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Mpemba effect in inertial suspensions
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The Mpemba effect (a counterintuitive thermal relaxation process where an initially hotter system may cool
down to the steady state sooner than an initially colder system) is studied in terms of a model of inertial
suspensions under shear. The relaxation to a common steady state of a suspension initially prepared in a
quasiequilibrium state is compared with that of a suspension initially prepared in a nonequilibrium sheared
state. Two classes of Mpemba effect are identified, the normal and the anomalous one. The former is generic,
in the sense that the kinetic temperature starting from a cold nonequilibrium sheared state is overtaken by the
one starting from a hot quasiequilibrium state, due to the absence of initial viscous heating in the latter, resulting
in a faster initial cooling. The anomalous Mpemba effect is opposite to the normal one since, despite the initial
slower cooling of the nonequilibrium sheared state, it can eventually overtake an initially colder quasiequilibrium
state. The theoretical results based on kinetic theory agree with those obtained from event-driven simulations for
inelastic hard spheres. It is also confirmed the existence of the inverse Mpemba effect, which is a peculiar heating
process, in these suspensions. More particularly, we find the existence of a mixed process in which both heating
and cooling can be observed during relaxation.
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I. INTRODUCTION

The Mpemba effect is known as an exotic process in which
a liquid at a given temperature can freeze faster than another
liquid at a lower temperature. Although there exists a long
prehistory of this effect, it became well known after its re-
discovery by Mpemba and Osborne [1]. Several explanations
of this effect have been proposed, such as supercooling [2],
properties of hydrogen bonds [3], freezing-point depression
by solutes [4], a difference in the nucleation temperatures
of ice nucleation sites between samples [5], or a condensed
molecular system approaching an equilibrium state with the
violation of equipartition law [6]. Despite these investigations
to support the Mpemba effect, there exists still a certain skep-
ticism on its validity [7–9].

It is obvious that there is no possibility of observing the
Mpemba effect if we compare the cooling processes of two
equilibrium liquids at different temperatures if they are as-
sumed to be at local equilibrium during relaxation. If the
Mpemba process can be observed, then it must be related to
nonequilibrium effects. In other words, the Mpemba effect
can be regarded as a peculiar type of relaxation in systems
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far from equilibrium. In this sense, we can focus on idealistic
situations without freezing effects to extract the essence of the
Mpemba effect. Along this line, the existence of Mpemba-
like thermal relaxations has been reported in various systems
such as carbon nanotube resonators [10], granular gases with
constant [11–13] or velocity-dependent [14] restitution co-
efficients, clathrate hydrates [15], dilute atomic gases in an
optical resonator [16], molecular gases under nonlinear drag
[17], molecular binary gas mixtures [18], spin glasses [19],
as well as in purely theoretical papers based on Marko-
vian [20–22] or non-Markovian dynamics [23], the former of
which have recently been experimentally tested [24,25]. It is
remarkable that the existence of an inverse Mpemba effect,
i.e., a paradoxical heating effect in which a material starting
from a lower temperature can have a higher temperature than
that for a material starting from a higher temperature, has also
been reported [11,20].

In this paper, we study a class of thermal cooling pro-
cess, which we call Mpemba effect for simplicity throughout
our paper, by analyzing a model of sheared inertial suspen-
sion [26]. The system we consider might be close to the
original setup by Mpemba and Osborne [1] because they ana-
lyzed a system of ice-mix, which is a suspension system [1].
Therefore, we believe that our analysis can be appropriate to
illustrate some of the universal features of the Mpemba effect.
Through our analysis, we will demonstrate the existence of
two types of Mpemba effects, which we term as the normal
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FIG. 1. (a) Schematics of the evolutions of the temperatures from
the equilibrium Teq(t ) (top) and from the nonequilibirum Tneq(t ) (bot-
tom). The two shaded regimes in each figure represent the early and
later stages of the relaxation. Panel (b) shows three typical possible
evolutions of the temperature difference Teq(t ) − Tneq(t ) when the
Mpemba effect occurs: (top) NME, (middle) AME, and (bottom)
NME+AME.

Mpemba effect (NME) and the anomalous Mpemba effect
(AME).

It is easy to understand that the NME is generic and can
be observed in any sheared suspension as the difference of
relaxation rates from initial equilibrium and nonequilibrium
conditions. Indeed, the time evolution of the temperature (T )
of suspension liquids under shear may satisfy

cV Ṫ = − γ̇

n
Pxy + 2cV ζ (Tenv − T ), (1)

where cV , γ̇ , Pxy, ζ , and Tenv are the specific heat at constant
volume, the shear rate, the shear stress, the drag coefficient,
and the environmental temperature, respectively. Let us con-
sider an equilibrium initial state [where Peq

xy (0) = 0] and a
nonequilibrium (sheared) initial state [where Pneq

xy (0) < 0]
at temperatures Teq(0) and Tneq(0), respectively, both tem-
peratures being sufficiently higher than the environmental
temperature Tenv, so that both initial rates of change, Ṫeq(0)
and Ṫneq(0), are negative. Because the first term on the right-
hand side of Eq. (1) (the viscous heating term) is zero for a
system at equilibrium, while it is positive at nonequilibrium,
the relaxation rate |Ṫ (0)| of temperature from an equilibrium
initial condition is always larger than that from a nonequi-
librium initial condition at the same initial temperature,
i.e., Ṫeq(0) < Ṫneq(0) < 0 with Teq(0) = Tneq(0). Therefore, if
Teq(0) is slightly higher than Tneq(0), then it is even more
evident that Ṫeq(0) < Ṫneq(0) < 0 [see also the first shaded
region in Fig. 1(a) for schematics], so that during the relax-
ation under a common shear rate γ̇ the temperature difference
Teq(t ) − Tneq(t ) initially decreases, thus allowing for the relax-
ation curve of the equilibrium initial state to catch up that of
the nonequilibrium initial state [see the top panel in Fig. 1(b)].
This is the simple origin of the NME. With the aid of a
parallel argument, if Teq(0) is slightly lower than Tneq(0), then
one still has Ṫeq(0) < Ṫneq(0) < 0, so that the initial slope of
the equilibrium initial state is more negative than that of the
nonequilibrium initial state, i.e., the temperature difference
Tneq(t ) − Teq(t ) increases during the early stage of evolu-
tion. In such a case, the relaxation curve Tneq(t ) is arguably

expected not to catch up ever the relaxation curve Teq(t ). On
the other hand, a nontrivial AME is present if, despite its
early increase and as a nonlinear consequence of the relax-
ation process [see the second shaded region in Fig. 1(a)], the
temperature difference Tneq(t ) − Teq(t ) eventually vanishes at
a certain time [see the middle panel in Fig. 1(b)]. Interest-
ingly, if the AME is possible with Teq(0) � Tneq(0), then
a temperature crossing must still exist if Teq(0) is slightly
higher than Tneq(0), so that the NME will be followed by
the second AME crossing. We will refer to this phenomenon
as NME+AME [see the bottom panel in Fig. 1(b)]. The
Mpemba effect previously observed in granular and normal
fluids [11–14,17,18] belongs to the NME class. However, to
the best of our knowledge, neither AME nor NME+AME has
been reported before. Figure 1 summarizes schematics of the
temperature and the temperature-difference evolutions when
those different classes of the Mpemba effect appear. Note that
the NME+AME is a combination of a transient NME with
an asymptotic AME in the sense that Teq(t ) > Tneq(t ) both
initially and for asymptotically long times.

We also study the inverse Mpemba effect in this paper.
Similarly to the cooling process, the essence of the normal
inverse Mpemba effect (NIME) can be understood by Eq. (1).
Indeed, the temperature starting from a nonequilibrium initial
condition can become higher than the one starting from an
equilibrium initial condition, if Tneq(0) < Teq(0) < Tenv, be-
cause of the existence of the initial viscous heating effect only
in the system starting from the nonequilibrium sheared condi-
tion. An anomalous inverse Mpemba effect (AIME) in heating
systems can also exist in analogy to the AME in cooling
processes. Moreover, we confirm the existence of the mixed
Mpemba effect (MME), in which temperature inversion takes
place during heating and cooling processes in both systems.

The organization of this paper is as follows. In Sec. II, we
introduce the Langevin equation of inertial suspensions and
the corresponding Enskog kinetic theory [27]. The outline of
the analysis of the unsteady kinetic theory is also presented
in Sec. II, which is parallel to that for steady states [28,29].
Section III is devoted to the study of the NME and the AME
through the analysis of the inertial suspension from both ki-
netic theory and event-driven Langevin simulations for hard
spheres (EDLSHS) [28–31]. In Sec. IV, we present results on
NIME and AIME for heating processes observed in inertial
suspensions. In that section, we also include the analysis of
MME, in which both cooling and heating processes coexist
during the time evolution. Section V is devoted to discussion
and conclusion. In Appendix A, we derive moment equations
describing the time evolution of the system. In Appendix B,
we analyze a collisionless case corresponding to an idealis-
tic model expressing the hydrodynamic lubrication effect to
prevent particles from collisions. In Appendix C, we present
the relationship between the input parameters of the Langevin
equation and the measured temperatures at t = 0. In Appendix
D, we discuss the crossing times on the phase boundaries.
In Appendix E, we illustrate characteristic domain structures
near and far from phase boundaries with the aid of an order
parameter. Appendix F is devoted to the discussion on the
nontrivial relaxation processes for the viscosity, similar to the
Mpemba effect for temperature.
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II. MODEL: LANGEVIN EQUATION AND ENSKOG
KINETIC EQUATION FOR SUSPENSIONS UNDER SIMPLE

SHEAR FLOW

Let us consider a collection of monodisperse smooth hard
spheres of diameter σ , mass m, and restitution coefficient e
(satisfying 0 < e � 1) immersed in a three-dimensional fluid.
We assume that the suspended particles are distributed in
the background fluid under the influence of a simple shear
flow. This state is macroscopically characterized by a constant
number density n, a uniform kinetic temperature T , and a
macroscopic velocity field u = (ux, u⊥) with a constant shear
rate γ̇ , namely

ux = γ̇ y, u⊥ = 0, (2)

where x is the shearing direction and y is the direction of
change of the sheared velocity. Here we assume that the shear
flow is symmetrical with respect to y = 0 and that the bound-
ary effects are not important. Let us introduce the peculiar
momentum of ith particle as pi ≡ m(vi − γ̇ yiex ), where vi is
the velocity of ith particle and ex is the unit vector parallel to
the x direction. A reliable model for describing suspensions is
the Langevin equation:

d pi

dt
= −ζ pi + F (imp)

i + mξi, (3)

where we have assumed that the particles are suspended
in the fluid flow for low Reynolds number. We have also
introduced the impulsive force F (imp)

i to express collisions be-
tween grains, while the noise ξi(t ) = ξi,α (t )eα has the average
properties

〈ξi(t )〉 = 0, 〈ξi,α (t )ξ j,β (t ′)〉 = 2ζTenv

m
δi jδαβδ(t − t ′). (4)

As in Eq. (1), the parameters ζ and Tenv characterize the drag
from the background fluid and the environmental temperature
(in units of energy), respectively. In reality, the drag coeffi-
cient ζ depends on the moving speed if the latter is high and
suspended particles are not small, and should be a resistance
matrix as a result of the hydrodynamic interactions between
particles, even for slowly moving small suspensions, which
strongly depend on their configuration. This simple model
might be applicable to the description of inertial suspensions
in which the mean diameter of suspended particles is ap-
proximately ranged from 1 to 70 μm [26]. For hard-core
liquids, it is well known that ζ ∝ η0 ∝ √

Tenv, where η0 is
the viscosity of the solvent or the fluid phase. Note that the
density dependence of ζ was considered in Refs. [28,29],
but the results are qualitatively unchanged from those for a
constant ζ . If we ignore the density dependence of ζ and the
polydispersity of grain sizes, then the Langevin model (3) is
equivalent to that used by Kawasaki et al. [32]. For simplicity,
we ignore the density dependence of ζ and the effect of gravity
throughout this paper because we have already confirmed
that such a dependence is not important [28,29]. The latter
condition may not be easily achieved for suspensions, but
many aerosol particles approximately satisfy it because of
their slow sedimentation rates. Thus, the inertial suspension

can be regarded as an idealistic model of aerosol particles.1

To solve the Langevin equation (3) by computer simulations,
we adopt EDLSHS, whose outline is summarized in Ref. [30]
(see also Refs. [28,29]).

Let us rewrite the Langevin equation of the suspension un-
der simple shear flow via the kinetic equation for the one-body
distribution function f (r, v, t ). For numerical calculation, the
simple shear flow state is generated by Lees-Edwards bound-
ary condition [33], which is a periodic boundary condition
in the local Lagrangian frame characterized by the peculiar
velocity V = (vx − γ̇ y)ex + v⊥. If we assume that the system
is uniform in the Lagrangian frame, then the velocity distribu-
tion function satisfies

f (r, v, t ) = f (V , t ), (5)

and the Enskog equation for the granular suspension is
[28,29,31,34,35](

∂

∂t
− γ̇Vy

∂

∂Vx

)
f (V , t )

= ζ
∂

∂V
·
[(

V + Tenv

m

∂

∂V

)
f (V , t )

]
+ JE [V | f , f ], (6)

where the Enskog collision operator JE [V | f , f ] is given by
[28,29]

JE [V 1| f , f ] = σ 2g0

∫
dV 2

∫
d σ̂ �(̂σ · V 12)(̂σ · V 12)

×
[

f (V ′′
1, t ) f (V ′′

2 + γ̇ σ σ̂yex, t )

e2

− f (V 1, t ) f (V 2 − γ̇ σ σ̂yex, t )

]
. (7)

Here g0 is the radial distribution at contact for hard spheres,
whose (approximate) explicit expression is given by [36]

g0(|r| = σ, ϕ) = 1 − ϕ/2

(1 − ϕ)3
, (8)

with the volume fraction ϕ = (π/6)nσ 3 satisfying ϕ < 0.49.
In Eq. (7), we have introduced the Heaviside step function
defined as �(x) = 1 for x � 0 and �(x) = 0 otherwise, the
relative velocity at contact V 12 = V 1 − V 2, and the unit vec-
tor σ̂ = (r2 − r1)/σ at contact. In addition, the double primes
in Eq. (7) denote the precollisional velocities {V ′′

1,V ′′
2}, which

satisfy the following collision rule:

V ′′
1 = V 1 − 1 + e

2e
(V 12 · σ̂ )̂σ,V ′′

2 = V 2 + 1 + e

2e
(V 12 · σ̂ )̂σ,

(9)

with {V 1,V 2} being the postcollisional velocities of particles
1 and 2. In this paper, we do not consider the effects of tan-
gential friction and rotation induced by each binary collision.

The most important quantity to characterize the shear flow
is the stress tensor P. It has kinetic and collisional transfer
contributions, i.e., P = Pk + Pc. Here, the kinetic stress Pk is

1Weak attractive interactions between aerosol particles exist,
though such an effect is not crucial, as shown in Ref. [31].
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given by

Pk
αβ = m

∫
dVVαVβ f (V ), (10)

while its collisional contribution Pc to the stress is given by
[27–29,37,38]

Pc
αβ = 1 + e

4
mσ 3g0

∫
dV 1

∫
dV 2

∫
d σ̂�(V 12 · σ̂ )(V 12 · σ̂ )2

× σ̂ασ̂β f (V 1) f (V 2 − γ̇ σ σ̂yex ). (11)

The hydrostatic pressure P is defined as P ≡ Pαα/3, where
we adopt Einstein’s rule for the summation, i.e., Pαα =∑3

α=1 Pαα . The kinetic pressure satisfies the equation of state
of ideal gases, namely Pk ≡ Pk

αα/3 = nT , where

n =
∫

dV f (V ), T = m

3n

∫
dVV 2 f (V ) (12)

are the number density and the kinetic temperature, respec-
tively. Throughout this paper, we assume that the kinetic
temperature is measurable and is used to detect the Mpemba
effect.

It should be noted that the model of inertial suspension with
Tenv = 0 was introduced in Ref. [39] for dilute suspensions
and in Ref. [40] for moderately dense suspensions. See also
Ref. [41] for dilute inertial suspensions with Tenv = 0. On
the other hand, the model with Tenv = 0 has several defects
because (i) suspensions are not stable against clustering if
there are no thermal agitations, (ii) the viscosity and the drag
become zero in the zero-temperature limit, and (iii) thermal
equilibrium states cannot be recovered in the unsheared sit-
uation. The series of our recent papers [28,29,31,42] can be
regarded as an up-to-date analysis for steady states of in-
ertial suspensions at finite densities. In particular, Ref. [29]
demonstrated that the Enskog kinetic theory gives very precise
descriptions of steady states for moderately dense suspen-
sions. Therefore, we can apply the kinetic theory in unsteady
states to describe relaxation processes in inertial suspensions.
Hereafter, we solve the time evolution of the system obtained
from Eq. (6) (see the detailed expressions in Appendix A).

III. THEORETICAL AND NUMERICAL RESULTS OF THE
MPEMBA EFFECT IN COOLING PROCESSES

In this section, we show that the Mpemba effect takes place
through our EDLSHS of Eq. (3) with Eq. (4), as well as
through the moment equations from the Enskog kinetic theory
in Grad’s approximation. We also demonstrate that the time
evolutions obtained from the theory reproduce well those from
the EDLSHS.

Let us consider the following protocol. In general, we can
examine a situation in which both the shear rate and envi-
ronmental temperature for t < 0, i.e., γ̇ini and T (ini)

env , might be
different from the “target” values for t > 0, i.e., γ̇tar and T (tar)

env .
Two specific choices will be considered here. First, we denote
with the label FQE a system starting from a quasiequilibrium
steady initial state, in which the shear rate and the environ-
mental temperature are changed at t = 0 from 0 to γ̇tar and
from T (ini)

env to T (tar)
env , respectively. Analogously, the label FS

denotes a system starting from a sheared steady initial state

FIG. 2. Schematic illustrations of our protocol for FQE (dashed
lines) and FS (solid line). For FQE, the shear rate and the envi-
ronmental temperature are changed at t = 0 (a) from 0 to γ̇tar and
(b) from T (ini)

env to T (tar)
env , respectively. For FS, (a) the shear rate is

changed at t = 0 from γ̇ini to γ̇tar while (b) the environmental temper-
ature is kept at T (tar)

env . Here, the case for γ̇ini > γ̇tar and T (ini)
env > T (tar)

env

is presented.

such that the shear rate is changed at t = 0 from γ̇ini to γ̇tar,
while the environmental temperature is unchanged and made
equal to T (tar)

env . Figure 2 provides schematic illustrations of this
protocol for both systems.

The initial condition for the system FQE is obtained by
the time evolution equations (3) associated with the noise
condition (4) (in the case of simulations) and (6) (in the case
of kinetic theory) by setting γ̇ = 0 and Tenv = T (ini)

env , and al-
lowing the system to reach a quasiequilibrium steady state by
the balance between the noise and the dissipation induced by
each collision. In turn, the initial condition for the FS system
is obtained by setting γ̇ = γ̇ini and Tenv = T (tar)

env , and waiting
until a sheared steady state is reached. It should be noted
that there is no shear stress for unsheared quasiequilibrium
systems,2 while Pxy(0) < 0 in the FS system. In this paper, we
generally fix the value of the target environmental temperature
as T (tar)∗

env = 1.0, where T ∗
env ≡ Tenv/(mσ 2ζ 2).

Now, let us introduce the initial temperature ratio ϑ as

ϑ ≡ TFQE(0)

TFS(0)
= θFQE(0)

θFS(0)
, (13)

where the dimensionless temperature is defined as θ ≡ T/Tenv

and we take the environmental temperature for t > 0, i.e.,
T (tar)

env , in both systems. According to the discussion below
Eq. (1), in cooling processes (i.e., γ̇ini > γ̇tar) with ϑ > 1, a
NME can be present in the transient dynamics before both sys-
tems reach a common steady state with θtar ≡ limτ→∞ θ (τ ),
where τ ≡ ζ t is the dimensionless time. Analogously, in heat-
ing processes (i.e., γ̇ini < γ̇tar) a NIME is possible if again ϑ >

1. Much less trivial is the possibility of the (cooling) AME or
(heating) AIME with ϑ < 1. A fully analytical exact treatment
is possible in the case of a collisionless model, as worked out
in Appendix B. Note that ϑ is an observable quantity by the
measurement of the temperatures at t = 0, though they are
the outcomes of our systems determined by their respective

2This is easy to be understood. First, it is obvious that the kinetic
stress introduced in Eq. (10) satisfies Pk

αβ = 0 for α �= β if we assume
that the velocity distribution function is invariant under the change
Vα → −Vα . Next, the off-diagonal collisional stress Pc

αβ introduced in
Eq. (11) vanishes because Pc

αβ = −Pc
αβ under the changes of 1 ↔ 2

and σ̂ ↔ −σ̂. Thus, Pαβ = 0 for α �= β if the velocity distribution is
isotropic.
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steady states reached for t < 0. The relationship between the
input parameters {T (ini∗)

env , T (tar∗)
env , γ̇ ∗

ini} (see Fig. 2 for t < 0)
and the outcome ϑ is discussed in Appendix C, where we have
introduced the dimensionless shear rate γ̇ ∗ ≡ γ̇ /ζ .

Given the values of the packing fraction ϕ, the restitution
coefficient e, the target dimensionless environmental temper-
ature T (tar)∗

env , and the target dimensionless shear rate γ̇ ∗
tar, the

time evolutions starting from each pair of initial conditions
{FS, FQE} are characterized by only two parameters, namely
γ̇ ∗

ini and T (ini)∗
env . In some situations, however, we will use γ̇ ∗

ini
and ϑ as control parameters. In our simulations, we exam-
ine N = 100 different (microscopic) initial configurations for
each initial condition to get average values and error bars.

In the protocol, there are four possibilities depending on
the relative values of (i) γ̇ ∗

ini and γ̇ ∗
tar, and (ii) T (ini)∗

env and T (tar)∗
env .

We note that the heating case for γ̇ ∗
ini < γ̇ ∗

tar and T (ini)
env < T (tar)

env
will be discussed as the inverse Mpemba effect in Sec. IV. We
will also discuss there the mixed Mpemba effect in which both
cooling and heating processes can be observed during the time
evolution.

Figure 3 shows typical time evolutions of θFQE(τ ) and
θFS(τ ) for ϑ > 1 [Figs. 3(a)–3(d)] and ϑ < 1 [Figs. 3(e) and
3(f)], respectively, with fixed ϕ = 0.01. The theory repro-
duces well the time evolution of the temperature obtained
from our simulations for both ϑ > 1 and ϑ < 1. For ϑ > 1,
after the initial stage where θFQE(τ ) − θFS(τ ) > 0, NME takes
place, so that θFQE(τ ) − θFS(τ ) < 0 in an intermediate time
window τNME < τ < τAME. Then, an AME occurs for τ >

τAME in this set of parameters. Here, we have introduced τNME,
which satisfies

θFQE(τNME) − θFS(τNME) = 0 and θFQE(τ ) − θFS(τ ) > 0, (τ < τNME), (14)

and τAME which satisfies

θFQE(τAME) − θFS(τAME) = 0 and θFQE(τ ) − θFS(τ ) < 0,

{
(τNME < τ < τAME : “NME + AME”)
(τ < τAME : “AME”) . (15)

We call “NME+AME” the parameter region where this dou-
ble crossing takes place. It is noted that τNME (τAME) is the
first (second) crossing time in “NME+AME” region [see
Figs. 3(b) and 3(d)]. Depending on the initial environmental
temperature T (ini)∗

env , the magnitude of the AME can be much
smaller than that of the NME, as in Fig. 3(b), or almost the
same as that of the NME, as in Fig. 3(d). For the latter case, the
time domain of the AME is longer than that of the NME. For
ϑ < 1, on the other hand, θFQE(τ ) − θFS(τ ) < 0 in the early
stage, and it takes a negative peak in the intermediate stage.
Then, θFQE(τ ) becomes larger than θFS(τ ) after τ exceeds a
crossover value τAME. This is the AME for ϑ < 1. As far as
we investigated, the magnitude of AME is smaller than that of
the negative peak in the intermediate stage [see Fig. 3(f)].

The phase diagrams in the plane ϑ versus γ̇ini/γ̇tar are
shown in Fig. 4 for e = 0.9, T (tar)∗

env = 1.0, γ̇ ∗
tar = 1.0, and

(a) ϕ = 0.01 and (b) ϕ = 0.1. There are four distinct re-
gions in Fig. 4(a), “No Mpmeba,” “NME+AME,” “NME,”
and “AME.” Note that, although cooling (heating) relaxation
processes are located to the right (left) of an imaginary ver-
tical line γ̇ini/γ̇tar = 1, for the sake of simplicity, the notation
employed in Fig. 4 does not distinguish between direct and
inverse Mpemba effects. We discuss the characteristic be-
havior of crossing times on the phase boundaries among
“NME+AME,” “NME,” and “AME” in Appendix D. We also
visualize characteristic domain growths near and far from
phase boundaries in Appendix E.

Let us define the two amplitudes in the “NME+AME”
region as

θ∪NME ≡ max
τNME<τ<τAME

{θFS(τ ) − θFQE(τ )}, (16a)

θAME+ ≡ max
τ>τAME

{θFQE(τ ) − θFS(τ )}. (16b)

Figure 5 shows a magnitude plot of the ratio θAME+/θ∪NME

in the subregion with γ̇ini/γ̇tar > 1 of the “NME+AME” re-

gion of Fig. 4(a). We observe that the ratio θAME+/θ∪NME

is small near the boundary between the “NME” and
“NME+AME” regions, but it increases to values θAME+/

θ∪NME � 1 near the boundary between the “No Mpemba” and
“NME+AME” regions.

These exotic properties are suppressed as the density in-
creases, as already observed in Fig. 4(b), where the “AME”
region is extinct and the “NME+AME” region has almost
disappeared at ϕ = 0.10. This is also understood from Fig. 6,
where the phase diagram in the plane ϑ versus ϕ is shown
for e = 0.9, T (tar)∗

env = 1.0, γ̇ ∗
tar = 1.0, and γ̇ ∗

ini = 4.0. For this
choice of parameters, the “AME” region disappears at ϕ =
2.8 × 10−2.

Figure 7 represents the amplitudes θ∪NME and θAME+ as
functions of the ratio ϑ for e = 0.9, ϕ = 0.01, T (tar)∗

env = 1.0,
γ̇ ∗

tar = 1.0, and γ̇ ∗
ini = 2.0. It is observed that θAME+ � θ∪NME

for small ϑ − 1, while θAME+ can be larger than θ∪NME in the
vicinity of the boundary between the “NME+AME” and “No
Mpemba” regions.

In order to characterize with a single parameter how the
union of the “NME” and “NME+AME” regions, on the one
hand, and the “AME” region, on the other hand, change with
the volume fraction, let us introduce the quantities �ϑNME and
�ϑAME as

�ϑNME(ϕ) ≡ max
γ̇ ∗

ini

{ϑNME(ϕ, γ̇ ∗
ini ) − 1},

(17)
�ϑAME(ϕ) ≡ max

γ̇ ∗
ini

{1 − ϑAME(ϕ, γ̇ ∗
ini )},

where ϑNME(ϕ, γ̇ ∗
ini ) > 1 and ϑAME(ϕ, γ̇ ∗

ini ) < 1 are values of
ϑ inside the regions “NME” (or “NME+AME”) and “AME,”
respectively.

As shown in Fig. 8, �ϑNME(ϕ) is weakly dependent on
ϕ, being finite even for large ϕ. However, �ϑAME(ϕ) de-
cays with increasing density and rapidly approaches zero at a
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FIG. 3. Time evolutions of [(a), (c), and (e)] the temperatures
θFS(τ ) and θFQE(τ ) and [(b), (d), and (f)] the temperature difference
θFQE(τ ) − θFS(τ ) for e = 0.9, ϕ = 0.01, T (tar)∗

env = 1.0, and γ̇ ∗
tar = 1.0.

Panels (a) and (b), panels (c) and (d), and panels (e) and (f) cor-
respond to (γ̇ ∗

ini, T (ini)∗
env ) = (4.0, 5.29), (4.0, 5.76), and (4.5, 7.62),

respectively. The dotted lines in panels (a), (c), and (e) represent the
target temperature θtar = 1.16. The vertical dotted lines in panels (b),
(d), and (f) indicate τNME and τAME defined by Eqs. (14) and (15),
respectively. The symbols (with error bars) are obtained from our
simulations and the lines are kinetic-theory predictions.

threshold volume fraction ϕAME � 2.8 × 10−2 (in the case
e = 0.9, T (tar)∗

env = 1.0, and γ̇ ∗
tar = 1.0). Thus, the region

“AME” can be observed only for dilute cases. Nevertheless,
as illustrated by Fig. 4(b), a narrow region “NME+AME” is
still present for non-dilute systems.

We have also evaluated from our simulations the “probabil-
ities” for the NME and AME to take place. As written before,

FIG. 4. Phase diagrams in the plane ϑ versus γ̇ini/γ̇tar of the
Mpemba effect for (a) ϕ = 0.01 and (b) ϕ = 0.10 with e = 0.9,
T (tar)∗

env = 1.0, and γ̇ ∗
tar = 1.0.

FIG. 5. Magnitude plot of the ratio of the amplitudes defined in
Eqs. (16) for the “NME+AME” region of Fig. 4(a) with γ̇ini/γ̇tar > 1.

ensemble averages over the histories of N = 100 different ini-
tial configurations are taken for each initial condition. Then,
for ϑ > 1, we introduce the probability for NME as

PNME(τ ) = 1

N2

N∑
i=1

N∑
j=1

�[θFS,i(τ ) − θFQE, j (τ )], (18)

where θFS,i(τ ) and θFQE, j (τ ) stand for the values of θFS(τ )
and θFQE(τ ) in the evolutions from the initial configurations
i and j, respectively. Thus, given a pair of initial conditions
characterized by γ̇ ∗

ini > γ̇ ∗
tar and ϑ > 1, PNME(τ ) measures the

fraction of pair microscopic histories where at time τ the
temperature of the FS system has become higher than that
of the FQE system. Similarly, for ϑ < 1, we introduce the
probability for AME as

PAME(τ ) = 1

N2

N∑
i=1

N∑
j=1

�[θFQE,i(τ ) − θFS, j (τ )]. (19)

Figure 9 represents the probabilities PNME(τ ) (symbols in the
region ϑ > 1) and PAME(τ ) (symbols in the region ϑ < 1) at

FIG. 6. Phase diagram of the Mpemba effect on the plane ϑ

versus ϕ for e = 0.9, T (tar)∗
env = 1.0, γ̇ ∗

tar = 1.0, and γ̇ ∗
ini = 4.0.
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FIG. 7. Amplitudes of the temperature differences introduced in
Eqs. (16) as functions of ϑ for e = 0.9, ϕ = 0.01, T (tar)∗

env = 1.0,
γ̇ ∗

tar = 1.0, and γ̇ ∗
ini = 2.0. In agreement with Fig. 4(a), at the value

γ̇ ∗
ini = 2.0 only the “NME+AME” region is present with ϑ > 1.

several values of τ and for e = 0.9, T (tar)∗
env = 1.0, γ̇ ∗

tar = 1.0,
γ̇ ∗

ini = 2.0, and two values of the volume fraction (ϕ = 0.01
and ϕ = 0.10). In these figures, the vertical solid and dashed
lines express the phase boundaries obtained from the kinetic
theory for ϕ = 0.01 and 0.10, respectively. The absence of the
vertical dashed line for ϑ < 1 means that the theory does not
predict the existence of AME for ϕ = 0.10, as observed from
Fig. 4(b). It is remarkable that the probability PNME has a sharp
change around the theoretical boundaries at ϑ = 1 for τ �
1, but it is almost independent of ϑ for τ � 2. We also note
that the probability PAME is quite low in its domain for τ � 1,
while it becomes relatively high for τ � 2. We notice that the
crossing time of the temperatures vanishes on the boundary
between the “NME” and “No Mpemba” regions. Similarly,
the second crossing time is infinity on the boundary between
the “NME” and “NME+AME” regions [see also Fig. 1(a)].

Let us indicate another characteristic point of the “AME”
for ϑ < 1. As shown in Fig. 4(a), the “AME” is absent in
the regime of high γ̇ini/γ̇tar, regardless of the value of ϑ < 1.

FIG. 8. Volume fraction dependence of �ϑNME(ϕ) and
�ϑAME(ϕ), introduced in Eq. (17), for e = 0.9, T (tar)∗

env = 1.0, and
γ̇ ∗

tar = 1.0.

This feature is originated by collision effects between grains,
because the AME exists even for high γ̇ ∗

ini when the collision-
less model is considered (see Appendix B). It should be noted
that the crossing time is located at infinity on the boundary
between the “AME” and “No Mpemba” regions. In addition,
the first crossing time vanishes on the boundary between the
“NME+AME” (ϑ > 1) and “AME” (ϑ < 1) regions [see also
Fig. 1(b)].

Thus far, we have fixed the target shear rate at γ̇ ∗
tar = 1 and

the restitution coefficient at e = 0.9. Let us now explore the
influence of varying γ̇ ∗

tar and e on the phase diagram. Figure 10
shows the phase diagrams for e = 0.9, ϕ = 0.01, T (tar)∗

env =
1.0, and three values of the target shear rate: γ̇ ∗

tar = 0.30, 1.0,
and 5.0. Although the boundary between the “NME+AME”
and “No Mpemba” regions seems to be rather insensitive to
the choice of the target shear rate, the “AME” region (ϑ < 1)
becomes smaller as the target shear rate decreases.

The influence of the restitution coefficient is illustrated in
Fig. 11. We observe that the shape of the phase boundary
between the “NME+AME” and “No Mpemba” regions is
practically insensitive to the restitution coefficient, while the
“AME” region (ϑ < 1) shrinks as collisions become less in-
elastic. In any case, it is important to remark that the Mpemba
effect is still clearly present in the case of elastic collisions
(e = 1), as illustrated in Fig. 1.

As shown by Fig. 12, we note that the theory can reproduce
the simulation results even in strongly inelastic cases, except
for the initial relaxation for e = 0.5.

IV. INVERSE AND MIXED MPEMBA EFFECTS

In this section, we develop the analysis of the inverse
Mpemba effect (IME) as a counterintuitive heating effect
similar to the cooling Mpemba effect. We also discuss the
MME in which both heating and cooling processes can be
observed during the time evolution. The heating process in
the FS system implies the choice γ̇ ∗

ini < γ̇ ∗
tar. As in Sec. III,

the target environmental temperature is fixed as T (tar)∗
env = 1.0.

Since the physics in IME and MME is common to that of the
Mpemba effect in cooling processes, we only illustrate some
examples of IME and MME in this section.

A. Inverse Mpemba effect

IME is a heating process in which a liquid starting from a
lower initial temperature can have a higher temperature than
that starting from a higher initial temperature, both initial
temperatures being lower than the final steady temperature.
While this definition is simple, there might be some additional
overshoots of the temperature.

A typical heating process with θFQE(0) > θFS(0) for a
dilute suspension (ϕ = 0.01) with the parameters γ̇ ∗

ini =
1.0, γ̇ ∗

tar = 4.0, e = 0.9, T (tar)∗
env = 1.0, and T (ini)∗

env = 1.33
(ϑ = 1.13) is shown in Fig. 13. It can be observed that,
although θFQE(τ ) − θFS(τ ) > 0 in the early stage τ < τNIME

of the relaxation process, one has θFQE(τ ) − θFS(τ ) < 0 for
intermediate times τNIME < τ < τAIME (which corresponds
to NIME), and then θFQE(τ ) − θFS(τ ) > 0 for later times
τ > τAIME (which corresponds to AIME), until finally both
θFQE(τ ) and θFS(τ ) reach a common stationary value. Here,
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FIG. 9. Probabilities of the NME (ϑ > 1) and AME (ϑ < 1) as functions of ϑ [see Eqs. (18) and (19)] at (a) τ = 0.5, (b) τ = 1.0,
(c) τ = 2.0, and (d) τ = 5.0. The parameters are chosen as e = 0.9, T (tar)∗

env = 1.0, γ̇ ∗
tar = 1.0, γ̇ ∗

ini = 2.0, and two values of the volume fraction
(ϕ = 0.01 and ϕ = 0.10). The vertical dotted line signals the boundary value ϑ = 1, while the vertical solid and dashed lines represent the
theoretical phase boundaries for ϕ = 0.01 and 0.10, respectively. It should be noted that the theoretical phase boundary does not exist for
ϕ = 0.10 and ϑ < 1.

τNIME and τAIME are defined analogously to τNME and τAME in
Eqs. (14) and (15), respectively. Thus, this is an example of a
“NIME+AIME” process analogous to the “NME+AME” in

FIG. 10. Phase diagram on the plane ϑ versus γ̇ ∗
ini for e = 0.9,

ϕ = 0.01, T (tar)∗
env = 1.0, and several values of the target shear rate

γ̇ ∗
tar .

cooling processes discussed in Sec. III. The two amplitudes
characterizing the NIME+AIME phenomenon can be defined
as in Eqs. (16). It is remarkable that the amplitude of AIME is
larger than that of NIME in Fig. 13. As Fig. 14 shows, this

FIG. 11. Phase diagram on the plane ϑ versus γ̇ ∗
ini for ϕ = 0.01,

T (tar)∗
env = 1.0, γ̇ ∗

tar = 1.0, and several values of the restitution coeffi-
cient e.
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FIG. 12. Time evolutions of the temperature differences
θFQE(τ ) − θFS(τ ) for ϕ = 0.01, T (ini)∗

env = 5.29, T (tar)∗
env = 1.0,

γ̇ ∗
ini = 4.0, γ̇ ∗

tar = 1.0, and restitution coefficients e = 0.9, 0.7, and
0.5. The symbols are obtained from our simulations and the lines are
kinetic-theory predictions.

property is observed when the value of the ratio ϑ is near
the upper boundary curve, in analogy to the NME+AME case
shown in Fig. 5.

B. Mixed Mpemba effect

So far, we have focused on systems where both initial tem-
peratures θFS(0) and θFQE(0) are either higher or lower than
the final stationary temperature θtar corresponding to the target
quantities γ̇ ∗

tar and T (tar)∗
env . On the other hand, we can consider

the case where one of the initial temperatures is higher and
the other one is lower than the target temperature θtar. In
conventional relaxation processes, the curves representing the
temperature evolution for both systems are expected not to
meet (except asymptotically in the steady state). However, if
this is not the case, we face a situation that can be referred to
as the MME. We have observed that the MME takes place
only when θFQE(0) > θtar > θFS(0). While θFS(τ ) increases
monotonically, the relaxation of θFQE(τ ) may present a tran-
sient behavior where it overshoots first the value θtar and

FIG. 14. Magnitude plot of the ratio of the amplitudes defined in
Eqs. (16) for the “NIME+AIME” region corresponding to ϕ = 0.01,
e = 0.9, T (tar)∗

env = 1.0, and γ̇ ∗
tar = 4.0.

then the curve θFS(τ ). This MME is illustrated in Fig. 15
for e = 0.9, ϕ = 0.01, T (tar)∗

env = 1.0, γ̇ ∗
tar = 1.0, γ̇ ∗

ini = 0.95,
and T (ini)∗

env = 1.21. Here, we define τMME which satisfies both
θFQE(τMME) − θFS(τMME) = 0 and θFQE(τ ) − θFS(τ ) > 0 for
τ < τMME. It is interesting to note that Fig. 15(b) is reminis-
cent of Figs. 3(b), 3(d), and 13(b), except that there is only
one crossing, so that the last stage where θFQE(τ ) − θFS(τ )
becomes positive again is missing in the kinetic theory, as
shown in Fig. 15(b), as far as we have checked. On the other
hand, we observe the second and even the third crossings in
the later stage in our simulations. We should clarify the origin
of this discrepancy between the simulation and kinetic theory
in the near future.

V. DISCUSSION AND CONCLUSION

In this paper, we have demonstrated by kinetic theory and
computer simulations that the Mpemba effect can be observed
in sheared inertial suspensions. We have also illustrated that

FIG. 13. Time evolutions of (a) the temperatures θFS(τ ) and θFQE(τ ) and (b) the temperature difference θFQE(τ ) − θFS(τ ) for e = 0.9,
ϕ = 0.01, T (tar)∗

env = 1.0, γ̇ ∗
tar = 4.0, γ̇ ∗

ini = 1.0, and T (ini)∗
env = 1.33 as an example of AIME. The dotted line in panel (a) represents the target

temperature θtar = 5.08. The vertical dotted lines in panel (b) indicate τNIME and τAIME. The symbols (with error bars) are obtained from our
simulations and the lines are kinetic-theory predictions. Panel (b) presents a typical example of “NIME+AIME.”
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FIG. 15. Time evolutions of (a) the temperatures θFS(τ ) and θFQE(τ ) and (b) the temperature difference θFQE(τ ) − θFS(τ ) for e = 0.9,
ϕ = 0.01, T (tar)∗

env = 1.0, γ̇ ∗
tar = 1.0, γ̇ ∗

ini = 0.95, and T (ini)∗
env = 1.21 for this choice of parameters, ϑ = 1.05 as an example of MME. The dotted

line in panel (a) represents the target temperature θtar = 1.16. The vertical dotted line in panel (b) indicates τMME. The symbols (with error
bars) are obtained from our simulations and the lines are kinetic-theory predictions.

there are two classes of Mpemba effects, NME and AME;
NME is generic (the initially hotter suspension starts cool-
ing down more rapidly than the initially colder suspension,
eventually catching up the latter), while AME is nontrivial
(even though the initially hotter suspension starts cooling
down more slowly than the initially colder suspension, the
former eventually catches up the latter). NME can be observed
if we compare the transient dynamics of a system starting
from a “hot” (unsheared) quasiequilibrium state with that of a
system starting from a “cold” nonequilibrium sheared steady
state. This is because the initial cooling rate is higher in the
former due to the absence of viscous heating than in the latter.
AME can be observed as the transient dynamics to approach
a common steady state when the initial quasiequilibrium state
is colder than the initial nonequilibrium sheared state. Inter-
estingly, a double crossing (NME followed by AME) can also
be observed.

Similarly, we have confirmed the existence of NIME and
AIME in the (heating) inverse Mpemba effect, as well a mixed
Mpemba effect (MME) where both cooling and heating are
present. Thus, we have clarified the generic features of the
Mpemba effect, which can be observed in cooling, heating,
and mixed relaxation processes. As far as we have studied,
AME and NME+AME (including their inverse counterparts)
are restricted to dilute inertial suspensions, while NME (in-
cluding NIME and MME) are present for moderately dense
systems.

Although the main text is dedicated to exotic relaxation
processes of temperature, a similar exotic relaxation process
can be observed in the measurement of the viscosity. This
point is addressed in Appendix F, where it turns out that the
viscosity difference changes its sign at most once, as far as we
have checked.

It must be emphasized that the model we have analyzed
in this paper is oversimplified in what the treatment of the
hydrodynamic interactions between particles. Thus, the inves-
tigation of more realistic suspensions will be a future subject
of our study.

In particular, a recent experimental study on the Mpemba
effect for a single colloid particle in water trapped in a poten-
tial created by optical tweezers [24,25] is interesting in that (i)

a collisionless model without consideration of hydrodynamic
interactions is used to explain the experiments, and (ii) the
main feature of Mpemba effect can be understood by hopping
processes from one local minimum to another minimum in the
free energy. Because we have not taken into account the local
potential trapping effects, it would be interesting to include
such effects in the future.
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APPENDIX A: MOMENT EQUATIONS

Let us write in this Appendix the explicit expressions of
the moment equations. The equation of the kinetic stress Pk

αβ

can be obtained by multiplying both sides of Eq. (6) by mVαVβ

and integrating over V . The result is

∂

∂t
Pk

αβ + γ̇
(
δαxPk

yβ + δβxPk
yα

) = −2ζ
(
Pk

αβ − nTenvδαβ

)−�αβ,

(A1)
where

�αβ ≡ −m
∫

dVVαVβJE [V | f , f ]. (A2)
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The time-dependent equations for T , �T , δT , and Pk
xy can be easily derived from Eq. (A1). They are given by

∂

∂t
T = − 2

3n
γ̇ Pk

xy + 2ζ (Tenv − T ) − �αα

3n
, (A3a)

∂

∂t
�T = −2

n
γ̇ Pk

xy − 2ζ�T − �xx − �yy

n
, (A3b)

∂

∂t
δT = −2

n
γ̇ Pk

xy − 2ζ δT − �xx − �zz

n
, (A3c)

∂

∂t
Pk

xy = −γ̇ Pk
yy − 2ζPk

xy − �xy. (A3d)

Note that �αβ in Eq. (A2) can be expressed as [28,29,37,38]

�αβ = 1 + e

4
mσ 2g0[Lαβ + (1 − e)Mαβ ], (A4)

where we have introduced

Lαβ ≡
∫

d σ̂
[
σ̂αI (2)

β
(̂σ ) + σ̂βI (2)

α (̂σ ) − 2σ̂ασ̂βI (3) (̂σ ) + a(δαxσ̂β + δβxσ̂α )I (2) (̂σ)
]
, (A5a)

Mαβ ≡
∫

d σ̂σ̂ασ̂βI (3) (̂σ), (A5b)

with I (�)
α (̂σ) and I (�) (̂σ) being

I (�)
α (̂σ ) ≡

∫
dV 1

∫
dV 2�(̂σ · V 12)(̂σ · V 12)�V12,α f (V 1) f (V 2 − γ̇ σ σ̂yex ), (A6a)

I (�) (̂σ ) ≡
∫

dV 1

∫
dV 2�(̂σ · V 12)(̂σ · V 12)� f (V 1) f (V 2 − γ̇ σ σ̂yex ). (A6b)

Analogously, Pc
αβ introduced in Eq. (11) can be expressed as

Pc
αβ = 1 + e

4
mσ 3g0

∫
d σ̂σ̂ασ̂βI (2) (̂σ). (A7)

Since σ̂αI (�)
α (̂σ) = I (�+1) (̂σ) is satisfied, we have the following simple relations for e = 1:

�αα = 2γ̇ Pc
xy,

∂

∂t
T = −2γ̇

3n
Pxy + 2ζ (Tenv − T ), (A8)

which represents the microscopic basis of Eq. (1) with cV = 3/2.
The explicit expression of the collision integral �αβ cannot be obtained because it needs information on the distribution

function. A good estimate of this collisional moment can be obtained by using Grad’s approximation [35,43–47]

f (V ) = feq(V )

(
1 + m

2T
�αβVαVβ

)
, (A9)

where

feq(V ) = n

(
m

2πT

)3/2

exp

(
−mV 2

2T

)
(A10)

is the Maxwellian distribution and

�αβ ≡ Pk
αβ

nT
− δαβ (A11)

is the traceless part of the (dimensionless) kinetic pressure tensor Pk
αβ .

In Grad’s approximation, the dimensionless collisional moments �∗
αβ ≡ �αβ/(nζTenv) and collisional shear stress �c∗

xy ≡
Pc

xy/(nTenv) are given by [29,37,38]

�∗
αβ = 3

√
2

π
(1 + e)ϕg0

√
T ∗

envθ
3/2

∫
d σ̂[σ̂α Ĵβ (̂σ) + σ̂β Ĵα (̂σ) + (1 − e)σ̂ασ̂β Î (3) (̂σ) + 2bT (̂σ)σ̂ασ̂β Î (2) (̂σ)], (A12a)

�∗
αα = 3

√
2

π
(1 + e)ϕg0

√
T ∗

envθ
3/2

∫
d σ̂[(1 − e)Î (3) (̂σ) + 2bT (̂σ)Î (2) (̂σ)], (A12b)

�c∗
xy = 3

π
(1 + e)ϕg0θ

∫
d σ̂σ̂xσ̂yÎ (2) (̂σ), (A12c)

032901-11



TAKADA, HAYAKAWA, AND SANTOS PHYSICAL REVIEW E 103, 032901 (2021)

where we have introduced the function

bT (̂σ) ≡ ˜̇γ√
2
σ̂xσ̂y, ˜̇γ ≡ γ̇ σ√

T/m
= γ̇ ∗√

T ∗
envθ

. (A13)

The quantities Î (2), Î (3), and Ĵα are given by [29,37,38]

Î (2) (̂σ) = − bT√
2π

e−b2
T /2 + 1 + b2

T

2
erfc

(
bT√

2

)
+ 1

2
erfc

(
bT√

2

)
σ̂β σ̂γ �βγ + bT

8
√

2π
e−b2

T /2(σ̂β σ̂γ �βγ )2, (A14a)

Î (3) (̂σ) = 2 + b2
T√

2π
e−b2

T /2 − 1

2
bT

(
3 + b2

T

)
erfc

(
bT√

2

)
+ 3

[
e−b2

T /2

√
2π

− bT

2
erfc

(
bT√

2

)]
σ̂β σ̂γ �βγ + 3

8
√

2π
e−b2

T /2(σ̂β σ̂γ �βγ )2,

(A14b)

Ĵx (̂σ) = −σ̂x

(
σ̂β σ̂γ �βγ − �xx − σ̂y

σ̂x
�xy

)[√
2

π
e−b2

T /2 − bT erfc

(
bT√

2

)
+ 1

2
√

2π
e−b2

T /2σ̂β σ̂γ �βγ

]
, (A14c)

Ĵy (̂σ) = −σ̂y

(
σ̂β σ̂γ �βγ − �yy − σ̂x

σ̂y
�xy

)[√
2

π
e−b2

T /2 − bT erfc

(
bT√

2

)
+ 1

2
√

2π
e−b2

T /2σ̂β σ̂γ �βγ

]
, (A14d)

Ĵz (̂σ) = −σ̂z(σ̂β σ̂γ �βγ − �zz )

[√
2

π
e−b2

T /2 − bT erfc

(
bT√

2

)
+ 1

2
√

2π
e−b2

T /2σ̂β σ̂γ �βγ

]
, (A14e)

where we have used the complementary error function
erfc(x) ≡ (2/

√
π )

∫ ∞
x dte−t2

.
Thus, the dimensionless time evolution equations of the

temperature, the two temperature differences, and the kinetic
shear stress are, respectively, given by

∂τ θ = − 2
3 γ̇ ∗�∗

xy − 2(θ − 1) − 1
3�∗

αα, (A15a)

∂τ�θ = −2γ̇ ∗�∗
xy − 2�θ − δ�∗

xx + δ�∗
yy, (A15b)

∂τ δθ = −2γ̇ ∗�∗
xy − 2δθ − 2δ�∗

xx − δ�∗
yy, (A15c)

∂τ�
∗
xy = −γ̇ ∗(θ − 2

3�θ + 1
3δθ

) − 2�∗
xy − �∗

xy, (A15d)

with �∗
αβ ≡ Pk

αβ/(nTenv) − θδαβ = θ�αβ , �θ ≡ (Pk
xx −

Pk
yy)/(nTenv), δθ ≡ (Pk

xx − Pk
zz )/(nTenv), and

δ�∗
xx = �∗

xx − 1
3�∗

αα, δ�∗
yy = �∗

yy − 1
3�∗

αα. (A16)

Equations (A15), complemented by Eqs. (A12) and (A14),
make a closed set of coupled differential equations that can
be numerically solved starting from any given initial condi-
tion. However, due to the fact that the integrations over σ̂ in
Eqs. (A12) need to be performed numerically at each time
τ , the time-dependent numerical solution of the set of evo-
lution equations (A15) is rather time-consuming. Following
Ref. [29], this technical problem is easily overcome if, instead
of the full nonlinear dependence of �∗

αβ on the shear rate,
one expands those quantities in powers of the dimensionless
parameter ˜̇γ defined in Eq. (A13). The quantities �∗

αα , �∗
xy,

δ�∗
xx, δ�∗

yy, and �c∗
xy are, respectively, expanded as

�∗
αα = ϕg0

√
T ∗

envθ
3/2

Nc∑
i=0

�̃(i)∗
αα

˜̇γ i, (A17a)

�∗
xy = ϕg0

√
T ∗

envθ
3/2

Nc∑
i=0

�̃(i)∗
xy

˜̇γ i, (A17b)

δ�∗
xx = ϕg0

√
T ∗

envθ
3/2

Nc∑
i=0

δ�̃(i)∗
xx

˜̇γ i, (A17c)

δ�∗
yy = ϕg0

√
T ∗

envθ
3/2

Nc∑
i=0

δ�̃(i)∗
yy

˜̇γ i, (A17d)

�c∗
xy = ϕg0θ

Nc∑
i=0

�̃c(i)∗
xy

˜̇γ i, (A17e)

where a truncation at order Nc has been introduced. The coef-
ficients of the expansions are functions of θ and �∗

αβ that can

be analytically evaluated term by term. The coefficients �̃(i)∗
αα ,

�̃(i)∗
xy , δ�̃(i)∗

xx , and δ�̃(i)∗
yy up to i = 6 are listed in Table I of

Ref. [29], while the coefficients �̃c(i)∗
xy up to i = 6 are listed in

Table II of Ref. [29]. As has been demonstrated in Ref. [29], a
truncation order Nc = 6 gives convergent results very close to
those obtained from the full nonlinear expressions (formally
equivalent to Nc → ∞). Thus, henceforth we adopt the sixth-
order expansions, i.e., Nc = 6, and numerically solve the time
evolutions of the quantities θ , �θ , δθ , and �∗

xy, as shown in
Secs. III and IV.

APPENDIX B: EXACT RESULTS OF A COLLISIONLESS
MODEL

In this Appendix, we discuss the Mpemba effect for a
collisionless model. Because the hydrodynamic lubrication
force between particles prevents particles from collisions, this
model might be more realistic than the collisional model
discussed in the main text. We also compare the theoretical
results of the collisionless model with those for very dilute
collisional systems.

In the collisionless model, the time evolutions of the
stress tensor and the kinetic temperature are obtained from
Eqs. (A15) by setting the collisional moments �∗

αβ →
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0. This formally corresponds to the limit ν � ζ (where
ν ∝ g0ϕ

√
T/m/σ is the collision frequency), i.e., the limit

g0ϕ
√

T ∗
envθ → 0. Thus, the moment equations become

∂τ θ = − 2
3 γ̇ ∗�∗

xy − 2(θ − 1), (B1a)

∂τ�θ = −2γ̇ ∗�∗
xy − 2�θ, (B1b)

∂τ δθ = −2γ̇ ∗�∗
xy − 2δθ, (B1c)

∂τ�
∗
xy = −γ̇ ∗(θ − 2

3�θ + 1
3δθ

) − 2�∗
xy. (B1d)

From Eqs. (B1b) and (B1c), we obtain �θ = δθ if their
initial values are identical. Under this assumption, which is
always valid for the FQE system and for the collisionless FS
system, we can rewrite the evolution equations in matrix form
as

∂τ

⎛⎝ θ

�θ

�∗
xy

⎞⎠ =
⎛⎝ −2 0 − 2

3 γ̇ ∗
0 −2 −2γ̇ ∗

−γ̇ ∗ 1
3 γ̇ ∗ −2

⎞⎠⎛⎝ θ

�θ

�∗
xy

⎞⎠ +
⎛⎝2

0
0

⎞⎠.

(B2)
Introducing the steady-state solution

θs ≡ 1 + 1
6 γ̇ ∗2, �θs = δθs ≡ 1

2 γ̇ ∗2, �∗
xy,s ≡ − 1

2 γ̇ ∗,
(B3)

Eq. (B2) is rewritten as

∂τ x = A · x, (B4)

with

x ≡
⎛⎝ θ − θs

�θ − �θs

�∗
xy − �∗

xy,s

⎞⎠, A ≡
⎛⎝ −2 0 − 2

3 γ̇ ∗
0 −2 −2γ̇ ∗

−γ̇ ∗ 1
3 γ̇ ∗ −2

⎞⎠.

(B5)
The solution of Eq. (B4) is

x(τ ) = exp(τA) · x(0). (B6)

The matrix A can be transformed to the Jordanian form in
terms of

U =
⎛⎝ 1

3 0 1
2γ̇ ∗2

1 0 0
0 − 1

2γ̇ ∗ 0

⎞⎠, U−1=
⎛⎝ 0 1 0

0 0 −2γ̇ ∗

2γ̇ ∗2 − 2
3 γ̇ ∗2 0

⎞⎠.

(B7)

The Jordan normal form J of the matrix A becomes

J = U−1 · A · U =
⎛⎝−2 1 0

0 −2 1
0 0 −2

⎞⎠ (B8)

and, therefore,

exp(τA) = U · exp(τJ) · U−1. (B9)

It can be proved by recursion that

Jk =
⎡⎣(−2)k k(−2)k−1 −k(k − 1)(−2)k−3

0 (−2)k k(−2)k−1

0 0 (−2)k

⎤⎦, (B10)

so that

exp(τJ) =
⎛⎝1 τ τ 2

2
0 1 τ

0 0 1

⎞⎠e−2τ . (B11)

Consequently,

exp(τA) =

⎛⎜⎝1 + 1
3 γ̇ ∗2τ 2 − 1

9 γ̇ ∗2τ 2 − 2
3 γ̇ ∗τ

γ̇ ∗2τ 2 1 − 1
3 γ̇ ∗2τ 2 −2γ̇ ∗τ

−γ̇ ∗τ 1
3 γ̇ ∗τ 1

⎞⎟⎠e−2τ .

(B12)

Thus, Eq. (B6) finally yields

θ (τ ) = θs + {
θ (0) − θs − 2

3 [�∗
xy(0) − �∗

xy,s]γ̇
∗τ + 1

3

[
θ (0) − 1

3�θ (0) − 1
]
γ̇ ∗2τ 2

}
e−2τ , (B13a)

�θ (τ ) = �θs + {
�θ (0) − �θs − 2[�∗

xy(0) − �∗
xy,s]γ̇

∗τ + [
θ (0) − 1

3�θ (0) − 1
]
γ̇ ∗2τ 2

}
e−2τ , (B13b)

�∗
xy(τ ) = �∗

xy,s + {
�∗

xy(0) − �∗
xy,s − [

θ (0) − 1
3�θ (0) − 1

]
γ̇ ∗τ

}
e−2τ , (B13c)

where we have taken into account θs − 1
3�θs = 1.

It should be noted that θ (τ ) and �θ (τ ) in Eqs. (B13a) and (B13b) contain terms quadratic in τ , while �∗
xy(τ ) in Eq. (B13c)

contains a linear function of τ . The quadratic function of τ in Eq. (B13a) may lead to two changes of sign in temperature
differences (giving rise to NME+AME), as will be shown below. On the other hand, the stress or the viscosity differences can
have only one change of sign.

Let us now explore the phase boundaries of the Mpemba effect. As in the main text, we particularize to the FS and FQE
systems (see Fig. 2). According to Eq. (B3), the initial conditions for both systems are given by

θFS(0) = θ0 ≡ 1 + 1
6 γ̇ ∗2

ini , �θFS(0) = δθFS(0) = 1
2 γ̇ ∗2

ini , �FS∗
xy (0) = − 1

2 γ̇ ∗
ini,

θFQE(0) = ϑθ0, �θFQE(0) = δθFQE(0) = 0, �FQE∗
xy (0) = 0. (B14)

From Eq. (B13a), we then obtain

θFQE(τ ) − θFS(τ ) = [
(ϑ − 1)θ0 − 1

3 γ̇ ∗
iniγ̇

∗
tarτ + 1

3 (ϑθ0 − 1)γ̇ ∗2
tar τ

2]e−2τ . (B15)
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The Mpemba effect takes place if there exist positive real
solutions τ of the quadratic equation

F (γ̇ ∗
tarτ ) = 0, (B16)

where

F (x) ≡ F2x2 − γ̇ ∗
inix + F0, (B17)

with

F2 ≡ ϑθ0 − 1, F0 ≡ 3(ϑ − 1)θ0. (B18)

Let us introduce the discriminant D for F (τ ) as

D ≡ γ̇ ∗2
ini − 4F0F2

= 6
[−2θ2

0 ϑ2 + 2θ0(θ0 + 1)ϑ − θ0 − 1
]
, (B19)

where we have used γ̇ ∗2
ini = 6(θ0 − 1). The two mathematical

roots of F (x) = 0 are

x = γ̇ ∗
ini ± √

D

2F0
. (B20)

Now we distinguish two cases:
(i) ϑ > 1.
In this case, F0 > 0 and F2 > 0, so that the two roots (B20)

are positive if D > 0, while there is no real root if D < 0.
The latter possibility means that there is no Mpemba effect,
but the former implies a “NME+AME” region. The boundary
between both regions corresponds to D = 0, which yields a
quadratic equation for ϑ with a single solution with ϑ > 1.
Therefore,

1 < ϑ <
12 + γ̇ ∗2

ini + γ̇ ∗
ini

√
12 + γ̇ ∗2

ini

12 + 2γ̇ ∗2
ini

⇒ NME+AME.

(B21)
(ii) ϑ < 1.
Now F0 < 0. If, additionally, F2 < 0, then no positive root

of Eq. (B20) is possible. However, if F2 > 0, a single positive
root exists (provided that D > 0). Therefore,(

1 + 1
6 γ̇ ∗2

ini

)−1
< ϑ < 1 ⇒ AME. (B22)

It can be easily checked that D > 0 if Eq. (B22) is satisfied.
Figure 16 shows the phase diagram of the collisionless

model in the cooling process, as described by Eqs. (B21)
and (B22). It is noteworthy that the diagram is independent
of the target shear rate γ̇ ∗

tar, which only determines the re-
laxation rate of the system. For ϑ > 1, a NME followed by
a subsequent AME is observed with a maximum range 1 <

ϑ < (1 + √
2)/2 � 1.21 at γ̇ ∗

ini =
√

6(
√

2 − 1) � 1.58 (or,

equivalently, θ0 = √
2). The AME takes place easily for an

increasing range of ϑ as the initial shear rate increases. Note
that the regions in Fig. 16 where the Mpemba effect exists
actually correspond to the inverse effect if γ̇ ∗

ini < γ̇ ∗
tar.

We also plot the phase diagrams for the collisional model
for ϕ = 10−4 and 10−3 with the choice e = 0.9, γ̇ ∗

tar = 1.0,
and T (tar)∗

env = 1.0 in Fig. 16. These results show that the
behavior of the collisional model converges to that of the
collisionless behavior in the low-density limit.

FIG. 16. Phase diagram for the collisionless model in the cooling
process. We also plot the phase diagrams for the collisional model for
ϕ = 10−4 and 10−3 with e = 0.9, γ̇ ∗

tar = 1.0, and T (tar)∗
env = 1.0.

Similarly, let us now consider the evolution of the viscosity
difference. From Eq. (B13c), we obtain

�FQE∗
xy (τ ) − �FS∗

xy (τ ) = [
1
2 γ̇ ∗

ini − (ϑθ0 − 1)γ̇ ∗
tarτ

]
e−2τ ,

(B23)
or, equivalently,

η∗
FQE(τ ) − η∗

FS(τ ) = −
[

1

2

γ̇ ∗
ini

γ̇ ∗
tar

− (ϑθ0 − 1)τ

]
e−2τ . (B24)

This means that a (single) viscosity crossover takes place if
ϑθ0 − 1 > 0, i.e., ϑ > 1/(1 + 1

6 γ̇ ∗2
ini ). This includes the AME

region (B22) plus the full region ϑ > 1. Thus, even if a
Mpemba effect with ϑ > 1 is absent because Eq. (B21) is
not fulfilled, the difference η∗

FQE(τ ) − η∗
FS(τ ) changes from

negative to positive at a certain time.

APPENDIX C: RELATIONSHIP BETWEEN THE INPUT
PARAMETERS {T (ini)∗

env , T (tar∗)
env , γ̇∗

ini} AND THE OUTCOME
ϑ AT t = 0

In this Appendix, we analyze the relationship between ϑ =
TFQE(0)/TFS(0) and the input parameters T (ini)∗

env , T (tar)∗
env , and

γ̇ ∗
ini.

1. Equation for TFQE(0)

In this subsection, we derive an approximate equation for
the initial temperature TFQE(0) in the FQE system as a func-
tion of T (ini)

env . Since TFQE(0) corresponds to the steady-state
temperature for an unsheared system, we will use in this
subsection the notation TFQE(0) → θiniT (ini)

env for the sake of
simplicity. Note that θini = 1 and f (V ) = feq(V ) in the case
of elastic collisions (e = 1). However, if e < 1, then one has
θini < 1 and f (V ) �= feq(V ).

Let us rewrite the unsheared steady Boltzmann-Enskog
equation (6) in the dimensionless form

∂

∂c
·
[(

c+ 1

2θini

∂

∂c

)
f̃ (c)

]
+ 6

π
ϕ

√
2θiniT

(ini)∗
env J̃E [c| f̃ , f̃ ] = 0,

(C1)
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where we recall that T ∗
env = Tenv/(mσ 2ζ 2) and we have intro-

duced the dimensionless velocity

c ≡ v

vT
, vT ≡

√
2θiniT

(ini)
env

m
. (C2)

In addition, we have also introduced the dimensionless distri-
bution function f̃ (c) and collision integral J̃E [c| f̃ , f̃ ] as

f̃ (c) ≡ v3
T

n
f (V )

= π−3/2e−c2

[
1 + a2

(
c4

2
− 5c2

2
+ 15

8

)]
, (C3a)

J̃E [c| f̃ , f̃ ] ≡ v2
T

n2σ 2
JE [V | f , f ]

= g0

∫
dc2

∫
d σ̂ �(̂σ · c12)(̂σ · c12)

×
[

f̃ (c′′
1 ) f̃ (c′′

2 )

e2
− f̃ (c1) f̃ (c2)

]
. (C3b)

In Eq. (C3a), the distribution function has been expanded
in Sonine polynomials and the expansion has been truncated
after the second-order term, the coefficient a2 representing
the fourth velocity cumulant (or excess kurtosis). It should
be noted that the Enskog collision operator reduces to the
Boltzmann collision operator multiplied by the radial distribu-
tion function at contact when the density and the temperature
are uniform and the mean flow velocity vanishes (see, for in-
stance, Appendix B in Ref. [28]). We also note that Eq. (C3b)
is obtained by taking the weak shear limit in Eq. (6), in which
we ignore the finite core size effect in the collision integral.
As far as we have investigated, however, the error caused by
this treatment is invisible, which will be shown later in this
Appendix.

From Eq. (C1), and by neglecting terms nonlinear in a2,
one can obtain [48–50]

θini = 1 − 4√
π

(1 − e2)ϕg0

√
T (ini)∗

env θ
3/2
ini

(
1 + 3

16
a2

)
,

(C4a)

a2 = 16(1 − e)(1 − 2e2)

81 − 17e + 30(1 − e)e2 + 40
√

π

(1+e)ϕg0θ
3/2
ini

√
T (ini)∗

env

.

(C4b)

It is remarkable that a2 → 0 and θini → 1 in the limit
ϕ → 0. This suggests that the FQE is equivalent to a system
at equilibrium in the low-density limit. In fact, Eq. (C1) shows
that collisions (either elastic or inelastic) become irrelevant in
the limit ϕ → 0. At finite density, on the other hand, θini can be
obtained by numerically solving the set of coupled equations
(C4). Once solved, we have θFQE(0) = θiniT (ini)

env /T (tar)
env .

2. Explicit form of θini in the Maxwellian approximation

In this subsection, we show the explicit form of θini by
solving Eq. (C4a) when the excess kurtosis a2 is neglected.

In that approximation, Eq. (C4a) becomes

θ
3/2
ini + θini − 1

A
= 0, A ≡ 4√

π
(1 − e2)ϕg0

√
T (ini)∗

env . (C5)

Introducing the change of variable θini = [x − 1/(3A)]2, we
can rewrite Eq. (C5) as

x3 + C1x + C0 = 0, C1 ≡ − 1

3A2
, C0 ≡ − 1

A
+ 2

27A3
.

(C6)

We define the discriminant of the cubic equation (C6) as

� =
(C0

2

)2

+
(C1

3

)3

= 1

4A2

(
1 − 4

27A2

)
. (C7)

If � � 0 (i.e., A � 2/3
√

3 � 0.385), then the cubic equation
(C6) has only one real root given by

x = 3

√
1

2A
− 1

27A3
+ 1

2A

√
1 − 4

27A2

+ 3

√
1

2A
− 1

27A3
− 1

2A

√
1 − 4

27A2
. (C8)

On the other hand, if � < 0 (i.e., A < 2/3
√

3 � 0.385), then
the cubic equation (C6) has three real roots, one positive and
two negative. It can be checked that only the positive root
is consistent with the physical condition θini < 1. After using
Vieta’s method, we obtain

x = 2

3A
cos

[
1

3
cos−1

(
27

2
A2 − 1

)]
. (C9)

In summary, within the Maxwellian approximation, we
have

θini =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
9A2

(
3

√
27
2 A2 − 1 + 27

2 A2
√

1 − 4
27A2

+ 3

√
27
2 A2 − 1 − 27

2 A2
√

1 − 4
27A2 − 1

)2

, A � 2
3
√

3
,

1
9A2

{
2 cos

[
1
3 cos−1

(
27
2 A2 − 1

)] − 1
}2

, A < 2
3
√

3
.

(C10)
It can be checked that the values of θini obtained from the nu-
merical solution of Eqs. (C4) are practically indistinguishable
from those given by Eq. (C10).

3. Relationship between the input parameters and the outcome

In Secs. C 1 and C 2, we have obtained θFQE(0) =
θiniT (ini)

env /T (tar)
env . On the other hand, θFS(0) is numerically de-

termined from the set of Eqs. (A15) by setting ∂τ → 0,
γ̇ ∗ → γ̇ ∗

ini, and T ∗
env → T (tar)∗

env . This in turn provides ϑ =
θFQE(0)/θFS(0) as a function of the input parameters T (ini)∗

env ,
T (tar)∗

env , and γ̇ ∗
ini.

Figure 17 shows the dependencies of ϑ on [Fig. 17(a)]
the environmental temperature T (ini)∗

env in FQE, [Fig. 17(b)] the
packing fraction ϕ, and [Fig. 17(c)] the initial shear rate γ̇ ∗

ini
in FS. As can be seen, the theory reproduces very well our
simulation results. As T (ini)∗

env increases, the temperature ratio
ϑ monotonically increases [see Fig. 17(a)]. Also, Fig. 17(b)
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FIG. 17. (a) Plots of ϑ against T (ini)∗
env for ϕ = 0.01, 0.10, and 0.30 with fixed e = 0.9, γ̇ ∗

ini = 1.0, and T (tar)∗
env = 1.0. (b) Plots of ϑ against ϕ

for T (ini)∗
env = 0.10, 1.0, and 10 with fixed e = 0.9, γ̇ ∗

ini = 1.0, and T (tar)∗
env = 1.0. (c) Plots of ϑ against γ̇ ∗

ini for T (ini)∗
env = 0.10, 1.0, and 10.0 with

fixed e = 0.9, ϕ = 0.01, and T (tar)∗
env = 1.0. The symbols (with error bars) are obtained from our simulations and the lines are kinetic-theory

predictions.

shows that ϑ tends to decrease with increasing density. More-
over, ϑ decreases as γ̇ ∗

ini increases, as shown in Fig. 17(c), but
this effect is only remarkable for very large values of initial
shear rate γ̇ ∗

ini.

APPENDIX D: CROSSING TIMES OF THE
TEMPERATURES AT MPEMBA EFFECT

In this Appendix, we investigate the times τNME and τAME,
which are defined by Eqs. (14) and (15). Figure 18(a) shows

the magnitude plot of τNME for ϕ = 0.01, e = 0.9, T (tar)∗
env =

1.0, and γ̇ ∗
tar = 1.0. This time remains finite near the bound-

ary between “No Mpemba” and “NME+AME,” and between
“NME” and “NME+AME,” which is natural because NME
takes place in the early stage of evolution. On the other hand,
this time tends to zero on the boundaries between “NME”
and “No Mpemba,” and between “NME+AME” and “AME”
because the initial temperature difference disappears on the
boundaries (ϑ � 1).

(a) (b)

FIG. 18. Magnitude plots of the times (a) τNME and (b) τAME for ϕ = 0.01, e = 0.9, T (tar)∗
env = 1.0, and γ̇ ∗

tar = 1.0. These phase diagrams are
identical to Fig. 4(a).
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FIG. 19. (a) Phase diagram in the plane ϑ versus γ̇ini/γ̇tar of the Mpemba effect for ϕ = 0.01, e = 0.9, T (tar)∗
env = 1.0, and γ̇ ∗

tar = 1.0. We
have chosen three initial environmental temperature T (ini)∗

env = 5.29, 5.76, and 8.00. (b) Time evolutions of the temperature differences at
T (ini)∗

env = 5.29 (red dashed line), 5.76 (blue solid line), and 8.00 (black dotted line). Here, we have chosen six points to visualize the order
parameter defined in Eq. (E1). Points (c)–(e) and (f)–(h) correspond to the temperature differences at τ = 0.7 and 1.7, respectively. (c)–(e)
Contours of φ(r∗, τ ) = 0 at τ = 0.7 and T (ini)∗

env = 8.00, 5.76, and 5.29, respectively, where the red (blue) side on the contours is higher (lower)
than 0. (f)–(h) Contours of φ(r∗, τ ) = 0 at τ = 1.7 in which the other parameters are identical those used in Figs. 19(c)–19(f). The small
minority phases correspond to φ < 0 (φ > 0) in panels (c) and (f) [panel (e)].

Figure 18(b) also shows the magnitude plot of τAME under
the identical set of parameters to that used in Fig. 18(a).
This time also remains finite near the boundary between “No
Mpemba” and “NME+AME” (in fact τAME and τNME coa-
lesce on that boundary), because the AME takes place due to
the early stage of evolution. On the other hand, τAME diverges
on the boundaries between “NME+AME” and “NME,” and
between “AME” and “No Mpemba” because such crossings
take place in the later stage of evolution, as shown in Figs. 3(d)
and 3(f).

APPENDIX E: DOMAIN STRUCTURES NEAR THE
BOUNDARIES

In this Appendix, we discuss domain structures near the
phase boundaries by the introduction of an order parameter.

To this end, we first evaluate the temperature fields θFQE(r∗, τ )
and θFS(r∗, τ ), where r∗ ≡ r/L is the dimensionless coordi-
nate with the linear system size L, and the mesh size is chosen
as �r∗ = 1/30. We introduce the order parameter field

φ(r∗, τ ) ≡ θFQE(r∗, τ ) − θFS(r∗, τ )

θFQE(r∗, τ ) + θFS(r∗, τ )
. (E1)

We note that this order parameter is defined in terms of
the two different simulations. Let us check how this order
parameter behaves in the phase diagram. We choose three
points which belong to the “No Mpemba,” “NME+AME,”
and close to the phase boundary between these two phases,
as shown in Fig. 19(a). Typical time evolutions of the tem-
perature difference are plotted in Fig. 19(b). Here we choose
two (dimensionless) times τ = 0.7 and 1.7 which correspond
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FIG. 20. Time evolutions of the viscosity difference η∗
FQE(τ ) − η∗

FS(τ ) for e = 0.9, ϕ = 0.01, T (tar)∗
env = 1.0, and (a) γ̇ ∗

tar = 1.0, γ̇ ∗
ini = 4.0,

and T (ini)∗
env = 5.29, (b) γ̇ ∗

tar = 1.0, γ̇ ∗
ini = 4.0, and T (ini)∗

env = 5.76, (c) γ̇ ∗
tar = 4.0, γ̇ ∗

ini = 1.0, and T (ini)∗
env = 1.33, and (d) γ̇ ∗

tar = 1.0, γ̇ ∗
ini = 0.95, and

T (ini)∗
env = 1.21. The parameters used in panels (a), (b), (c), and (d) correspond to those in Figs. 3(a), 3(c), 13, and 15, respectively. The symbols

(with error bars) are obtained from our simulations and the lines are kinetic-theory predictions.

to the times when the temperature differences near the phase
boundary [T (ini)∗

env = 5.76] take extrema. Figures 19(c)–19(e)
and Figs. 19(f)–19(h) illustrate the contours of φ(r∗, τ ) = 0
at τ = 0.7 and 1.7, respectively. At T (ini)∗

env = 8.00, the sys-
tem belongs to “No Mpemba” and far from the boundary.
In this case, the majority phase in the order parameter field
takes positive values (φ > 0), as can be seen in Figs. 19(c)
and 19(f). This means that small “NME” domains can exist
but they cannot dominate the space. Similar behavior can be
also observed at T (ini)∗

env = 5.29 and τ = 0.7 [see Fig. 19(e)]
in which small “No Mpemba” domains (φ < 0) exist in the
background of majority “NME” (φ > 0) phase. On the other
hand, we observe bicontinuous domain structures at T (ini)∗

env =
5.76. A small “NME” phase starts to increase its size in the
early stage. When the temperature difference take extrema,
the domains become bicontinuous at τ = 0.7 and 1.7 [see
Figs. 19(d) and 19(g), respectively]. This means that the
“NME” (“AME”) phase competes with the “No Mpemba”
(“NME”) at τ = 0.7 (1.7). Here, the structure is connected
because of the adoption of the periodic boundaries. We note
that point (h) of Fig. 19(b) also exhibits bicontinous domains

at which the temperature difference becomes zero. The corre-
sponding domain structure should be observed on each phase
boundary, though we do not draw such figures explicitly in
this paper.

APPENDIX F: EVOLUTION OF THE VISCOSITY
DIFFERENCE

Since the viscosity is the most important quantity for the
rheology of suspensions, the analysis of its transient behavior
might be more relevant than that of temperature. In this Ap-
pendix, we present some typical results for the time evolution
of the viscosity difference between two systems which exhibit
Mpemba effect.

Figure 20 shows the evolutions of the viscosity differ-
ence η∗

FQE(τ ) − η∗
FS(τ ) for the cases considered in Figs. 3(a),

3(c), 13, and 15. It is notable that the viscosity difference
changes its sign only once, as expected from Eq. (B24) in
the collisionless model. This is a feature of the viscosity
different from that of the Mpemba effect for the temperature
relaxation.
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