
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Herein we numerically study the rheology of a two-dimensional frictional granular system confined by
constant pressure under oscillatory shear. Several scaling laws for the storage and loss moduli against the scaled
strain amplitude have been found. The scaling laws in plastic regime for large strain amplitude can be understood
by the angular distributions of the contact force. The scaling exponents are estimated by considering the physical
mechanism.
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I. INTRODUCTION

Amorphous materials consisting of repulsive and dissipa-
tive grains such as granular materials [1], colloidal suspen-
sions [2], bubbles [3], and emulsions [4] exhibit characteristic
viscoelastic properties. Such materials behave as solids if the
grains are densely packed, while they behave as liquids if the
grains are not sufficiently dense. There is a jamming transition
at a critical density where the viscosity diverges and the rigid-
ity emerges above the critical density at zero load limit. Since
the pioneer work by Liu and Nagel [5], studies on the jam-
ming transition have attracted considerable attention among
physicists. The jamming transition for frictionless grains is
known as a mixed transition in which the coordination number
changes discontinuously while the pressure and the shear
stress change continuously at the jamming point [6–11]. Such
a continuous change of the stress near the jamming point
satisfies a number of scaling laws [12–17].

It is remarkable that the introduction of mutual frictions
between the grains drastically changes the behavior of the
jamming transition including the existence of a discontinuous
shear thickening (DST) [18–26]. Moreover, the mutual fric-
tion cannot be ignored for rigid grains to be consistent with
Newton’s equation of motion. We have recognized that shear
jammed states, commonly observed in frictional systems,
differ from the conventional isotropic jammed states [27–34].
Several researchers are interested in the mutual relationship
between shear jamming and DST [33–36]. We realize that
some shear jamming has originated from a memory effect of
mechanical training [33,34,37–40].

If an oscillatory shear is applied to such a material,
the rigidity and viscosity can be measured simultaneously
[41–44]. Recently, scaling laws on the rigidity and viscosity
for frictionless grains under oscillatory shears have been
studied [45–49]. In particular, it is interesting that two dis-
tinct regions exist, softening and yielding, when considering
large strain amplitude [48]. Previous studies have discussed
scaling laws for frictional grains under simple shear [22] and
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oscillatory shear [25]; however, thus far, most of these studies
are based on situations under constant volume conditions.

Dilatancy is widely known as one of the typical characteris-
tics of granular systems in which the density decreases as the
shear increases under constant pressure conditions [50–55].
Because the dilatancy cannot be observed in a constant vol-
ume system, it is important to understand the rheological
properties of granular systems confined by the constant pres-
sure under oscillatory shear.

The purpose of this study is to determine the viscoelastic
properties of an oscillatory sheared granular system. For this
purpose, we numerically study a granular system confined by
constant pressure under oscillatory shear to extract scaling
laws for the storage and loss moduli. The results suggest the
absence of the distinction between softening and yielding in
frictional systems, which contrasts with that of frictionless
cases [48].

The contents of this paper are as follows. In the next
section, we explain the setup of our numerical simulation.
Section III illustrates the relevance of several scaling laws for
the storage and loss moduli with a fixed friction constant for
μ = 1, where μ is Coulomb’s friction constant. In the plas-
tic regime under large strain amplitude, the semiquantitative
behavior of the stress can be understood by the consideration
of the angular distributions of contacts. In Sec. IV we demon-
strate that the scaling laws observed for μ = 1 in Sec. III are
essentially independent of μ. In the last section, we discuss
and summarize our results. In the appendices, we explain the
technical details and present some supplemental information
which has not been described in the main text.

II. SIMULATED SYSTEM

Our system is a two-dimensional one containing N fric-
tional granular disks. To avoid crystallization, we adopt a
tetradisperse system in which the numbers of grains for the
diameters d0, 0.9d0, 0.8d0, and 0.7d0 are N/4 [56]. We
assume that the density of each grain is identical and, thus,
the mass is proportional to the square of the diameter of the
grain. The mass corresponding to the largest diameter d0 is
denoted by m0 in this study.
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FIG. 1. Image of simulated system, where P, A, and � are
external pressure, strain amplitude, and angular frequency of external
oscillation, respectively.

We assume that gravity is negligible in our system corre-
sponding to grains on a smooth horizontal plane. We adopt
the periodic boundary condition in the shear (x) direction,
while we apply the external pressure through the wall in the
y direction. The grains are confined in a square box, i.e.,
L0 := Ly = Lx in the absence of any external pressure, where
Lx and Ly are the linear dimensions in the x and y directions,
respectively. When the external pressure is applied, Ly(t ) is
no longer a constant but depends on time. The position of the
center of mass of the wall at y = ±Ly(t )/2 in the x direction
x+

G (t ) obeys x±
G (t ) = ±A sin(�t ), where A and � are the strain

amplitude and the angular frequency, respectively (see Fig. 1).
Because the linear dimension of the system size in the y
direction is not constant, we introduce the effective strain
amplitude

γ0,eff := 2A

L0
. (1)

To describe the motion of the walls under the external
pressure P, we adopt the following equation:

mw

dv±
w,y

dt
= ±(P±

w − P)Lx − ξdv
±
w,y, (2)

where ±, mw, v±
w,y, P±

w , and ζd are the superscripts for the wall
at y = ±Ly(t )/2, the mass of the wall satisfying mw = Nwm0,
y component velocity of the wall at y = ±Ly(t )/2, the inner
pressure acting on the walls from the grains, and the damping
constant, respectively.

The translational and rotational equations of the motion
of the ith grain whose mass, position, and moment of inertia
are, respectively, mi, ri, and Ii = mid2

i /8, respectively, with
the diameter di are given by

mi
d2ri

dt2
=

∑
j �=i

f i j, (3)

Ii
dωi

dt
=

∑
j �=i

Ti j, (4)

where we have introduced the contact force f i j and the torque
Ti j from the jth grain acting on the ith grain. Note that ωi is

the z component of the angular velocity of the ith grain. The
torque Ti j introduced in Eq. (4) satisfies

Ti j = − di
2 f i j · t i j (5)

with the tangential unit vector t i j at the contact point between
the ith and jth grains. The contact force of each grain is
described by the Cundall-Stack model [57,58]. Considering
the contact force f i j between the ith and jth grains, we
introduce di j = (di + d j )/2 and ri j = ri − r j with ri j := |ri j |,
the contact force f i j is expressed as

f i j = ( f i j,n + f i j,t )�(di j − ri j ), (6)

where we have introduced the normal contact force f i j,n, the
tangential contact force f i j,t and Heaviside’s step function
�(x) satisfying �(x) = 1 for x � 0 and �(x) = 0 other-
wise. The normal force consists of the elastic repulsive force
represented by a linear spring (the spring constant kn) and
the dissipative force represented by a dashpot (the damping
constant ξn) as

f i j,n = knδi j,nni j − ξnvi j,n, (7)

where we have introduced ni j = ri j/ri j , vi j,n = (vi j · ni j )ni j

with vi j = dri j/dt and δi j,n = di j − ri j . On the other hand, the
tangential force f i j,t contains both a sticking state and a slip
state, where the switching from the stick to the slip takes place
if the magnitude of the tangential force fi j,t = | f i j,t | exceeds
the critical condition as

f i j,t =
{

ktδi j,t t i j − ξt ci j ( fi j,t < μ fi j,n),

μ fi j,nt i j (otherwise),
(8)

where δi j,t is the tangential displacement during a contact
time. We have also introduced Coulomb’s friction coefficient
μ, the tangential spring constant kt , the tangential damping
constant ξt , fi j,n = | f i j,n|, and the relative tangential velocity
at the contact point ci j := vi j − vi j,n + t i j (diωi + d jω j )/2.

For our simulation, we adopt kt = kn/2, ξn = (m0kn)−1/2,
ξt = ξn, and ξd = ξn which follow Refs. [33,59]. The con-
trol parameters of our simulation are P̂ := P/kn, γ0,eff and
�

√
m0/kn. We cover the range of P̂ from 2.0 × 10−5 to

6.0 × 10−3. In most of our simulations we adopt the num-
ber of grains N = 4000, and the frequency �/(2π ) = 1.0 ×
10−4√kn/m0. We have confirmed that the rigidity and the
viscosity are independent of N in the range of 4000 � N �
20 000. We have checked the dependence of � in the range
of 4.0 × 10−5√kn/m0 � �/(2π ) � 1.0 × 10−3√kn/m0 (see
Appendix B) and confirmed that the storage modulus is inde-
pendent of � and the loss modulus depends on � in the small
strain regime but does not depend on � for large strain.

To make the initial configuration isotropic, we ran-
domly place all grains whose diameters are 0.6d0, 0.5d0,

0.4d0, and 0.3d0 corresponding to tetradispersity of grains
confined in a square box with the initial density φini = 0.24
without any overlap and shear. After we increase the di-
ameter of each grain by 0.02d0, we wait for the system
to relax to a steady state in which the potential energy
Vn := kn

∑
i �= j δ

2
i j,n/2 for the normal compression satisfies

Vn/(Nknd2
0 ) < 2.0 × 10−7. Subsequently, we increase the di-

ameter of each grain by a further 0.02d0 again. After repeating
this process, we reach a desired state in which the area
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FIG. 2. Time evolution of force chains during one cycle at P̂ =
2.0 × 10−3, μ = 1.0, and N = 4, 000 for γ0,eff = 1.0 × 10−5 (top)
and γ0,eff = 1.0 (bottom). Width of each line is proportional to the
absolute value of the contact force between grains.

fraction is φ = 0.82. We compress both walls by pressure
P to compactify the system above the jamming density to
achieve an isotropic structure as the initial condition. After
Vn converges to the steady value, we apply oscillatory shear.
We adopt the symplectic Euler method with the time step
�t = 0.05

√
m0/kn.

We average the data over NT cycles after abandoning the
data in the initial Nini cycles. Because the obtained results
depend on Nini for Nini � 5, we adopt Nini = 10 and NT = 10.
Furthermore, we have confirmed that the storage and loss
moduli are independent of Nini � 190 except for the low-
pressure cases and the critical region of the yielding transition.
We set t = 0 at the instant when Nini oscillatory shear ends.

Figure 2 shows the time evolution of the force chains
during one cycle in which the force chains are unchanged
if the strain amplitude is small; however, they are changed
if the strain amplitude is large. The former regime, in which
the granular materials behave as an elastic solid, is elastic,
while the latter one, in which the granular materials behave
as a plastic material with configuration changes of the grains,
is plastic. The yielding transition is the transition between the
two states.

Because the contact stress is dominant for the stress in
dense granular systems [59,60], we obtain the symmetric
contact stress σ

sym
αβ as

σ
sym
αβ := − 1

2LxLy

∑
i

∑
j>i

(xi j,α fi j,β + xi j,β fi j,α ). (9)

The asymmetric part in the stress tensor is associated with the
coupled stress in frictional systems [61,62]. Nevertheless, we
have confirmed that the asymmetry of the stress tensor is so
small that we can ignore the asymmetric stress tensor or the
coupled stress (see Appendix A). We note that the effect of

the shear band near the boundaries is not negligible for low
pressure and large strain amplitude. In this case, the measured
stress from Eq. (9) might be different from the local stress.

In systems under oscillatory shear, the storage modulus G′
and the loss modulus G′′ represent the rigidity and dynamic
viscosity multiplied by �, respectively. Here the shear stress
σ (t ) := σ

sym
xy can be decomposed into the elastic and viscous

parts as

σ (t ) = σ (ela)(t ) + σ (vis)(t ), (10)

where σ (ela)(t ) and σ (vis)(t ) are expressed as σ (ela)(t ) = G′γ (t )
and σ (vis)(t ) = ηd γ̇ (t ) with the strain γ (t ) and the strain rate
γ̇ (t ), respectively. It is known that the dynamic viscosity can
be expressed as the loss modulus G′′ as ηd := G′′/�. It should
be noted that their definitions are not unique in the nonlinear
response regime [41–44]. In this study, we adopt the following
expressions [44]:

G′(γ0,eff, P) := lim
γ (t )→γ0,eff

σ̃

γ0,eff
, (11)

G′′(γ0,eff, P) := lim
γ (t )→0(σ̃�0)

σ̃

γ0,eff
, (12)

where we have introduced γ (t ) := γ0,eff sin(�t ) and σ̃ is
defined as

σ̃ (t ) := σ sym
xy (t ) − σ

sym
xy . (13)

Here σ
sym
xy := ∫ τp

0 dtσ sym
xy (t )/τp is the time average over the

oscillatory period τp := 2π/�.1

III. SCALING LAWS FOR STORAGE AND LOSS
MODULI FOR μ = 1

In this section we illustrate the existence of several scaling
laws for the storage and loss moduli at μ = 1.0. The results
are basically independent of μ for 0.01 � μ � 1 as will be
shown in Sec. IV. We also demonstrate that the stress-strain
curve observed in the plastic regime can be reproduced by a
phenomenology.

A. Scaling law for the storage modulus

From our simulation, we find the following scaling form
for the storage modulus (see Fig. 3):

G′ = G′
res(P̂)G ′

(
γ0,eff

P̂β ′
1

)
, (14)

G′
res(P̂) : = lim

γ0,eff→0
G′(γ0,eff, P̂), (15)

lim
x→0

G ′(x) = 1, lim
x→∞G ′(x) ∼ x−1. (16)

1We have examined another protocol in which the oscillatory shear
is given by γ (t ) = γ0,eff(1 − cos(�t )), and found that the results of
G′ and G′′ are unchanged for this oscillation except for the region
near the bending point of G′. The choice of γ (t ) is important to
discuss the fragile phase [33,34]; however, we are not interested in
the fragile phase.
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FIG. 3. (a) Scaling plots of storage modulus G′/G′
res for various

dimensionless pressures P̂ against the scaled γ0,eff at μ = 1.0, where
G′

res is residual storage modulus. (b) Comparison of phenomeno-
logical storage modulus (lines) with numerical ones (data) for
γ0,eff/P̂ � 0.01.

The scaling exponent β ′
1 which is a special case of the μ-

dependent exponent β ′
μ is evaluated as

β ′
1 = 1.00 ± 0.03. (17)

Note that β ′
μ is basically independent of μ (see Sec. IV).

Further, the residual storage modulus G′
res(P̂) in the low

strain limit depends on the pressure as

G′
res/kn = G′

1 + aP̂1/2, (18)

where G′
1 = 0.26 ± 0.01 and a = 1.49 ± 0.12 (see Fig. 4).

This behavior can be interpreted as follows. It is widely
known that the excess coordination number �z := z − ziso is
proportional to

√
P̂, i.e., �z ∝ P̂1/2, where z and ziso are the

coordination and the isostatic coordination numbers, respec-
tively [6,9,11,63]. Because the shear stress is expected to be
proportional to the excess coordination number in the elastic
regime, we obtain G′

res − G′
μ ∝ P̂1/2, where G′

μ is a constant,
irrespective of the pressure.

FIG. 4. Plot of G′
res defined by Eq. (18) against P̂ for μ = 1.0.

We find that G′ is independent of γ0,eff for small γ0,eff,
while G′ is proportional to γ −1

0,eff for large γ0,eff. These asymp-
totic forms in Eqs. (14)–(17) can be interpreted as follows.
If the strain is small, the material behaves as the Hookean
regime in which G′ must be independent of γ0,eff. On the
other hand, the stress ratio σxy/P approaches a constant μmacro

for the large strain (plastic) regime because the macroscopic
dynamical friction constant μmacro is well-defined in granular
materials, which leads to β ′

μ = 1. This simple description
explains the crossover from the Hookean regime for small
strains to the plastic regime of G′ for large strains.

We also note that this argument is independent of μ.
Therefore, we expect that the scaling law characterized by
Eqs. (14)–(16) is held for arbitrary μ. We can also evaluate
the bending point of G′, which is the turning point from
the Hookean regime to the plastic regime, as P̂/γ0,eff ∼ 1
by setting the macroscopic friction constant μmacro to be
unity. Surprisingly, this crude estimation of the location of the
bending point is reasonable. Indeed, the bending point appears
to be located in the range 1 < γ0,eff/P̂ < 2 which provides a
good estimation of the bending point.

B. Scaling law for the loss modulus

The loss modulus also satisfies the scaling form (see
Fig. 5):

G′′ = G′
res(P̂)G ′′

(
γ0,eff

P̂β ′′
1

)
, (19)

lim
x→0

G ′′(x) = const, lim
x→∞G ′′(x) ∼ x−1, (20)

where the scaling exponent β ′′
1 which is a special case of β ′′

μ

and is evaluated as

β ′′
1 = 1.05 ± 0.01. (21)

We have confirmed that the scaling exponent β ′′
μ is approach-

ing independence of μ (see Sec. IV).
As with G′, the loss modulus in the plastic regime satisfies

G′′ ∼ P/γ0,eff for large γ0,eff (i.e., β ′′
μ = 1) because the stress

ratio approaches a constant in this regime. Figures 3 and 5 sug-
gest that the bending point of G′ and the peak of G′′ are located
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FIG. 5. (a) Scaling plots of loss modulus G′′ for various P̂ against
the scaled strain amplitude at μ = 1.0, where G′′ is proportional
to γ −1

0,eff for large γ0,eff. (b) Comparison of phenomenological loss
modulus (lines) with numerical one (data) for γ0,eff/P̂ � 1.

at γ0,eff/P̂ 	 1 and γ0,eff/P̂ 	 4, respectively. Although there
is no reason for the location of the peak of G′′ to be close to
that of the bending point of G′, it is interesting that both points
take place at the points γ0,eff/P̂ ∼ O(1). It is remarkable that
G′′ has three regimes: (1) G′′ is independent of γ0,eff for small
strain amplitudes, (2) G′′ is linear for γ0,eff for the intermediate
strain amplitudes, and (3) G′′ ∼ P̂/γ0,eff in the plastic regime
for large γ0,eff. The existence of the linear regime (2) suggests
that the relaxation process for elastic vibrations plays an
important role in this regime (see Appendix C).

To explain the crossover of G′′ from regime (1) for small
strain (γ0,eff/P̂ < xc) to regime (2) for intermediate strain xc <

γ0,eff/P̂ < 1, where we have introduced the crossover point
xc. Because the contact model of our simulation model is the
Kelvin-Voight model, G′′ in regime (1) satisfies (see Fig. 13
in Appendix B)

G′′/kn ∼ �̂ξ̂n (γ0,eff/P̂ < xc), (22)

where �̂ = �
√

m0/kn and ξ̂n = ξn/
√

m0kn. On the other
hand, G′′ in regime (2), as shown in Appendix C, is indepen-
dent of � as

G′′/kn ∼ γ0,eff

P̂
(xc < γ0,eff/P̂ < 1). (23)

From the balance Eqs. (22) and (23), at xc we estimate xc 	
�̂ξ̂n, which is verified from our simulation (see Fig. 14 in
Appendix B).

C. The role of the angular distribution functions
of contact forces

We have studied the behaviors of G′ and G′′ as well as
the stress-strain curve in the plastic regime quantitatively. It is
known that the approximate stress tensor can be expressed by
the angular distributions of the normal contact force density
ζN (θ ) and tangential contact force density ζT (θ ) in simple
shear flows [59,64–66]. We try to apply this theory to grains
under oscillatory shear. Here ζN (θ ) and ζT (θ ) are expressed as
ζN (θ ) = ρ(θ )FN (θ )/〈FN 〉 and ζT (θ ) = ρ(θ )FT (θ )/〈FN 〉 with
the angular contact distribution ρ(θ ), the normal force FN (θ ),
the tangential force FT (θ ) at the contact angle θ , and the av-
eraged contact force over the angle 〈Fα〉 = ∫ 2π

0 dθρ(θ )Fα (θ )
for α = N or T . There are the normalization conditions for
these functions as

∫ 2π

0 dθρ(θ ) = 1,
∫ 2π

0 dθζN (θ ) = 1 and∫ 2π

0 dθζT (θ ) = 0, respectively. Figure 6 shows the plot of
ζN (θ ) and ζT (θ ) in our system for various γ0,eff at P̂ = 2.0 ×
10−3. In our system, the behavior of ζN (θ ) or ζT (θ ) for large
strain is similar to that observed in simple shear [59,65], while
ζN (θ ) is isotropic for small strain.

In our system, even under oscillatory shear, the stress
tensor σαβ for large strain can be approximately expressed as

σαβ ≈ −2P
∫ 2π

0
dθ [ζN (θ )nθ,α − ζT (θ )tθ,α]nθ,β, (24)

where we have used P = −(σxx + σyy)/2. Here (nθ,x, nθ,y) =
(cos θ, sin θ ) and (tθ,x, tθ,y) = (− sin θ, cos θ ) are the nor-
mal and tangential unit vectors between contacting grains,
respectively. The phenomenological stress is only applicable
to the plastic regime because the phenomenological stress is
proportional to the pressure.

Using Eq. (24) our remaining task is to estimate ζN (θ )
and ζT (θ ) theoretically. The shear stress that originated from
the normal contacts must be proportional to sin(2θ ) because
the viscosity is proportional to

∫
dr xy

r V ′
n (r)geq(r)h(r) where

geq(r) is the equilibrium radial distribution function and h(r)
is the shear contribution of the radial distribution function
g(r) = geq(r)[1 + γ̇ h(r)]. Because of the orthogonality of the
trigonometric functions, the angular distribution that con-
tributes to the shear stress is proportional to sin(2θ ), while
the equilibrium contribution should be independent of θ . Sim-
ilarly, the viscosity that originated from the tangential contacts
contains cos2 θ for the positive tangential contacts and sin2 θ

for the negative tangential contacts. As shown in Fig. 6, our
simple description can recover the angular distributions of
contacts with the introduction of fitting parameters b and c.
Further, b and c depend on γ0,eff and P̂(see Appendix D). We
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FIG. 6. The angular distributions for (a) normal contact force
density ζN (θ ) and (b) tangential contact force density ζT (θ ) at �t =
2nπ (n = 1, . . . , 9), μ = 1.0, and P̂ = 2.0 × 10−3. Tangential force
in clockwise direction is regarded as positive force, where positive
forces are plotted as filled symbols and negative forces are plotted as
open symbols. The purple lines in (a) ζN (θ ) and (b) ζT (θ ) are fitted
by const + b sin(2θ ) and c cos(2θ ), respectively, at γ0,eff = 1.0.

then obtain the theoretical shear stress:

σ ≈ −P
∫ 2π

0
dθ [b sin2(2θ ) − c cos2(2θ )]

= −πP(b − c). (25)

The stress-strain (Lissajous) curve for large strain ampli-
tudes is plotted in Fig. 7, where the stress from our simulation
and the phenomenology from Eq. (25) are expressed by the
symbols and the lines, respectively. It is remarkable that the
phenomenological evaluation of the stress σ from Eqs. (24)
and (25) recovers the stress-strain curve for γ0,eff/P̂ � 1, at
least.

Because we can reproduce the stress-strain curve via phe-
nomenology with the aid of ζN (θ ) and ζT (θ ), we can also
reproduce G′ and G′′ via the phenomenological storage and
loss moduli with the aid of Eqs. (11) and (12). The lines in
Figs. 3(b) and 5(b) show the phenomenological G′ and G′′,
respectively. Although the phenomenology cannot be used for
small strain amplitude, we reproduce the quantitative behavior
of G′ and G′′ for γ0,eff � P̂.

FIG. 7. Plots of stress-strain (Lissajous) curves for various γ0,eff

at μ = 1.0 and P̂ = 2.0 × 10−3. Numerical data are plotted by open
symbols. Symmetric stress by phenomenology σ sym(t ) with aid of
Eqs. (24) and (25) are plotted with lines.

IV. SCALING LAWS FOR VARIOUS FRICTION
COEFFICIENTS

We have discussed the scaling laws only for μ = 1.0 in the
previous section. In this section we discuss how the results of
Eqs. (14)–(20) depend on μ. In short, (1) the scaling laws in
Eqs. (14)–(20) still hold for arbitrary μ, and (2) the exponents
β ′

μ and β ′′
μ are independent of μ.

For arbitrary μ the storage modulus satisfies the following
relation:

G′ = G′
res(P̂)G ′

(
γ0,eff

P̂β ′
μ

)
, (26)

G′
res(P̂) := lim

γ0,eff→0
G′(γ0,eff, P̂), (27)

lim
x→0

G ′(x) = 1, lim
x→∞G ′(x) ∼ x−1, (28)

and the loss modulus satisfies the following relation:

G′′ = G′
res(P̂)G ′′

(
γ0,eff

P̂β ′′
μ

)
, (29)

lim
x→0

G ′′(x) = const, lim
x→∞G ′′(x) ∼ x−1. (30)

The estimated scaling exponents from our simulation are plot-
ted in Fig. 8. The exponents β ′

μ and β ′′
μ are almost independent

of μ, which are approximately equal to unity.
The scaling plots of G′ and G′′ against the scaled the strain

amplitude at μ = 0.1 are presented in Fig. 9. These scaling
plots suggest that the scaling discussed in Sec. III can be used
for arbitrary μ.

To confirm our conjecture that the scaling is independent
of μ we examine the case of μ = 0.01. It is interesting that
the scaling laws seem to be valid even for μ = 0.01 without
any changes of scaling exponents, though the distinction
between the plastic and elastic regimes is not sharp in this
case (see Fig. 10). Nevertheless, we should emphasize that
the results of the small friction coefficient limit for frictional
grains is completely different from those in frictionless cases
(see Appendix E) in which the scaling laws do not exist as

042902-6
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FIG. 8. Plots of (a) β ′
μ and (b) β ′′

μ against μ.

presented in Ref. [48]. This singularity in the zero-friction
limit is consistent with that observed in Ref. [25].

V. DISCUSSION AND CONCLUSION

First, we can observe the dilatancy during the process
because the volume can be changed. It is known that the
packing fraction δφ := φ − φ0 from the unbiased fraction
φ0 satisfies δφ ∝ −γ̇

√
m/P in a two-dimensional pressure

control system under steady simple shear [54,59]. It is also
known that the volume is compactified if the strain is small
[67]. The detailed behavior of the dilatancy will be reported
elsewhere.

Second, the origin of the macroscopic friction law, i.e.,
σ/P tends to be independent of the strain for large strain
limit should be clarified. This is equivalent to the microscopic
determination of b and c in Eq. (25). Quantitative analysis to
determine b and c will be considered elsewhere.

In summary, we have numerically studied a frictional gran-
ular system confined by a constant pressure under oscillatory
shear. We confirmed the existence of scaling laws for the
storage and loss moduli. We also verified the absence of the
distinction between the softening and yielding regimes for

FIG. 9. Scaling plots of (a) G′ and (b) G′′ against scaled strain
amplitude for various dimensionless pressures P̂ at μ = 0.1.

the frictional system. These results are completely different
from those for frictionless systems; however, the friction coef-
ficient can be disregarded, particularly for 0.01 � μ � 1. We
found the crossover of the storage modulus from G′/G′

res = 1
for small strain amplitude to G′/G′

res ∝ P̂/γ0,eff for large strain
amplitude. We also found that the scaling of the loss modulus
which has three regimes, in which (1) G′′ is independent of
the strain amplitudes for small strain amplitudes, (2) G′′ is a
linear function of γ0,eff for intermediate strain amplitudes, and
(3) G′′ ∼ P̂/γ0,eff for large strain amplitudes. The phenomeno-
logical theory with the aid of the angular distributions of the
contacts works in the plastic regime
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APPENDIX A: COUPLED STRESS AND ASYMMETRIC
STRESS

In this Appendix, we discuss the coupled stress R which is
the asymmetric part of the stress tensor [62] defined as

R := 1

LxLy

∑
i

∑
j>i

Ti j, (A1)

where Ti j := xi j fi j,y − yi j fi j,x. Here, fi j,k with k = x or k =
y, xi j , and yi j are the k component of f i j , x component of
ri j , and y−component of ri j , respectively. Let us introduce a
normalized coupled stress R̂:

R̂ := R̃

σ̃ (�t = π/4)
, (A2)

where R̃ := R − ∫ τp

0 dtR/τp. We have confirmed R̂  1 for
high pressure as shown in Fig. 11, though R̂(t ) exhibits a
stress-strain curve similar to the symmetric stress in the main

FIG. 11. Plots of R̂ against γ (t )/γ0,eff at μ = 1.0 and P̂ = 2.0 ×
10−3 for (a) large strain amplitudes and (b) small strain amplitudes.

text. Although R̂(t ) for large strain amplitudes is visible, the
largest value of R̂ is 0.07 in Fig. 12(a). Therefore, we can
safely ignore the contribution of the asymmetric stress tensor
or the couple stress.

APPENDIX B: ANGULAR FREQUENCY DEPENDENCE
OF G′ AND G′′

In this Appendix, we investigate how the storage and
loss moduli depend on � by fixing P̂ = 2.0 × 10−3. We
have confirmed that G′ is almost independent of � for
�

√
m0/kn/(2π ) � 10−3 in Fig. 13(a), while G′′ strongly de-

pends on � for small γ0,eff/P̂ in Fig. 13(b).
Here we clarify how G′′ depends on � for the small

strain regime (γ0,eff/P̂ < xc). We have introduced a critical
parameter xc as the middle point of γ0,eff/P̂ which satisfies

0.4 � d log G′′

d log γ0,eff
� 0.8. (B1)

Figure 14(a) shows that xc is also proportional to �.
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FIG. 12. Plots of R̂ against γ (t )/γ0,eff at μ = 1.0 and P̂ = 2.0 ×
10−5 for (a) large strain amplitudes and (b) small strain amplitudes.

We have also introduced G′′
0 by

G′′
0 := lim

γ0,eff→0
G′′. (B2)

From Fig. 14(b), we have confirmed that G′′
0 ∝ �, as men-

tioned in Sec. III B.

APPENDIX C: THE LOSS MODULUS IN THE LINEAR
REGIME TO γ0,eff

In this Appendix, we explain the origin of regime (2) in
which G′′ is proportional to γ0,eff/P̂. We also evaluate the
value of G′′ at the peak.

The behavior of G′′ for γ0,eff/P̂ � 1 can be interpreted as
follows. We will focus on the viscous shear stress σ (vis) for
this purpose. For simplicity, we ignore the difference between
the peak point of G′′ and the bending point of G′, although
these two points are slightly different in reality.

Here the shear stress σ (vis)
< in regime (2) satisfying γ0,eff �

P̂ might obey

σ (vis)
< = f (P̂)m0τ

−2, (C1)

FIG. 13. Plots of (a) G′ and (b) G′′ against γ0,eff for various
angular frequencies � at P̂ = 2.0 × 10−3 and μ = 1.0.

where τ is a typical timescale for elastic energy relaxation,
and the subscript < represents the regime γ0,eff/P̂ � 1. We
can assume that the function f (P̂) obeys a power law as
f (P̂) ∼ P̂�.

The estimation of the timescale τ is as follows. The strain
energy E for a grain with the stiffness kn under the strain
γ might be expressed as E ∼ kn(γ �)2, where � stands for a
typical length scale. This restoring energy should be balanced
with the kinetic energy E ∼ m(�/τ )2 where m and τ are the
mass of the grain and the typical timescale to characterize the
time differentiation. Therefore, we obtain τ ∼ √

m0/kn/γ . In
our case, we can replace γ by γ0,eff . We then obtain the form

σ (vis)
< ∼ knP̂�γ 2

0,eff . (C2)

For the plastic regime γ0,eff/P̂ � 1, on the other hand, the
stress σ (vis)

> (> stands for the regime γ0,eff/P̂ � 1) satisfies

σ (vis)
> ∼ P. (C3)
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FIG. 14. Plots of (a) crossover point xc for G′′ against � and
(b) G′′

0 introduced in Eq. (B2) against �.

The stresses in Eqs. (C2) and (C3) must take the identical
value as

σ (vis)
< = σ (vis)

> (C4)

at the peak of G′′ under the condition γ0,eff ∼ P̂. Therefore,
we obtain the relation P̂�+1 ∼ 1. Because the right-hand side
of this equation is independent of P̂, we get � = −1, and
σ (vis) ∼ knγ

2
0,eff/P̂ ∼ P at the peak. Finally, we obtain G′′

max =
kn. This indicates that the peak value of the loss modulus
should be independent of P.

APPENDIX D: FITTING PARAMETERS FOR ζN AND ζT

In this Appendix, we present how the fitting parameters
b and c introduced in Fig. 6 and Eq. (25) depend on P̂ and
γ0,eff. Here, we numerically evaluate the strain dependence of
b and c at P̂ = 2.0 × 10−3 in Fig. 15. We also plot the pressure
dependence of b and c at γ0,eff = 1.0 in Fig. 16.

APPENDIX E: RESULTS FOR FRICTIONLESS GRAINS

In this Appendix, we present the results of our simulation
for the storage and loss moduli for a frictionless system. It is

FIG. 15. Plot of fitting parameters b (circles) and c (diamonds)
as functions of γ0,eff at P̂ = 2.0 × 10−3, where fitting data at �t =
(2n + 1/2)π with n = 1, . . . , 9 are plotted as filled symbols and
fitting data at �t = 2nπ with n = 1, . . . , 9 are plotted as open
symbols.

known that the rigidity of two-dimensional frictionless sys-
tems near the jamming point is proportional to P̂1/2 [6,9,46].
Because of P ∝ φ − φJ near the jamming point, G′/(φ −
φJ )1/2 corresponds to G′/P̂1/2, where φ and φJ are the volume
fraction and the jamming fraction, respectively. We expect that
the scaling between G′/P̂1/2 and γ0.eff is held corresponding
to Ref. [46]. Here, we plot G′/P̂1/2 against γ0,eff/P̂ in Fig. 17.
However, there is no universal scaling law for frictionless
systems; this is significantly different from the results of finite
μ (even for μ = 0.01) which exhibit definite scaling laws.
The scaling corresponding to Ref. [46] is only visible for a
weakly plastic regime under low pressure. Figure 17 suggests
the existence of the softening region when γ0,eff/P̂ 	 1 for
low-pressure cases. On the other hand, we find the yielding
for γ0,eff/P̂ > 103. Notably, the existence of two distinct

FIG. 16. Plot of fitting parameters b (circles) and c (diamonds) as
functions of P̂ at γ0,eff = 1.0, where fitting data at �t = (2n + 1/2)π
with n = 1, . . . , 9 are plotted as filled symbols and fitting data at
�t = 2nπ with n = 1, . . . , 9 are plotted as open symbols.
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FIG. 17. Plot of the scaled G′ against γ0,eff/P̂ for frictionless
systems.

regions corresponds to the softening and yielding described
by Ref. [48], which contains the background friction.

FIG. 18. Scaling plot of G′′ for frictionless systems.

We plot G′′ against γ0,eff/P̂ in Fig. 18. The scaling for
G′′ is also absent, which is completely different from that of
μ = 0.01.
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